JP5053648B2 - Method for producing new uricase - Google Patents

Method for producing new uricase Download PDF

Info

Publication number
JP5053648B2
JP5053648B2 JP2007006189A JP2007006189A JP5053648B2 JP 5053648 B2 JP5053648 B2 JP 5053648B2 JP 2007006189 A JP2007006189 A JP 2007006189A JP 2007006189 A JP2007006189 A JP 2007006189A JP 5053648 B2 JP5053648 B2 JP 5053648B2
Authority
JP
Japan
Prior art keywords
uricase
strain
brevibacterium
enzyme
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007006189A
Other languages
Japanese (ja)
Other versions
JP2008167717A (en
Inventor
直秀 西脇
博宣 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shishiai KK
Ultizyme International Ltd
Original Assignee
Shishiai KK
Ultizyme International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai KK, Ultizyme International Ltd filed Critical Shishiai KK
Priority to JP2007006189A priority Critical patent/JP5053648B2/en
Publication of JP2008167717A publication Critical patent/JP2008167717A/en
Application granted granted Critical
Publication of JP5053648B2 publication Critical patent/JP5053648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、新規なウリカーゼの製造方法に関する。より詳細には、本発明は、耐熱性に優れるブレビバクテリウム(Brevibacterium)属に属する微生物由来の新規なウリカーゼの製造方法に関する。   The present invention relates to a novel method for producing uricase. More particularly, the present invention relates to a method for producing a novel uricase derived from a microorganism belonging to the genus Brevibacterium having excellent heat resistance.

ウリカーゼ(EC1.7.3.3)は、尿酸をアラントイン、過酸化水素、および炭酸ガスに分解する、即ち、尿酸+O+2HO→アラントイン+CO+Hの反応を触媒する、酸化的分解活性を有する酵素である。このウリカーゼは、種々の動物組織(例えば、肝臓、腎臓)中や微生物組織中に広く存在する。現在、ウリカーゼは、人体内の尿酸蓄積に起因する種々の疾患の臨床診断を目的とした、血液または尿中に存在する尿酸の測定用酵素として使用されている。 Uricase (EC 1.7.3.3) decomposes uric acid into allantoin, hydrogen peroxide, and carbon dioxide, ie, catalyzes the reaction of uric acid + O 2 + 2H 2 O → allantoin + CO 2 + H 2 O 2. It has an enzymatic degradation activity. This uricase is widely present in various animal tissues (eg, liver, kidney) and microbial tissues. Currently, uricase is used as an enzyme for measuring uric acid present in blood or urine for the purpose of clinical diagnosis of various diseases caused by uric acid accumulation in the human body.

ウリカーゼの微生物による生産は広く行われている(例えば、特許文献1〜3参照)。特許文献1では、ウリカーゼを著量に生産するトルロプシス属に属する酵母が提案されている。特許文献2では、多量のウリカーゼを生産するミクロコッカス・ロゼウスが開示され、該微生物が生産するウリカーゼは、生理液のpH値に近いことが見出されている。また、特許文献3では、バチルス・エスピー TB−90菌株が、広い作用pH域を有する好熱性微生物由来のウリカーゼを生産することを開示している。
特開昭56−124381号公報 特開昭57−115177号公報 特開昭61−280272号公報
Uricase production by microorganisms is widely performed (see, for example, Patent Documents 1 to 3). Patent Document 1 proposes a yeast belonging to the genus Torlopsis that produces a significant amount of uricase. Patent Document 2 discloses Micrococcus roseus, which produces a large amount of uricase, and it has been found that the uricase produced by the microorganism is close to the pH value of a physiological fluid. Patent Document 3 discloses that Bacillus sp. TB-90 strain produces uricase derived from a thermophilic microorganism having a wide action pH range.
Japanese Patent Laid-Open No. 56-124381 JP 57-115177 A JP 61-280272 A

しかしながら、上記特許文献1に記載のトルロプシス・ウリコキシダンスTN1023(微工研菌寄第55391号)は、培養物中からのウリカーゼの採取を、培養物中から菌体を遠心分離などにより取得し、ついてこの菌体を適当な手段で破砕し、破砕液から酵素精製液を得ている(3頁右下欄下から5行から4頁左上欄第4行)ことから、ウリカーゼ酵素は菌体内に蓄積されている。同様にして、特許文献2でも、例1において細胞を遠心分離によって採取してこの細胞ペーストから酵素を得ている(3頁左上欄下から6行から右上欄4行)ことから、やはりウリカーゼ酵素は菌体内に蓄積されている。同様にして、特許文献3でも、ウリカーゼは主として菌体中に生成される(4頁左上欄下から2〜1行)と記載されている。すなわち、上記特許文献1〜3はすべて、ウリカーゼを菌体内に蓄積するため、所望の酵素を得るためには、菌体を物理的に破砕し、その破砕物から酵素を精製しなければならず、多くの精製工程が必要である上、菌体破砕物は所望のウリカーゼに加えて膨大な菌体成分を含んでいるため、純粋なウリカーゼを得るための精製工程が非常に複雑/煩雑であるという問題がある。   However, Torropsis uricoxidans TN1023 described in the above-mentioned Patent Document 1 (Mikken Kenki No. 55391) collects uricase from the culture and obtains the microbial cells from the culture by centrifugation or the like. Then, this bacterial cell was crushed by an appropriate means, and an enzyme purified solution was obtained from the crushed liquid (line 5 from the lower right column on page 3 to line 4 on the upper left column on page 4). Have been accumulated. Similarly, also in Patent Document 2, cells are collected by centrifugation in Example 1 and the enzyme is obtained from this cell paste (from the lower left column, line 6 to the upper right column, page 3). Is accumulated in the fungus body. Similarly, Patent Document 3 also describes that uricase is mainly produced in bacterial cells (2 to 1 line from the lower left column on page 4). That is, since all of the above Patent Documents 1 to 3 accumulate uricase in the microbial cell, in order to obtain a desired enzyme, the microbial cell must be physically disrupted and the enzyme must be purified from the crushed material. In addition, many purification steps are required, and the microbial cell disruption contains a large amount of cell components in addition to the desired uricase, so the purification step for obtaining pure uricase is very complicated / complex. There is a problem.

したがって、本発明は、上記事情を鑑みてなされたものであり、耐熱性に優れた新規なウリカーゼの製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a novel method for producing uricase having excellent heat resistance.

また、本発明の他の目的は、耐熱性に優れたウリカーゼを菌体外に生産・蓄積する細菌を提供することである。   Another object of the present invention is to provide a bacterium that produces and accumulates uricase excellent in heat resistance outside the cell.

本発明者らは、上記課題を達成するために鋭意検討を行なった結果、耐熱性に優れたウリカーゼ生産能を有する微生物について、広範囲にわたり検索を行なった。その結果、自然界(土壌)から分離したブレビバクテリウムに属する細菌(U−344株)の産生するウリカーゼが、既知のウリカーゼよりも耐熱性に優れており、また、前記細菌が培養液中(菌体外)にウリカーゼを生産・蓄積し、この菌体外に生産されたウリカーゼは20分間50℃の熱処理に対して95%以上の酵素活性を維持できることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to achieve the above-mentioned problems, the present inventors have extensively searched for microorganisms having a uricase-producing ability excellent in heat resistance. As a result, the uricase produced by the bacteria belonging to Brevibacterium (U-344 strain) isolated from the natural world (soil) is superior in heat resistance to the known uricase, and the bacterium is contained in the culture solution (bacteria). The uricase was produced and accumulated in vitro, and the uricase produced outside the fungus body was found to maintain an enzyme activity of 95% or more with respect to heat treatment at 50 ° C. for 20 minutes, thereby completing the present invention. .

すなわち、上記目的は、ブレビバクテリウム(Brevibacterium)属に属し、ウリカーゼの生産能を有する微生物を培養する工程(1)と、前記工程(1)で得られた培養物からウリカーゼを採取する工程(2)と、を含む、ウリカーゼの製造方法によって達成される。   That is, the above object is a step (1) of culturing a microorganism belonging to the genus Brevibacterium and having the ability to produce uricase, and a step of collecting uricase from the culture obtained in the step (1) ( 2), and achieved by a method for producing uricase.

本発明のウリカーゼは、耐熱性に優れる。特に本発明によるウリカーゼのうち、菌体外に生産・蓄積されるウリカーゼは、50℃で20分間熱処理してもほとんど失活せず、耐熱性に優れる。したがって、本発明のウリカーゼを用いた酵素製品は、保存安定性が良好となり、臨床診断における酵素製品の長期保存が可能である。   The uricase of the present invention is excellent in heat resistance. In particular, among the uricases according to the present invention, uricase produced / accumulated outside the cells is hardly inactivated even when heat-treated at 50 ° C. for 20 minutes, and is excellent in heat resistance. Therefore, the enzyme product using the uricase of the present invention has good storage stability, and the enzyme product in clinical diagnosis can be stored for a long time.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、ブレビバクテリウム(Brevibacterium)属に属し、ウリカーゼの生産能を有する微生物(本明細書では、単に「ウリカーゼ産生菌」とも称する)を培養する工程(1)と、前記工程(1)で得られた培養物からウリカーゼを採取する工程(2)と、を含む、ウリカーゼの製造方法を提供するものである。   The present invention includes a step (1) of culturing a microorganism belonging to the genus Brevibacterium and having an ability to produce uricase (herein, also simply referred to as “uricase producing bacteria”), and the step (1). And a step (2) of collecting uricase from the culture obtained in (1) above, to provide a method for producing uricase.

本発明に用いられるウリカーゼ産生菌は、上記諸性質を有するウリカーゼを産生するものであれば、特に制限されないが、好ましくはブレビバクテリウム(Brevibacterium)属(以降、括弧内は省略する)に属し、より好ましくはブレビバクテリウム属(Brevibacterium sp.)U−344 FERM P−21097菌株(以降、該菌株を「U−344株」と称する)である。上記細菌は、ウリカーゼ生産能を有する限り、自然界に存在するものであっても、あるいは人為的な遺伝子操作などにより変異を受けたものであってもよい。上記細菌によって産生されたウリカーゼは、菌体内に蓄積されてもよく、あるいは菌体内または菌体外に分泌されてもよいが、酵素の精製工程の簡略化を考慮すると、好ましくは菌体外(培養液中)に生産・蓄積する。また、この菌体外に生産されたウリカーゼは、20分間50℃の熱処理に対して95%以上の酵素活性を維持できる。   The uricase-producing bacterium used in the present invention is not particularly limited as long as it produces uricase having the above properties, but preferably belongs to the genus Brevibacterium (hereinafter omitted in parentheses), More preferably, it is Brevibacterium sp. U-344 FERM P-21097 strain (hereinafter referred to as “U-344 strain”). As long as the bacterium has the ability to produce uricase, the bacterium may exist in nature or may have been mutated by artificial genetic manipulation. The uricase produced by the bacterium may be accumulated in the microbial cell or secreted into or out of the microbial cell. However, considering simplification of the enzyme purification process, the uricase is preferably extracellular ( Produced and accumulated in the culture medium). Further, the uricase produced outside the cells can maintain an enzyme activity of 95% or more with respect to heat treatment at 50 ° C. for 20 minutes.

ここで、U−344株について詳細に述べる。   Here, the U-344 strain will be described in detail.

U−344株は、本発明者らによって、岐阜県内の土壌から、尿酸を唯一の炭素源とした培地の集積培養により分離された菌種であり、平成18年11月17日付で独立行政法人産業技術総合研究所特許生物寄託センターに受託番号FERM P−21097として寄託されている。   The U-344 strain is a bacterial species isolated by the present inventors from the soil in Gifu Prefecture by the enrichment culture of a medium using uric acid as the only carbon source. Deposited at the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center under the deposit number FERM P-21097.

U−344株は、以下の(a)形態的性質、(b)培養的性質、(c)生理学的性質、(d)その他の性質を有する。下記表において、「+」は、陽性を、「−」は、陰性を、および「w」は、反応が弱いことを、それぞれ、示す。   The U-344 strain has the following (a) morphological properties, (b) culture properties, (c) physiological properties, and (d) other properties. In the following table, “+” indicates positive, “−” indicates negative, and “w” indicates that the reaction is weak.

Figure 0005053648
Figure 0005053648

Figure 0005053648
Figure 0005053648

Figure 0005053648
Figure 0005053648

Figure 0005053648
Figure 0005053648

BLASTを用いた細菌基準株データベースに対する相同性検索の結果、U−344株の16S rDNA塩基配列はブレビバクテリウム(Brevibacterium)由来の16S rDNAに対し高い相同性を示し、相同率98.6%でブレビバクテリウム・エピデルミディス(Brevibacterim epidermidis)NCDO2286株(現 NCIMB702286株)の16S rDNAに対し最も高い相同性を示した。GenBank/DDBJ/EMBLに対する相同性検索の結果においても、本菌株の16S rDNAはブレビバクテリム由来の16S rDNAに対し高い相同性を示し、基準株ではブレビバクテリウム・エピデルミディス NCDO2286株の16S rDNAに対し相同率98.6%の相同性を示した。また、U−344株の16S rDNAと細菌基準株データベースに対する相同性検索上位30株の16S rDNAを用いて行った簡易分子系統解析の結果、本菌株はブレビバクテリウムの16S rDNAが形成するクラスター内に含まれ、ブレビバクテリウム・エピデルミディスの16S rDNAと系統枝を形成した。しかし両者の16S rDNAは完全には一致しておらず、本菌株とブレビバクテリウム・エピデルミディスの系統枝と周囲に形成されるブレビバクテリム各種の系統枝を比較すると、本菌株がブレビバクテリウム・エピデルミディスと同種になる可能性は低い。   As a result of homology search against the bacterial reference strain database using BLAST, the 16S rDNA base sequence of U-344 strain showed high homology to 16S rDNA derived from Brevibacterium, with a homology rate of 98.6%. It showed the highest homology to 16S rDNA of Brevibacterium epidermidis NCDO2286 strain (currently NCIMB702286 strain). Also in the results of the homology search for GenBank / DDBJ / EMBL, the 16S rDNA of this strain shows high homology to the 16S rDNA derived from Brevibacterium, and the reference strain has a homology rate to the 16S rDNA of Brevibacterium epidermidis NCDO2286 strain. It showed 98.6% homology. In addition, as a result of a simple molecular phylogenetic analysis using 16S rDNA of U-344 strain and 16S rDNA of the top 30 homology search against the bacterial reference strain database, this strain was found in the cluster formed by Brevibacterium 16S rDNA. And formed a phylogenetic branch with Brevibacterium epidermidis 16S rDNA. However, the two 16S rDNAs are not completely the same, and when comparing the strains of this strain and Brevibacterium epidermidis and the various branches of Brevibacterium formed around it, the strain is found to be of Brevibacterium epidermidis. It is unlikely to be the same.

本菌株は運動性を有さないグラム陽性桿菌で、培養時間の経過に伴い形態が変化する「桿菌−球菌生活環[ロッド コッカス サイクル(rod−coccus cycle)]」を示した。Nutrient agar平板培地上でのコロニー色はオレンジ色を呈し、カタラーゼ反応は陽性、オキシダーゼ反応は陰性を示した。そして、ピラジンアミダーゼおよびアルカリフォスファターゼ活性を示し、ゼラチンを加水分解したが、糖類を発酵しなかった。また、嫌気では生育せず、カゼインを加水分解した。これらの性状のほとんどはブレビバクテリウム・エピデルミディスの性状と類似するが、16S rDNA塩基配列解析の結果において近縁性が示唆されたブレビバクテリウム・エピデルミディスは特有の色素を産生しないことから、オレンジ色の色素を産生する点においてブレビバクテリウム・エピデルミディスと相違が認められる。   This strain is a Gram-positive rod that has no motility, and exhibited a “rod-coccus cycle” whose morphology changes with the passage of time. The colony color on the Nutrient agar plate medium was orange, the catalase reaction was positive, and the oxidase reaction was negative. It exhibited pyrazine amidase and alkaline phosphatase activity and hydrolyzed gelatin but did not ferment sugars. In addition, it did not grow under anaerobic conditions and hydrolyzed casein. Although most of these properties are similar to those of Brevibacterium epidermidis, the color of orange is not considered because Brevibacterium epidermidis, which was suggested to be related in the results of 16S rDNA nucleotide sequence analysis, does not produce a specific pigment. This is different from Brevibacterium epidermidis in that it produces the above pigment.

以上の16S rDNA塩基配列解析の結果および諸性質から、本菌株はブレビバクテリウムに含まれ、ブレビバクテリウム・エピデルミディスに近縁と考えられるが、16S rDNA塩基配列解析の結果や色素生産能を有する点において相違点が認められることから、本菌株を、新規な菌株と判断し、ブレビバクテリウム属(Brevibacterium sp.)U−344と命名した。したがって、本発明の第二は、ウリカーゼ生産能を有するブレビバクテリウム属(Brevibacterium sp.)U−344 FERM P−21097菌株を提供する。このU−344株は、平成18年11月17日付で、日本国茨城県つくば市東1−1−1 つくばセンター(郵便番号305−8566) 中央第6独立行政法人 産業技術総合研究所 特許生物寄託センターにFERM P−21097として寄託されている。   From the above 16S rDNA nucleotide sequence analysis results and various properties, this strain is included in Brevibacterium and is considered to be closely related to Brevibacterium epidermidis, but has the results of 16S rDNA nucleotide sequence analysis and pigment production ability Since a difference was recognized in this respect, this strain was judged to be a novel strain and named Brevibacterium sp. U-344. Accordingly, the second aspect of the present invention provides a Brevibacterium sp. U-344 FERM P-21097 strain capable of producing uricase. This U-344 strain was dated November 17, 2006, Tsukuba Center 1-1-1 Tsukuba City, Ibaraki Prefecture, Japan (Postal Code 305-8666) National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Deposited at the center as FERM P-21097.

(ブレビバクテリウム属由来のウリカーゼの製造方法)
本発明のウリカーゼは、通常用いられる培養手段によってウリカーゼ産生菌から製造され得る。以下、一実施態様として、ブレビバクテリウム属に属する細菌を用いたウリカーゼの製造方法について述べる。
(Method for producing uricase derived from Brevibacterium)
The uricase of the present invention can be produced from uricase-producing bacteria by commonly used culture means. Hereinafter, as one embodiment, a method for producing uricase using bacteria belonging to the genus Brevibacterium will be described.

該製造方法に使用される培地は、ブレビバクテリウム属に属する細菌が生育する限り特に制限されず、炭素源、窒素源、無機物、その他使用菌株の必要とする微量栄養素を程よく含有するものであれば、合成培地、天然培地のいずれも使用可能である。また、上記培地は、固体または液体培地のいずれであってもよい。   The medium used in the production method is not particularly limited as long as bacteria belonging to the genus Brevibacterium grow, and may contain carbon sources, nitrogen sources, inorganic substances, and other micronutrients required by the strain used. For example, either a synthetic medium or a natural medium can be used. The medium may be a solid or liquid medium.

炭素源としては、ブレビバクテリウム属に属する細菌が良好に生育でき、所望のウリカーゼを生産できるものであればいずれの炭素源であってもよい。具体的には、グルコース、シュークロース、ガラクトースなどの糖類;エタノール、グリセロール、ソルビトールなどのアルコール類;クエン酸、リンゴ酸、コハク酸などの有機酸;デンプンまたはその組成画分、焙焼デキストリン、加工デンプン、デンプン誘導体、物理処理デンプン及びα−デンプン等の炭水化物などが挙げられる。また、尿酸などを炭素源として使用してもよい。好ましくは、グルコース、シュークロース、ガラクトースなどの糖類、エタノール、グリセロール、ソルビトールなどのアルコール類、クエン酸、リンゴ酸、コハク酸などの有機酸、尿酸が使用される。これらの炭素源は、単独あるいは2種以上の混合物の形態で使用できる。   Any carbon source may be used as long as bacteria belonging to the genus Brevibacterium can grow well and produce a desired uricase. Specifically, sugars such as glucose, sucrose and galactose; alcohols such as ethanol, glycerol and sorbitol; organic acids such as citric acid, malic acid and succinic acid; starch or a fraction thereof, roasted dextrin, and processing Examples thereof include carbohydrates such as starch, starch derivatives, physically treated starch, and α-starch. Uric acid or the like may be used as a carbon source. Preferably, sugars such as glucose, sucrose and galactose, alcohols such as ethanol, glycerol and sorbitol, organic acids such as citric acid, malic acid and succinic acid, and uric acid are used. These carbon sources can be used alone or in the form of a mixture of two or more.

窒素源としては、一般的にブレビバクテリウム属に属する細菌の培養に使用するのと同様のものが使用でき、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウムなどのアンモニウム塩、尿素、L−グルタミン酸などのアミノ酸類、あるいは尿酸などの無機あるいは有機の窒素化合物が使用できる。さらに、窒素源としては、ペプトン、ポリペプトン、肉エキス、酵母エキス、大豆加水分解物、大豆粉末、ミルクカゼイン、カザミノ酸、コーンスティープリカー等の窒素含有天然物を使用してもよい。これらのうち、塩化アンモニウム、硫酸アンモニウム、尿素、L−グルタミン酸などのアミノ酸類、尿酸などの無機あるいは有機窒素化合物、ペプトン、肉エキス、酵母エキスなの窒素含有天然物が好ましい。これらの窒素源は、単独あるいは2種以上の混合物の形態で使用できる。   As the nitrogen source, those generally used for culture of bacteria belonging to the genus Brevibacterium can be used, for example, ammonium salts such as ammonia, ammonium chloride, ammonium sulfate, ammonium nitrate, urea, L-glutamic acid, etc. Inorganic or organic nitrogen compounds such as uric acid can be used. Furthermore, nitrogen-containing natural products such as peptone, polypeptone, meat extract, yeast extract, soybean hydrolysate, soybean powder, milk casein, casamino acid, corn steep liquor and the like may be used as the nitrogen source. Among these, amino acids such as ammonium chloride, ammonium sulfate, urea, and L-glutamic acid, and inorganic or organic nitrogen compounds such as uric acid, nitrogen-containing natural products such as peptone, meat extract, and yeast extract are preferable. These nitrogen sources can be used alone or in the form of a mixture of two or more.

無機物としても、一般的にブレビバクテリウム属に属する細菌の培養に使用するのと同様のものが使用でき、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、リン酸カリウム、リン酸ナトリウム、硫酸マグネシウム、硫酸アンモニウム等の、マグネシウム、マンガン、カルシウム、ナトリウム、カリウム、銅、鉄及び亜鉛などのリン酸塩、塩酸塩、硫酸塩及び酢酸塩などが用いられる。そのほか、チアミン、ビオチンなどのビタミン類、さらに必要に応じて、アデニン、ウラシルなどの核酸関連物質が使用されてもよい。これらの無機物は、単独あるいは2種以上の混合物の形態で使用できる。   As the inorganic substance, the same ones that are generally used for culture of bacteria belonging to the genus Brevibacterium can be used, for example, sodium chloride, potassium chloride, calcium chloride, potassium phosphate, sodium phosphate, magnesium sulfate, Phosphate, hydrochloride, sulfate, acetate, etc. such as magnesium sulfate, magnesium, manganese, calcium, sodium, potassium, copper, iron and zinc are used. In addition, vitamins such as thiamine and biotin, and if necessary, nucleic acid-related substances such as adenine and uracil may be used. These inorganic substances can be used alone or in the form of a mixture of two or more.

ブレビバクテリウム属に属する細菌の培養は、好気的条件下、通常振盪培養あるいは通常撹拌培養で行なわれる。その際の培養条件は、培地の組成や培養法によって適宜選択され、本菌株が増殖し目的とする酵素であるウリカーゼが失活せずに効率よく産生できる条件であれば特に制限されない。通常は、培養温度は25〜45℃で行なう。培地のpHは5.0〜9.0、好ましくは6.0〜8.0の範囲である。培養時間は、通常、20〜72時間、好ましくは24〜48時間培養する。本発明では、ウリカーゼは、上記したようにして得られたブレビバクテリウム属に属する細菌の培養液中および/または菌体中に生成・蓄積されるが、特に本発明の特に好ましい実施形態であるU−344株を使用する場合には、以下の実施例で詳述するように、U−344株の培養液中に生産されたウリカーゼが、耐熱性に優れるため、好ましい。また、このように培養液中に生産されたウリカーゼは、培養液をそのまま、以下に記載するような公知の精製方法に適用できるため、また、菌体を破砕することにより生じる多数の不純物の除去工程が不要であるため、精製工程の簡略化の面からも好ましい。   Bacteria belonging to the genus Brevibacterium are cultured under normal aerobic conditions, usually with shaking culture or with stirring culture. The culture conditions at that time are appropriately selected depending on the composition of the medium and the culture method, and are not particularly limited as long as the strain can grow and the uricase, which is the target enzyme, can be efficiently produced without being inactivated. Usually, the culture temperature is 25 to 45 ° C. The pH of the medium is in the range of 5.0 to 9.0, preferably 6.0 to 8.0. The culture time is usually 20 to 72 hours, preferably 24 to 48 hours. In the present invention, uricase is produced / accumulated in the culture solution and / or cells of bacteria belonging to the genus Brevibacterium obtained as described above, and is a particularly preferred embodiment of the present invention. When the U-344 strain is used, uricase produced in the culture solution of the U-344 strain is preferable because of excellent heat resistance, as described in detail in the following examples. In addition, the uricase produced in the culture solution as described above can be applied to a known purification method as described below without removing the culture solution, and also removes many impurities generated by disrupting the cells. Since a process is unnecessary, it is preferable also from the viewpoint of simplification of the purification process.

本発明のウリカーゼの単離方法を以下に記載する。   The method for isolating the uricase of the present invention is described below.

産生したウリカーゼが菌体内に蓄積または分泌される場合には、培養終了後、培養液から菌体を遠心分離などにより回収し、ついでこの菌体から適当な手段でウリカーゼを適当な溶媒(例えば、トリトン X−100など)で抽出する。遠心分離などによってこの抽出液を処理して不溶性成分を除去した後、酸沈殿、有機溶媒沈殿(例えば、エタノール、アセトンなどによる溶媒沈澱)、塩析(例えば、硫安による塩析)、透析、各種クロマトグラフィー(例えば、イオン交換クロマトグラフィー、セファデックスクロマトグラフィー、アフィニティクロマトグラフィー、ゲル濾過クロマトグラフィー、疎水クロマトグラフィーなど)、限外濾過、凍結乾燥、電気泳動などの、当業者が通常用いる酵素精製方法によって精製することにより、純度の高いウリカーゼが得られる。なお、ウリカーゼの精製度合いは、得られたウリカーゼを電気泳動にかけることにより確認でき、電気泳動的に単一になるまで精製することにより、純度の高いウリカーゼが得られる。または、培養終了後、濾過または遠心分離などにより菌体を培養液から回収し、ついでこの菌体を適当な手段(例えば、超音波、自己消化法、ガラスビーズ等を用いた物理的破砕など)で破砕して、細胞破砕物を得、当該破砕物から遠心分離などにより上清液を得る。この上清液を、上記と同様の精製方法を使用することによって、純度の高いウリカーゼを得てもよい。   When the produced uricase is accumulated or secreted in the microbial cells, the microbial cells are recovered from the culture solution by centrifugation after completion of the culture, and then uricase is removed from the microbial cells by an appropriate means (for example, Triton X-100 etc.). After processing this extract by centrifugation, etc. to remove insoluble components, acid precipitation, organic solvent precipitation (for example, solvent precipitation with ethanol, acetone, etc.), salting out (for example, salting out with ammonium sulfate), dialysis, various types Enzyme purification methods commonly used by those skilled in the art, such as chromatography (eg, ion exchange chromatography, Sephadex chromatography, affinity chromatography, gel filtration chromatography, hydrophobic chromatography, etc.), ultrafiltration, lyophilization, electrophoresis, etc. The uricase with high purity can be obtained by purifying by the above. The degree of purification of the uricase can be confirmed by subjecting the obtained uricase to electrophoresis, and a highly purified uricase can be obtained by purifying the uricase until it becomes single electrophoretically. Alternatively, after completion of the culture, the cells are collected from the culture solution by filtration or centrifugation, and then the cells are collected by appropriate means (for example, ultrasonic, self-digestion, physical disruption using glass beads, etc.) To obtain a cell lysate, and a supernatant is obtained from the crushed material by centrifugation or the like. A highly purified uricase may be obtained from this supernatant by using the same purification method as described above.

また、産生したウリカーゼが菌体外(培養物中)に分泌される場合は、培養液から濾過または遠心分離により菌体を除去し、濾液または上清を得る。こうして得られた濾液または上清に、直接上記と同様の精製方法を適用することによって、純度の高いウリカーゼが得られる。   When the produced uricase is secreted outside the cells (in the culture), the cells are removed from the culture solution by filtration or centrifugation to obtain a filtrate or supernatant. A highly purified uricase can be obtained by directly applying the same purification method to the filtrate or supernatant thus obtained.

本発明の製造方法によって得られるウリカーゼは、上述したように、人体内の尿酸蓄積に起因する種々の疾患の臨床診断を目的として、血液または尿中に存在する尿酸の測定用酵素として使用できる。この際、ウリカーゼを使用する尿酸の定量法としては下記の方法がある。   As described above, the uricase obtained by the production method of the present invention can be used as an enzyme for measuring uric acid present in blood or urine for the purpose of clinical diagnosis of various diseases caused by uric acid accumulation in the human body. At this time, the uric acid quantification method using uricase includes the following methods.

(i)尿酸とウリカーゼとを反応させることにより生成する過酸化水素量を測定する方法
この際、過酸化水素量の測定方法としては、例えば下記(ア)〜(ウ)の方法がある:
(ア)過酸化水素を4−アミノアンチピリンとフエノールあるいはその誘導体とパーオキシダーゼの存在下で反応させて、過酸化水素量に比例して生成する色素を吸光度から定量する(酵素比色法中ウリカーゼ・パーオシダーゼ法)方法;
(イ)酸化水素とアルコールとをカタラーゼの存在下で反応させ、生じたアルデヒドをアセチルアセトン及びアンモニアと縮合させて生成する色素を吸光度から定量する(酵素比色法中ウリカーゼ・カタラーゼ法)方法;および
(ウ)上記(イ)のカタラーゼによる反応生成物のアルデヒドと還元型ニコチンアミドアデニンジヌクレオチド(NADH)とをアルコールデヒドロゲナーゼの存在下で反応させてNADを生成せしめ、その際、減少するNADHを定量する(紫外部吸収法)方法。
(I) Method for measuring the amount of hydrogen peroxide produced by reacting uric acid and uricase At this time, examples of methods for measuring the amount of hydrogen peroxide include the following methods (a) to (c):
(A) Hydrogen peroxide is reacted with 4-aminoantipyrine and phenol or its derivative in the presence of peroxidase, and the dye produced in proportion to the amount of hydrogen peroxide is quantified from the absorbance (uricase in the enzyme colorimetric method).・ Perosidase method) method;
(I) a method in which hydrogen oxide and alcohol are reacted in the presence of catalase, and the resulting aldehyde is condensed with acetylacetone and ammonia to determine the amount of dye produced from the absorbance (uricase-catalase method in the enzyme colorimetric method); and (C) The reaction product aldehyde of the above (a) catalase is reacted with reduced nicotinamide adenine dinucleotide (NADH) in the presence of alcohol dehydrogenase to produce NAD, and the decreased NADH is quantified. (Ultraviolet absorption method)

(ii)尿酸をウリカーゼと反応させる際に消費される酸素あるいは生成する炭酸ガスを測定する方法(電極法)。   (Ii) A method of measuring oxygen consumed when reacting uric acid with uricase or generated carbon dioxide (electrode method).

(iii)反応の前後における尿酸由来の紫外部吸収の差を測定する方法(紫外部吸収法)。   (Iii) A method for measuring a difference in ultraviolet absorption derived from uric acid before and after the reaction (ultraviolet absorption method).

(IV)ウリカーゼ処理及び未処理の試料に化学的尿酸定量法(例えば、リンタングステン酸法)。   (IV) Chemical uric acid determination method (for example, phosphotungstic acid method) for uricase-treated and untreated samples.

本発明の製造方法によって得られるウリカーゼは、上記方法のいずれも適用できるが、好ましくは(i)(ア)の方法に使用できる。   Any of the above methods can be applied to the uricase obtained by the production method of the present invention, but it can be preferably used in the method (i) (a).

以下に、実施例により本発明を詳細に説明するが、本実施例により本発明の範囲は制限されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the scope of the present invention is not limited by the examples.

(実施例1)
(1)ブレビバクテリウム属(Brevibacterium sp.)U−344株の培養
下記組成;トリプトン(BD(Becton,Dickinson and Company)社製)1%(w/v)、酵母エキス(BD(Becton,Dickinson and Company)社製)0.1%(w/v)、塩化ナトリウム(関東化学製)0.5%(w/v)、リン酸一カリウム(関東化学製)0.2%(w/v)、尿酸(和光純薬製)0.2%(w/v)からなる培養液を調製した後、pHをNaOHで7.0に調整し、121℃で20分間滅菌した。
Example 1
(1) Culture of Brevibacterium sp. U-344 strain The following composition: Tryptone (BD (Becton, Dickinson and Company)) 1% (w / v), yeast extract (BD (Becton, Dickinson) and Company) 0.1% (w / v), sodium chloride (manufactured by Kanto Chemical) 0.5% (w / v), monopotassium phosphate (manufactured by Kanto Chemical) 0.2% (w / v) ), A culture solution composed of 0.2% (w / v) uric acid (manufactured by Wako Pure Chemical Industries, Ltd.), pH was adjusted to 7.0 with NaOH, and sterilized at 121 ° C. for 20 minutes.

次に、得られた培養液を、滅菌したL字試験管に5mLずつ分注した。1.5%寒天を含有するブイヨン培地で予め培養しておいたU−344株を、上記L字試験管の培養液に接種し、30℃で120rpmの速度で撹拌させながら、24時間培養を行った。   Next, 5 mL of the obtained culture solution was dispensed into a sterilized L-shaped test tube. Inoculate the U-344 strain previously cultured in a bouillon medium containing 1.5% agar into the culture solution of the above L-shaped test tube, and cultivate for 24 hours while stirring at 30 ° C at a speed of 120 rpm. went.

(2)酵素の採取
上記(1)で得られた培養液を遠心分離し、菌体を除去することによって、菌体外酵素液(総ウリカーゼ活性 0.7U)を得た。
(2) Collection of enzyme The culture solution obtained in (1) above was centrifuged and the cells were removed to obtain an extracellular enzyme solution (total uricase activity 0.7 U).

また、ここで得られた菌体には、5mLのリン酸緩衝液(10mM、pH7)および3gのガラスビーズを加えて混合し、3分間振盪して、菌体を物理的に破砕した。この菌体破砕物を遠心分離により上清を回収し、この上清を菌体内酵素液(総ウリカーゼ活性 1.8U)とした。   In addition, 5 mL of phosphate buffer (10 mM, pH 7) and 3 g of glass beads were added to the cells and mixed, and the cells were shaken for 3 minutes to physically disrupt the cells. The supernatant was recovered by centrifugation of this crushed cell body, and this supernatant was used as an intracellular enzyme solution (total uricase activity 1.8 U).

なお、本実施例において、ウリカーゼの活性は、下記方法によって測定した。   In this example, the activity of uricase was measured by the following method.

(評価例1)ウリカーゼ活性の測定法
ウリカーゼの活性の測定は、ウリカーゼ・ペルオキシダーゼ法を用い、550nmにおける4−アミノアンチピリンとTODB(N,N−ビス(4−スルホブチル)−3−メチルアニリン)の酸化縮合体のキノン色素を分光光度計により行なった。より具体的には、0.83mM 尿酸溶液 120μl、75mM TODB 5μl、75mM 4−アミノアンチピリン 5μl、80U/ml ペルオシキダーゼ 5μl、酵素液 65μlを混合し、室温(25℃)で1時間反応させた後、550nmの吸光度を測定した。この際、ウリカーゼの単位は、上記試験条件下において毎分1マイクロモルの尿酸を分解する酵素の量(力価)を、「1U(ユニット)」と定義した。
(Evaluation Example 1) Method for measuring uricase activity The activity of uricase was measured by using uricase peroxidase method of 4-aminoantipyrine and TODB (N, N-bis (4-sulfobutyl) -3-methylaniline) at 550 nm. The oxidative condensate quinone dye was measured with a spectrophotometer. More specifically, 0.83 mM uric acid solution 120 μl, 75 mM TODB 5 μl, 75 mM 4-aminoantipyrine 5 μl, 80 U / ml peroxidase 5 μl, enzyme solution 65 μl were mixed and reacted at room temperature (25 ° C.) for 1 hour. Absorbance at 550 nm was measured. At this time, the unit of uricase was defined as “1 U (unit)” as the amount (titer) of the enzyme that decomposes 1 micromole of uric acid per minute under the above test conditions.

(評価例2)酵素の温度安定性
標品としては、上記実施例1(2)で得られた菌体外酵素液および菌体内酵素液を使用した。
(Evaluation example 2) Temperature stability of enzyme As a sample, the extracellular enzyme solution and the intracellular enzyme solution obtained in Example 1 (2) were used.

本発明のウリカーゼ標品を、種々の温度(20℃、30℃、40℃、50℃、60℃)に20分間保持した後、上記評価例1に記載の方法に従って、ウリカーゼ活性を測定した。20℃で20分間保持した後の活性を100として、各温度における相対残存活性を算出し、その結果を図1に示す。図1から、本発明の製造方法によって得られた菌体内ウリカーゼ(図中、菌体内酵素)および菌体外ウリカーゼ(図中、菌体外酵素)は共に、40℃で20分間の熱処理に対しても、80%を超える活性を維持しており、両者とも優れた耐熱性を有することが示される。また、図1から、本発明の菌体外ウリカーゼ(図中、菌体外酵素)は、本発明の菌体内ウリカーゼ(図中、菌体内酵素)に比して、より優れた耐熱性を示し、50℃以下では20分間の熱処理に対して失活が認められず、活性をほぼ100%維持しており、特に20分間50℃の熱処理に対して95%以上の酵素活性を維持していた。   After maintaining the uricase preparation of the present invention at various temperatures (20 ° C., 30 ° C., 40 ° C., 50 ° C., 60 ° C.) for 20 minutes, the uricase activity was measured according to the method described in Evaluation Example 1 above. Relative residual activity at each temperature was calculated with the activity after holding at 20 ° C. for 20 minutes as 100, and the result is shown in FIG. From FIG. 1, both the intracellular uricase (in the figure, intracellular enzyme) and the extracellular uricase (in the figure, extracellular enzyme) obtained by the production method of the present invention were subjected to heat treatment at 40 ° C. for 20 minutes. However, the activity exceeding 80% is maintained, and both have excellent heat resistance. Also, from FIG. 1, the extracellular uricase of the present invention (extracellular enzyme in the figure) exhibits better heat resistance than the intracellular uricase of the present invention (intracellular enzyme in the figure). At 50 ° C. or lower, no deactivation was observed for 20 minutes of heat treatment, and the activity was maintained at almost 100%, and in particular, enzyme activity of 95% or more was maintained for 50 minutes at 50 ° C. .

評価例2の結果を示す図である。It is a figure which shows the result of the evaluation example 2.

Claims (3)

ブレビバクテリウム(Brevibacterium)属に属し、菌体外ウリカーゼの生産能を有する微生物を表面活性剤の非存在下で培養する工程(1)と、
前記工程(1)で得られた培養液からウリカーゼを採取する工程(2)と、
を含み、
前記ブレビバクテリウム(Brevibacterium)属に属する微生物が、ブレビバクテリウム属(Brevibacterium sp.)U−344 FERM P−21097菌株である、ウリカーゼの製造方法。
A step (1) of culturing a microorganism belonging to the genus Brevibacterium and having the ability to produce extracellular uricase in the absence of a surfactant;
A step (2) of collecting uricase from the culture medium obtained in the step (1);
Only including,
The method for producing uricase, wherein the microorganism belonging to the genus Brevibacterium is Brevibacterium sp. U-344 FERM P-21097 strain .
前記ウリカーゼが、20分間50℃の熱処理に対して95%以上の酵素活性を維持する、請求項1に記載の製造方法。   The production method according to claim 1, wherein the uricase maintains an enzyme activity of 95% or more with respect to a heat treatment at 50 ° C for 20 minutes. 菌体外ウリカーゼ生産能を有するブレビバクテリウム属(Brevibacterium sp.)U−344 FERM P−21097菌株。   Brevibacterium sp. U-344 FERM P-21097 strain capable of producing extracellular uricase.
JP2007006189A 2007-01-15 2007-01-15 Method for producing new uricase Active JP5053648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006189A JP5053648B2 (en) 2007-01-15 2007-01-15 Method for producing new uricase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006189A JP5053648B2 (en) 2007-01-15 2007-01-15 Method for producing new uricase

Publications (2)

Publication Number Publication Date
JP2008167717A JP2008167717A (en) 2008-07-24
JP5053648B2 true JP5053648B2 (en) 2012-10-17

Family

ID=39696397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006189A Active JP5053648B2 (en) 2007-01-15 2007-01-15 Method for producing new uricase

Country Status (1)

Country Link
JP (1) JP5053648B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055329A (en) * 2018-09-07 2018-12-21 大连大学 A kind of fermentation medium and fermentation condition producing marine low temperature urate oxidase bacterial strain

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671425B2 (en) * 1985-06-05 1994-09-14 サッポロビール株式会社 Uricase and method for producing the same

Also Published As

Publication number Publication date
JP2008167717A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
CA1156573A (en) Strain uk 788 and process for producing a useful enzyme
EP0204283B1 (en) Uricase and a method for the preparation thereof
JP5022044B2 (en) Method for producing new uricase
JP5053648B2 (en) Method for producing new uricase
EP1449923B1 (en) Novel formate dehydrogenase tolerant to halogen compounds and process for producing the same
JP5010291B2 (en) Method for producing new uricase
EP0029976B1 (en) A biologically pure culture of strain ifo 14093 and a process for producing an intracellular component herefrom
JP2002233395A (en) Method for reproducing coenzyme nadh
US8546113B2 (en) Hydrogen peroxide-forming NADH oxidase and DNA encoding the same
JP4160417B2 (en) Secondary alcohol dehydrogenase and production method thereof
JP3653766B2 (en) Production method of ε-poly-L-lysine
JP3063800B2 (en) Thermostable catalase
JPH02234678A (en) Amino acid amide hydrolase and use thereof
JPH0361481A (en) Dehydrogenating enzyme for formic acid and production of the same enzyme
JP3959439B2 (en) Thermostable trehalase and its production method
JP3642344B2 (en) Method for producing creatine amidinohydrolase
JPH09247A (en) D-lactate dehydrogenase and its production
JP3102543B2 (en) Glutamate dehydrogenase and method for producing the same
JP2530998B2 (en) A new strain belonging to the genus Thermus
JP3873512B2 (en) Method for producing D-3- (2-naphthyl) alanine
TWI325442B (en) Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof
JPH07313153A (en) New nad+-dependent type alcohol dehydrogenase and its production
JP3532937B2 (en) Novel NADPH-dependent diaphorase having high heat resistance and method for producing the same
JP2713720B2 (en) Method for producing acid urease
JPH02107186A (en) Production of nadh oxidase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5053648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250