TWI325442B - Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof - Google Patents

Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof Download PDF

Info

Publication number
TWI325442B
TWI325442B TW96116235A TW96116235A TWI325442B TW I325442 B TWI325442 B TW I325442B TW 96116235 A TW96116235 A TW 96116235A TW 96116235 A TW96116235 A TW 96116235A TW I325442 B TWI325442 B TW I325442B
Authority
TW
Taiwan
Prior art keywords
mutated
positions
pseudomonas putida
furfural
dehydrogenase
Prior art date
Application number
TW96116235A
Other languages
Chinese (zh)
Other versions
TW200844228A (en
Inventor
Chien Hsiao Chen
Ying Chou Chen
Shin Chong Tsai
Hsu Wen Tsang
Mie Hsien Yeh
Su Lien Wang
Pearl Hsiu Ping Lin
Original Assignee
Dev Center Biotechnology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dev Center Biotechnology filed Critical Dev Center Biotechnology
Priority to TW96116235A priority Critical patent/TWI325442B/en
Publication of TW200844228A publication Critical patent/TW200844228A/en
Application granted granted Critical
Publication of TWI325442B publication Critical patent/TWI325442B/en

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

〇〇442 九、發明說明: 【發明所屬之技術領域】 本發明係為一種經改質之酵素,特別關於一種戀臭假 〇〇 早胞il非麵胺基硫相關(glutathione-independent)曱酸脫氫 酵素。 【先前技術】 % NADH是生物細胞内的高還原性化合物,主要作為生 .物細胞内酵素的輔酶(coenzyme),提供酵素反應必要的氫 : 原子,然後氧化為NAD。一般的氧化還原酵素都需以 NAD(H)作為輔酶’才能驅使反應的進行。在生物體内 NADH與NAD的濃度比例是固定的,維持生物體内必要 的生理活性。由於NADH還原活性極高,因此不容易從細 胞内純化萃取,目前市售NADH是利用電鰻細胞萃取製 成’ 4貝格叩貝(2,200元/g),因此無法應用在氧化還原的酵 • 素製程。 而曱醛脫氫酵素是一種能將曱醛氧化成曱酸的酵素, 可分為麩氨基硫相關(glutathione-dependent)與非麵氨義石充 相關(glutathione-independent)兩種形式。其中具麵气美碚 相關的曱醛脫氫酵素存在於大部分的生物之中,包括大腸 桿菌細胞内。這種型式的曱醛脫氫酵素利用楚氨其碎與 NAD作為輔酵素’使甲醛轉換成曱酸。由於必須利用氨 基硫參與酵素反應’在工業使用上會增加操作成本與操$ 變因’因此並不適合大規模應用。而非麩氨基硫相關的甲 1325442 醛脫氫酵素則在1979年被發現在戀臭假單胞菌bCRC 13897 胞内(Susumu Ogushi,M. Ando, D. Tsuru, ^formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme”,J. biochem” 96, 1587-1591,1984.)。非 麩氨基硫相關的甲醛脫氫酵素的優點在於不必透過麵氨基 硫作為輔酵素,直接將NAD與曱醛轉化成甲酸與高價的 NADH。由於NADH具備高還原性,可廣泛的應用在工業 與民生用途之中’因此非麩氨基硫相關的甲醛脫氫酵素具 備極高的市場應用價值。 而由於目前野生株的非麵氨基硫相關甲醛脫氫酵素的 比活性低(17U/mg)、價格高(5〇〇元川),且基質專一性 低,不利應用至工業製程中,使得許多曱醛脫氫酵素的可 行應用無法進行商業化的開發與生產。因此許多人投入改 良甲醛脫氫酵素之生產工作。於日本專利公開號〇〇 442 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention is a modified enzyme, particularly for a glutathione-independent citrate Dehydrogenase. [Prior Art] % NADH is a highly reducing compound in biological cells, mainly used as a coenzyme for enzymes in living cells, which supplies hydrogen necessary for the enzyme reaction: atom, and then oxidizes to NAD. In general, oxidoreductases require NAD(H) as a coenzyme' to drive the reaction. In vivo, the concentration ratio of NADH to NAD is fixed, maintaining the necessary physiological activity in the living body. Because NADH has high reduction activity, it is not easy to purify and extract from cells. Currently, commercially available NADH is made by electroporation cell extraction to produce '4 Berg' mussels (2,200 yuan/g), so it cannot be applied to redox fermentation. Prime process. Furfural dehydrogenase is an enzyme that can oxidize furfural to citric acid. It can be divided into two types: glutathione-dependent and glutathione-independent. Among them, furfural dehydrogenase, which is associated with sputum, is present in most organisms, including Escherichia coli cells. This type of furfural dehydrogenase converts formaldehyde to citric acid using Chuanqi and its NAD as a coenzyme. Since it is necessary to use aminosulfur to participate in the enzyme reaction, 'industrial use increases operating costs and costs.' Therefore, it is not suitable for large-scale applications. Non-glutamate-sulfur-related A 1334542 aldehyde dehydrogenase was found in 1979 in Pseudomonas syriae bCRC 13897 (Susumu Ogushi, M. Ando, D. Tsuru, ^formaldehyde dehydrogenase from Pseudomonas putida: a Zinc metalloenzyme", J. biochem" 96, 1587-1591, 1984.). The advantage of non-branched aminosulfur-related formaldehyde dehydrogenase is that it does not have to pass through the surface aminosulfur as a coenzyme to directly convert NAD and furfural to formic acid and high-priced NADH. Because NADH has high reductibility, it can be widely used in industrial and residential applications. Therefore, non-brome aminosulfur-related formaldehyde dehydrogenase has high market application value. However, due to the low specific activity (17U/mg) and low matrix specificity of the non-faceted aminosulfur-related formaldehyde dehydrogenase in the wild strain, the application to the industrial process is unfavorable. The viable application of furfural dehydrogenase cannot be commercialized and produced. Therefore, many people have invested in improving the production of formaldehyde dehydrogenase. Japanese Patent Publication No.

剌6303981巾揭不’將甲酸脫氫酵素之基因轉植進大腸桿 菌中再大里發酵此大腸桿S,以獲得大量之曱酿脫氫酵 素:·:過此方法仍未解決其比活性低之問題 ° 而 Yasuyc剌6303981 towel will not be 'transformed the gene of formate dehydrogenase into E. coli and ferment this large intestine rod S to obtain a large amount of dehydrogenase:: This method has not solved its low activity Question ° and Yasuyc

Fujii等人在2GG4年所發表的甲㈣氫酵素比活性的改質 、、’σ果為31.5 U/mg(37°c pH=9 Q) ’但酵素之比活性還是偏 低,也還不適合用於大量生產之工業應用。 〒此:發明透過對曱醛脫氫酵素基因序列進行突變, 來辦胺土&amp;序列出現改變,以達酵素改質之目的,而經 改貞之酵素可提升料活性與基 質專一性]並且降低酵意 使用成本。酵素活性與專—性的増加 ,可使甲醛脫氫酵責 1325442 的應用面擴大至工業與民生用途之中。 【發明内容】 基於上述背景,本發明的主要目的在於提供一種戀臭 假單胞菌非麩胺基硫相關曱醛脫氫酵素的基因序列,其中 (i)第522個位置突變為胸線嘧啶、711個位置突變為胸線 嘧啶、762個位置突變為胸線嘧啶、818個位置突變為胸線 嘧啶、876個位置突變為胸線嘧啶以及903個位置突變為 • 鳥糞嘌呤,或(ii)第522個位置突變為胸線嘧啶、826個位 置突變為鳥糞嘌呤、876個位置突變為胸線嘧啶以及903 個位置突變為鳥糞嘌呤,或者(iii)第522個位置突變為胸 線嘧啶、774個位置突變為胸線嘧啶、777個位置突變為胸 線嘧啶、876個位置突變為胸線嘧啶、903個位置突變為鳥 糞嘌呤以及1126個位置突變為胸線嘧啶,且其中該戀矣假 單胞菌非糙胺基硫相關曱醛脫氫酵素的比活性較野生株 局。 ® 本發明另提供一種戀臭假單胞菌非麩胺基硫相關曱醛 脫氫酵素的胺基酸序列,其中第273個位置突變為擷胺 酸、第275個位置突變為麩胺酸或第375個位置突變為半 胱胺酸,其中該戀臭假單胞菌非麩胺基硫相關曱醛脫氫酵 素的比活性較野生株高。 本發明也提供一種戀臭假單胞菌非麩胺基硫相關曱醛 脫氫酵素,其胺基酸序列為第273個位置突變為擷胺酸、 第275個位置突變為麵胺酸或第375個位置突變為半胱胺 1325442 酸,且其比活性較野生株高。 本發明更提供一種細胞,包括前述之戀臭假單胞菌非 麵胺基硫相關曱醛脫氫酵素的基因序列。此細胞包括細菌 或酵母菌。 本發明又提供一種載體,包括前述之戀臭假單胞菌非 麵胺基硫相關曱醛脫氫酵素的基因序列。 本發明更提供一種包括上述載體之細胞。此細胞包括 細菌或酵母菌。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: 【實施方式】 本發明為提供一種經改質之戀臭假單胞菌非麩胺基硫 相關曱醛脫氫酵素的基因序列、胺基酸序列以及曱醛脫氫 酵素。 本發明之一實施型態為一種戀臭假單胞菌非麩胺基硫 相關曱醛脫氫酵素的基因序列,其中第522、711、762、 774、777、818、826、876、903 及/或 1126 個位置產生突 變。在一些實施例中,上述序列之⑴第522個位置突變為 胸線嘧啶、711個位置突變為胸線嘧啶、762個位置突變為 胸線嘧啶、818個位置突變為胸線嘧啶、876個位置突變為 胸線嘧啶以及903個位置突變為鳥糞嘌呤,或(ii)第522個 位置突變為胸線嘧啶、826個位置突變為鳥糞嘌呤、876 1325442 個位置突變為胸線嘧啶以及903個位置突變為鳥糞嘌呤, 或者(iii)第522個位置突變為胸線嘧啶、774個位置突變為 胸線嘧啶、777個位置突變為胸線嘧啶、876個位置突變為 胸線嘧啶、903個位置突變為鳥糞嘌呤以及1126個位置突 變為胸線嘧啶。此戀臭假單胞菌非麩胺基硫相關曱醛脫氫 酵素的比活性較野生株高,其比活性約為30-150 U/mg, 而野生株之比活性為17 U/mg。上述戀臭假單胞菌包括戀 臭假單胞菌BCRC13897。而於一實施例中比活性約為 100-150U/mg。 在一較佳實施例中,第522個位置突變為胸線嘧啶、 774個位置突變為胸線嘧啶、777個位置突變為胸線嘧啶、 876個位置突變為胸線嘧啶、903個位置突變為鳥糞嘌呤以 及1126個位置突變為胸線嘧啶。 本發明之另一實施型態為一種戀臭假單胞菌非麩胺基 硫相關甲醛脫氫酵素的胺基酸序列,其中第273、275及/ 或375個位置產生突變。在一些實施例中,第273個位置 突變為擷胺酸、第275個位置突變為麩胺酸或第375個位 置突變為半胱胺酸。上述之戀臭假單胞菌非麩胺基硫相關 甲醛脫氫酵素的比活性較野生株高,其比活性約為30-150 U/mg,而野生株之比活性為17 U/mg。上述戀臭假單胞菌 包括戀臭假單胞菌BCRC13897。而於一實施例中上述之戀 臭假單胞菌非麩胺基硫相關曱醛脫氫酵素的比活性約為 100-150 U/mg。在一較佳實施例中,第375個位置突變為 半胱胺酸。The specific activity of the hydrogenase activity of Fujitsu et al. published in 2GG4, 'σ fruit is 31.5 U/mg (37 °c pH=9 Q)', but the specific activity of the enzyme is still low, and it is not suitable. Industrial applications for mass production. : :: The invention through the mutation of the furfural dehydrogenase gene sequence to change the sequence of the amine soil &amp; The cost of yeast use. Enzyme activity and specificity can increase the application of formaldehyde dehydrogenation 1325442 to industrial and people's livelihood. SUMMARY OF THE INVENTION Based on the above background, the main object of the present invention is to provide a gene sequence of Pseudomonas putida non-glutamate-based sulfur-related furfural dehydrogenase, wherein (i) the 522th position is mutated to thoracic pyrimidine. 711 positions were mutated to thoracic pyrimidine, 762 positions were mutated to pleuropyrimidine, 818 positions were mutated to thoracpool, 876 positions were mutated to thoracpool, and 903 positions were mutated to • guano 嘌呤, or (ii The 522th position was mutated to thoracic pyrimidine, 826 positions were mutated to guanosene, 876 positions were mutated to pleuropyrimidine, and 903 positions were mutated to guano, or (iii) 522th position was mutated to chest line. Pyrimidine, 774 positions were mutated to pleuropyrimidine, 777 positions were mutated to pleuropyrimidine, 876 positions were mutated to thymidine, 903 positions were mutated to guanosine, and 1126 positions were mutated to thymidine, and The specific activity of non-rough amine-sulfur-related furfural dehydrogenase of Pseudomonas loves is higher than that of wild strain. The present invention further provides an amino acid sequence of Pseudomonas putida non-glutamate sulfur-related furfural dehydrogenase, wherein the 273th position is mutated to valine, the 275th position is mutated to glutamic acid or The 375th position was mutated to cysteine, and the specific activity of the non-glutamate sulphur-related furfural dehydrogenase of P. syphilis was higher than that of the wild strain. The present invention also provides a non-glutamate-sulfur-related furfural dehydrogenase of Pseudomonas putida, wherein the amino acid sequence is mutated to a valeric acid at the 273th position, and the 275th position is mutated to a face acid or a The 375 positions were mutated to cysteamine 1325442 acid, and its specific activity was higher than that of wild plants. The present invention further provides a cell comprising the aforementioned gene sequence of Pseudomonas putida non- face amine sulfur-related furfural dehydrogenase. This cell includes bacteria or yeast. The present invention further provides a vector comprising the aforementioned gene sequence of Pseudomonas putida non- face amine sulfur-related furfural dehydrogenase. The present invention further provides a cell comprising the above vector. This cell includes bacteria or yeast. The above and other objects, features and advantages of the present invention will become more <RTIgt; The genetic sequence, amino acid sequence and furfural dehydrogenase of the non-glutamate-sulfur-related furfural dehydrogenase of Pseudomonas putida. One embodiment of the present invention is a gene sequence of Pseudomonas putida non-glutamate-based sulfur-related furfural dehydrogenase, wherein 522, 711, 762, 774, 777, 818, 826, 876, 903 and / or 1126 positions produce mutations. In some embodiments, the 522th position of (1) of the above sequence is mutated to thymidine, 711 position mutations to thymidine, 762 positions to thymidine, 818 positions to thymidine, 876 positions Mutation to thoracic pyrimidine and 903 position mutations to guanosin, or (ii) mutation at position 522 to thymidine, 826 position mutation to guanosene, 876 1325442 positions to thymidine and 903 Position mutation to guano sputum, or (iii) mutation at position 522 to thymidine, 774 position mutation to thymidine, 777 position mutation to thoracic, 876 position mutation to thoracic, 903 The position was mutated to guanosin and 1126 positions were mutated to thoracic. The specific activity of the non-glutamate-sulfur-related furfural dehydrogenase of P. syringae was higher than that of the wild-type strain, and its specific activity was about 30-150 U/mg, while the specific activity of the wild-type strain was 17 U/mg. The above Pseudomonas putida includes Pseudomonas putida BCRC13897. In one embodiment, the specific activity is about 100-150 U/mg. In a preferred embodiment, the 522th position is mutated to pleuropyrimidine, 774 positions are mutated to pleuropyrimidine, 777 positions are mutated to pleuropyrimidine, 876 positions are mutated to pleuropyrimidine, and 903 positions are mutated to The guano and 1126 positions were mutated to thoracic pyrimidine. Another embodiment of the present invention is an amino acid sequence of Pseudomonas putida non-glutamate sulfur-related formaldehyde dehydrogenase wherein a mutation occurs at positions 273, 275 and/or 375. In some embodiments, the 273th position is mutated to proline, the 275th position is mutated to glutamic acid or the 375th position is mutated to cysteine. The specific activity of the non-glutamate-sulfur-related formaldehyde dehydrogenase of Pseudomonas putida is higher than that of the wild plant, and its specific activity is about 30-150 U/mg, while the specific activity of the wild-type strain is 17 U/mg. The above Pseudomonas putida includes Pseudomonas putida BCRC13897. In one embodiment, the specific activity of the above non-glutamate-based sulfur-related furfural dehydrogenase is approximately 100-150 U/mg. In a preferred embodiment, the 375th position is mutated to cysteine.

10 1325442 上述之經改質戀臭假單胞菌非麩胺基硫相關經甲醛脫 氫酵素的曱醛與乙醛反應速率比值(酵素專一性)較野生 株高,在一實施例中曱醛與乙醛反應速率比值約為 200〜300,而野生株酵素之曱醛與乙醛反應速率比值則為 4.53。 又於另一實施例中,經改質之酵素曱醛與乙醛反應 速率比值約為野生株之44-66倍。經改質之酵素分別對於 曱醛與乙醛最低反應的差異性可達1〇3以上。 本發明又一實施型態為一種戀臭假單胞菌非糙胺基硫 相關曱醛脫氫酵素,其胺基酸序列為第273個位置突變為 擷胺酸、第275個位置突變為麩胺酸或第375個位置突變 為半胱胺酸,且其比活性較野生株高。其比活性約為30-150 U/mg,而野生株之比活性為17 U/mg。上述戀臭假單胞菌 包括戀臭假單胞菌BCRC13897。而於一實施例中上述之戀 臭假單胞菌非麩胺基硫相關甲醛脫氫酵素的比活性約為 100-150 U/mg。 在一較佳實施例中,此酵素之胺基酸序列之第375個 位置突變為半胱胺酸。 在一實施例中,酵素的曱醛與乙醛反應速率比值(酵 素專一性)較野生株高。曱醛與乙醛反應速率比值約為 200〜300,而野生株酵素之甲醛與乙醛反應速率比值則為 4.53。 又於另一實施例中,經改質之酵素曱醛與乙醛反應 速率比值約為野生株之44-66倍。於一較佳實施例中,經 改質之酵素分別對於曱醛與乙醛最低反應的差異性可達 103以上。 11 1325442 又—實施型態中’可將本發明之基因序列置於一載體 或細胞中’以便需大量生產此經改質之甲路脫氫酵素之 應用’载體可包括 pTrc His A、pTrc His B、pTrc His C、 pET 41 a、pET 17b、pET 16b,而細胞可為大腸桿菌與酵母 菌。 另一些實施例中’將前述之載體置於一細胞中,而細 胞包括大腸桿菌與酵母菌。 而此經改質之甲醛脫氫酵素特用化學品與化學品的生 產製程、甲醛去除、曱醇偵測與生物燃料電池等領域。此 外,應用酵素基因表現技術進行酵素量產,可降低酵素生 產成本’增加酵素應用利基。又改質的曱醛脫氫酵素可鹿 用至新型的NADH再生系統中,並與曱酸脫氫酵素結人^ 成多酵素的NADH再生反應。另一方面,曱醛脫氫酵;^ 可應用至生物感測器與生物燃料電池之中。 【實施例】 得到本發明戀臭假單胞菌非麩胺基硫相關甲醛脫^酵 素的基因序列的方法敘述如下。 含戀臭假單胞菌甲醛脫氫酵素基因之質體DNA製備 首先提供戀臭假單胞菌BCRC13897菌株,將其置於 NA或C83培養基中,於26°C下培養時間44小時。接著抽 取戀臭假單胞菌BCRC13897菌株的染色體DNA作為甲駿 脫氫酵素機基因放大之模板DNA(template DNA)。 1325442 設計曱醛脫氫酵素基因之引子以進行聚合酶連鎖反應 (Polymerase Chain Reaction,以下簡稱 PCR)。戀臭假 單胞菌BCRC13897之曱醛脫氫酵素基因片段為12〇〇 bp,10 1325442 The above-mentioned modified non-glutamate sulfur-related formaldehyde dehydrogenase-derived furfural and acetaldehyde reaction rate ratio (enzyme specificity) is higher than that of wild plants, in one embodiment, furfural The ratio of the reaction rate with acetaldehyde is about 200 to 300, and the ratio of the reaction rate of furfural to acetaldehyde of the wild strain enzyme is 4.53. In still another embodiment, the ratio of the rate of reaction of the modified enzyme furfural to acetaldehyde is about 44-66 times that of the wild strain. The difference between the modified enzyme and the lowest reaction of furfural and acetaldehyde is more than 1〇3. A further embodiment of the present invention is a non-rough amine-sulfur-related furfural dehydrogenase of Pseudomonas putida, wherein the amino acid sequence is mutated to valeric acid at position 273 and mutated to bran at position 275. The amino acid or the 375th position is mutated to cysteine and its specific activity is higher than that of the wild strain. Its specific activity is about 30-150 U/mg, while the specific activity of wild strain is 17 U/mg. The above Pseudomonas putida includes Pseudomonas putida BCRC13897. In one embodiment, the specific activity of the above non-glutamate-based sulfur-related formaldehyde dehydrogenase is approximately 100-150 U/mg. In a preferred embodiment, the 375th position of the amino acid sequence of the enzyme is mutated to cysteine. In one embodiment, the ratio of the reaction rate of furfural to acetaldehyde (enzyme specificity) of the enzyme is higher than that of the wild strain. The ratio of the reaction rate of furfural to acetaldehyde is about 200 to 300, and the ratio of the reaction rate of formaldehyde to acetaldehyde of wild strain enzyme is 4.53. In still another embodiment, the ratio of the rate of reaction of the modified enzyme furfural to acetaldehyde is about 44-66 times that of the wild strain. In a preferred embodiment, the modified enzyme has a minimum reactivity of more than 103 for furfural and acetaldehyde, respectively. 11 1325442 - In the implementation form, the 'gene sequence of the present invention can be placed in a vector or a cell' for the purpose of mass production of the modified dehydrogenase" carrier can include pTrc His A, pTrc His B, pTrc His C, pET 41 a, pET 17b, pET 16b, and the cells may be Escherichia coli and yeast. In other embodiments, the aforementioned vector is placed in a cell, and the cells include Escherichia coli and yeast. This modified formaldehyde dehydrogenase special chemical and chemical production process, formaldehyde removal, sterol detection and biofuel cells. In addition, the use of enzyme gene expression technology for enzyme mass production can reduce the cost of enzyme production. The modified furfural dehydrogenase can be used in the novel NADH regeneration system and reacted with the phthalic acid dehydrogenase to form a multi-enzyme NADH regeneration reaction. On the other hand, furfural dehydrogenation can be applied to biosensors and biofuel cells. [Examples] A method for obtaining the gene sequence of Pseudomonas putida non-glutamate-based sulfur-related formaldehyde de-enzyme of the present invention is described below. Preparation of plastid DNA containing Pseudomonas aeruginosa formaldehyde dehydrogenase gene First, Pseudomonas putida BCRC13897 strain was provided, which was placed in NA or C83 medium and cultured at 26 ° C for 44 hours. Next, the chromosomal DNA of Pseudomonas putida BCRC13897 strain was extracted as a template DNA amplified by the A. dehydrogenase machine gene. 1325442 Designed a primer for the furfural dehydrogenase gene to perform a polymerase chain reaction (PCR). The furfural dehydrogenase gene fragment of Pseudomonas syriae BCRC13897 is 12〇〇 bp.

設計的引子為:5’ GAA TTC AGG CCG CGC TGA AGG TCT TGT GCG 3,以及 5’ GAA TTC ATG TCT GGT AAT CGT GGT GTC GTT3’。之後進行PCR,放大所需之甲酸脫 氫酵素基因片段。將曱搭脫氫酵素基因片段至入pTrc His B (抗卡那黴素(kanamycin)及安博黴素(ampiciiHn)),而野 生株之戀臭假單胞菌BCRC13897之曱醛脫氫酵素基因序 列為序列辨識號:1 ;胺基酸序列為序列辨識號:2。 將製備好之質體轉形至大腸桿菌BL-21 Blue勝任細 胞(〇0!1^616加(^11)中(購自81加&amp;§6狀)。確認經轉形之勝 任細胞已具有目標質體後,大量培養勝任細胞,並抽取質 體DNA進行保存。 甲搭脫氳酵素改質菌株製備 利用上述質體DNA以GeneM〇rph II Random mutagenesis kit(講自stratagene)進行任意點突變之pcr, PCR之操作條件如表丨所示。之後將pCR產物進行電泳, 再將目標基因片段自勝體切下進行純化。將目標基因接入 質體之後’再與大腸桿菌BL21勝任細胞進行轉植反應。 於2YT S]體培養基隔夜培養後,挑選改質之菌株。 1325442 表1、PCR操作條件 溫度 時間 94〇C 2 min 94〇C 30 sec 引子(primer) Tm-5°C 30 sec 72〇C 1 min/kb 72 °C 10 min 改質菌株快速篩選 改質菌株之篩選包括下列步驟:(1)取100 μΐ含安博黴 素的2ΥΤ培養基置入96孔淺培養盤的培養孔中;(2)利用 滅菌牙籤將改質菌株從固態培養基移至96孔淺培養盤中 進行培養,其中每一行的第一個培養孔為控制組(野生 株);(3)培養隔夜之後,從96孔淺培養盤取10 μΐ的菌液 加入每孔有0.5ml 2ΥΤ(含安博黴素)的96孔深培養盤中培 養。待孔中的菌液濃度達0.5,加入5 μΐ的100mM IPTG ; (4)培養至16小時之後,取出ΙΟΟμΙ的菌液至96孔淺培養 盤,以5000rpm離心10分鐘後倒出上清液;(5)加入20 μΐ 溶菌酶緩衝溶液(lysozyme buffer)至離心後的96孔淺培養 盤,震盪均勻之後,在室溫下放置1小時;(6)放入-80°C冰 箱冷凍45分鐘後取出,待菌體完全回溫之後,再放入-80 °0冰箱冷凍45分鐘;(7)從冰箱取出待測活性的96孔淺培 養盤,將菌體回溫之後以八爪微量滴管加入180μ1的活性 1325442 測試液,並記錄藍色變化比控制組快的菌株位置;(8)選取 100-200株菌株之後,重複進行步驟(1)〜(7),直至候選菌株 降至10株;(9)以250ml之三角錐瓶培養候選菌株,待菌 體量為0.5時加入0.5ml的100mM IPTG,培養六小時後將 培養液以7000rpm離心10分鐘;(10)倒出上清液後加入 lysozyme buffer (加入體積依:0D 值*0.5 mg 細胞*X ml 培 養液/50 mg=Y ml緩衝溶液),在室溫條件下,反應1小時; (11)以超音波破細胞15秒停45秒,重覆10次。以4 °C 12000 i*pm離心15 min,取上清液為粗酵素液;(12)加入 酵素活性測試液測試粗酵素液之活性與蛋白質濃度,挑選 比活性最高者為下一世代的改質母菌株,並分析曱醛脫氫 酵素DNA與蛋白質結構突變情形;(13)重複菌株改質與菌 株篩選的實驗步驟,直到曱醛脫氫酵素比活性達到50 U/mg 〇酵素活性測試液之組成列於表2,而改質菌株之結 果列於表3。The primers designed were: 5' GAA TTC AGG CCG CGC TGA AGG TCT TGT GCG 3, and 5' GAA TTC ATG TCT GGT AAT CGT GGT GTC GTT3'. PCR is then carried out to amplify the desired formate dehydrogenase gene fragment. Put the dehydrogenase gene fragment into pTrc His B (kanamycin and ampicillin (ampiciiHn)), while the wild strain of Pseudomonas putida BCRC13897 is the furfural dehydrogenase gene sequence For the sequence identification number: 1; the amino acid sequence is the sequence identification number: 2. The prepared plastids were transformed into E. coli BL-21 Blue competent cells (〇0!1^616 plus (^11) (purchased from 81 plus & § §6). Confirmed that the transformed competent cells have been After having the target plastid, a large number of competent cells are cultured, and the plastid DNA is extracted for preservation. Preparation of the mitochondrial enzyme-modified strain The morphological DNA is used to perform any point mutation using GeneM〇rph II Random mutagenesis kit (from stratagene). The PCR conditions of PCR are shown in Table 。. After that, the pCR product is electrophoresed, and the target gene fragment is excised from the ginseng for purification. After the target gene is inserted into the plastid, it is then subjected to E. coli BL21 competent cells. Transplantation reaction. After overnight culture in 2YT S] medium, select the modified strain. 1325442 Table 1. PCR operating conditions Temperature time 94 〇C 2 min 94 〇C 30 sec Primer Tm-5°C 30 sec 72〇C 1 min/kb 72 °C 10 min Screening of modified strains for rapid screening of modified strains includes the following steps: (1) 100 μΐ of 2ΥΤ medium containing ampomycin is placed in the culture well of a 96-well shallow culture dish. (2) using modified toothpicks to modify bacteria The plants were transferred from solid medium to 96-well shallow culture plates, and the first culture well of each row was the control group (wild strain); (3) After overnight culture, 10 μΐ of the bacteria from the 96-well shallow culture plate was taken. The solution was added to a 96-well deep culture dish containing 0.5 ml of 2 ΥΤ (containing ampomycin) per well. The concentration of the broth in the well was 0.5, and 5 μM of 100 mM IPTG was added; (4) After 16 hours of culture, take out ΙΟΟμΙ of the bacterial solution to a 96-well shallow culture dish, centrifuge at 5000 rpm for 10 minutes, then pour out the supernatant; (5) add 20 μΐ lysozyme buffer solution (lysozyme buffer) to the 96-well shallow culture plate after centrifugation, after shaking evenly Place at room temperature for 1 hour; (6) Remove in a -80 °C freezer for 45 minutes, remove it, wait until the cells are completely warmed, then put in -80 °0 refrigerator for 45 minutes; (7) from the refrigerator The 96-well shallow culture plate to be tested was taken out, and after the cells were warmed up, 180 μl of the active 1325442 test solution was added to the eight-claw micropipette, and the position of the strain with the blue change faster than the control group was recorded; (8) 100- After 200 strains, repeat steps (1) to (7) until the candidate strain Decrease to 10 strains; (9) Incubate the candidate strain with a 250 ml flask, add 0.5 ml of 100 mM IPTG when the amount of bacteria is 0.5, and centrifuge the culture solution at 7000 rpm for 10 minutes after 6 hours of culture; (10) After the supernatant, add lysozyme buffer (add volume: 0D value * 0.5 mg cells * X ml culture solution / 50 mg = Y ml buffer solution), and react at room temperature for 1 hour; (11) Break with ultrasound The cells were stopped for 15 seconds in 15 seconds and repeated 10 times. Centrifuge at 12000 i*pm for 4 min at 4 °C, take the supernatant as a crude enzyme solution; (12) Add the enzyme activity test solution to test the activity and protein concentration of the crude enzyme solution, and select the one with the highest specific activity for the next generation. Maternal strains, and analysis of furfural dehydrogenase DNA and protein structure mutations; (13) Repeated strain modification and strain screening experiments until the specific activity of furfural dehydrogenase reached 50 U / mg 〇 enzyme activity test solution The composition is shown in Table 2, and the results of the modified strain are shown in Table 3.

15 1325442 表2、酵素活性測試液之組成15 1325442 Table 2. Composition of enzyme activity test solution

樣本 μΐ/孔 保存(stock)/盤(ml) 粗酵素液 20 酵素活性測試 60 mM 168.7 液組成 Na2C03-NaHC03 buffer(pH8.8) 16.87 lOOmMHCHO 3 0.3 100 mM NAD 3 0.3 13.4mMNBT 2.3 0.23 ImMPMS 3 0.3 總體積 200 18 ml 表3、曱醛脫氫酵素改質之菌株Sample μΐ/well stock (stock)/disk (ml) Crude enzyme solution 20 Enzyme activity test 60 mM 168.7 Liquid composition Na2C03-NaHC03 buffer (pH 8.8) 16.87 lOOmMHCHO 3 0.3 100 mM NAD 3 0.3 13.4mMNBT 2.3 0.23 ImMPMS 3 0.3 Total volume 200 18 ml Table 3, strains modified with furfural dehydrogenase

改質編號 2-5 8B9 4-1 5-1 6-23 7-2 8-5 母株來源 WT Μ 2-5 2-12 8B9 5-1 4-1 6-23 第一階段粗篩 菌株數 2997 1674 2924 2352 3554 4536 6384 4032 第二階段粗篩 菌株數 217 70 91 〜100 280 336 399 201 第三階段粗篩 菌株數 15 13 12 38 26 26 16 比活性(U/mg) 4828 50.88 50.88 32.59 40 25.71 15.70 120.9 基因序列變化 c522t' c876t、 c903g c522t、 c876t、 c903g c522t、 g71U、 g762t、 a818t、 c876t、 c903g c522t&gt; a826g' c876t、 c903g c522t、 c774t、 c876t、 c903g c522t、 c774t、 c777t、 c876t、 c903g c522t、 c774t' c777t、 c876t、 c903g' gll26t 胺基酸序列變 化 一 — E273V K275E — — — G375C 16 1325442 由表3可得知,所篩選到的菌株在基因序列上皆有數 目不等的變化,而出現胺基酸變化且比活性較高的有 8B9、4-1 與 8-5 三株。 8B9之基因變化為第522個位置突變為胸線嘧啶、711 個位置突變為胸線嘧啶、762個位置突變為胸線嘧啶、818 個位置突變為胸線嘧啶、876個位置突變為胸線嘧啶以及 903個位置突變為鳥糞嘌呤(序列辨識號:3);胺基酸序 列變化為第273個位置突變為擷胺酸(序列辨識號:4)。 4-1之基因變化為第522個位置突變為胸線嘧啶、826 個位置突變為鳥糞嘌呤、876個位置突變為胸線嘧啶以及 903個位置突變為鳥糞嘌呤(序列辨識號:5);胺基酸序 列變化為第275個位置突變為麩胺酸(序列辨識號:6)。 而8-5之基因變化為第522個位置突變為胸線嘧啶、 774個位置突變為胸線嘧啶、777個位置突變為胸線嘧啶、 876個位置突變為胸線嘧啶、903個位置突變為鳥糞嘌呤以 及1126個位置突變為胸線嘧啶(序列辨識號:7);胺基 酸序列變化為第375個位置突變為半胱胺酸(序列辨識 號:8)。 而本發明活性改變較佳的突變株8-5胺基酸序列變化 為375位置之甘胺酸突變為半胱胺酸。此胺基酸雖非活性 中心一員,但其位於NAD結合區域上的一個α-螺旋 (α-helix)。而甘胺酸雖為具有極性之立體結構最小的必需 胺基酸,但是因為分子中的氫原子無法形成氫鍵,因此不 會造成立體結構上的阻礙。又半胱胺酸帶有一個硫氫基, 1325442 由原本的甘胺酸改變成半胱胺酸造成野生型曱搭脫氫酵素 構形上有所變化,此雙硫鍵發生在α-螺旋的内側,影響到 酵素活性中心與基質反應的空間,可能增加基質與酵素的 擴散效應,加速基質與酵素結合或脫離的速度。 曱醛脫氫酵素動力學參數分析 分別對比較例(市售)與本發明實施例(8_5)之甲醛脫 氫酵素進行酵素動力學參數分析 $ 酵素動力學之實驗方法如下: Α.針對NAD測試Km與Vmax : (1)固定酵素活性測試液中曱醛濃度為7mM ; (2)調整 酵素活性測試液中NAD濃度為0.12mM至12mM;(3)添加 Ιμΐ已纯化的曱醛脫氫酵素至測試液中;(4)每隔一分鐘記 錄OD34〇nm的數值’連續測試五分鐘;(5)以線性回歸的方 式計算每組樣品的斜率,可求得反應速率V ; (5)以1/NAD 濃度對1/反應速率的方式做圖,可求得斜率為Klt^Vmax, φ 截距為1/Vmax ; (6)以斜率與截距求得Km與Vmax。 B.針對曱醛測試Km與Vmax。 (1)固定酵素活性測試液中]SiAD濃度為1〇倍的 Km(NAD) ; (2)調整酵素活性測試液中甲醛濃度為〇 12mM 至12mM; (3)添加ΐμΐ已純化的曱酸脫氫酵素至測試液中; (4)每隔一分鐘記錄〇D34〇nm的數值,連續測試五分鐘;(5) 以線性回歸的方式計算每組樣品的斜率,可求得反應速率 V; (6)以1/曱盤濃度對1/反應速率的方式做圖,可求得斜 率為Km/Vmax,截距為1/Vmax; (7)以斜率與截距求得Km 1325442 與 Vmax。 反覆步驟A至B直到Vmax(NAD)與Vmax(曱醛)的差 異低於5%以下。即為曱醛脫氫酵素的動力學參數。 比較例之結果顯示於表4、5、第la與b圖(固定曱酿 濃度(2mM)、不同NAD濃度下之1/反應速率對1/NAD漠 度圖與反應速率對NAD濃度)以及第2a與b圖(固定NAD 濃度(4mM)、不同曱醛濃度下之1/反應速率對1/曱醛濃度 圖與反應速率對曱醛濃度圖)。 由上述之結果可推算出比較例之Km(NAD)為0.384 mM,Km(曱醛)為 〇.368mM。 表4、比較例之固定曱醛濃度(2mM),變化NAD濃度 以測得Km(NAD) NAD 濃度(mM) 0.120 0.600 1.200 3.600 4.000 6.000 9.000 12.000 反應時間1分鐘 NADH 濃度 OD340 0.035 0.085 0.107 0.123 0.131 0.126 0.091 0.103 反應時間2分鐘 NADH 濃度 OD340 0.071 0.168 0.227 0.244 0.266 0.256 0.198 0.204 反應時間3分鐘 NADH 濃度 OD^ 0.101 0.249 0.332 0.372 0.380 0.377 0.304 0.319 反應時間4分鐘 NADH 濃度 OD340 0.127 0.316 0.436 0.484 0.511 0.507 0390 0.412 反應時間5分鐘 NADH 濃度 OD^ 0.150 0.377 0.520 0.605 0.620 0.615 0.508 0.526 19 1325442 NADH產生速率(V) (△0D/分鐘) 0.029 0.073 0.104 0.120 0.122 0.123 0.103 0.105 1/NAD濃度 34.965 13.661 9.662 8.306 8.177 8.137 9.747 9.488 1/反應速率 8333 1.667 0.833 0.278 0.250 0.167 0.111 0.083 表5、比較例之固定NAD濃度(4mM),變化曱醛濃度 以測得Km(曱駿) 甲醛濃度(mM) 0.02 0.1 0.25 0.5 1 1.5 3 反應時間1分鐘 NADH 濃度 0〇34〇 0.173 0.175 0.056 0.205 0.233 0.033 0.162 反應時間2分鐘 NADH 濃度 OD340 0.172 0.190 0.107 0.247 0.313 0.169 0.340 反應時間3分鐘 NADH 濃度 ODa^ 0.178 0.214 0.157 0.293 0.395 0.301 0.498 反應時間4分鐘 NADH 濃度 OD340 0.185 0.233 0.200 0.334 0.466 0.420 0.636 反應時間5分鐘 NADH 濃度 OD340 0.182 0.244 0.237 0.377 0.532 0.539 0.767 NADH產生速率(V) (△OD/分鐘) 0.007 0.018 0.046 0.043 0.075 0.126 0.151 1/曱醛濃度 153.846 55.249 21.978 23.202 13.316 7.918 6.640 1/反應速率 50.000 10.000 4.000 2.000 1.000 0.667 0.333Modification number 2-5 8B9 4-1 5-1 6-23 7-2 8-5 Parent strain source WT Μ 2-5 2-12 8B9 5-1 4-1 6-23 Number of crude sieve strains in the first stage 2997 1674 2924 2352 3554 4536 6384 4032 Number of crude strains in the second stage 217 70 91 ~100 280 336 399 201 Number of strains in the third stage 15 13 12 38 26 26 16 Specific activity (U/mg) 4828 50.88 50.88 32.59 40 25.71 15.70 120.9 Gene sequence changes c522t' c876t, c903g c522t, c876t, c903g c522t, g71U, g762t, a818t, c876t, c903g c522t&gt; a826g' c876t, c903g c522t, c774t, c876t, c903g c522t, c774t, c777t, c876t, c903g C522t, c774t' c777t, c876t, c903g' gll26t amino acid sequence change one - E273V K275E — — — G375C 16 1325442 It can be seen from Table 3 that the selected strains have varying numbers of gene sequences. There are 8B9, 4-1 and 8-5 strains with a change in amino acid and higher specific activity. The gene mutation of 8B9 was changed to the 522th position to thymidine, 711 position mutation to thymidine, 762 position mutation to thoracic acid, 818 position mutation to thoracic acid, and 876 position mutation to thoracic acid. And 903 positions were mutated to guano (SEQ ID NO: 3); amino acid sequence changes to 273th position mutation to proline (sequence number: 4). The 4-1 gene changes to the 522th position mutation to thoracic pyrimidine, 826 position mutation to guanosene, 876 position mutation to thoracic pyrolysis, and 903 position mutation to bird feces (sequence identification number: 5) The amino acid sequence was changed to the 275th position mutation to glutamic acid (SEQ ID NO: 6). The gene mutation of 8-5 was changed to the 522th position to thymidine, 774 to thymidine, 777 to thymidine, 876 to thymidine, and 903 to The guano and 1126 positions were mutated to thoracic acid (SEQ ID NO: 7); the amino acid sequence was changed to the 375th position mutation to cysteine (sequence number: 8). On the other hand, the mutation of the 8-5 amino acid sequence of the mutant having the preferred activity of the present invention was changed to a glycine acid at position 375 and mutated to cysteine. Although this amino acid is a member of the inactive center, it is located in an α-helix (α-helix) on the NAD binding region. Glycine is an essential amino acid having the smallest steric structure of polarity, but since hydrogen atoms in the molecule cannot form hydrogen bonds, they do not cause steric structural obstruction. The cysteine has a sulfhydryl group, and 1325442 is changed from the original glycine to cysteine to cause a change in the conformation of the wild-type dehydrogenase. This disulfide bond occurs in the α-helix. The inner side, which affects the space in which the active center of the enzyme reacts with the matrix, may increase the diffusion effect of the matrix and the enzyme, and accelerate the rate of binding or detachment of the matrix to the enzyme. Kinetic parameter analysis of furfural dehydrogenase The enzyme kinetic parameters were analyzed for the formaldehyde dehydrogenase of the comparative example (commercially available) and the inventive example (8_5). The experimental method of enzyme kinetics was as follows: Α. For NAD test Km and Vmax: (1) The concentration of furfural in the immobilized enzyme activity test solution is 7 mM; (2) Adjusting the NAD concentration in the enzyme activity test solution to be 0.12 mM to 12 mM; (3) adding the purified furfural dehydrogenase to Ιμΐ (4) Record the value of OD34〇nm every other minute for 5 minutes in a row; (5) Calculate the slope of each sample by linear regression to obtain the reaction rate V; (5) to 1 The /NAD concentration is plotted against the 1/reaction rate. The slope is Klt^Vmax and the φ intercept is 1/Vmax. (6) Km and Vmax are obtained from the slope and intercept. B. Test Km and Vmax for furfural. (1) In the immobilized enzyme activity test solution, the concentration of SiAD is 1〇 times Km(NAD); (2) The concentration of formaldehyde in the test enzyme activity test solution is 〇12mM to 12mM; (3) Adding ΐμΐ purified citrate Hydrogenase to the test solution; (4) Record the value of 〇D34〇nm every other minute for five minutes; (5) Calculate the slope of each sample by linear regression to obtain the reaction rate V; 6) Plot the 1/曱 disk concentration versus 1/reaction rate, and find the slope as Km/Vmax with an intercept of 1/Vmax. (7) Find Km 1325442 and Vmax by slope and intercept. The steps A to B are repeated until the difference between Vmax (NAD) and Vmax (furfural) is less than 5%. It is the kinetic parameter of furfural dehydrogenase. The results of the comparative examples are shown in Tables 4 and 5, panels 1 and b (fixed brewing concentration (2 mM), 1/reaction rate versus 1/NAD inversion graph and reaction rate versus NAD concentration at different NAD concentrations) and 2a and b (fixed NAD concentration (4 mM), 1/reaction rate vs. furfural concentration map and reaction rate vs. furfural concentration plot for different furfural concentrations). From the above results, it was deduced that the comparative example had a Km (NAD) of 0.384 mM and a Km (furfural) of 368.368 mM. Table 4, fixed aldehyde concentration (2 mM) of the comparative example, change of NAD concentration to measure Km (NAD) NAD concentration (mM) 0.120 0.600 1.200 3.600 4.000 6.000 9.000 12.000 Reaction time 1 minute NADH concentration OD340 0.035 0.085 0.107 0.123 0.131 0.126 0.091 0.103 Reaction time 2 minutes NADH concentration OD340 0.071 0.168 0.227 0.244 0.266 0.256 0.198 0.204 Reaction time 3 minutes NADH concentration OD^ 0.101 0.249 0.332 0.372 0.380 0.377 0.304 0.319 Reaction time 4 minutes NADH concentration OD340 0.127 0.316 0.436 0.484 0.511 0.507 0390 0.412 Reaction time 5 minutes NADH concentration OD^ 0.150 0.377 0.520 0.605 0.620 0.615 0.508 0.526 19 1325442 NADH production rate (V) (Δ0D/min) 0.029 0.073 0.104 0.120 0.122 0.123 0.103 0.105 1/NAD concentration 34.965 13.661 9.662 8.306 8.177 8.137 9.747 9.488 1/ Reaction rate 8333 1.667 0.833 0.278 0.250 0.167 0.111 0.083 Table 5, fixed NAD concentration of the comparative example (4 mM), change of furfural concentration to measure Km (曱骏) formaldehyde concentration (mM) 0.02 0.1 0.25 0.5 1 1.5 3 Reaction time 1 Minute NADH concentration 0〇34〇0.173 0.175 0.056 0.205 0.233 0.033 0 .162 Reaction time 2 minutes NADH concentration OD340 0.172 0.190 0.107 0.247 0.313 0.169 0.340 Reaction time 3 minutes NADH concentration ODa^ 0.178 0.214 0.157 0.293 0.395 0.301 0.498 Reaction time 4 minutes NADH concentration OD340 0.185 0.233 0.200 0.334 0.466 0.420 0.636 Reaction time 5 minutes NADH Concentration OD340 0.182 0.244 0.237 0.377 0.532 0.539 0.767 NADH production rate (V) (ΔOD/min) 0.007 0.018 0.046 0.043 0.075 0.126 0.151 1/furfural concentration 153.846 55.249 21.978 23.202 13.316 7.918 6.640 1/reaction rate 50.000 10.000 4.000 2.000 1.000 0.667 0.333

實施例之結果則顯示於表6、7、第3a與b圖(固定曱 1325442 醛濃度(7.5mM)、不同NAD濃度下1/反應速率對l/NAD 濃度圖與反應速率對NAD濃度圖)以及第4a與b圖(固 定NAD濃度(7.6mM)、不同甲醛濃度下之1/反應速率對1/ 曱醛濃度圖與反應速率對曱醛濃度圖)。 由上述之結果可推算出實施之Km(NAD)為1.752 mM,Km(曱醒·)為 1.71mM,Vmax 為 120.8 U/mg,Kcat 為 84/s,轉換率(turnover rate)為每分鐘30萬次。與比較例相 同的是,當NAD濃度超過8 mM時,實施例的酵素活性也 會受到抑制,但其對於甲醛的忍受度比較高,當曱醛濃度 超過16mM時’酵素活性並沒有明顯變化。另一方面,實 施例的Km值較比較例的Km值高。由實施例的改質結果 顯示’在改質過程中,當酵素活性增加,並不是因為對基 質的親和性增加的緣故,可能是因為酵素結構受到改變, 使得酵素活性增加,但還需要後續實驗證明。 表6、實施例之固定曱醛濃度(7.5mM),變化NAD濃 度以測得Km (NAD) NAD 濃度(mM) 0.12 0.60 1.20 4.00 6.00 8.00 12.00 15.00 反應時間1分鐘 NADH 濃度 OD340 0.025 0.101 0.173 0.235 0.254 0.251 0.224 0.202 反應時間2分鐘 NADH 濃度 OD340 0.041 0.196 0.319 0.481 0.462 0.496 0.473 0.428 反應時間3分鐘 0.048 0.280 0.454 0.728 0.676 0.738 0.695 0.651 1325442 NADH 濃度 OD340 反應時間4分鐘 NADH 濃度 ODw 0.064 0.360 0.584 0.880 0.927 0.878 反應時間5分鐘 NADH 濃度 OD340 0.073 0.434 NADH產生速率 (V)(M)D/分鐘) 0.012 0.083 0.137 0.247 0.209 0.244 0.233 0.225 1/NAD濃度 84.034 12.048 7.310 4.057 4.780 4.107 4.290 4.442 1/反應速率 8.333 1.667 0.833 0.250 0.167 0.125 0.083 0.067 表7、實施例之固定NAD濃度(7.6mM),變化曱醛濃 度以測得Km(曱醛) 甲醛濃度(mM) 0.12 0.6 1.2 4 6 8 12 15 反應時間1分鐘 NADH 濃度 OD34〇 0.023 0.105 0.124 0.216 0.213 0.259 0.094 0.176 反應時間2分鐘 NADH 濃度 OD340 0.047 0.181 0.301 0.456 0.456 0.501 0.205 0.409 反應時間3分鐘 NADH 濃度 OD340 0.069 0.261 0.420 0.691 0.691 0.748 0.312 0.625 反應時間4分鐘 NADH 濃度 OD340 0.086 0.337 0.552 0.903 0.903 0.418 反應時間5分鐘 NADH 濃度 OD340 0.104 0.405 0.675 0.514 NADH產生速率 0.020 0.076 0.135 0.230 0.231 0.245 0.105 0.225 22 1325442 (V)(AOD/分鐘) 1/曱醛濃度 49.751 13.228 7.391 4.355 4.338 4.090 9.497 4.454 1/反應速率 8.333 1.667 0.833 0.250 0.167 0.125 0.083 0.067 改質之甲醛脫氫酵素專一性分析 利用8mM的曱醛溶液與不同濃度的乙醛進行實施例 之曱藤脫氫酵素活性分析’結果如第5圖顯示。圖中顯示 鲁當利用不同濃度的乙醛溶液作為基質時,酵素的活性幾乎 為零(成一直線)。即使乙醛濃度高達92mM,五分鐘後 NADH的吸光度依舊維持在起始點,此一結果顯示乙醛是 無法作為改質甲醛脫氫酵素的基質,改質之酵素具有極佳 之專一性。 第6顯示實施例利用不同濃度的乙醛與曱醛共同作為 曱醛脫氫酵素基質的反應速率圖。由圖中顯示當曱醛與乙 醛共同存在於溶液中時,甲醛脫氫酵素的活性是受到甲醛 φ /辰度的景夕響,乙酸的存在不會增加酵素的反應速率。當乙 醛濃度為8mlVI曱醛濃度為〇mM時酵素的反應速率為 o.ooUAODW分鐘),當曱醛濃度為〇 08mM時酵素的反應 速率則可以增加至O.OSCAOD34^/分鐘),提升了 8〇倍。分 別比較各只有甲醛(8mM)與乙醛(8mM)作為酵素基質時,酵 素的反應速率則由0.001(A〇D34〇/分鐘)增加至〇 2〇(a〇d、4Q/ 分鐘),反應速率提升了 200倍以上,而野生株酵素對於甲 醛與乙醛的反應速率比値為4.54倍(YasUy0 Fujii,Y〇shiaki Yamasaki, Masahiro Matsumoto, Hiroyuki Nishida, Megumi 23 1325442The results of the examples are shown in Tables 6, 7 and 3a and b (fixed 曱1325442 aldehyde concentration (7.5 mM), 1/reaction rate vs. l/NAD concentration map and reaction rate versus NAD concentration map at different NAD concentrations) And Figures 4a and b (fixed NAD concentration (7.6 mM), 1/reaction rate versus 1/furfural concentration map and reaction rate versus furfural concentration plot for different formaldehyde concentrations). From the above results, it can be inferred that the Km (NAD) is 1.752 mM, Km (wake up) is 1.71 mM, Vmax is 120.8 U/mg, Kcat is 84/s, and the turnover rate is 30 per minute. Ten thousand times. As in the comparative example, when the NAD concentration exceeds 8 mM, the enzyme activity of the examples is also inhibited, but the tolerance to formaldehyde is relatively high, and the enzyme activity does not change significantly when the concentration of furfural exceeds 16 mM. On the other hand, the Km value of the embodiment is higher than the Km value of the comparative example. The results of the modification of the examples show that 'in the process of upgrading, when the enzyme activity increases, not because of the increased affinity for the matrix, it may be because the structure of the enzyme is changed, so that the enzyme activity is increased, but further experiments are needed. prove. Table 6. Fixed aldehyde concentration (7.5 mM) in the example, varying NAD concentration to measure Km (NAD) NAD concentration (mM) 0.12 0.60 1.20 4.00 6.00 8.00 12.00 15.00 Reaction time 1 minute NADH concentration OD340 0.025 0.101 0.173 0.235 0.254 0.251 0.224 0.202 Reaction time 2 minutes NADH concentration OD340 0.041 0.196 0.319 0.481 0.462 0.496 0.473 0.428 Reaction time 3 minutes 0.048 0.280 0.454 0.728 0.676 0.738 0.695 0.651 1325442 NADH concentration OD340 Reaction time 4 minutes NADH concentration ODw 0.064 0.360 0.584 0.880 0.927 0.878 Reaction time 5 Minute NADH concentration OD340 0.073 0.434 NADH production rate (V) (M) D / min) 0.012 0.083 0.137 0.247 0.209 0.244 0.233 0.225 1 / NAD concentration 84.034 12.048 7.310 4.057 4.780 4.107 4.290 4.442 1 / reaction rate 8.333 1.667 0.833 0.250 0.167 0.125 0.083 0.067 Table 7, fixed NAD concentration (7.6 mM) in the example, changing furfural concentration to measure Km (furfural) formaldehyde concentration (mM) 0.12 0.6 1.2 4 6 8 12 15 Reaction time 1 minute NADH concentration OD34 〇 0.023 0.105 0.124 0.216 0.213 0.259 0.094 0.176 Reaction time 2 minutes NADH Concentration OD340 0.047 0.181 0.301 0.456 0.456 0.501 0.205 0.409 Reaction time 3 minutes NADH concentration OD340 0.069 0.261 0.420 0.691 0.691 0.748 0.312 0.625 Reaction time 4 minutes NADH concentration OD340 0.086 0.337 0.552 0.903 0.903 0.418 Reaction time 5 minutes NADH concentration OD340 0.104 0.405 0.675 0.514 NADH Production rate 0.020 0.076 0.135 0.230 0.231 0.245 0.105 0.225 22 1325442 (V) (AOD/min) 1/furfural concentration 49.751 13.228 7.391 4.355 4.338 4.090 9.497 4.454 1/reaction rate 8.333 1.667 0.833 0.250 0.167 0.125 0.083 0.067 Modified formaldehyde Hydrogenase specificity analysis was carried out using an 8 mM furfural solution and various concentrations of acetaldehyde to carry out the activity analysis of the vine dehydrogenase activity of the example. The results are shown in Fig. 5. The figure shows that when Ludang uses different concentrations of acetaldehyde solution as a substrate, the activity of the enzyme is almost zero (in line). Even after the acetaldehyde concentration was as high as 92 mM, the absorbance of NADH remained at the starting point after five minutes. This result showed that acetaldehyde was not a substrate for the modified formaldehyde dehydrogenase, and the modified enzyme had excellent specificity. The sixth embodiment shows a reaction rate diagram in which different concentrations of acetaldehyde and furfural are used together as a furfural dehydrogenase substrate. It is shown in the figure that when furfural and acetaldehyde coexist in solution, the activity of formaldehyde dehydrogenase is affected by the formaldehyde φ / Chen, and the presence of acetic acid does not increase the reaction rate of the enzyme. When the concentration of acetaldehyde is 8ml, the reaction rate of the enzyme is .UA ODW minutes when the concentration of valproate is 〇mM, and the reaction rate of the enzyme can be increased to O.OSCAOD34^/min when the concentration of valeraldehyde is 〇08mM, which is improved. 8 times. When the respective formaldehyde (8 mM) and acetaldehyde (8 mM) were used as the enzyme substrate, the reaction rate of the enzyme was increased from 0.001 (A〇D34〇/min) to 〇2〇 (a〇d, 4Q/min). The rate increased by more than 200 times, while the response rate of wild strain enzyme to formaldehyde and acetaldehyde was 4.54 times (YasUy0 Fujii, Y〇shiaki Yamasaki, Masahiro Matsumoto, Hiroyuki Nishida, Megumi 23 1325442

Hada,and Katsutoshi Ohkubo,2004,“The Artifical Evolution of an Enzyme by Random Mutagenesis: The Development of Formaldehyde Dehydrogenase’’,Biosci. Biotechnol·,Biochem.,68, 8, 1722-1727),由此可得知本發 明實施例之酵素專一性為野生株之約44倍。Hada, and Katsutoshi Ohkubo, 2004, "The Artifical Evolution of an Enzyme by Random Mutagenesis: The Development of Formaldehyde Dehydrogenase'', Biosci. Biotechnol, Biochem., 68, 8, 1722-1727), from which it is known The enzyme specificity of the inventive examples was about 44 times that of the wild strain.

雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明,任何所屬 在不脫離本發明之精神和範 飾,因此本發明之保護範圍 定者為準。 技術領域中具有通常知識者, 圍内,當可作任意之更動與潤 當視後附之申請專利範圍所界While the present invention has been described in terms of several preferred embodiments, the invention is not intended to limit the invention, and the scope of the invention is intended to be Those who have the usual knowledge in the field of technology, when they can make any changes and applications,

24 1325442 【圖式簡單說明】 第la圖顯示比較例固定曱醛濃度(2mM)、不同NAD 濃度下之1/反應速率對1/NAD濃度圖。 第lb圖顯示比較例固定曱醛濃度(2mM)、不同NAD 濃度下之反應速率對NAD濃度圖。 第2a圖顯示比較例固定NAD濃度(4mM)、不同曱醛 濃度下之1/反應速率對1/曱醛濃度圖。 第2b圖顯示比較例固定NAD濃度(4mM)、不同甲醛 濃度下之反應速率對曱醛濃度圖。 第3a圖顯示實施例固定曱醛濃度(7.5mM)、不同NAD 濃度下之1/反應速率對1/NAD濃度圖。 第3b圖顯示實施例固定曱醛濃度(7.5mM)、不同NAD 濃度下之反應速率對NAD濃度圖。 第4a圖顯示實施例固定NAD濃度(7.6mM)、不同曱 醛濃度下之1/反應速率對1/曱醛濃度圖。 第4b圖顯示實施例固定NAD濃度(7.6mM)、不同甲醛 濃度下之反應速率對甲醛濃度圖。 第5圖顯示實施例利用8mM的曱醛溶液與不同濃度的 乙醛進行改質曱醛脫氫酵素的活性分析。 第6圖顯示實施例利用不同濃度的乙醛與曱醛共同作 為曱醛脫氫酵素基質的反應速率圖。 【主要元件符號說明】 無。 25 序列表 【序列編號】 &lt;110〉財團法人生物技術開發中心24 1325442 [Simple description of the diagram] Figure la shows the 1/reaction rate versus 1/NAD concentration plot for the fixed acetal concentration (2 mM) and the different NAD concentrations. Figure lb shows a comparison of the reaction rate versus the NAD concentration for the fixed acetal concentration (2 mM) and the different NAD concentrations. Fig. 2a is a graph showing the 1/reaction rate versus 1/furfural concentration of the fixed NAD concentration (4 mM) and the different furfural concentrations in the comparative example. Figure 2b shows a comparison of the fixed NAD concentration (4 mM) and the reaction rate at different formaldehyde concentrations versus furfural concentration. Figure 3a shows a plot of 1/reaction rate vs. 1/NAD concentration for immobilized furfural concentration (7.5 mM) at different NAD concentrations. Figure 3b shows a plot of reaction rate vs. NAD concentration for immobilized furfural concentrations (7.5 mM) and different NAD concentrations. Figure 4a shows a plot of the fixed NAD concentration (7.6 mM) and the 1/reaction rate versus 1/furfural concentration for different furfural concentrations. Figure 4b shows a graph of the reaction rate versus formaldehyde concentration for the fixed NAD concentration (7.6 mM), different formaldehyde concentrations in the examples. Figure 5 shows the activity analysis of the modified furfural dehydrogenase using 8 mM furfural solution and varying concentrations of acetaldehyde. Fig. 6 is a graph showing the reaction rate of the mixture using different concentrations of acetaldehyde and furfural as a furfural dehydrogenase substrate. [Main component symbol description] None. 25 Sequence Listing [Serial Number] &lt;110> Biotechnology Development Center

&lt;120〉戀臭假單胞菌非麩胺基硫相關甲醛脫氫酵素的基因序列 &lt;160&gt; 8 &lt;210&gt; 1 &lt;211&gt; 1200 &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;400&gt; 1 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc 360 ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg 420 ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag 480 aagatccgtg acctgacctg cctctccgac atcctgccca ccggctacca cggcgcggtc 540 accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc 600 gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac 660 cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac 720 accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc 780 gacgcagtgg gcttcgaagc gcgcggccac ggccatgaag gcgccaagca cgaagctccg 840 gccaccgtgc tcaactcgct gatgcaggtc acccgcgtgg ccggcaagat cggtatcccc 900 ggcctctacg tcaccgaaga tccgggcgcg gtggatgccg ccgccaagat cggcagcctg 960 agcatccgct tcggcctcgg ctgggcgaaa tcccacagct tccacaccgg ccagaccccg 1020 gtgatgaagt acaaccgcgc actcatgcag gcgatcatgt gggaccgcat caacatcgcc 1080 gaagtggtgg gcgtgcaggt catcagcctg gacgacgcac cgcgtggcta tggcgagttc 1140 gatgccggcg taccgaagaa attcgtcatc gacccgcaca agaccttcag cgcggcctga 1200&lt;120> Gene sequence of Pseudomonas putida non-glutamate sulfur-related formaldehyde dehydrogenase &lt;160&gt; 8 &lt;210&gt; 1 &lt;211&gt; 1200 &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;; 400 &gt; 1 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc 360 ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg 420 ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag 480 aagatccgtg acctgacctg cctctccgac atcctgccca ccggctacca cggcgcggtc 540 accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc 600 gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac 660 cccgcccgcc tggcccacgc caaggcgca g ggcttcgaga ttgccgacct gtcgctggac 720 accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc 780 gacgcagtgg gcttcgaagc gcgcggccac ggccatgaag gcgccaagca cgaagctccg 840 gccaccgtgc tcaactcgct gatgcaggtc acccgcgtgg ccggcaagat cggtatcccc 900 ggcctctacg tcaccgaaga tccgggcgcg gtggatgccg ccgccaagat cggcagcctg 960 agcatccgct tcggcctcgg ctgggcgaaa tcccacagct tccacaccgg ccagaccccg 1020 gtgatgaagt acaaccgcgc actcatgcag gcgatcatgt gggaccgcat caacatcgcc 1080 gaagtggtgg gcgtgcaggt catcagcctg Gacgacgcac cgcgtggcta tggcgagttc 1140 gatgccggcg taccgaagaa attcgtcatc gacccgcaca agaccttcag cgcggcctga 1200

&lt;210&gt; 2 &lt;211〉399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 2 MSGNRGVVYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA 60 QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPEWACGR CRSCKEMHTG VCLTVNPARA 120 GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV 180 TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD 240 TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAKHEAP ATVLNSLMQV TRVAGKIGIP 300 GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA 360 EWGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA 399 &lt;210〉 3 &lt;211&gt; 1200&Lt; 210 &gt; 2 &lt; 211> 399 &lt; 212 &gt; PRT &lt; 213 &gt; Pseudomonas putida &lt; 400 &gt; 2 MSGNRGVVYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA 60 QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPEWACGR CRSCKEMHTG VCLTVNPARA 120 GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV 180 TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD 240 TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAKHEAP ATVLNSLMQV TRVAGKIGIP 300 GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA 360 EWGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA 399 &lt;210> 3 &lt;211&gt; 1200

13254421325442

&lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;400〉 3 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc gacgcagtgg gcttcgaagc gcgcggccac ggccatgttg gcgccgagca cgaagctccg gccaccgtgc tcaactcgct gatgcaggtc acccgtgtgg ccggcaagat cggtatcccc gggctctacg tcaccgaaga tccgggcgcg gtggatgccg ccgccaagat cggcagcctg agcatccgct tcggcctcgg ctgggcgaaa tcccacagct tccacaccgg ccagaccccg gtgatgaagt acaaccgcgc actcatgcag gcgatcatgt gggaccgcat caacatcgcc gaagtggtgg gcgtgcaggt catcagcctg gacgacgcac cgcgtggcta tggcgagttc gatgccggcg taccgaagaa attcgtcatc gacccgcaca agaccttcag cgcggcctga 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 3 1200&Lt; 212 &gt; DNA &lt; 213 &gt; Pseudomonas putida &lt; 400> 3 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc gacgcagtgg gcttcgaagc gcgcggccac ggccatgttg gcgccgagca cgaagctccg Gccaccgtgc tcaac tcgct gatgcaggtc acccgtgtgg ccggcaagat cggtatcccc gggctctacg tcaccgaaga tccgggcgcg gtggatgccg ccgccaagat cggcagcctg agcatccgct tcggcctcgg ctgggcgaaa tcccacagct tccacaccgg ccagaccccg gtgatgaagt acaaccgcgc actcatgcag gcgatcatgt gggaccgcat caacatcgcc gaagtggtgg gcgtgcaggt catcagcctg gacgacgcac cgcgtggcta tggcgagttc gatgccggcg taccgaagaa attcgtcatc gacccgcaca agaccttcag cgcggcctga 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 3 1200

&lt;210&gt; 4 &lt;211&gt; 399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 4 MSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK VVSTNICGSD QHMVRGRTTA 60 QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA 120 GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV 180 TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD 240 TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAEHEAP ATVLNSLMQV TRVAGKIGIP 300 GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA 360 EVVGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA 399&Lt; 210 &gt; 4 &lt; 211 &gt; 399 &lt; 212 &gt; PRT &lt; 213 &gt; Pseudomonas putida &lt; 400 &gt; 4 MSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK VVSTNICGSD QHMVRGRTTA 60 QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA 120 GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV 180 TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD 240 TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAEHEAP ATVLNSLMQV TRVAGKIGIP 300 GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA 360 EVVGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA 399

&lt;210&gt; 5 &lt;211&gt; 1200 &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;400&gt; 5 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 360 360&Lt; 210 &gt; 5 &lt; 211 &gt; 1200 &lt; 212 &gt; DNA &lt; 213 &gt; Pseudomonas putida &lt; 400 &gt; 5 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc Accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 360 360

1325442 tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc gacgcagtgg gcttcgaagc gcgcggccac ggccatgtag gcgccgagca cgaagctccg gccaccgtgc tcaactcgct gatgcaggtc acccgtgtgg ccggcaagat cggtatcccc gggctctacg tcaccgaaga tccgggcgcg gtggatgccg ccgccaagat cggcagcctg agcatccgct tcggcctcgg ctgggcgaaa tcccacagct tccacaccgg ccagaccccg gtgatgaagt acaaccgcgc actcatgcag gcgatcatgt gggaccgcat caacatcgcc gaagtggtgg gcgtgcaggt catcagcctg gacgacgcac cgcgtggcta tggcgagttc gatgccggcg taccgaagaa attcgtcatc gacccgcaca agaccttcag cgcggcctga 420 480 540 600 660 *720 780 840 900 960 1020 1080 1140 12001325442 tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc gacgcagtgg gcttcgaagc gcgcggccac ggccatgtag gcgccgagca cgaagctccg gccaccgtgc tcaactcgct gatgcaggtc acccgtgtgg ccggcaagat cggtatcccc gggctctacg tcaccgaaga tccgggcgcg gtggatgccg ccgccaagat cggcagcctg agcatccgct tcggcctcgg ctgggcgaaa tcccacagct tccacaccgg ccagaccccg gtgatgaagt acaaccgcgc actcatgcag gcgatcatgt gggaccgcat caacatcgcc gaagtggtgg gcgtgcaggt catcagcctg gacgacgcac cgcgtggcta tggcgagttc gatgccggcg taccgaagaa attcgtcatc gacccgcaca agaccttcag cgcggcctga 42 0 480 540 600 660 *720 780 840 900 960 1020 1080 1140 1200

&lt;210&gt; 6 &lt;211〉399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 6 60&lt;210&gt; 6 &lt;211>399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 6 60

MSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA QVGLVLGHEI TGEVlEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA 5 120 GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV 180 TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAVVIVGDLN PARLAHAKAQ GFEIADLSLD 240 TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAEHEAP ATVLNSLMQV TRVAGKIGIP 300 GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA 360 EWGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA 399MSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA QVGLVLGHEI TGEVlEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA 5 120 GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV 180 TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAVVIVGDLN PARLAHAKAQ GFEIADLSLD 240 TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAEHEAP ATVLNSLMQV TRVAGKIGIP 300 GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA 360 EWGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA 399

&lt;210&gt; 7 &lt;211&gt; 1200 &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;400&gt; 7 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc 360 ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg 420 ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag 480 aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc 540 accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc 600 gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac 660 cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac 720 780 1325442 accccgctgc acgagcagat gacgcagtgg gcttcgaagc gccaccgtgc tcaactcgct gggctctacg tcaccgaaga agcatccgct tcggcctcgg gtgatgaagt acaaccgcgc gaagtggtgg gcgtgcaggt gatgccggcg taccgaagaa tgccgcgctg ctgggcgagc gcgcggccac ggccatgaag gatgcaggtc acccgtgtgg tccgggcgcg gtggatgccg ctgggcgaaa tcccacagct actcatgcag gcgatcatgt catcagcctg gacgacgcac attcgtcatc gacccgcaca cggaagtgga ctgtgctgtc gcgccaagca cgaagctccg ccggcaagat cggtatcccc ccgccaagat cggcagcctg tccacaccgg ccagaccccg gggaccgcat caacatcgcc cgcgttgcta tggcgagttc agaccttcag cgcggcctga 840 900 960 1020 1080 1140 1200&Lt; 210 &gt; 7 &lt; 211 &gt; 1200 &lt; 212 &gt; DNA &lt; 213 &gt; Pseudomonas putida &lt; 400 &gt; 7 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc 360 ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg 420 ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag 480 aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc 540 accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc 600 gccgccgccg cctccgcccg cctgctgggt gctgccgtgg Tcatcgtcgg cgacctcaac 660 cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac 720 780 1325442 accccgctgc acgagcagat gacgcagtgg gcttcgaagc gccaccgtgc tc aactcgct gggctctacg tcaccgaaga agcatccgct tcggcctcgg gtgatgaagt acaaccgcgc gaagtggtgg gcgtgcaggt gatgccggcg taccgaagaa tgccgcgctg ctgggcgagc gcgcggccac ggccatgaag gatgcaggtc acccgtgtgg tccgggcgcg gtggatgccg ctgggcgaaa tcccacagct actcatgcag gcgatcatgt catcagcctg gacgacgcac attcgtcatc gacccgcaca cggaagtgga ctgtgctgtc gcgccaagca cgaagctccg ccggcaagat cggtatcccc ccgccaagat cggcagcctg tccacaccgg ccagaccccg gggaccgcat caacatcgcc cgcgttgcta tggcgagttc agaccttcag cgcggcctga 840 900 960 1020 1080 1140 1200

&lt;210&gt; 8 &lt;211&gt; 399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 8&lt;210&gt; 8 &lt;211&gt; 399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 8

MSGNRGVVYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK VVSTNICGSD QHMVRGRTTA QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV TAGVGPGSTV YVAGAGPVGL A/^AASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAKHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRCYGEF DAGVPKKFVI DPHKTFSAA 60 120 180 240 300 360 7 399MSGNRGVVYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK VVSTNICGSD QHMVRGRTTA QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV TAGVGPGSTV YVAGAGPVGL A / ^ AASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAKHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRCYGEF DAGVPKKFVI DPHKTFSAA 60 120 180 240 300 360 7 399

Claims (1)

1325442 [公 1. 一種經分離且純化之表現戀臭假單胞菌非麩胺基硫 相關曱醛脫氫酵素的基因序列,其中該戀臭假單胞菌為戀 臭假單胞菌BCRC13897,且 (i) 第522個位置突變為胸線嘧啶、711個位置突變為 胸線嘧啶、762個位置突變為胸線嘧啶、818個位置突變為 胸線嘧啶、876個位置突變為胸線嘧啶以及903個位置突 變為鳥糞嘌呤;或1325442 [Male 1. A genetic sequence of a non-glutamate-based sulfur-related furfural dehydrogenase expressing Pseudomonas putida, which is Pseudomonas putida BCRC13897, And (i) the 522th position is mutated to thoracic pyrimidine, 711 position mutations to thoracic pyrimidine, 762 position mutations to thoracic pyrimidine, 818 position mutations to thoracic pyrimidine, 876 position mutations to thoracic pyrimidine, and 903 positions were mutated to bird droppings; or (ii) 第522個位置突變為胸線嘧啶、826個位置突變為 鳥糞嘌呤、876個位置突變為胸線嘧啶以及903個位置突 變為鳥糞嘌呤;或者 (iii) 第522個位置突變為胸線嘧啶、774個位置突變為 胸線嘧啶、777個位置突變為胸線嘧啶、876個位置突變為 胸線嘧啶、903個位置突變為鳥糞嘌呤以及1126個位置突 變為胸線嘧啶;又 iS 十、申請專利範圍: 其中該戀臭假單胞菌非麩胺基硫相關甲醛脫氫酵素的 比活性較野生株高。 2. 如申請專利範圍第1項所述之經分離且純化之表現 戀臭假單胞菌非麩胺基硫相關甲醛脫氫酵素的基因序列, 其中第522個位置突變為胸線嘧啶、774個位置突變為胸 線嘧啶、777個位置突變為胸線嘧啶、876個位置突變為胸 線嘧啶、903個位置突變為鳥糞嘌呤以及1126個位置突變 為胸線嘧啶。 3. —種經分離且純化之表現戀臭假單胞菌非麩胺基硫 1325442 相關曱醛脫氫酵素的胺基酸序列,其中該戀臭假單胞菌為 戀臭假單胞菌BCRC13897,且第273個位置突變為擷胺 酸、第275個位置突變為麩胺酸或第375個位置突變為半 胱胺酸,又其中該戀臭假單胞菌非麩胺基硫相關曱醛脫氫 — 酵素的比活性較野生株高。 - 4.如申請專利範圍第3項所述之經分離且純化之表現 戀臭假單胞菌非麩胺基硫相關曱醛脫氫酵素的胺基酸序 鲁列’其中第375個位置突變為半胱胺酸。 5.如申請專利範圍第3項所述之經分離且純化之表現 戀臭假單胞菌非麵胺基硫相關甲醛脫氫酵素的胺基酸序 列,其中該戀臭假單胞菌非麩胺基硫相關經曱醛脫氫酵素 的曱醛與乙醛反應速率比值(酵素專一性)較野生株高。 6· —種細胞,包括申請專利範圍第丨項所述之經分離 且純化之表現戀臭假單胞菌非麩胺基硫相關甲醛脫氫酵素 的基因序列,其令該細胞表現功能性戀臭假單胞菌非麵胺 基硫相關曱醛脫氫酵素,且該細胞包括細菌或酵母菌。 7. 如申請專利範圍第6項所述之細胞,其中該細菌為 大腸桿菌。 8. —種載體,包括申請專利範圍第丨項所述之經分離 且純化之表現戀臭假單胞菌非麵胺基硫相關甲經脫 的基因序列。 9. 一種細胞,包括申請專利範圍第8項所述之載體, 其中該細胞包括細菌或酵母菌。 10. 如申請專利範圍第9項所述之細胞,其中該細菌為 1325442 大腸桿菌或酵母菌。(ii) The 522th position is mutated to thoracic pyrimidine, 826 positions are mutated to guanosene, 876 positions are mutated to pleuropyrimidine, and 903 positions are mutated to guano; or (iii) the 522th position is mutated to Thymidine, 774 positions were mutated to pleuropyrimidine, 777 positions were mutated to pleuropyrimidine, 876 positions were mutated to pleuropyrimidine, 903 positions were mutated to guanosene, and 1126 positions were mutated to thoracic acid; iS X. Patent application scope: The specific activity of the non-glutamate-based sulfur-related formaldehyde dehydrogenase of Pseudomonas putida is higher than that of wild plants. 2. The isolated and purified gene sequence of Pseudomonas putida non-glutamate sulfur-related formaldehyde dehydrogenase as described in claim 1 of the patent application, wherein the 522th position is mutated to thoracic acid, 774 The positions were mutated to thoracic pyrimidine, 777 positions were mutated to pleuropyrimidine, 876 positions were mutated to pleuropyrimidine, 903 positions were mutated to guanosene, and 1126 positions were mutated to thymidine. 3. A segregation and purification of the amino acid sequence of Pseudomonas syringae non-glutamate thiol 1325442 related to furfural dehydrogenase, wherein Pseudomonas putida is Pseudomonas putida BCRC13897 And the 273th position is mutated to proline, the 275th position is mutated to glutamic acid or the 375th position is mutated to cysteine, and the Pseudomonas putida non-glutamate sulphur-related furfural The specific activity of dehydrogenase-enzyme is higher than that of wild plants. - 4. The amino acid sequence of the non-glutamate-based sulfur-related furfural dehydrogenase of Pseudomonas putida which is isolated and purified as described in claim 3 of the patent application, wherein the 375th position mutation It is cysteine. 5. The isolated and purified amino acid sequence of Pseudomonas putida non- face amine sulfur-related formaldehyde dehydrogenase according to claim 3, wherein the Pseudomonas putida is not bran The ratio of the reaction rate of furfural to acetaldehyde (enzyme specificity) of the amine-sulfur-related furfural dehydrogenase is higher than that of the wild strain. 6. A seed cell comprising the isolated and purified gene sequence of Pseudomonas putida non-glutamate sulfur-related formaldehyde dehydrogenase as described in the scope of the patent application, which causes the cell to exhibit functional love Pseudomonas putida non- face amine sulfur-related furfural dehydrogenase, and the cells include bacteria or yeast. 7. The cell of claim 6, wherein the bacterium is Escherichia coli. 8. A vector comprising the isolated and purified gene sequence of Pseudomonas putida non- face amine sulfur-related A. A cell comprising the vector of claim 8 wherein the cell comprises a bacterium or a yeast. 10. The cell of claim 9, wherein the bacterium is 1325442 E. coli or yeast.
TW96116235A 2007-05-08 2007-05-08 Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof TWI325442B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96116235A TWI325442B (en) 2007-05-08 2007-05-08 Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96116235A TWI325442B (en) 2007-05-08 2007-05-08 Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof

Publications (2)

Publication Number Publication Date
TW200844228A TW200844228A (en) 2008-11-16
TWI325442B true TWI325442B (en) 2010-06-01

Family

ID=44822525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96116235A TWI325442B (en) 2007-05-08 2007-05-08 Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof

Country Status (1)

Country Link
TW (1) TWI325442B (en)

Also Published As

Publication number Publication date
TW200844228A (en) 2008-11-16

Similar Documents

Publication Publication Date Title
JP4216719B2 (en) Halogen compound-resistant novel formate dehydrogenase and method for producing the same
TWI325442B (en) Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof
JP5022044B2 (en) Method for producing new uricase
JP2002233395A (en) Method for reproducing coenzyme nadh
JP5403498B2 (en) Method for producing (R) -3-quinuclidinol
JP4729919B2 (en) Microbial culture method and optically active carboxylic acid production method
JP5053648B2 (en) Method for producing new uricase
JP5010291B2 (en) Method for producing new uricase
CN114134057B (en) Saccharomyces cerevisiae SWGCJM001 and culture method and application thereof
JPH02234678A (en) Amino acid amide hydrolase and use thereof
CN113215122B (en) Carbonyl reductase mutant and coding gene and application thereof
JP3959439B2 (en) Thermostable trehalase and its production method
JP3694335B2 (en) Thermostable O-acetylserine sulfhydrylase and process for producing the same
JPH02100674A (en) Culture of bacterium
JPS589672B2 (en) Biseibutsunobayouhouhou
JPH02227069A (en) Culture of bacteria
JPH0319695A (en) Preparation of trans-4-cyanocyclohexane carboxylic amide and enzyme used therefor
JPS606625B2 (en) Method for producing microbial cells
JP2001275669A (en) New catalase gene and method for producing new catalase using the gene
JP5954539B2 (en) Method for producing 1-benzyl-4-hydroxy-3-piperidinecarboxylic acid alkyl ester
JPS5840469B2 (en) Manufacturing method of enzyme preparation for cholesterol determination
JP5333966B2 (en) Method for producing (S) -3-quinuclidinol
JP2003125784A (en) New tyrosine decarboxylase
DK148360B (en) PROCEDURE FOR URICASE PREPARATION
JP2008194037A (en) Method for optical resolution of 4-halo-3-hydroxybutyric acid ester by biocatalyst