TW200844228A - Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof - Google Patents

Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof Download PDF

Info

Publication number
TW200844228A
TW200844228A TW96116235A TW96116235A TW200844228A TW 200844228 A TW200844228 A TW 200844228A TW 96116235 A TW96116235 A TW 96116235A TW 96116235 A TW96116235 A TW 96116235A TW 200844228 A TW200844228 A TW 200844228A
Authority
TW
Taiwan
Prior art keywords
mutated
positions
dehydrogenase
furfural
pseudomonas putida
Prior art date
Application number
TW96116235A
Other languages
Chinese (zh)
Other versions
TWI325442B (en
Inventor
Chien-Hsiao Chen
Ying-Chou Chen
Shin-Chong Tsai
Hsu-Wen Tsang
Mie-Hsien Yeh
Su Lien Wang
Pearl Hsiu Ping Lin
Original Assignee
Dev Center Biotechnology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dev Center Biotechnology filed Critical Dev Center Biotechnology
Priority to TW96116235A priority Critical patent/TWI325442B/en
Publication of TW200844228A publication Critical patent/TW200844228A/en
Application granted granted Critical
Publication of TWI325442B publication Critical patent/TWI325442B/en

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A gene sequence of Pseudomonas putida glutathione-independent formaldehyde dehydrogenase, wherein position 522 is T, position 711 is T, position 762 is T, position 818 is T, position 876 is T and position 903 is G. The specific activity of the enzyme is higher than that of wild type.

Description

200844228 . 九、發明說明: 【發明所屬之技術領域】 本發明係為一種經改質之酵素,特別關於一種戀臭假 單胞菌非麩胺基硫相關(glutathione-independent)曱酸脫氫 酵素。 【先前技摘 NADH是生物細胞内的高還原性化合物,主要作為生 物細胞内酵素的輔酶(coenzyme),提供酵素反應必要的氳 原子,然後氧化為NAD。一般的氧化還原酵素都需以 NAD(H)作為輔酶,才能驅使反應的進行。在生物體内 NADH與NAD的濃度比例是固定的,維持生物體内必要 的生理活性。由於NADH還原活性極高,因此不容易從細 胞内純化萃取,目前市售NADH是利用電鰻細胞萃取製 成,價格昂貴(2,200元/g),因此無法應用在氧化還原的酵 素製程。 而曱醛脫氫酵素是一種能將曱醛氧化成曱酸的酵素, 可分為楚氨基硫相關(glutathione-dependent)與非麩氨基硫 相關(glutathione-independent)兩種形式。其中具麩氨基硫 相關的曱醛脫氫酵素存在於大部分的生物之中,包括大腸 桿菌細胞内。這種型式的甲醛脫氫酵素利用麩氨基硫與 NAD作為輔酵素,使曱醛轉換成曱酸。由於必須利用麵氨 基硫參與酵素反應,在工業使用上會增加操作成本與操作 0296-A22078TWF(N2);373;daphne 6 200844228 而非麩氨基硫相關的甲 變因,因此並不適合大規模應用。200844228 . IX. INSTRUCTIONS: [Technical Field] The present invention is a modified enzyme, in particular, a glutathione-independent decanoate dehydrogenase . [Previous technique] NADH is a highly reducing compound in biological cells. It is mainly used as a coenzyme for enzymes in living cells. It provides the helium atom necessary for the enzyme reaction and then oxidizes to NAD. In general, the redoxase needs to use NAD(H) as a coenzyme to drive the reaction. In vivo, the concentration ratio of NADH to NAD is fixed, maintaining the necessary physiological activity in the living body. Since NADH has a very high reducing activity, it is not easy to purify and extract from cells. Currently, commercially available NADH is produced by electrophoretic cell extraction and is expensive (2,200 yuan/g), so it cannot be applied to the redox enzyme process. Furfural dehydrogenase is an enzyme that can oxidize furfural to citric acid and can be divided into two types: glutathione-dependent and glutathione-independent. Among them, glutamate-related furfural dehydrogenase is present in most organisms, including Escherichia coli cells. This type of formaldehyde dehydrogenase uses glutamic acid and NAD as coenzymes to convert furfural to citric acid. Since it is necessary to use the surface aminosulfur to participate in the enzyme reaction, the industrial operation will increase the operating cost and operate 0296-A22078TWF(N2); 373; daphne 6 200844228 instead of glutamic acid-related a change factor, and thus is not suitable for large-scale applications.

醛脫氫酵素則在1979年被發現在戀臭假單胞菌CCRC 13897 胞内(Susumu Ogushi,Μ· Ando,D. Tsuru, "formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme”,J· biochem·,96, 1587-1591,1984.) 〇 非 麩氨基硫相關的曱醛脫氳酵素的優點在於不必透過麵氨基 硫作為辅酵素,直接將NAD與曱醛轉化成曱酸與高價的 NADH。由於NADH具備高還原性,可廣泛的應用在工業 與民生用迷之中,因此非麵氨基硫相關的甲搭脫氫酵素具 備極高的市場應用價值。 而由於目前野生株的非麵氨基硫相關曱醛脫氫酵素的 比活性低(Πυ/mg)、價格高(5⑻元/LJ),且基質專一性 低’不利應用至J1業製程中,使得許多曱脫氫酵素的可 打應用無法進行商業化的開發與生產。因此許多人投入改Aldehyde dehydrogenase was discovered in 1979 by Pseudomonas syriae CCRC 13897 (Susumu Ogushi, Μ· Ando, D. Tsuru, "formaldehyde dehydrogenase from Pseudomonas putida: a zinc metalloenzyme", J·biochem· , 96, 1587-1591, 1984.) The advantage of non-glutamate aminosulfur-related furfural dehydrogenase is that it does not have to pass the surface aminosulfur as a coenzyme to directly convert NAD and furfural to tannic acid and high-priced NADH. NADH has high reductibility and can be widely used in industrial and people's livelihood fans. Therefore, non-faceted aminosulfur-related M-dehydrogenase has high market application value. Furfural dehydrogenase has low specific activity (Πυ/mg), high price (5(8) yuan/LJ), and low matrix specificity, which is unfavorable for application in the J1 process, making many deuterium dehydrogenase applications impossible. Commercial development and production. So many people are investing in

Fujii等人在2004 狄2004年所發表的曱酸脫氫酵素比活把 的改質The modification of citrate dehydrogenase than that of Fujii et al.

0296-A22078TWF(N2);373;daphne 但酵素之比活性還是偏 脫氫酵素基因序列進行突、變, ’以達酵素改貝之目的,而經 與基質專一性’並且降低酵素 7 200844228 • 使用成本。酵素活性與專一性的增加,可使曱酸脫氫酵素 的應用面擴大至工業與民生用途之中。 【發明内容】 基於上述背景,本發明的主要目的在於提供一種戀臭 假單胞菌非麩胺基硫相關曱醛脫氫酵素的基因序列,其中 (i)第522個位置突變為胸線嘧啶、711個位置突變為胸線 嘧啶、762個位置突變為胸線嘧啶、818個位置突變為胸線 嘧啶、876個位置突變為胸線嘧啶以及903個位置突變為 鳥糞嘌呤,或(ii)第522個位置突變為胸線嘧啶、826個位 置突變為鳥糞嘌呤、876個位置突變為胸線嘧啶以及903 個位置突變為鳥糞嘌呤,或者(iii)第522個位置突變為胸 線嘧啶、774個位置突變為胸線嘧啶、777個位置突變為胸 線嘧啶、876個位置突變為胸線嘧啶、903個位置突變為鳥 糞嘌呤以及1126個位置突變為胸線嘧啶,且其中該戀臭假 單胞菌非麩胺基硫相關曱酸脫氫酵素的比活性較野生株 南。 本發明另提供一種戀臭假單胞菌非麩胺基硫相關曱醛 脫氫酵素的胺基酸序列,其中第272個位置突變為擷胺 酸、第275個位置突變為麩胺酸或第375個位置突變為半 胱胺酸,其中該戀臭假單胞菌非麩胺基硫相關曱醛脫氫酵 素的比活性較野生株高。 本發明也提供一種戀臭假單胞菌非麩胺基硫相關曱醛 脫氫酵素,其胺基酸序列為第272個位置突變為擷胺酸、 0296-A22078TWF(N2);373;daphne 8 200844228 第275個位置突變為麩胺酸或第375個位置突變為半胱胺 酸,且其比活性較野生株高。 本發明更提供一種細胞,包括前述之戀臭假單胞菌非 麩胺基硫相關T醛脫氳酵素的基因序列。此細胞包括細菌 或酵母菌。 本發明又提供一種載體,包括前述之戀臭假單胞菌非 麩胺基硫相關曱醛脫氫酵素的基因序列。 本發明更提供一種包括上述載體之細胞。此細胞包括 細菌或酵母菌。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: 【實施方式】 本發明為提供一種經改質之戀臭假單胞菌非麩胺基硫 相關曱醛脫氫酵素的基因序列、胺基酸序列以及曱醛脫氫 酵素。 本發明之一實施型態為一種戀臭假單胞菌非麩胺基硫 相關曱醛脫氳酵素的基因序列,其中第522、711、762、 774、777、818、826、876、903 及/或 1126 個位置產生突 變。在一些實施例中,上述序列之⑴第522個位置突變為 胸線嘧啶、711個位置突變為胸線嘧啶、762個位置突變為 胸線嘧啶、818個位置突變為胸線嘧啶、876個位置突變為 胸線嘧啶以及903個位置突變為烏糞嘌呤,或(ii)第522個 0296-A22078TWF(N2);373;daphne 9 200844228 位置突變為胸線嘧啶、826個位置突變為鳥糞嘌呤、876 個位置突變為胸線嘧啶以及903個位置突變為鳥糞嘌呤, 或者(iii)第522個位置突變為胸線嘧啶、774個位置突變為 胸線嘧啶、777個位置突變為胸線嘧啶、876個位置突變為 胸線嘧啶、903個位置突變為鳥糞嘌呤以及1126個位置突 變為胸線嘧啶。此戀臭假單胞菌非麩胺基硫相關曱醛脫氫 酵素的比活性較野生株高,其比活性約為30-150 U/mg, 而野生株之比活性為17 U/mg。上述戀臭假單胞菌包括戀 臭假單胞菌CCRC13897。而於一實施例中比活性約為 100-150U/mg 〇 在一較佳實施例中,第522個位置突變為胸線嘧啶、 774個位置突變為胸線嘧啶、777個位置突變為胸線嘧啶、 876個位置突變為胸線嘧啶、903個位置突變為鳥糞嘌呤以 及1126個位置突變為胸線嘧啶。 本發明之另一實施型態為一種戀臭假單胞菌非麩胺基 硫相關曱醛脫氳酵素的胺基酸序列,其中第272、275及/ 或375個位置產生突變。在一些實施例中,第272個位置 突變為擷胺酸、第275個位置突變為麩胺酸或第375個位 置突變為半胱胺酸。上述之戀臭假單胞菌非麩胺基硫相關 曱醛脫氫酵素的比活性較野生株高,其比活性約為30-150 U/mg,而野生株之比活性為17 U/mg。上述戀臭假單胞菌 包括戀臭假單胞菌CCRC13897。而於一實施例中上述之戀 臭假單胞菌非麩胺基硫相關曱醛脫氫酵素的比活性約為 100-150 U/mg。在一較佳實施例中,第375個位置突變為 0296-A22078TWF(N2);373;daphne 10 200844228 半胱胺酸。 上述之經改質戀臭假單胞菌非黏 W w m 非躲基硫相關經甲越脫 虱酵素的甲I、乙路反應速率比值(酵素專—性)較野生 株高,在-實施例,甲醛與乙醛反應速 而野轉酵素之^與乙較應速率比值則為 4.53。又於另一實施例中,绫改晳 、,、工改貝之酵素甲醛與乙醛反應 速料值=野生株之体66倍。經改f之酵素分別對於 甲搭與乙搭最低反應的差異性可達1 以上。 本4明又貝施型_為—種戀臭假單胞菌非麵胺基硫 相關甲搭脫氫酵素,其胺基酸序列為第272個位置突變為 擷胺酸、第275個位置突變為麵胺酸或第375個位置突變 為半胱胺酸,且其比活性較野生株高。其比活性約為3〇_15〇 U/mg❿野生株之比活性為17 w邮。上述戀臭假單胞菌 包括戀臭假單胞菌CCR⑶δ97。而於—實施例中上述之戀 臭假單胞菌祕胺基硫相關Μ脫氫酵素的比活性約為 100-150 U/mg 〇 在一較佳貫施例中,此酵素之胺基酸序列之第3乃個 位置突變為半胱胺酸。 在一實施例中,酵素的甲盤與乙酸反應速率比值(酵 素專14 ) 野生株高。甲!^與乙搭反應速率比值約為 200〜300,而野生株酵素之曱醛與乙醛反應速率比值則為 4·53。又於另一實施例中,經改質之酵素曱醛與乙醛反應 比值、々為野生株之4心66倍。於一較佳實施例中,經 改貝之酵素分別對於甲醛與乙醛最低反應的差異性可達 〇296-A22078TWF(N2);373;daphne 200844228 ίο3以上。 又一實施型態中,可將本發明之基因序列置於一載體 或一細胞中,以便需大量生產此經改質之甲醛脫氫酵素之 應用’載體可包括 pTrc His A、pTrc His Β、pTrc His C、 pET41a、PET 17b、pET 16b,而細胞可為大腸桿菌與酵母 菌。 、_、 另一些實施例中,將前述之載體置於_細胞中,而細 胞包括大腸桿菌與酵母菌。 , 而此經改質之曱醛脫氫酵素特用化學品與化學品的生 產製程、甲醛去除、曱醇偵測與生物燃料電池等領域。此 外’應用酵素基因表現技術進行酵素量產,可降低酵素生 產成本,增加酵素應用利基。又改質的甲醛脫氫酵素可應 用至新型的NADH再生系統中,並與曱酸脫氳酵素結合形 成多酵素的NADH再生反應。另一方面,甲醛脫氫酵;亦 可應用至生物感測器與生物燃料電池之中。 【實施例】 得到本發明戀臭假單胞菌非麩胺基硫相關曱醛脫氣酵 素的基因序列的方法敘述如下。 含戀臭假單胞菌曱醛脫氫酵素基因之質體DNA製備 首先提供戀臭假單胞菌CCRC13897菌株,將其置於 NA或C83培養基中,於26°C下培養時間44小時。接著抽 取戀臭假單胞菌CCRC13897菌株的染色體DNA作為甲輕 0296-A22078TWF(N2);373;daphne 12 200844228 _ 脫氫酵素機基因放大之模板DNA(template DNA)。 設計曱醛脫氫酵素基因之引子以進行聚合酶連鎖反應 (Polymerase Chain Reaction,以下簡稱 PCR)。戀臭假 單胞菌CCRC13897之曱醛脫氫酵素基因片段為1200 bp, 設計的引子為·· 5, GAA TTC AGG CCG CGC TGA AGG TCT TGT GCG 3’以及 5’ GAA TTC ATG TCT GGT AAT CGTGGTGTCGTT3,。之後進行PCR,放大所需之甲醛脫 氫酵素基因片段。將曱醛脫氫酵素基因片段至入pTrc His B (抗卡那黴素(kanamycin)及安博黴素(ampicillin)),而野 生株之戀臭假單胞菌CCRC13897之曱醛脫氫酵素基因序 列為序列辨識號:1 ;胺基酸序列為序列辨識號:2。 將製備好之質體轉形至大腸桿菌BL-21 Blue勝任細 胞(competentcell)中(購自Stratagene)。確認經轉形之勝 任細胞已具有目標質體後,大量培養勝任細胞,並抽取質 體DNA進行保存。 曱醛脫氫酵素改質菌株製備 利用上述質體DNA以GeneMorph II Random mutagenesis kit(購自Stratagene )進行任意點突變之PCR, PCR之操作條件如表1所示。之後將PcR產物進行電泳, 再將目標基因片段自膠體切下進行純化。將目標基因接入 質體之後,再與大腸桿菌BL21勝任細胞進行轉植反應。 於2YT固體培養基隔夜培養後,挑選改質之菌株。 0296-A22078TWF(N2);373;daphne 13 200844228 表1、PCR操作條件 溫度 時間 94〇C 2 min 94〇C 30 sec 引子(primer) Tm-5°C 30 sec 72〇C 1 min/lcb 72〇C 10 min 改質菌株快速篩選 改質菌株之篩選包括下列步驟:(1)取100 μΐ含安博黴 素的2ΥΤ培養基置入96孔淺培養盤的培養孔中;(2)利用 滅菌牙籤將改質菌株從固態培養基移至96孔淺培養盤中 進行培養,其中每一行的第一個培養孔為控制組(野生 株);(3)培養隔夜之後,從96孔淺培養盤取10 μΐ的菌液 加入每孔有0.5ml 2ΥΤ(含安博黴素)的96孔深培養盤中培 養。待孔中的菌液濃度達0.5,加入5 μΐ的100mM IPTG ; (4)培養至16小時之後,取出ΙΟΟμΙ的菌液至96孔淺培養 盤,以5000rpm離心10分鐘後倒出上清液;(5)加入20 μΐ 溶菌酶緩衝溶液(lysozyme buffer)至離心後的96孔淺培養 盤,震盪均勻之後,在室溫下放置1小時;(6)放入-80°C冰 箱冷凍45分鐘後取出,待菌體完全回溫之後,再放入-80 1冰箱冷凍45分鐘;(7)從冰箱取出待測活性的96孔淺培 養盤,將菌體回溫之後以八爪微量滴管加入180μ1的活性 0296-A22078TWF(N2);373;daphne 14 200844228 測試液,並記錄藍色變化比控制組快的菌株位置;(8)選取 100-200株菌株之後,重複進行步驟(1)〜(7),直至候選菌株 降至10株;(9)以250ml之三角錐瓶培養候選菌株,待菌 體量為0.5時加入0.5ml的100mM IPTG,培養六小時後將 培養液以7000rpm離心10分鐘;(10)倒出上清液後加入 lysozyme buffer (加入體積依:0D 值*0.5 mg 細胞*X ml 培 養液/50 mg=Y ml缓衝溶液),在室溫條件下,反應1小時; (11)以超音波破細胞15秒停45秒,重覆10次。以4 °C 12000 rpm離心15 min,取上清液為粗酵素液;(12)加入 酵素活性測試液測試粗酵素液之活性與蛋白質濃度,挑選 比活性最高者為下一世代的改質母菌株,並分析曱酸脫氫 酵素DNA與蛋白質結構突變情形;(13)重複菌株改質與菌 株篩選的實驗步驟,直到曱醛脫氫酵素比活性達到50 U/mg。酵素活性測試液之組成列於表2,而改質菌株之結 果列於表3。 0296-A22078TWF(N2);373;daphne 200844228 表2、酵素活性測試液之組成 樣本 μΐ/孔 保存(stock)/盤(ml) 粗酵素液 20 酵素活性測試 60 mM 168.7 液組成 Na2C03-NaHC03 buffer(pH8.8) 16.87 lOOmMHCHO 3 0.3 100 mM NAD 3 0.3 13.4mMNBT 2.3 0.23 ImMPMS 3 0.3 總體積 200 18 ml 表3、曱醛脫氳酵素改質之菌株0296-A22078TWF(N2);373;daphne but the specific activity of the enzyme is still the dehydrogenase gene sequence for sudden change, 'to achieve the purpose of enzyme modification, and with matrix specificity' and reduce enzyme 7 200844228 • use cost. The increase in enzyme activity and specificity can extend the application of decanoate dehydrogenase to industrial and residential applications. SUMMARY OF THE INVENTION Based on the above background, the main object of the present invention is to provide a gene sequence of Pseudomonas putida non-glutamate-based sulfur-related furfural dehydrogenase, wherein (i) the 522th position is mutated to thoracic pyrimidine. 711 positions were mutated to pleuropyrimidine, 762 positions were mutated to pleuropyrimidine, 818 positions were mutated to pleuropyrimidine, 876 positions were mutated to pleuropyrimidine, and 903 positions were mutated to guanosene, or (ii) The 522th position was mutated to thoracic pyrimidine, 826 positions were mutated to guanosene, 876 positions were mutated to thymidine, and 903 positions were mutated to guanospermium, or (iii) 522th position was mutated to thymidine 774 positions were mutated to pleuropyrimidine, 777 positions were mutated to pleuropyrimidine, 876 positions were mutated to pleuropyrimidine, 903 positions were mutated to guanosene, and 1126 positions were mutated to pleuropyrimidine, and the love was The specific activity of Pseudomonas putida non-glutamate-based sulfur-related dehydrogenase was higher than that of wild plants. The present invention further provides an amino acid sequence of Pseudomonas putida non-glutamate sulfur-related furfural dehydrogenase, wherein the 272th position is mutated to valine, and the 275th position is mutated to glutamic acid or The 375 positions were mutated to cysteine, and the specific activity of the non-glutamate sulphur-related furfural dehydrogenase was higher than that of the wild strain. The present invention also provides a non-glutamate sulfur-related furfural dehydrogenase of Pseudomonas putida, wherein the amino acid sequence is mutated at position 272 to valerine, 0296-A22078TWF (N2); 373; daphne 8 200844228 The 275th position was mutated to glutamic acid or the 375th position was mutated to cysteine, and its specific activity was higher than that of wild type strain. The present invention further provides a cell comprising the aforementioned gene sequence of Pseudomonas putida non-glutamate sulfur-related T aldehyde deaminase. This cell includes bacteria or yeast. The present invention further provides a vector comprising the aforementioned gene sequence of Pseudomonas putida non-glutamate sulfur-related furfural dehydrogenase. The present invention further provides a cell comprising the above vector. This cell includes bacteria or yeast. The above and other objects, features and advantages of the present invention will become more <RTIgt; The genetic sequence, amino acid sequence and furfural dehydrogenase of the non-glutamate-sulfur-related furfural dehydrogenase of Pseudomonas putida. An embodiment of the present invention is a genetic sequence of Pseudomonas sinensis non-glutamate-based sulfur-related furfural dehydrogenase, wherein 522, 711, 762, 774, 777, 818, 826, 876, 903 and / or 1126 positions produce mutations. In some embodiments, the 522th position of (1) of the above sequence is mutated to thymidine, 711 position mutations to thymidine, 762 positions to thymidine, 818 positions to thymidine, 876 positions Mutation to thoracic pyrimidine and 903 position mutations to black scorpion sputum, or (ii) 522th 0296-A22078TWF (N2); 373; daphne 9 200844228 position mutation to thoracic pyrimidine, 826 position mutation to bird feces, 876 positions were mutated to thoracic pyrimidine and 903 positions were mutated to guanosine, or (iii) 522 positions were mutated to thymidine, 774 positions were mutated to thymidine, and 777 positions were mutated to thymidine. 876 positions were mutated to thoracic pyrimidine, 903 positions were mutated to guanosene, and 1126 positions were mutated to thoracic acid. The specific activity of the non-glutamate-sulfur-related furfural dehydrogenase of P. syringae was higher than that of the wild-type strain, and its specific activity was about 30-150 U/mg, while the specific activity of the wild-type strain was 17 U/mg. The above Pseudomonas putida includes Pseudomonas putida CCRC13897. In one embodiment, the specific activity is about 100-150 U/mg. In a preferred embodiment, the 522th position is mutated to thoracic pyrimidine, 774 positions are mutated to thymidine, and 777 positions are mutated to chest line. Pyrimidine, 876 positions were mutated to pleuropyrimidine, 903 positions were mutated to guanosin, and 1126 positions were mutated to thymidine. Another embodiment of the present invention is an amino acid sequence of Pseudomonas aeruginosa non-glutamate sulfur-related furfural dehydrogenase in which mutations occur at positions 272, 275 and/or 375. In some embodiments, the 272th position is mutated to proline, the 275th position is mutated to glutamic acid or the 375th position is mutated to cysteine. The specific activity of the above non-glutamate-based sulfur-related furfural dehydrogenase is higher than that of wild plants, and its specific activity is about 30-150 U/mg, while the specific activity of wild-type strain is 17 U/mg. . The above Pseudomonas putida includes Pseudomonas putida CCRC13897. In one embodiment, the specific activity of the above non-glutamate-based sulfur-related furfural dehydrogenase is approximately 100-150 U/mg. In a preferred embodiment, the 375th position is mutated to 0296-A22078TWF (N2); 373; daphne 10 200844228. The ratio of the rate of reaction of the above-mentioned modified Pseudomonas putida non-viscous W wm non-avoiding sulphur-related transaugmentation enzymes is higher than that of wild plants, in the example - The reaction rate between formaldehyde and acetaldehyde is fast and the ratio of the ratio of the enzyme to the B is 4.53. In another embodiment, the sputum is modified, and the enzyme of the enzyme is reacted with acetaldehyde. The fast-acting value is 66 times that of the wild strain. The difference between the enzymes that have been modified and the lowest response to the combination of the two can reach more than one. Ben 4 Ming and Bei Shi type _ is a species of Pseudomonas sinensis non- face amine sulfur-related dehydrogenase, the amino acid sequence is 272 position mutation to valerine, the 275th position mutation It was mutated to the face acid or the 375th position to cysteine, and its specific activity was higher than that of the wild strain. Its specific activity is about 3〇_15〇 U/mg❿ The specific activity of the wild strain is 17 weeks. The above Pseudomonas putida includes Pseudomonas putida CCR (3) δ97. In the embodiment, the specific activity of the above-mentioned Pseudomonas syphilis sulphur-related sulphur-related dehydrogenase is about 100-150 U/mg. In a preferred embodiment, the amino acid of the enzyme The third position of the sequence was mutated to cysteine. In one embodiment, the ratio of the enzyme plate to the acetic acid reaction rate (Enzyme 14) is higher in the wild strain. A! The ratio of the reaction rate to the ethylene reaction is about 200 to 300, and the ratio of the reaction rate of furfural to acetaldehyde of the wild strain enzyme is 4.53. In still another embodiment, the ratio of the modified enzyme furfural to acetaldehyde is 66 times that of the wild plant. In a preferred embodiment, the difference in the minimum reaction between formaldehyde and acetaldehyde is 〇296-A22078TWF(N2); 373; daphne 200844228 ίο3 or higher. In yet another embodiment, the gene sequence of the present invention can be placed in a vector or a cell so that the application of the modified formaldehyde dehydrogenase to be mass-produced can include pTrc His A, pTrc His Β, pTrc His C, pET41a, PET 17b, pET 16b, and the cells may be Escherichia coli and yeast. In other embodiments, the aforementioned vector is placed in a cell, and the cells include Escherichia coli and yeast. And this modified furfural dehydrogenase special chemicals and chemicals production process, formaldehyde removal, sterol detection and biofuel cells. In addition, the use of enzyme gene expression technology for mass production of enzymes can reduce the cost of enzyme production and increase the niche application of enzymes. The modified formaldehyde dehydrogenase can be applied to the novel NADH regeneration system and combined with citrate dehydrogenase to form a multi-enzyme NADH regeneration reaction. On the other hand, formaldehyde dehydrogenation can also be applied to biosensors and biofuel cells. [Examples] A method for obtaining the gene sequence of the non-glutamate-based sulfur-related furfural deactivating enzyme of Pseudomonas putida of the present invention is described below. Preparation of plastid DNA containing Pseudomonas syphilis furfural dehydrogenase gene First, Pseudomonas putida CCRC13897 strain was first placed in NA or C83 medium and cultured at 26 ° C for 44 hours. Next, the chromosomal DNA of Pseudomonas syringae CCRC13897 strain was extracted as a light weight 0296-A22078TWF (N2); 373; daphne 12 200844228 _ dehydrogenase machine gene amplification template DNA. The primer of the furfural dehydrogenase gene was designed to carry out a polymerase chain reaction (PCR). The furfural dehydrogenase gene fragment of Pseudomonas putida CCRC13897 is 1200 bp, and the designed primer is ·· 5, GAA TTC AGG CCG CGC TGA AGG TCT TGT GCG 3' and 5' GAA TTC ATG TCT GGT AAT CGTGGTGTCGTT3, . Thereafter, PCR is carried out to amplify the desired formaldehyde dehydrogenase gene fragment. The furfural dehydrogenase gene fragment was introduced into pTrc His B (kanamycin and ampicillin), while the wild strain of Pseudomonas putida CCRC13897 was obtained from the furfural dehydrogenase gene sequence. For the sequence identification number: 1; the amino acid sequence is the sequence identification number: 2. The prepared plasmid was transformed into E. coli BL-21 Blue competent cell (purchased from Stratagene). After confirming that the transformed cells have the target plastids, the competent cells are cultured in large amounts, and the plastid DNA is taken for storage. Preparation of a furfural dehydrogenase-modified strain PCR was carried out by using the above-described plastid DNA using GeneMorph II Random mutagenesis kit (purchased from Stratagene), and the PCR conditions were as shown in Table 1. The PcR product is then subjected to electrophoresis, and the target gene fragment is excised from the colloid for purification. After the target gene is inserted into the plastid, it is then subjected to a transgenic reaction with E. coli BL21 competent cells. After overnight culture in 2YT solid medium, the modified strain was selected. 0296-A22078TWF(N2);373;daphne 13 200844228 Table 1. PCR operating conditions Temperature time 94〇C 2 min 94〇C 30 sec Primer Tm-5°C 30 sec 72〇C 1 min/lcb 72〇 Screening of C 10 min modified strains for rapid screening and upgrading of strains includes the following steps: (1) 100 μΐ of 2ΥΤ medium containing ampomycin is placed in the culture well of a 96-well shallow culture dish; (2) Modified by using a sterilized toothpick The strains were transferred from solid medium to 96-well shallow culture plates, in which the first culture well of each row was the control group (wild strain); (3) after overnight culture, 10 μΐ from the 96-well shallow culture plate. The bacterial solution was added to a 96-well deep culture dish containing 0.5 ml of 2 ΥΤ (containing ampomycin) per well. The concentration of the bacterial solution in the well was 0.5, and 5 μM of 100 mM IPTG was added; (4) After the culture for 16 hours, the broth of ΙΟΟμΙ was taken out to a 96-well shallow culture dish, and centrifuged at 5000 rpm for 10 minutes, and then the supernatant was decanted; (5) Add 20 μM lysozyme buffer to the 96-well shallow culture plate after centrifugation, shake it evenly, and let it stand at room temperature for 1 hour; (6) put it in the -80 °C refrigerator for 45 minutes. Take out, wait until the cells are completely warmed up, then put them into the -80 1 refrigerator for 45 minutes; (7) take out the 96-well shallow culture plate of the activity to be tested from the refrigerator, and return the cells to the temperature and then add them with an eight-claw micropipette. 180μ1 activity 0296-A22078TWF(N2); 373; daphne 14 200844228 test solution, and record the position of the strain with blue change faster than the control group; (8) after selecting 100-200 strains, repeat step (1) ~ ( 7), until the candidate strain is reduced to 10; (9) The candidate strain is cultured in a 250 ml flask, 0.5 ml of 100 mM IPTG is added when the amount of the bacteria is 0.5, and the culture is centrifuged at 7000 rpm for 10 minutes after the culture for six hours. (10) After pouring the supernatant, add lysozyme buffer (add volume: 0D value *0.5 mg cells *X ml culture solution / 50 mg = Y ml buffer solution), react at room temperature for 1 hour; (11) Cellulose with ultrasonic waves for 15 seconds, stop for 45 seconds, repeat 10 times . Centrifuge at 12000 rpm for 15 min at 4 °C, take the supernatant as a crude enzyme solution; (12) Add the enzyme activity test solution to test the activity and protein concentration of the crude enzyme solution, and select the highest activity to be the next generation of the modified mother. Strains, and analysis of citrate dehydrogenase DNA and protein structure mutations; (13) repeated experimental steps of strain modification and strain screening until the specific activity of furfural dehydrogenase reached 50 U / mg. The composition of the enzyme activity test solution is shown in Table 2, and the results of the modified strain are shown in Table 3. 0296-A22078TWF(N2);373;daphne 200844228 Table 2. Composition of enzyme activity test solution μΐ/well storage (stock)/disk (ml) Crude enzyme solution 20 Enzyme activity test 60 mM 168.7 Liquid composition Na2C03-NaHC03 buffer ( pH 8.8) 16.87 lOOmMHCHO 3 0.3 100 mM NAD 3 0.3 13.4mMNBT 2.3 0.23 ImMPMS 3 0.3 Total volume 200 18 ml Table 3, Furfural decarboxylase-modified strain

改質編號 1-4 2-5 8B9 4-1 5-1 6-23 7-2 8-5 母株來源 WT 14 2-5 2-12 8B9 5-1 4-1 6-23 第一階段粗篩 菌株數 2997 1674 2924 2352 3554 4536 6384 4032 第二階段粗篩 菌賊 217 70 91 〜100 280 336 399 201 第三階段粗篩 菌株數 15 13 12 38 26 26 16 比活性(U/mg) 48.28 50.88 50.88 32.59 40 25.71 15.70 120.9 基因序列變化 c522t、 c876t、 c903g c522t、 c876t、 c903g c522t、 g711t 、 g762t、 a818t、 c876t、 c903g c522t、 a826g 、 c876t、 c903g c522t、 c774t、 c876t、 c903g c522t、 c774t、 c777t、 c876t、 c903g c522t &gt; c774t、 c777t、 c876t、 c903g 、 gll26t 胺基酸序列變 化 — — E273V K275E 一 — — G375C 0296-A22078TWF(N2):373;daphne 16 200844228 8B9、4]與8_5三株。現胺基酸變化且比活性較高的有 個位7二tri化為第522個位置突變為胸線°密。定、711 口位置大受為胸線务定、762個位置突變 個位置突變為胸線t定、876個位置突H8 903個位置突變為鳥糞噪呤(序列辨識號:心二= 列艾化為弟272個位置突變為擷胺酸(序列辨識號:4)。 個位4置^^因^化為第522個位置突變為胸線,定、826 大义為鳥㈣吟、876個位置突變為胸線心定以及 ㈣咖情_峨:5);胺基酸序 歹卜交化為弟275個位置突變為麵胺酸(序列辨識號·· 6)。 而8·5之基因變化為第522個位置突變為胸線射、 4個位置^桃㈣,、m個位置突變為胸線射、 個位置突變為胸線。密咬、9〇3個位置突變為鳥翼嗓吟以 及1126個位置突變為胸線·定(序列辨識號·· 7)、;胺基 ^序W义化為帛375個位置突變為半胱胺酸(序列辨識 5虎· 8 ) 〇 而本發明活性改變較佳的突變株8_5胺基酸序列變化 為375位置之甘胺酸突變為半胱胺酸。此胺基酸雖非活性 中心一員,但其位於NAD結合區域上的一個〜螺旋 (a helix)。*甘胺酸雖為具有極性之立體結構最小的必需 月女基酉夂,但疋因為分子中的氫原子無法形成氫鍵,因此不 會造成立體結構上的畴。又半胱胺酸帶有—個硫氯基, 0296-A22078TWF(N2);373;daphne 17 200844228 由原本的甘胺酸改變成半胱胺酸造成野生型曱醛脫說酵素 構形上有所變化,此雙硫鍵發生在ce-螺旋的内側,影響到 酵素活性中心與基質反應的空間,可能增加基質齊酵素的 擴散效應,加速基質與酵素結合或脫離的速度。 甲醛脫氫酵素動力學參數分析 分別對比較例(市售)與本發明實施例(8-5)工曱酸脫 氫酵素進行酵素動力學參數分析 酵素動力學之實驗方法如下: A·針對NAD測試Km與Vmax : (1)固定酵素活性測試液中曱醛濃度為7mM ; (2)調整 酵素活性測試液中NAD濃度為0.12mM至12mM;(3)添加 Ιμΐ已纯化的甲醛脫氫酵素至測試液中;(4)每隔一分鐘記 錄〇D34〇nm的數值’連續測試五分鐘;(5)以線性回歸的方 式計异每組樣品的斜率,可求得反應速率V ; (5)以1/NAD 〉辰度對1 /反應速率的方式做圖’可求彳寸斜率為Km/Vmax, 截距為1/Vmax ; (6)以斜率與截距求得Km與Vmax。 B.針對曱盤測試Km與Vmax。 (1)固定酵素活性測試液中NAD濃度為1〇倍的 Km(NAD) ; (2)調整酵素活性測試液中曱醛遭度為〇 至12mM;(3)添加Ιμΐ已純化的甲醛脫氫酵素至測試液中; (4)每隔一分鐘記錄〇〇34〇_的數值,連續蜊試五分鐘;(5) 以線性回歸的方式計算每組樣品的斜率,可求得反應速率 V ; (6)以1/曱醛濃度對1/反應速率的方式做圖,可斜 率為Km/Vmax,截距為i/Vmax;⑺以斜率與截距求得^】 0296-A22078TWF(N2);373;daphne 18 200844228 與 Vmax 〇 反復步騄A至b直到Vmax(NAD)與Vmax(曱醛)的差 異低於5%以下。即為甲醛脫氫酵素的動力學參數。Rev. No. 1-4 2-5 8B9 4-1 5-1 6-23 7-2 8-5 Parent source WT 14 2-5 2-12 8B9 5-1 4-1 6-23 First stage rough Number of sieve strains 2997 1674 2924 2352 3554 4536 6384 4032 Second stage coarse screening thief 217 70 91 ~100 280 336 399 201 Number of crude strains in the third stage 15 13 12 38 26 26 16 Specific activity (U/mg) 48.28 50.88 50.88 32.59 40 25.71 15.70 120.9 Gene sequence changes c522t, c876t, c903g c522t, c876t, c903g c522t, g711t, g762t, a818t, c876t, c903g c522t, a826g, c876t, c903g c522t, c774t, c876t, c903g c522t, c774t, c777t, C876t, c903g c522t &gt; c774t, c777t, c876t, c903g, gll26t amino acid sequence changes - E273V K275E one - G375C 0296-A22078TWF (N2): 373; daphne 16 200844228 8B9, 4] and 8_5 three strains. The amino acid changes and the specific activity is higher. There is a single position of 7 and the second is changed to the 522th position and the mutation is chest line. Ding, 711 mouth position is greatly affected by the chest line, 762 positions mutation position mutation to chest line t, 876 position position H8 903 position mutation to bird fecal noise (sequence identification number: heart two = Lian 272 positions were mutated to proline (sequence identification number: 4). The position 4 was set to ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The mutation was chest line and (4) coffee _峨: 5); the amino acid sequence was mutated to 275 positions to change to face acid (sequence identification number · 6). The genetic changes of 8.5 were changed from the 522th position to the chest line, 4 positions to the peach (4), and the m positions were changed to the chest line and the position was changed to the chest line. The bite, 9 〇 3 positions were mutated to the pterygium and 1126 positions were mutated to the chest line (Sequence Identification No. 7), and the amine group was defined as 帛 375 positions mutated to cysteine Amino acid (sequence recognition 5 tiger · 8 ) 突变 The mutant of the present invention has a better change in the activity of the 8-5 amino acid sequence, and the glycine acid at the 375 position is mutated to cysteine. Although the amino acid is a member of the inactive center, it is located in a helix of the NAD binding region. *Glycine is a must-have female base with the smallest steric structure of polarity. However, since hydrogen atoms in the molecule cannot form hydrogen bonds, they do not cause domains on the three-dimensional structure. Also, cysteine has a thiol group, 0296-A22078TWF(N2); 373; daphne 17 200844228. The change of the original glycine to cysteine causes the wild type furfural to be destructive. Change, this disulfide bond occurs on the inner side of the ce-helix, affecting the space in which the active center of the enzyme reacts with the matrix, may increase the diffusion effect of the matrix enzyme, and accelerate the rate of binding or detachment of the matrix to the enzyme. The kinetic parameter analysis of formaldehyde dehydrogenase The enzyme kinetics of the enzymes in the comparative example (commercially available) and the inventive example (8-5) of the dehydrogenase were analyzed as follows: A·for NAD Test Km and Vmax: (1) The concentration of furfural in the immobilized enzyme activity test solution is 7 mM; (2) Adjust the NAD concentration in the enzyme activity test solution to be 0.12 mM to 12 mM; (3) Add Ιμΐ purified formaldehyde dehydrogenase to (4) Record the value of 〇D34〇nm every other minute' for five minutes in a row; (5) Calculate the slope of each group by linear regression to obtain the reaction rate V; (5) Taking 1/NAD 〉thinity as a plot of 1/reaction rate, the slope of the slope can be determined as Km/Vmax and the intercept is 1/Vmax. (6) Km and Vmax are obtained by slope and intercept. B. Test Km and Vmax for the disk. (1) Km (NAD) in which the concentration of NAD in the immobilized enzyme activity test solution is 1〇; (2) The degree of furfural in the test enzyme activity test solution is 〇 to 12 mM; (3) Addition of Ιμΐ purified formaldehyde dehydrogenation Enzyme to test solution; (4) Record the value of 〇〇34〇_ every minute for five minutes; (5) Calculate the slope of each sample by linear regression, and obtain the reaction rate V; (6) plot 1/furfural concentration versus 1/reaction rate, the slope is Km/Vmax, the intercept is i/Vmax; (7) the slope and intercept are obtained ^] 0296-A22078TWF(N2); 373; daphne 18 200844228 Repeated steps A to b with Vmax 直到 until the difference between Vmax (NAD) and Vmax (furfural) is less than 5%. It is the kinetic parameter of formaldehyde dehydrogenase.

比較例之結果顯示於表4、5、第la與b圖(固定甲醛 濃度(2mM)、不同NAD濃度下之1/反應速率對1/nad濃 度圖與反應速率對NAD濃度)以及第2a與b圖(固定NAD 濃度(4mM)、不同甲醛濃度下之1/反應速率對1/曱醛濃度 圖與反應速率對甲醛濃度圖)。 由上述之結果可推算出比較例之Km(NAD)為0.384 mM,Km(曱搭)為 〇 368mM。 表4、比較例之固定曱醛濃度(2111_,變化nad濃度 以測得Km(NAD) NAD濃度_) 反應時間1分鐘 NADH 濃度 OD34Q ~------ 0.120 0.600 1.200 3.600 4.000 6.000 9.000 12.000 0.035 0.085 0.107 0.123 0.131 0.126 0.091 0.103 反應時間2分鐘 NADH 濃度 ODm〇 0.071 0.168 0.227 0.244 0.266 0.256 0.198 0.204 反應時間3分鐘 NADH 濃度 OD34〇 0.101 0.249 0.332 0.372 0.380 0377 0.304 0.319 反應時間4分鐘 NADH 濃度 OD34〇 0.127 0.316 0.436 0.484 0.511 0.507 0.390 0.412 反應時間5分鐘 NADH 濃度 OD34〇 0.150 0.377 0.520 0.605 0.620 0.615 0.508 0.526 0296-A22078TWF(N2);373;daphne 19 200844228 NADH產生速率(V) (△OD/分鐘) 0.029 0.073 0.104 0.120 0.122 0.123 0.103 0.105 1/NAD濃度 34.965 13.661 9.662 8.306 8.177 8.137 9.747 9.488 1/反應速率 8.333 1.667 0.833 0.278 0.250 0.167 0.111 0.083 表5、比較例之固定NAD濃度(4mM),變化曱醛濃度 以測得Km(曱醛) 曱醛濃度(mM) 0.02 0.1 0.25 0.5 1 1.5 3 反應時間1分鐘 NADH 濃度 OD34〇 0.173 0.175 0.056 0.205 0.233 0.033 0.162 反應時間2分鐘 NADH 濃度 OD34〇 0.172 0.190 0.107 0.247 0.313 0.169 0.340 反應時間3分鐘 NADH 濃度 〇Dmq 0.178 0.214 0.157 0.293 0.395 0.301 0.498 反應時間4分鐘 NADH 濃度 ODm〇 0.185 0.233 0.200 0.334 0.466 0.420 0.636 反應時間5分鐘 NADH濃度 OD34〇 0.182 0.244 0.237 0.377 0.532 0.539 0.767 NADH產生速率(V) (△OD/分鐘) 0.007 0.018 0.046 0.043 0.075 0.126 0.151 1/甲醛濃度 153.846 55.249 21.978 23.202 13.316 7.918 6.640 1/反應速率 50.000 10.000 4.000 2.000 1.000 0.667 0.333 實施例之結果則顯示於表6、7、第3a與b圖(固定曱 0296-A22078TWF(N2);373;daphne 20 200844228 •- 醛濃度(7.5mM)、不同NAD濃度下1/反應速率對l/NAD 濃度圖與反應速率對NAD濃度圖)以及第4a與b圖(固 定NAD濃度(7.6mM)、不同曱醛濃度下之丨/反應速率對y 曱醛濃度圖與反應速率對曱醛濃度圖)。 由上述之結果可推算出實施之Km(NAD)為1.752 niM,I(m(曱醛)為 1.71mM,Vmax 為 120·8 U/mg,Kcat 為 84/s,轉換率(turnover rate)為每分鐘3〇萬次。與比較例相 同的是,當NAD濃度超過8 mM時,實施例的酵素活性也 # ΐ 、 ^ 會受到抑制,但其對於甲醛的忍受度比較高,當曱醛濃度 超過16mM時,酵素活性並沒有明顯變化。另一方面,實 施例的Km值較比較例的Km值高。由實施例的改質結果 顯示,在改質過程中,當酵素活性增加,並不是因為對基 質的親和性增加的緣故,可能是因為酵素結構受到改變, 使得酵素活性增加,但還需要後續實驗證明。 , 表6、實施例之固定曱醛濃度(7.5mM),變化NAD濃 &quot; 度以測得Km(NAD) NAD 濃度(mM) 0.12 0.60 1.20 4.00 6.00 8.00 12.00 15.00 反應時間1分鐘 NADH 濃度 OD34〇 0.025 0.101 0.173 0.235 0.254 0.251 0.224 0.202 反應時間2分鐘 NADH 濃度 OD34〇 0.041 0.196 0.319 0.481 0.462 0.496 0.473 0.428 反應時間3分鐘 0.048 0.280 0.454 0.728 0.676 0.738 0.695 0.651 0296-A22078TWF(N2);373;daphne 21 200844228 NADH 濃度 OD34〇 反應時間4分鐘 NADH 濃度 OD34〇 0.064 0.360 0.584 0.880 0.927 0.878 反應時間5分鐘 NADH 濃度 OD34〇 0.073 0.434 NADH產生速率 (V)(AOD/分鐘) 0.012 0.083 0.137 0.247 0.209 0.244 0.233 0.225 1/NAD濃度 84.034 12.048 7.310 4.057 4780 4.107 4.290 4.442 1/反應速率 8.333 1.667 0.833 0.250 0.167 0.125 0.083 0.067 表7、實施例之固定NAD濃度(7.6mM),變化曱醛濃 度以測得Km(曱醛) 甲醛濃度(mM) 0.12 0.6 1.2 4 6 8 12 15 反應時間1分鐘 NADH 濃度 OD34〇 0.023 0.105 0.124 0.216 0.213 0.259 0.094 0.176 反應時間2分鐘 NADH 濃度 OD34Q 0.047 0.181 0.301 0.456 0.456 0.501 0.205 0.409 反應時間3分鐘 NADH 濃度 OD34〇 0.069 0.261 0.420 0.691 0.691 0.748 0.312 0.625 反應時間4分鐘 NADH 濃度 OD34〇 0.086 0.337 0.552 0.903 0.903 0.418 反應時間5分鐘 NADH 濃度 OD34〇 0.104 0.405 0.675 0.514 NADH產生速率 0.020 0.076 0.135 0.230 0.231 0.245 0.105 0.225 0296-A22078TWF(N2);373;daphne 22 200844228 (V)(M)D/分鐘) 1/甲醛濃度 49.751 1/反應速率 8.333 13.228The results of the comparative examples are shown in Tables 4 and 5, panels 1 and b (fixed formaldehyde concentration (2 mM), 1/reaction rate vs. 1/nad concentration map and reaction rate versus NAD concentration at different NAD concentrations) and 2a and Figure b (fixed NAD concentration (4 mM), 1/reaction rate vs. 1 furfural concentration plot and reaction rate versus formaldehyde concentration plot for different formaldehyde concentrations). From the above results, it was found that the Km (NAD) of the comparative example was 0.384 mM, and the Km (NA )) was 368 368 mM. Table 4, fixed aldehyde concentration of the comparative example (2111_, change nad concentration to measure Km(NAD) NAD concentration _) reaction time 1 minute NADH concentration OD34Q ~------ 0.120 0.600 1.200 3.600 4.000 6.000 9.000 12.000 0.035 0.085 0.107 0.123 0.131 0.126 0.091 0.103 Reaction time 2 minutes NADH concentration ODm 〇 0.071 0.168 0.227 0.244 0.266 0.256 0.198 0.204 Reaction time 3 minutes NADH concentration OD34 〇 0.101 0.249 0.332 0.372 0.380 0377 0.304 0.319 Reaction time 4 minutes NADH concentration OD34 〇 0.127 0.316 0.436 0.484 0.511 0.507 0.390 0.412 Reaction time 5 minutes NADH concentration OD34〇0.150 0.377 0.520 0.605 0.620 0.615 0.508 0.526 0296-A22078TWF(N2);373;daphne 19 200844228 NADH production rate (V) (ΔOD/min) 0.029 0.073 0.104 0.120 0.122 0.123 0.103 0.105 1/NAD concentration 34.965 13.661 9.662 8.306 8.177 8.137 9.747 9.488 1/Reaction rate 8.333 1.667 0.833 0.278 0.250 0.167 0.111 0.083 Table 5, fixed NAD concentration of the comparative example (4 mM), varying the concentration of furfural to measure Km (曱Aldehyde concentration (mM) 0.02 0.1 0.25 0.5 1 1.5 3 Reaction time 1 minute NADH Concentration OD34〇0.173 0.175 0.056 0.205 0.233 0.033 0.162 Reaction time 2 minutes NADH Concentration OD34〇0.172 0.190 0.107 0.247 0.313 0.169 0.340 Reaction time 3 minutes NADH Concentration 〇Dmq 0.178 0.214 0.157 0.293 0.395 0.301 0.498 Reaction time 4 minutes NADH Concentration ODm〇0.185 0.233 0.200 0.334 0.466 0.420 0.636 Reaction time 5 minutes NADH concentration OD34 〇 0.182 0.244 0.237 0.377 0.532 0.539 0.767 NADH production rate (V) (ΔOD/min) 0.007 0.018 0.046 0.043 0.075 0.126 0.151 1/formaldehyde concentration 153.846 55.249 21.978 23.202 13.316 7.918 6.640 1/Reaction rate 50.000 10.000 4.000 2.000 1.000 0.667 0.333 The results of the examples are shown in Tables 6, 7 and 3a and b (fixed 曱 0296-A22078TWF (N2); 373; daphne 20 200844228 •- aldehyde concentration (7.5 mM) ), 1/reaction rate versus l/NAD concentration plot and reaction rate vs. NAD concentration plot for different NAD concentrations) and plots 4a and b (fixed NAD concentration (7.6 mM), enthalpy/reaction rate vs. different furfural concentrations) y Furfural concentration map and reaction rate versus furfural concentration). From the above results, it can be inferred that the Km (NAD) is 1.752 niM, I (m (furfural) is 1.71 mM, Vmax is 120·8 U/mg, Kcat is 84/s, and the turnover rate is 3 million times per minute. As in the comparative example, when the NAD concentration exceeds 8 mM, the enzyme activity of the examples is also inhibited by ΐ, ^, but its tolerance to formaldehyde is relatively high, when the concentration of furfural is high. The enzyme activity did not change significantly when it exceeded 16 mM. On the other hand, the Km value of the examples was higher than the Km value of the comparative example. The results of the modification of the examples showed that when the enzyme activity increased during the upgrading process, it was not Because of the increased affinity for the matrix, it may be because the structure of the enzyme is changed, so that the activity of the enzyme is increased, but further experiments are needed. Table 6, the fixed aldehyde concentration (7.5 mM) of the example, the change NAD is rich Km(NAD) NAD concentration (mM) 0.12 0.60 1.20 4.00 6.00 8.00 12.00 15.00 Reaction time 1 minute NADH concentration OD34 〇 0.025 0.101 0.173 0.235 0.254 0.251 0.224 0.202 Reaction time 2 minutes NADH concentration OD34 〇 0.041 0.196 0.319 0.48 1 0.462 0.496 0.473 0.428 Reaction time 3 minutes 0.048 0.280 0.454 0.728 0.676 0.738 0.695 0.651 0296-A22078TWF (N2); 373; daphne 21 200844228 NADH concentration OD34 〇 reaction time 4 minutes NADH concentration OD34 〇 0.064 0.360 0.584 0.880 0.927 0.878 reaction time 5 Minute NADH concentration OD34 〇 0.073 0.434 NADH production rate (V) (AOD/min) 0.012 0.083 0.137 0.247 0.209 0.244 0.233 0.225 1/NAD concentration 84.034 12.048 7.310 4.057 4780 4.107 4.290 4.442 1/Reaction rate 8.333 1.667 0.833 0.250 0.167 0.125 0.083 0.067 Table 7, the fixed NAD concentration (7.6 mM) of the examples, the change of furfural concentration to determine the Km (furfural) formaldehyde concentration (mM) 0.12 0.6 1.2 4 6 8 12 15 reaction time 1 minute NADH concentration OD34 〇 0.023 0.105 0.124 0.216 0.213 0.259 0.094 0.176 Reaction time 2 minutes NADH concentration OD34Q 0.047 0.181 0.301 0.456 0.456 0.501 0.205 0.409 Reaction time 3 minutes NADH concentration OD34 〇 0.069 0.261 0.420 0.691 0.691 0.748 0.312 0.625 Reaction time 4 minutes NADH concentration OD34 〇 0.086 0.337 0.552 0.903 0.903 0.418 reaction 5-minute NADH concentration OD34〇0.104 0.405 0.675 0.514 NADH production rate 0.020 0.076 0.135 0.230 0.231 0.245 0.105 0.225 0296-A22078TWF(N2); 373;daphne 22 200844228 (V)(M)D/min) 1/Formaldehyde concentration 49.751 1 /reaction rate 8.333 13.228

」·355 4.338 4.090 9.497 4.454 0.250 0.167 0.125 0.083 0.067 改質之曱醛脫氫酵素專一性分析 利用8mM的曱醛溶液益 曲 一不同〉辰度的乙搭進行實施例 之曱醛脫氫酵素活性分析,6士 &gt; 、 、〜果如弟5圖顯示。圖中顯示··355 355 4.338 4.090 9.497 4.454 0.250 0.167 0.125 0.083 0.067 Modified furfural dehydrogenase specificity analysis Using 8 mM furfural solution Yiwu a different degree of elongation of the sample of the furfural dehydrogenase activity analysis , 6 士 &gt; , , ~ fruit as the brother 5 shows. Shown in the figure

當利用不同濃度的乙醛溶液作氣苴所士如主 乍為基質時,酵素的活性幾乎 為零(成一直線)。即使乙砍、曲+ &gt; 1讥G黾濃度高達92mM,五分鐘後 NADH的吸光度依舊維持為4 t 士α點’此一結果顯示乙搭是 無法作為改質甲醛脫氫酵幸的装所 ^ ^ ^ ^ ^I的基質,改質之酵素具有極佳 之專一性。 第6顯示實施例利用不同濃度的乙酸與甲酸共同作為 甲酸脫氫酵素基質的反應速率圖。由圖中顯示當曱酸與乙 搭共同存在於溶液+時,曱搭脫氫酵素的活性是受到曱酸 濃度的影響’乙的存在不會增加酵素的反應速率。當乙 酉全派度為8mM曱醛濃度為〇mM時酵素的反應速率為 O.OOUAOD^o/分鐘),當曱醛濃度為〇 〇8mM時酵素的反應 速率則可以增加至〇.〇8(ΔΟΓ)34。/分鐘),提升了 8〇倍。分 別比較各只有曱醛(8mM)與乙醛(8mM)作為酵素基質時,酵 素的反應速率則由〇·〇〇1(Δ〇Ι)34()/分鐘)增加至0 2〇(a〇dw 分鐘),反應速率提升了 200倍以上,而野生株酵素對於曱 醛與乙醛的反應速率比値為4.54倍(Yasuyo Fujii,Y〇shiakiWhen different concentrations of acetaldehyde solution are used as a matrix, the activity of the enzyme is almost zero (in line). Even if the concentration of B-cut, song + &gt; 1讥G黾 is as high as 92 mM, the absorbance of NADH remains at 4 t ± α after five minutes. This result shows that it is not suitable for the modification of formaldehyde dehydrogenation. ^ ^ ^ ^ ^ The matrix of the modified enzyme has excellent specificity. The sixth embodiment shows a reaction rate diagram in which different concentrations of acetic acid and formic acid are used together as a formate dehydrogenase matrix. It is shown in the figure that when tannic acid and ethyl coexist in solution +, the activity of dehydrogenase is affected by the concentration of tannic acid. The presence of B does not increase the reaction rate of the enzyme. When the total concentration of acetaminophen is 8 mM furfural concentration is 〇 mM, the reaction rate of the enzyme is O.OOUAOD^o/min), and when the concentration of furfural is 〇〇8 mM, the reaction rate of the enzyme can be increased to 〇.〇8 ( ΔΟΓ) 34. /min), increased by 8 times. When comparing only furfural (8 mM) and acetaldehyde (8 mM) as the enzyme substrate, the reaction rate of the enzyme was increased from 〇·〇〇1(Δ〇Ι)34()/min) to 0 2〇(a〇). Dw minutes), the reaction rate increased by more than 200 times, while the response rate of wild strain enzyme to furfural and acetaldehyde was 4.54 times (Yasuyo Fujii, Y〇shiaki

Yamasaki,Masahiro Matsumoto,Hiroyuki Nishida,Megumi 0296-A22078TWF(N2);373;daphne 23 200844228 : Hada,and Katsutoshi Ohkubo,2004,“The ArtificalYamasaki, Masahiro Matsumoto, Hiroyuki Nishida, Megumi 0296-A22078TWF (N2); 373; daphne 23 200844228: Hada, and Katsutoshi Ohkubo, 2004, "The Artifical

Evolution of an Enzyme by Random Mutagenesis: The Development of Formaldehyde Dehydrogenase’’,Biosci.Evolution of an Enzyme by Random Mutagenesis: The Development of Formaldehyde Dehydrogenase’,, Biosci.

Biotechnol.,Biochem.,68, 8,1722-1727),由此可得知本發 明實施例之酵素專一性為野生株之約44倍。Biotechnol., Biochem., 68, 8, 1722-1727), it is thus known that the enzyme specificity of the examples of the present invention is about 44 times that of the wild strain.

I* * 用以, 在不j 飾, 定者^7干^ 0296-A22078TWF(N2);373;daphne 24 200844228 【圖式簡單說明】 第la圖顯示比較例固定甲醛濃度(2mM)、不同NAD 濃度下之1/反應速率對1/NAD濃度圖。 第lb圖顯示比較例固定曱醛濃度(2mM)、不同NAD 濃度下之反應速率對NAD濃度圖。 第2a圖顯示比較例固定NAD濃度(4mM)、不同曱醛 濃度下之1/反應速率對1/曱醛濃度圖。 第2b圖顯示比較例固定NAD濃度(4mM)、不同曱醛 濃度下之反應速率對曱醛濃度圖。 第3a圖顯示實施例固定曱醛濃度(7.5mM)、不同NAD 濃度下之1/反應速率對1/NAD濃度圖。 第3b圖顯示實施例固定曱醛濃度(7.5mM)、不同NAD 濃度下之反應速率對NAD濃度圖。 第4a圖顯示實施例固定NAD濃度(7.6mM)、不同曱 醛濃度下之1/反應速率對1/甲醛濃度圖。 第4b圖顯示實施例固定NAD濃度(7.6mM)、不同曱醛 濃度下之反應速率對曱醛濃度圖。 第5圖顯示實施例利用8mM的曱醛溶液與不同濃度的 乙醛進行改質曱醛脫氳酵素的活性分析。 第6圖顯示實施例利用不同濃度的乙醛與曱醛共同作 為曱醛脫氫酵素基質的反應速率圖。 【主要元件符號說明】 無0 0296-A22078TWF(N2);373;daphne 25 200844228 序列表 【序列編號】 &lt;110&gt;財團法人生物技術開發中心I* * is used in, not in j decoration, it is ^7 dry ^ 0296-A22078TWF (N2); 373; daphne 24 200844228 [Simple description of the figure] The first figure shows the fixed formaldehyde concentration (2mM), different NAD 1/reaction rate versus 1/NAD concentration plot at concentration. Figure lb shows a comparison of the reaction rate versus the NAD concentration for the fixed acetal concentration (2 mM) and the different NAD concentrations. Fig. 2a is a graph showing the 1/reaction rate versus 1/furfural concentration of the fixed NAD concentration (4 mM) and the different furfural concentrations in the comparative example. Figure 2b shows a plot of the reaction rate versus the furfural concentration for the fixed NAD concentration (4 mM) and the different furfural concentrations in the comparative example. Figure 3a shows a plot of 1/reaction rate vs. 1/NAD concentration for immobilized furfural concentration (7.5 mM) at different NAD concentrations. Figure 3b shows a plot of reaction rate vs. NAD concentration for immobilized furfural concentrations (7.5 mM) and different NAD concentrations. Figure 4a shows a plot of the fixed NAD concentration (7.6 mM) and the 1/reaction rate versus 1/formaldehyde concentration for different furfural concentrations. Figure 4b shows a plot of the reaction rate versus formaldehyde concentration for the fixed NAD concentration (7.6 mM) and different furfural concentrations. Figure 5 shows the activity analysis of the modified furfural deaminase using an 8 mM furfural solution with varying concentrations of acetaldehyde. Fig. 6 is a graph showing the reaction rate of the mixture using different concentrations of acetaldehyde and furfural as a furfural dehydrogenase substrate. [Explanation of main component symbols] None 0 0296-A22078TWF(N2);373;daphne 25 200844228 Sequence Listing [Serial Number] &lt;110&gt; Biotechnology Development Center

&lt;12〇〉戀臭假單胞菌非鞑胺基硫相關曱醛脫氫酵素的基因序列 &lt;160&gt; 8 &lt;210&gt; 1 &lt;211&gt; 1200 &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;400&gt; 1 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc 360 99c99c9cct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg 420 ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag 480 aagatccgtg acctgacctg cctctccgac atcctgccca ccggctacca cggcgcggtc 540 accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc 600 gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac 660 cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac 720 accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc 780 gacgcagtgg gcttcgaagc gcgcggccac ggccatgaag gcgccaagca cgaagctccg 840 0296-A22078TWF(N2);373;daphne 26 900 200844228 gccaccgtgc tcaactcgct ggcctctacg tcaccgaaga agcatccgct tcggcctcgg gtgatgaagt acaaccgcgc gaagtggtgg gcgtgcaggt gatgccggcg taccgaagaa gatgcaggtc acccgcgtgg tccgggcgcg gtggatgccg ctgggcgaaa tcccacagct actcatgcag gcgatcatgt catcagcctg gacgacgcac attcgtcatc gacccgcaca ccggcaagat cggtatcccc ccgccaagat cggcagcctg tccacaccgg ccagaccccg gggaccgcat caacatcgcc cgcgtggcta tggcgagttc agaccttcag cgcggcctga 960 1020 1080 1140 1200 /&lt;12〇>Gene sequence of non-nonylamine sulfur-related furfural dehydrogenase of Pseudomonas putida &lt;160&gt; 8 &lt;210&gt; 1 &lt;211&gt; 1200 &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt; 400 &gt; 1 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc 360 99c99c9cct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg 420 ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag 480 aagatccgtg acctgacctg cctctccgac atcctgccca ccggctacca cggcgcggtc 540 accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc 600 gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac 660 cccgcccgcc tggcccacgc caaggcgcag ggcttcg aga ttgccgacct gtcgctggac 720 accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc 780 gacgcagtgg gcttcgaagc gcgcggccac ggccatgaag gcgccaagca cgaagctccg 840 0296-A22078TWF (N2); 373; daphne 26 900 200844228 gccaccgtgc tcaactcgct ggcctctacg tcaccgaaga agcatccgct tcggcctcgg gtgatgaagt acaaccgcgc gaagtggtgg gcgtgcaggt gatgccggcg taccgaagaa gatgcaggtc acccgcgtgg tccgggcgcg gtggatgccg ctgggcgaaa tcccacagct actcatgcag Gcgatcatgt catcagcctg gacgacgcac attcgtcatc gacccgcaca ccggcaagat cggtatcccc ccgccaagat cggcagcctg tccacaccgg ccagaccccg gggaccgcat caacatcgcc cgcgtggcta tggcgagttc agaccttcag cgcggcctga 960 1020 1080 1140 1200 /

&lt;210&gt; 2 &lt;211〉399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 2&lt;210&gt; 2 &lt;211>399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 2

MSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA / GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAVMSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA / GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV

TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAKHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA &lt;210&gt; 3 &lt;21 1&gt; 1200 0296-A22078TWF(N2);373;daphne 60 120 180 240 300 360 399 27 200844228TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAKHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA &lt; 210 &gt; 3 &lt; 21 1 &gt; 1200 0296-A22078TWF (N2); 373; daphne 60 120 180 240 300 360 399 27 200844228

r &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;400&gt; 3 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 300 fr &lt; 212 &gt; DNA &lt; 213 &gt; Pseudomonas putida &lt; 400 &gt; 3 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc 60 gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag 120 gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg 180 caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac 240 gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc Ctgcggccgc 300 f

I tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc 360 ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg 420 ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag 480 aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc 540 accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc 600 gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac 660 cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac 720 accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc 780 gacgcagtgg gcttcgaagc gcgcggccac ggccatgttg gcgccgagca cgaagctccg 840 gccaccgtgc tcaactcgct gatgcaggtc acccgtgtgg ccggcaagat cggtatcccc 900 gggctctacg tcaccgaaga tccgggcgcg gtggatgccg ccgccaagat cggcagcctg 960 agcatccgct tcggcctcgg ctgggcgaaa tcccacagct tccacaccgg ccagaccccg 1020 gtgatgaagt acaaccgcgc actcatgcag gcgatcatgt gggaccgcat caacatcgcc 1080 gaagtggtgg gcgtgcaggt catcagcctg gacgacgcac cgcgtggcta tggcgagttc 1140 gatgccggcg taccgaagaa attcgtcatc gacccgcaca agaccttcag cgcggcctga 1200 0296-A22078TWF(N2);373;daphne 28 200844228I tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc 360 ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg 420 ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag 480 aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc 540 accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc 600 gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac 660 cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac 720 accccgctgc acgagcagat tgccgcgctg ctgggcgagc cggaagtgga ctgcgccgtc 780 gacgcagtgg gcttcgaagc gcgcggccac ggccatgttg gcgccgagca cgaagctccg 840 gccaccgtgc tcaactcgct gatgcaggtc acccgtgtgg ccggcaagat cggtatcccc 900 gggctctacg tcaccgaaga tccgggcgcg gtggatgccg ccgccaagat cggcagcctg 960 agcatccgct tcggcctcgg ctgggcgaaa tcccacagct tccacaccgg ccagaccccg 1020 gtgatgaagt acaaccgcgc actcatgcag gcgatcatgt gggaccgcat caacatcgcc 1080 gaagtggtgg gcgtgcaggt catcagcctg gacgacgcac cgcgtggcta tggcgagttc 1140 gatgccggcg Tacc Gaagaa attcgtcatc gacccgcaca agaccttcag cgcggcctga 1200 0296-A22078TWF(N2);373;daphne 28 200844228

&lt;210&gt; 4 &lt;211〉 399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 4&lt;210&gt; 4 &lt;211> 399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 4

MSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTN工CGSD QHMVRGRTTA QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAEHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRGYGEF DAGVPKKFV工 DPHKTFSAAMSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTN work CGSD QHMVRGRTTA QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAEHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRGYGEF DAGVPKKFV work DPHKTFSAA

&lt;210&gt; 5 &lt;211〉 1200 &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;400&gt; 5 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 0296-A22078TWF(N2);373;daphne 60 120 180 240 300 360 399 60 120 180 240 29 300 200844228 ggcggcgcct ctcgttcctt aagatccgtg accgctggtg gccgccgccg cccgcccgcc accccgctgc gacgcagtgg gccaccgtgc gggctctacg agcatccgct gtgatgaagt gaagtggtgg gatgccggcg gcaaggaaat acggctatgt acgctgactt acctgacctg tgggcccggg cctccgcccg tggcccacgc acgagcagat gcttcgaagc tcaactcgct tcaccgaaga tcggcctcgg acaaccgcgc gcgtgcaggt taccgaagaa gcacaccggc cgacatgggc caacctgctc cctctccgac cagcaccgtg cctgctgggt caaggcgcag tgccgcgctg gcgcggccac gatgcaggtc tccgggcgcg ctgggcgaaa actcatgcag catcagcctg attcgtcatc gtgtgcctga gactggaccg aagctgccgg atcctgccca tacgttgccg gctgccgtgg ggcttcgaga ctgggcgagc ggccatgtag acccgtgtgg gtggatgccg tcccacagct gcgatcatgt gacgacgcac gacccgcaca ccgtcaaccc gcggccaggc agcgcgacaa ctggctacca gcgcaggtcc tcatcgtcgg ttgccgacct cggaagtgga gcgccgagca ccggcaagat ccgccaagat tccacaccgg gggaccgcat cgcgtggcta agaccttcag ggcccgtgcc cgagtacgtg ggccatggag cggcgcggtc cgtcggcctc cgacctcaac gtcgctggac ctgcgccgtc cgaagctccg cggtatcccc cggcagcctg ccagaccccg caacatcgcc tggcgagttc cgcggcctga 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200&Lt; 210 &gt; 5 &lt; 211> 1200 &lt; 212 &gt; DNA &lt; 213 &gt; Pseudomonas putida &lt; 400 &gt; 5 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc 0296-A22078TWF (N2); 373; daphne 60 120 180 240 300 360 399 60 120 180 240 29 300 200844228 ggcggcgcct ctcgttcctt aagatccgtg accgctggtg gccgccgccg cccgcccgcc accccgctgc gacgcagtgg gccaccgtgc gggctctacg agcatccgct gtgatgaagt gaagtggtgg gatgccggcg gcaaggaaat acggctatgt acgctgactt acctgacctg tgggcccggg cctccgcccg tggcccacgc acgagcagat gcttcgaagc tcaactcgct tcaccgaaga tcggcctcgg acaaccgcgc gcgtgcaggt taccgaagaa gcacaccggc cgacatgggc caacctgctc cctctccgac cagcaccgtg cctgctgggt caaggcgcag tgccgcgctg gcgcggccac gatgcaggtc tccgggcgcg ctgggcgaaa actcatgcag catcagcctg attcgtcatc gt gtgcctga gactggaccg aagctgccgg atcctgccca tacgttgccg gctgccgtgg ggcttcgaga ctgggcgagc ggccatgtag acccgtgtgg gtggatgccg tcccacagct gcgatcatgt gacgacgcac gacccgcaca ccgtcaaccc gcggccaggc agcgcgacaa ctggctacca gcgcaggtcc tcatcgtcgg ttgccgacct cggaagtgga gcgccgagca ccggcaagat ccgccaagat tccacaccgg gggaccgcat cgcgtggcta agaccttcag ggcccgtgcc cgagtacgtg ggccatggag cggcgcggtc cgtcggcctc cgacctcaac gtcgctggac ctgcgccgtc cgaagctccg cggtatcccc cggcagcctg ccagaccccg caacatcgcc tggcgagttc cgcggcctga 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200

&lt;210&gt; 6 &lt;211&gt; 399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 6 60&lt;210&gt; 6 &lt;211&gt; 399 &lt;212&gt; PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 6 60

MSGNRGWYL· GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA 0296-A22078TWF(N2);373;daphne 30 120 180 200844228 GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAEHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA &lt;210&gt; 7 f ' %MSGNRGWYL · GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA 0296-A22078TWF (N2); 373; daphne 30 120 180 200844228 GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAEHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRGYGEF DAGVPKKFVI DPHKTFSAA &lt;210&gt; 7 f ' %

&lt;211&gt; 1200 &lt;212&gt; DNA &lt;213&gt; Pseudomonas putida &lt;400&gt; 7 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac i - gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac 0296-A22078TWF(N2);373;daphne 240 300 360 399 60 120 180 240 300 360 420 480 540 600 660 31 720 780 200844228 accccgctgc acgagcagat gacgcagtgg gcttcgaagc gccaccgtgc tcaactcgct gggctctacg tcaccgaaga agcatccgct tcggcctcgg gtgatgaagt acaaccgcgc gaagtggtgg gcgtgcaggt gatgccggcg taccgaagaa tgccgcgctg ctgggcgagc gcgcggccac ggccatgaag gatgcaggtc acccgtgtgg tccgggcgcg gtggatgccg ctgggcgaaa tcccacagct actcatgcag gcgatcatgt catcagcctg gacgacgcac attcgtcatc gacccgcaca cggaagtgga ctgtgctgtc gcgccaagca cgaagctccg ccggcaagat cggtatcccc ccgccaagat cggcagcctg tccacaccgg ccagaccccg gggaccgcat caacatcgcc cgcgttgcta tggcgagttc agaccttcag cgcggcctga 840 900 960 1020 1080 1140 1200&Lt; 211 &gt; 1200 &lt; 212 &gt; DNA &lt; 213 &gt; Pseudomonas putida &lt; 400 &gt; 7 atgtctggta atcgtggtgt cgtttatctc ggtgcgggca aagtcgaagt gcagaagatc gactacccga agatgcagga ccctcgcggc aagaagatcg aacacggggt gatcctgaag gtggtctcca ccaacatctg cggctcggac cagcacatgg tgcgtggccg taccaccgcg caggtcggcc tggtgctcgg ccacgagatc accggtgagg tgatcgagaa aggccgtgac i - gtggaaaacc tgcagatcgg cgacctggta tccgtaccgt tcaacgtggc ctgcggccgc tgccgttcct gcaaggaaat gcacaccggc gtgtgcctga ccgtcaaccc ggcccgtgcc ggcggcgcct acggctatgt cgacatgggc gactggaccg gcggccaggc cgagtacgtg ctcgttcctt acgctgactt caacctgctc aagctgccgg agcgcgacaa ggccatggag aagatccgtg acctgacctg cctctccgac atcctgccca ctggctacca cggcgcggtc accgctggtg tgggcccggg cagcaccgtg tacgttgccg gcgcaggtcc cgtcggcctc gccgccgccg cctccgcccg cctgctgggt gctgccgtgg tcatcgtcgg cgacctcaac cccgcccgcc tggcccacgc caaggcgcag ggcttcgaga ttgccgacct gtcgctggac 0296-A22078TWF (N2 ); 373; daphne 240 300 360 399 60 120 180 240 300 360 420 480 540 600 660 31 720 780 200844228 accccgctgc acgag cagat gacgcagtgg gcttcgaagc gccaccgtgc tcaactcgct gggctctacg tcaccgaaga agcatccgct tcggcctcgg gtgatgaagt acaaccgcgc gaagtggtgg gcgtgcaggt gatgccggcg taccgaagaa tgccgcgctg ctgggcgagc gcgcggccac ggccatgaag gatgcaggtc acccgtgtgg tccgggcgcg gtggatgccg ctgggcgaaa tcccacagct actcatgcag gcgatcatgt catcagcctg gacgacgcac attcgtcatc gacccgcaca cggaagtgga ctgtgctgtc gcgccaagca cgaagctccg ccggcaagat cggtatcccc ccgccaagat cggcagcctg tccacaccgg ccagaccccg gggaccgcat caacatcgcc cgcgttgcta tggcgagttc agaccttcag cgcggcctga 840 900 960 1020 1080 1140 1200

&lt;210&gt; 8 &lt;211&gt; 399 &lt;212〉PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 8&lt;210&gt; 8 &lt;211&gt; 399 &lt;212>PRT &lt;213&gt; Pseudomonas putida &lt;400&gt; 8

/ MSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA \/ MSGNRGWYL GAGKVEVQKI DYPKMQDPRG KKIEHGVILK WSTNICGSD QHMVRGRTTA \

QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAKHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRCYGEF DAGVPKKFVI DPHKTFSAA 0296-A22078TWF(N2);373;daphne 60 120 180 240 300 360 32 399QVGLVLGHEI TGEVIEKGRD VENLQIGDLV SVPFNVACGR CRSCKEMHTG VCLTVNPARA GGAYGYVDMG DWTGGQAEYV LVPYADFNLL KLPERDKAME KIRDLTCLSD ILPTGYHGAV TAGVGPGSTV YVAGAGPVGL AAAASARLLG AAWIVGDLN PARLAHAKAQ GFEIADLSLD TPLHEQIAAL LGEPEVDCAV DAVGFEARGH GHEGAKHEAP ATVLNSLMQV TRVAGKIGIP GLYVTEDPGA VDAAAKIGSL SIRFGLGWAK SHSFHTGQTP VMKYNRALMQ AIMWDRINIA EWGVQVISL DDAPRCYGEF DAGVPKKFVI DPHKTFSAA 0296-A22078TWF (N2); 373; daphne 60 120 180 240 300 360 32 399

Claims (1)

200844228 十、申請專利範圍: 1. 一種戀臭假單胞菌非麩胺基硫相關曱醛脫氫酵素的 基因序列,其中 (i) 第522個位置突變為胸線嘧啶、711個位置突變為 胸線嘧啶、762個位置突變為胸線嘧啶、818個位置突變為 胸線嘧啶、876個位置突變為胸線嘧啶以及903個位置突 變為鳥糞嘌呤;或 (ii) 第522個位置突變為胸線嘧啶、826個位置突變為 鳥糞嘌呤、876個位置突變為胸線嘧啶以及903個位置突 變為鳥糞嘌呤;或者 (iii) 第522個位置突變為胸線嘧啶、774個位置突變為 胸線嘧啶、777個位置突變為胸線嘧啶、876個位置突變為 胸線嘧啶、903個位置突變為鳥糞嘌呤以及1126個位置突 變為胸線嘧啶;且 其中該戀臭假單胞菌非麩胺基硫相關曱醛脫氫酵素的 比活性較野生株高。 2. 如申請專利範圍第1項所述之戀臭假單胞菌非麩胺 基硫相關曱醛脫氳酵素的基因序列,其中該戀臭假單胞菌 為戀臭假單胞菌CCRC13897。 3. 如申請專利範圍第1項所述之戀臭假單胞菌非麩胺 基硫相關曱醛脫氳酵素的基因序列,其中第522個位置突 變為胸線嘧啶、774個位置突變為胸線嘧啶、777個位置突 變為胸線嘧啶、876個位置突變為胸線嘧啶、903個位置突 變為鳥糞嘌呤以及1126個位置突變為胸線嘧啶。 0296-A22078TWF(N2);373;daphne 33 200844228 4. -種戀臭假單胞菌非楚胺基硫相關甲 胺基^列,其中第奶個位置突變為擷胺酸、第27^ 位置犬為麵胺酸或第375個位置突變為半耽胺酸, ==讓菌非麵胺基硫相關甲盤脫氫酵素的比活性較 野生株。 5. 如申4專利範圍第4項所述之戀臭假單胞菌非麵胺 ,硫相關甲㈣氫酵素的絲酸序列,其中 菌為戀臭假單胞菌CCRC13897。 胞 =如ΐ請專利範圍第4項所述之戀臭假單胞_ 關㈣脫聽素的胺紐序列,其中第仍個 犬受為半胱胺酸。 置 美炉It申請專利範圍第4項所述之戀臭假單胞菌非麵胺 二::關甲㈣氫酵素的胺基酸序列,其 ::=相關―氣酵素的甲—:; 比值(酵素專一性)較野生株高。 匕㈣臭假單耗钱絲硫相” _氫 1基&amp;序列為第272個位置突變為操胺酸、帛275個 置犬變為麩胺酸或第375個位 活性較野生株高。 置大4+㈣酸,且其比 :·?請專利範圍第8項所述之戀臭假單 基^相關甲醛脫氫酵素,其中 麩月女 胞菌cCRC13897。 早胞国為戀臭假單 基二項所述,假 1甲㈣讀素’其胺級序列㈣375個位置突 ^96-A22078TWF(N2);373;daphne 200844228 變為半胱胺酸。 ” ·如申請專利範_項所述之戀臭 基硫相關甲⑽氫酵素,其甲_乙酸反::二國非楚胺 素專-性)較野生株高。〜乙岐輕率比值(酵 -種細胞,包括申請專利範圍^項所述之戀 早胞囷祕絲硫相f㈣氫酵素縣因相,盆= 細胞包括細菌或酵母菌。 /、 σχ 13.如申請專利範圍第12項所述之細胞,其中該细^ 為大腸桿菌。 Μ、、、囷 σσ Μ·一種載體,包括申請專利範圍第1項所述之戀臭假 單胞菌非麵胺基硫相關曱醛脫氫酵素的基因序列。 15·一種細胞’包括申請專利範圍第14項所述之载體, 其中該細胞包括細菌或酵母菌。 16.如申請專利範圍第ι5項所述之細胞,其中該細菌 為大腸桿菌或酵母菌。 〇296-A22078TWF(N2);373;daphm 35200844228 X. Patent application scope: 1. The gene sequence of a non-glutamate-based sulfur-related furfural dehydrogenase from Pseudomonas putida, in which (i) the 522th position is mutated to thoracic acid and 711 positions are mutated to Thymidine, 762 positions mutated to thoracic pyrimidine, 818 positions were mutated to pleuropyrimidine, 876 positions were mutated to thymidine, and 903 positions were mutated to guanine; or (ii) the 522th position was mutated to Thymidine, 826 positions were mutated to guanosene, 876 positions were mutated to thymidine, and 903 positions were mutated to guanosine; or (iii) 522 positions were mutated to thoracic, and 774 positions were mutated Thymidine, 777 position mutations to thoracic pyrimidine, 876 positions mutation to thoracic pyrimidine, 903 position mutations to guanosene sputum, and 1126 positions mutation to thymidine; and wherein Pseudomonas putida is non- The specific activity of glutamine-sulfur-related furfural dehydrogenase is higher than that of wild plants. 2. The gene sequence of Pseudomonas putida non-glutamate sulfur-related furfural dehydrogenase as described in claim 1, wherein the Pseudomonas putida is Pseudomonas putida CCRC13897. 3. The gene sequence of Pseudomonas putida non-glutamate-sulfur-related furfural dehydrogenase as described in the first paragraph of the patent application, wherein the 522th position is mutated to thoracic acid, and 774 positions are mutated to chest. Linear pyrimidines, 777 positions were mutated to thoracic pyrimidine, 876 positions were mutated to pleuropyrimidine, 903 positions were mutated to guanosin, and 1126 positions were mutated to thoracic acid. 0296-A22078TWF(N2);373;daphne 33 200844228 4. -Pseudomonas aeruginosa non-chamoylthio-related methylamine group, wherein the milk position is mutated to valerine, the 27th position dog For the face acid or the 375th position is mutated to semi-proline, == the specific activity of the non-faceted amine-sulfur-related ADS dehydrogenase is higher than that of the wild strain. 5. The seric acid sequence of Pseudomonas putida, non-face amine, and sulfur-related A (tetra) hydrogenase, as described in claim 4 of claim 4, wherein the fungus is Pseudomonas putida CCRC13897. Cell = as shown in the patent scope, item 4 of the scented singular cell _ off (four) amnesium amino acid sequence, in which the first dog is treated with cysteine. Meimei Furnace It applies for the non-face amine of Pseudomonas sylvesae described in item 4 of the patent scope:: Amino acid sequence of hydrogenase, which::=Correlation--A-enzyme--; ratio (Enzyme specificity) is higher than wild plants.匕(4) 臭假假单钱丝丝相相" _ Hydrogen 1 base &amp; sequence is the 272th position mutated to arginine, 帛 275 dogs to glutamic acid or the 375th position is higher than wild plants. Set a large 4 + (four) acid, and its ratio: · Please ask the patent range of the eighth item of the love stinking single base ^ related formaldehyde dehydrogenase, which is the female bacterium BCRC13897. As described in the second item, the pseudo-A (four)-receptor's amine-order sequence (four) 375 positions protrudes ^96-A22078TWF (N2); 373; daphne 200844228 becomes cysteine. " As described in the patent application The love of odor-based sulfur-related A (10) hydrogenase, its methyl-acetic acid reverse:: the two countries non-Chu-stamin specific - higher than the wild strain. ~ 岐 岐 岐 ( ( 酵 酵 酵 酵 种 种 种 种 酵 种 种 种 种 种 种 种 种 种 种 种 种 酵 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种 种The cell of claim 12, wherein the cell is Escherichia coli. Μ,, 囷σσ Μ a carrier, including the Pseudomonas putida non- face amine group described in claim 1 A gene sequence of a sulfur-related furfural dehydrogenase. A cell comprising the vector of claim 14, wherein the cell comprises a bacterium or a yeast. a cell, wherein the bacterium is Escherichia coli or yeast. 〇296-A22078TWF(N2); 373; daphm 35
TW96116235A 2007-05-08 2007-05-08 Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof TWI325442B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96116235A TWI325442B (en) 2007-05-08 2007-05-08 Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96116235A TWI325442B (en) 2007-05-08 2007-05-08 Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof

Publications (2)

Publication Number Publication Date
TW200844228A true TW200844228A (en) 2008-11-16
TWI325442B TWI325442B (en) 2010-06-01

Family

ID=44822525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96116235A TWI325442B (en) 2007-05-08 2007-05-08 Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof

Country Status (1)

Country Link
TW (1) TWI325442B (en)

Also Published As

Publication number Publication date
TWI325442B (en) 2010-06-01

Similar Documents

Publication Publication Date Title
Kristjansson Thermophilic organisms as sources of thermostable enzymes
Champion et al. Anaerobic degradation of ethylbenzene and toluene in denitrifying strain EbN 1 proceeds via independent substrate-induced pathways
CN106591258B (en) A kind of lipase gene, carrier, engineering bacteria and its application
Adeniyi et al. Developing rumen mimicry process for biological ammonia synthesis
Chandel et al. Purification and characterization of tyrosine phenol lyase from Citrobacter freundii
CN104561059B (en) Cold esterase and its encoding gene E40 are fitted with application in a kind of ocean
Ordu et al. Protein engineering applications on industrially important enzymes: Candida methylica FDH as a case study
TW200844228A (en) Pseudomonas putida glutathione-independent formaldehyde dehydrogenase and the gene and amino acid sequence thereof
JP5005293B2 (en) A method for producing D-amino acid oxidase and L-amino acid, 2-oxoacid, or cyclic imine.
CN105734027B (en) A kind of xanthine dehydrogenase and its encoding gene and application
Tishkov et al. Formate dehydrogenase: from NAD (P) H regeneration to targeting pathogen biofilms, composing highly efficient hybrid biocatalysts and atmospheric CO2 fixation
Nagaoka Chiral resolution function with immobilized food proteins
CN106795511A (en) Oxidizing ferment, the polynucleotides for encoding the enzyme and their application
JP2008178314A (en) Production method of novel uricase
JP4816103B2 (en) Glycerol kinase variant
JP5053648B2 (en) Method for producing new uricase
CN113215122B (en) Carbonyl reductase mutant and coding gene and application thereof
CN115948358B (en) L-aspartic oxidase SaAO, and coding gene and application thereof
JP4513967B2 (en) Method for improving the activity of D-aminoacylase
JPS58179489A (en) Novel aldehyde-oxidase
JP5010291B2 (en) Method for producing new uricase
JP2011067105A (en) Method for degrading unsaturated aliphatic aldehyde by aldehyde dehydrogenase originated from microorganism
CN106661571A (en) Oxidase, polynucleotide that codes for same, and uses for both
Zhou et al. Exploring, Cloning, and Characterization of Aryl-alcohol Dehydrogenase for β-Phenylethanol Production in Paocai
Asano et al. Exploiting Natural Diversity for Industrial Enzymatic Applications