TWI324405B - Method of fabricating data tracks for use in a magnetic shift register memory device - Google Patents

Method of fabricating data tracks for use in a magnetic shift register memory device Download PDF

Info

Publication number
TWI324405B
TWI324405B TW93134683A TW93134683A TWI324405B TW I324405 B TWI324405 B TW I324405B TW 93134683 A TW93134683 A TW 93134683A TW 93134683 A TW93134683 A TW 93134683A TW I324405 B TWI324405 B TW I324405B
Authority
TW
Taiwan
Prior art keywords
magnetic
forming
layer
trench
data
Prior art date
Application number
TW93134683A
Other languages
Chinese (zh)
Inventor
Stuart P Parkin
Tze-Chiang Chen
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Priority to TW93134683A priority Critical patent/TWI324405B/en
Application granted granted Critical
Publication of TWI324405B publication Critical patent/TWI324405B/en

Links

Landscapes

  • Mram Or Spin Memory Techniques (AREA)

Description

九、發明說明: 【發明所屬之技術領域】 j發明大體上係_記紐儲衫m $脅之磁矩來儲存資料之記憶體儲存系統。且】二用 性資料軌之方法。 柯存峨裝置的-磁 【先前技術】 本發明係關於共同申請中的美國專 =/458, 554 ’標題為「可位移磁移暫存器及其使 案號劃58,147,標題為「寫人一磁移暫 存态之糸統及方法」,二者皆於2〇03年6月1〇 包含在此供參考。 uu日曱。月 普通的f知非揮發資料儲存裝置為_機及 一〜、迎機存取s己憶體(RAM)。磁碟機可便宜的儲存大量的 資料,即大於100GB。然而,磁碟機本身並不可靠。一硬 ,包含-岐的讀/寫磁頭以及—移動式媒體供寫入資 料。具有鷄元件雜置容祕損及失效。現今的固態隨 機存^記憶體,其每一裝置可儲存1GB單位的資料,且每 儲存單元與一磁碟機比較之下,較為昂貴。 最普遍的固態隨機存取記憶體為一快閃記憶體。快閃 記憶體依靠-多晶㈣層,其係沉積於—電晶體的開關控 制閘下的氧化物上。此多晶石夕層為一浮動閘,藉由石夕,與 控制閘及電晶體通道分離。快閃記憶體相對較慢,係以微 秒單位計算讀寫時間。再者,在不到—百萬次寫入週期, 4 旧 M041427W.doc 某S :蜂巣可能就會開始遺失資料。雖然適合運用在 記二若持續使用來篇入新資料(例如在電腦的-主 電^廐1閃5己憶體蜂巢可能開始快速失效。再者,對 μ私式而言,快閃記憶體的存取時間實在太長。 磁畛形式為鐵磁性麵或腿㈣Μ係根據鐵 快5存二向來儲存資料。_具有比Flash 隨更 、、肖.^^ι、λα 4,且比一般標準動態隨機存取記憶體(DRAM) 2的Ϊ量。然而,現今-般商業上所使用的記憶體 憔ί儲在哭在25Μβ單位左右。再者,在一 FRAM中的記 存眘為利用交替結晶及非結晶相位的材質來儲 憶體_) °在此中請書中所使用的材 及二“甘(,lcogenide)合金。在硫族*金面臨一加熱 後’可被程式化以接受二者之一的穩定相位: °此二相位的相對電阻差使得硫族合金可用 :t體儲存斋。資料存取時間為50ns單位。然而,這 的大小仍錄小,現在約為備單位。再者,圆 質最、i的非結晶的實際改變,因此可能導致材 f導體磁阻_Μ_藉由材質的磁力方向,將資料 =*7,性材質。鐵磁性材質中的原子回應外界 =:磁場力矩與戶斤應用的磁場方向對齊。當移除磁 ϊΐί/、子的磁矩仍以原先引導的方向維持對齊。相反方 ^斤應用的磁場,導致原子域新的方向,重新自行對 背。通常’在—數量的鐵磁性材質内之原子磁矩,依照一 4 旧 M04142TW.doc 巨 1性轉換,動’相互平行對齊^這些原子,主要係以 磁矩或磁疇,接著—一同回應至外界磁場 ㈣MRH:方法係使用-雜隧穿接合點作為記憶體 ii好牙接ΐ點包含二層鐵磁性材質,+間被一層 ''',貝:碭。磁嚀的方向在一薄層中係固定的。在第二 f ί,磁,的方向可根據—所制的磁場而移動。因此, ’可與第-層平行或呈相反方向,使 艾i及零的格式館存。然而,現有的MRAM僅能儲 f至=Mb,比大部分記憶體應用程式之需求小太多。現 描5六5展較大的記憶體。再者,每一 _記憶體蜂巢 ίϊΐΓ的資料,因而限制了此裝置的最大可能之記 憶體谷罝。 一磁移註冊器替換許多習知記憶體裝置,包含但不限 =性記制硬碟機、以及射_記顏,例如DRAM、 SRAM、FeRAM及MRAM。磁移註冊器提供較大的儲存量,可 〃習知記憶體裝置所提供的相比,但無任何移動部分,且 與硬碟的價格相當。 、簡單的說,磁移註冊器記憶體裝置使用鐵磁性材質中 f脅壁之^性及自然屬性來儲存資料^磁移註冊器記憶裝 置利用-讀/寫裝置’存取⑽位元單位或更多資料的許 多位兀。因此,一少量的邏輯元件可存取上百位元的資料。 磁移註冊H記,置使職轉式電子,寫人及讀取鐵 磁性^質中的資料’使得磁移註冊制材f的實體屬性保 持不變。—可移式磁矛多註冊器包含—資料軌,其係以鐵磁 性材^所製造的材質,以—細電線或線段形成。此電線可 以-實體均自、樹蝴㈣鐵磁騎賊層層不同鐵磁性 4IBM04142TW.doc 軌道中磁嘴内的磁矩方向儲存。此電線 隹—方向或另-方向以小段落磁化一。 動磁道’以沿著執道順著電流的方向移 通ϊυ字過=的「電自ΪΓ流方向移動錢。當電流 壁。一奇4,產生一轉矩。此轉矩移動疇 J可壁速率可能非常的高,在100至5〇〇m/sec單位。 磁言二ί過,道的電流(具有一系列交替方向的 置i著’越過讀取及寫入元件。此讀取裝 向,因此寫入裝置可改變磁短的方 需:註冊器記憶裝置所需的磁性資料執 【發明内容】 ㈣滿足此f求,且提供改進建立—磁移註冊卜己 憶裝置所需的雜資雜的製作方法。 裔°己 磁移註冊n記麟置包含在赠中的資 ϊ係大致與包含讀取衫人元件的平面垂直。 f入兀件係使用習知CMOS技術建構而成。與習知 憶體相比,磁移註冊器記憶體保證密度增強丨 ^ 此二圓柱之-底端間相連。 的固柱,在 磁性資料軌係由矽或介電質所形成的不同材 替層,產生一多層堆疊製造而成。在此多層堆疊結構中^ 4IBM04142TW.doc ^以下定義及解釋提供有關本發明之技術領域的背景 資-訊”且意在促進了-解本發明,雨非限制其範園: 同質磁性材質意指一連續的磁性材質量,其可具有一 複雜的形狀,名義上具有相同磁性屬性,例如磁化、磁異 向性、磁性父替及磁性組尼,獨立於其量内之狀態。 非同質磁性材質意指一連續的磁性材質量,可具有一 複雜的形狀,其磁性屬性,例如磁化、磁異向性、磁性交 替及磁性組尼,因為例如材質組合中的改變,與/或因為 在此1貝、/儿積期間的某物理程序,或在此材質已沉積後對 此材質的反應,而可能隨其量内的狀態而改變。 一圖1(圖1A及1B)說明一磁性記憶體系統1〇〇之一範 例=皆結構’其包含利用—寫人裝置(以下亦稱為一寫入 兀件)15及-讀取裳f(以下亦稱為一讀取元件)2〇之一磁 讀取妓2G及寫人錢B二者形成系統 100之一讀/寫元件。 ,移注冊器10包含一細微的資料執π,較佳地 鐵磁性材質製造而成。資料軌U可在-小區段 i料=’:士方向或另一方向磁化。資料儲存於例如在 ,25、3G的區段中。製造軌道的磁性材質 , ’、p磁化方向或磁矩方向,從一方向改變至另 中的^準 方向的改變,形成儲存資料於資料軌11 -儲=施:!二磁移註冊器1〇包含-資料區域35及 组拉碎沾并*、工中央區域42連結。資料區域35包含— 、’且持、,’貝的磁驚25、3D,傲左咨魁 的長度,儲存十斗。移炷冊器10的額外 度係以儲存處40的形式提供。 4IBM04142TW.doc i I 及讀取中央區域42中的磁疇,儲存處40以 移動,經中從資料區域35 得以容納所有資料區域35寫令的磁择件20時’ 磁脅因而部分地儲存歸料城既定時間, 並沒有磁.。种,儲存處4G在-靜止狀態時 同部冊;-中-不 =不管資料區域35常,^ =5中内磁,空間的分佈及延伸可二:在另 越讀^件US部f可在此區域行動期間,尤其跨 份或整體被銘入兀件15延伸。資料區域35的一部 刀體被移人儲存處4G,以存取特定磁斜的資料。 圖1所顯示的儲存處40,與資 :實,許儲存處=資= 的讀取元们移註冊11 10使用不只一個 耶來的小。舉例而言:°若^;== 4=資料區域 件20及寫入开杜niA>hLL.移°主冊盗10使用二讀取元 則儲存處40僅需要:娜域長沉積, 過二,以沿著資料執11,且越 在具有疇辟的^ 移動磁彆25、30内的磁矩。 土的一磁性材質中’通過缚壁的一電流,以電流 4IBM04142TW.doc 12 Γ移=壁穿广磁脅時’則成為「自旋偏極 虽自旋偏極化-電流通-過交錯轉壁跨越到下一磁 二,曰產生-轉矩。此轉矩移鱗壁。,壁速率可非^ :蕻:i每秒r到幾百公尺單位’導致供讀取此磁疇, 或藉由寫入兀件以改變其磁性相位, 所需的位置的製程可能非常的短。多動特疋磁可至 這些磁疇,例如磁疇25、30、31,在耷入开杜n =:=的移動(或位移 上Γίί列中’資料區域35起初常駐於磁移註冊器1〇之; 顯-ϋ即中央區域42)’且沒有磁轉在儲存處40。圖2C ^貧料區域35完全常駐於磁移註冊器1〇之右側= 為了將資料寫入-特定磁缚,如磁嘴31,施加产 至=多註冊器10,以移動磁嘴31,且與寫入裝置i5 ^ ^加電流至磁移註冊器10時,在資料區域35中的 所有磁疇則移動。 幻 時門移動係由電流的強度及方向以及施加電流的 β斤ί制。在一實施例中,施加一特定形狀(強度對時 間的電流脈衝,以將儲存區域中的磁鳴移動_個 :二里或—步驟。施加一系列的電流派衝,以將磁疇移動 的增加量或步驟。因此,資料區域35之-已位移部 为205(圖2Β)被推進(位移入或移入)儲存區域4〇。 ° 資料執Π内磁轉移動的方向,係依照所施加的電流 =方向〗電流脈衝的長度可在幾百皮秒至幾十納秒的範^ ,且係依據電流的強度。電流強度越強,所需電流脈衝 4IBM04l42TW.doc 的,度越心電流脈衝的 細,爾可調整至,壁的電;的詳 動至下-狀態所需狀㈣不需超過將其移 額夕卜取在特疋磁彆的資料,例如磁疇25,合施为 1〇,以_5 移動,乂Ϊ 取衷置20對齊。資料區域35 …只 進(位移入或移入)儲存區域4G。1 乂大的已位移部分被推 护制2 =示的讀取裝置2〇及寫入裝置15形成- ’#_定義_讀取裝置2〇及ί人 於此失Ζ卜彡Isf °在-實施财’磁移註冊11 10直立 於此參考面上’與此平面大致成直角。 為了運作磁移註冊器10,除了讀取元件 =15外’控制電路包含邏輯及其他電路 含讀取元件20及寫人猶15的料、細移 ^移動磁騎需供應的電流脈衝、以及在磁移註冊“ 手段。在—實施例中,控制電路係二石夕 2製程。磁移註冊器ι〇較佳係以在石夕晶 本,而將記憶體裝置的儲存容量最大化。的成 在圖1中所顯示的實施例,磁移註冊器10 致係以讀取元件20及寫入元件15所佔用的晶片範g來決 定。因此’磁移註冊器1〇包含資料軌u,自晶片面^ 曰資,11垂直方向的長度決定磁移註冊器 10的儲存各罝。由於此垂直延伸可能比資料轨u的平行 4IBM04142TW.doc 1324405 可儲存於磁移註冊器丨。, 同傾面積來說:據主 儲存更多位元。 冊斋10可比習知固態記憶體 雖然磁移註冊器忉的資料 元件20及寫入元件15的平面(電路^面大 =以垂;於讀取 較大的密度,或簡單的製造這了具有 可以例如一角度傾斜於此參^面裝置’每些貧料軌U亦 圖3係參考圖2(圖2A、2B及2C) 4 ☆ 冊器10之-方法_。參 H =運作磁移註 _蚊將磁翁至以裝置 ” 310 ’記憶體系統⑽亦決i移動磁|2的5 所需的方向。在圖2A中,磁疇25在耷Λ驻要=可巧 裝置20的左侧,而言; 25移至右侧’而可利用一負電流奶,將磁嘴25移至 至磁==記sr可的電流45 + 了為—脈衝或一系列的脈衝, 乂二人-位兀的方式移動磁疇25。亦可在脈 (脈衝内的電流對時間)内,改變期間的長短ί 度ΐΐ致貧繼域35内的磁蜂25,在一脈衝的施加期間 以許夕增加量移動。在方塊32〇,資料區域3 1 應電流45而移動。磁脅25停止於適宜 ;^ 置15或讀取裝置20(方塊325)。 Ρ冩入裝 參照圖4(圖4Α、4Β),另-磁移註冊器1〇ΑΑ可類似 圖1及2的磁移註冊器、10 ’但包含交替磁性層,以在磁 註冊器10Α内定位的磁嘴可能的位置。將磁轉可能的位置 4 旧 M04142TW.doc 15 作疋位預防所指派的磁疇漂移。 逐性層可包含許多鐵磁植或亞鐵磁性材質,這昼磁性 貝主要係根據其磁化(每單位容量的磁矩)、磁性交替泉 數、磁異向性及磁性組尼之大小作適當的選擇。其可製4 性及與製造磁移註冊器所使用的製程之相容性亦影 些材質的選擇。 曰< ,如磁移註冊器10A之區域405所示,磁性材質的—類 ,可作^磁疇410、420,而磁性材質的一不同類型可作為 交替磁彆415、425。在另一實施例中,可依不同材質單位 使用多類型的磁性材質。 ^ 移註冊器1〇A中,引進不同鐵磁層,建立了最小 本區旎量,類似「位能井」,使得相反二極磁疇之間的疇 壁巧在交替鐵磁層410、415等間之邊界各自對齊。因此二 磁疇的延伸及大小可決定於磁性層的厚度。 施加至磁移註冊器10A的一電流派衝45,導致區域 405内的磁疇410、415、420、425,以電流45的方向移 $。然而,除非電流脈衝45具有足夠的能量及時間,磁 彆410、415、420、425不會移過二不同類型的磁性材質 間的邊界。因此’資料區域35可-次-位元的移動,而 不允許磁疇漂移過其適宜的位置。 除了定位磁疇的可能位置,使用不同磁性材質層亦允 許對電流強度及時間之較高的容忍度。在此範例中,穿過 寫入裝置15及讀取裝置20的磁移註冊器1〇A的部分可為 同質材質,如圖4C所示,或不同磁性材質層,如圖所 示0 4 旧 M04142TW_doc 16 1324405 交替磁區410、420等及415、425等的長度可不同β ^者’雖然在磁移註冊II 10Α中,每一類型的磁區41〇 ; 420 4及415、425之長度相同較佳,但這不重要,這些 度可在磁移註冊器1GA中作些許的變化。重要的是,^ 3電流脈衝所引進的電流引進行為,將磁脅定位於2 疋義的狀態。 〃 移’以同質磁性材質製造的另一磁 移,冊器1GB,可糟由實際改變資料軌n的寬度或範 d質”。經實際使磁移註冊器⑽成形’區域 性取小位此可建立於磁移註冊器1〇Β内。 ,圖5的成形方法中,引進如屢痕5G5 _磁性材質·05、_可= 放式或以金屬或絕緣材質填補。 格。^ 中,由這些壓痕505、5G6可以均句空隙間 t度,不均句地間格。壓痕哪、506 在貝枓轨511的任一邊相互對齊。 -二ΪΪ料ί 511的—邊製作具有壓痕的磁移註冊器可Nine, the invention description: [Technical field to which the invention pertains] The invention of the invention is generally a memory storage system for storing data in the magnetic moment of the yoke. And] the method of dual-purpose data tracks.柯存峨装置-Magnetic [Prior Art] The present invention relates to the United States specific = / 458, 554 ' in the joint application titled "Displaceable Magnetic Shift Register and its making number 58, 147, titled "Write a magnetic The system and method of shifting the temporary state, both of which are included in this reference for June 1, 2003. Uu calendar. The ordinary non-volatile data storage device is a machine and a ~, welcome access s memory (RAM). The disk drive can store a large amount of data cheaply, that is, more than 100 GB. However, the drive itself is not reliable. A hard, read-write head with -岐 and - mobile media for writing data. It has the secret and failure of chicken components. Today's solid-state random memory devices can store 1 GB of data per device, and each storage unit is more expensive than a disk drive. The most common solid state random access memory is a flash memory. Flash memory relies on a polycrystalline (quad) layer that is deposited on the oxide under the switch control gate of the transistor. The polycrystalline stone layer is a floating gate separated from the control gate and the transistor channel by Shi Xi. The flash memory is relatively slow, and the read and write time is calculated in microseconds. Furthermore, in less than a million write cycles, 4 old M041427W.doc S: The bee sting may start losing data. Although it is suitable for use in the second use of continuous data to enter the new data (for example, in the computer - the main power ^ 廐 1 flash 5 hexagram honeycomb may begin to quickly fail. Again, for the μ private, flash memory The access time is too long. The magnetic cymbal form is a ferromagnetic surface or a leg (four) Μ is stored according to the iron fast 5 storage two-way. _ has more than Flash, Xiao. ^^ι, λα 4, and than the general standard The amount of dynamic random access memory (DRAM) 2. However, the memory used in today's general commercial storage is crying around 25 Μ β units. Furthermore, the memory in a FRAM is used alternately. Crystallized and amorphous phase materials to store memory _) ° The materials used in the book and the two ", lcogenide alloys. After the chalcogen * gold faces a heating" can be programmed to accept two The stable phase of one of the two: ° The relative resistance difference of the two phases makes the chalcogenide alloy available: t-body storage. The data access time is 50 ns. However, the size of this is still small, and now it is about the unit. Actually, the roundness is the most, the actual change of i's amorphous, so it may lead to The magnetic resistance of the f-conductor _Μ_ by the magnetic direction of the material, the data = * 7, the material. The atom in the ferromagnetic material responds to the outside world =: the magnetic field moment is aligned with the direction of the magnetic field applied by the household. When removing the magnetic ϊΐ ί / The magnetic moment of the child is still aligned in the direction of the original guidance. The magnetic field applied by the opposite side causes the new direction of the atomic domain to re-enter the back. Usually, the atomic magnetic moment in the quantity of ferromagnetic material is A 4 old M04142TW.doc giant 1 sex conversion, moving 'parallel alignment with each other ^ these atoms, mainly with magnetic moments or magnetic domains, then - together with the external magnetic field (4) MRH: method uses - hetero tunneling joints as memory Ii good teeth joints consist of two layers of ferromagnetic material, + between a layer of ''', shell: 砀. The direction of the magnetic 系 is fixed in a thin layer. In the second f ί, magnetic, the direction can be - The magnetic field is moved and moved. Therefore, 'can be parallel to the first layer or in the opposite direction, so that the format of AI and zero can be stored. However, the existing MRAM can only store f to =Mb, which is more than most memory. The demand for the application is much smaller. Now I will record the larger record of the 5-6 exhibition. Furthermore, the data of each _memory hive, thus limiting the maximum possible memory of the device. A magnetic shift register replaces many conventional memory devices, including but not limited to Hard disk drives, as well as ray, such as DRAM, SRAM, FeRAM, and MRAM. The magnetic shift register provides a large amount of storage compared to that provided by conventional memory devices, but without any moving parts, and It is equivalent to the price of the hard disk. In short, the magnetic shift register memory device uses the magnetic properties of the ferromagnetic material to store data. The magnetic shift register memory device utilizes the read/write device. Access (10) bit units or many bits of more data. Therefore, a small number of logic elements can access hundreds of bits of data. The magnetic shift registration H record, the job-oriented electronic, the writing and the reading of the material in the ferromagnetic material make the physical properties of the magnetic shift registration material f remain unchanged. - The movable magnetic spear multi-register includes a data track formed of a ferromagnetic material and formed of a thin wire or a line segment. This wire can be stored in the direction of the magnetic moment in the magnetic mouth of the magnetic track. 4IBM04142TW.doc The magnetic moment in the magnetic mouth of the track is stored. This wire is magnetized in a small paragraph in the direction of the direction or the other direction. The moving track 'moves in the direction of the current along the way of the current. The electric current moves from the turbulent direction. When the current wall. A strange 4, a torque is generated. This torque shifts the domain J wall rate. It can be very high, in units of 100 to 5 〇〇 m/sec. The magnetic current is two times, and the current of the track (with a series of alternating directions is set to 'over the read and write components. This read orientation, Therefore, the writing device can change the magnetic shortness: the magnetic data required by the registrar memory device [invention] (4) satisfying this requirement, and providing the improved identities required for the magnetic registration registration device The production method of the ° 己 磁 磁 n n 记 n 包含 包含 包含 包含 包含 包含 包含 包含 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠 赠Compared with the memory, the magnetic shift register memory ensures the density enhancement 丨^ the two columns are connected to each other at the bottom end. The solid column is a different material layer formed by the magnetic material or the dielectric material. Produced in a multi-layer stack. In this multi-layer stack structure ^ 4IBM04142TW.do c ^ The following definitions and explanations provide background information about the technical field of the present invention and are intended to facilitate the solution of the present invention. Rain does not limit its scope: a homogeneous magnetic material means a continuous magnetic material quality, which can Has a complex shape, nominally having the same magnetic properties, such as magnetization, magnetic anisotropy, magnetic parenting and magnetic grouping, independent of the state within its quantity. Non-homogeneous magnetic material means a continuous magnetic material quality, It may have a complex shape with magnetic properties such as magnetization, magnetic anisotropy, magnetic alternation and magnetic kinetics, for example due to changes in material combinations, and/or because of a certain physics during the 1 Å, / 儿The program, or the reaction to this material after the material has been deposited, may change with the state within its quantity. Figure 1 (Figures 1A and 1B) illustrates an example of a magnetic memory system. 'It includes the use of a write device (hereinafter also referred to as a write device) 15 and - read a skirt f (hereinafter also referred to as a read component) 2 〇 one magnetic read 妓 2G and write money B Both form one of the read/write elements of system 100. The register 10 includes a subtle data π, preferably made of a magnetic material of the subway. The data track U can be magnetized in a small section = ':: direction or the other direction. The data is stored, for example, at 25, 3G. In the section of the magnetic material of the manufacturing track, ', p magnetization direction or magnetic moment direction, change from one direction to the other in the direction of the quasi-direction, forming a storage data in the data track 11 - storage = Shi:! The shift register 1 includes a data area 35 and a group pull and a joint, and a work center area 42. The data area 35 includes -, 'and holds, ', the magnetic shock of the shell 25, 3D, the length of the proud left advisor The tenth bucket is stored in the form of a storage 40. 4IBM04142TW.doc i I and read the magnetic domain in the central area 42, the storage 40 moves, and the data area 35 It is possible to accommodate all the data areas 35 when the magnetic component 20 is written. 'The magnetic threat thus partially stores the return time of the city, and there is no magnetic. Kind of storage, 4G in the same state of the same state; - medium - not = regardless of the data area 35, ^ = 5 in the inner magnetic, space distribution and extension can be: in the other reading the US section f can During the operation of this area, especially the cross-section or the whole is engraved into the element 15 extension. A body of the data area 35 is moved to the storage area 4G to access data of a particular magnetic skew. The storage location 40 shown in Figure 1, with the capital: real, Xu storage = capital = read the yuan to register 11 10 using more than one Yale's small. For example: ° if ^; == 4 = data area piece 20 and write open du niA> hLL. shift ° main book thief 10 use two read yuan then storage 40 only need: Na domain long deposition, over two In order to perform 11 along the data, and the more the magnetic moments within the moving magnetic bodies 25, 30 of the domain. In a magnetic material of the soil, a current passing through the binding wall, with a current of 4IBM04142TW.doc 12 Γ==When the wall is worn by a wide magnetic nucleus, it becomes a "spin-polarization, although the spin-polarization-current-over-interlacing The wall spans to the next magnetic second, and the enthalpy produces - torque. This torque shifts the scale wall. The wall velocity can be non-^: 蕻: i per second to several hundred meters unit' resulting in reading the magnetic domain, or By writing the device to change its magnetic phase, the process of the desired position may be very short. Multi-motion characteristics can be applied to these magnetic domains, such as magnetic domains 25, 30, 31, at the turn-in The movement of := (or the displacement upper ίίί column 'data area 35 initially resides in the magnetic shift register 1; the display - ϋ is the central area 42)' and there is no magnetic rotation in the storage 40. Figure 2C ^ poor material area 35 is completely resident on the right side of the magnetic shift register 1 = = In order to write data to a specific magnetic binding, such as the magnetic nozzle 31, the application to the multi-register 10 is performed to move the magnetic nozzle 31, and the writing device i5 ^ ^ When current is applied to the magnetic shift register 10, all magnetic domains in the data area 35 are moved. The magic gate movement is based on the intensity and direction of the current and the application of electricity. In one embodiment, a specific shape (intensity versus time current pulse is applied to move the magnetic squeak in the storage region). A series of current surges are applied. The amount or step of moving the magnetic domain. Therefore, the displacement portion of the data region 35 is 205 (Fig. 2A) is advanced (displaced or moved into) the storage region 4 °. According to the applied current = direction, the length of the current pulse can be in the range of several hundred picoseconds to tens of nanoseconds, and is based on the intensity of the current. The stronger the current intensity, the required current pulse 4IBM04l42TW.doc, The degree of the heart current pulse is fine, and can be adjusted to the power of the wall; the detailed motion to the state of the state - (4) does not need to exceed the data of the special magnetic field, such as the magnetic domain 25 , the combined application is 1〇, moving with _5, 取 衷 置 20 aligned. Data area 35 ... only enters (shifts into or moves in) storage area 4G. 1 Large displaced part is pushed 2 2 The reading device 2 and the writing device 15 are formed - '#_ definition_reading device 2〇 and ί people here Ζ 彡 彡 彡 彡 彡 在 实施 实施 实施 实施 实施 实施 实施 实施 实施 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 磁 磁 ' 磁 磁 磁 磁 磁Other circuits include the reading element 20 and the material of the writing device 15, the fine current shifting, the current pulse to be supplied by the magnetic riding, and the magnetic shift registering means. In the embodiment, the control circuit is a two-way process. The magnetic shift register ι is preferably used to maximize the storage capacity of the memory device. In the embodiment shown in FIG. 1, the magnetic shift register 10 is used to read the components. 20 and the wafer g occupied by the write component 15 is determined. Therefore, the magnetic shift register 1 includes the data track u from the wafer surface, and the length in the vertical direction of 11 determines the storage of the magnetic shift register 10. Since this vertical extension may be parallel to the data track u 4IBM04142TW.doc 1324405 can be stored in the magnetic shift register. In terms of the area of the dip, according to the main store, more bits are stored. The book can be compared with the conventional solid state memory, although the data element 20 of the magnetic shift register and the plane of the write element 15 (the circuit surface is large = hang; for reading a larger density, or simply manufacturing this has For example, it can be tilted at an angle to the surface device 'Every lean track U. FIG. 3 refers to FIG. 2 (FIGS. 2A, 2B and 2C). 4 ☆ Book 10 - Method _. Reference H = Operation Magnetic Transfer Note _ Mosquito will move the magnetic to the device "310" memory system (10) and also move the desired direction of the magnetic | 2 of 5. In Figure 2A, the magnetic domain 25 is on the left side of the 耷Λ = 可 可 可 , In this case; 25 moves to the right side and can use a negative current milk to move the magnetic nozzle 25 to the magnetic == sr can be a current of 45 + as a pulse or a series of pulses, 乂 two people - position 兀The way to move the magnetic domain 25. It is also possible to change the length of the period during the pulse (current in the pulse versus time), causing the magnetic bee 25 in the lean region 35 to increase during the application of a pulse. Move. At block 32, the data area 3 1 is moved by the current 45. The magnetic stress 25 stops at the appropriate position; 15 or the reading device 20 (block 325). 4A, 4B), another magnetic shift register 1 can be similar to the magnetic shift register of Figs. 1 and 2, 10' but including alternating magnetic layers to position the magnetic nozzles within the magnetic register 10A. The magnetic transfer possible position 4 old M04142TW.doc 15 is used as a clamp to prevent the assigned magnetic domain drift. The layered layer can contain many ferromagnetic or ferrimagnetic materials, which are mainly based on their magnetization (per unit The magnetic moment of the capacity, the number of magnetic alternating springs, the magnetic anisotropy and the size of the magnetic group are appropriately selected. The compatibility between the four types and the process used to manufacture the magnetic shift register is also affected. The choice 。<, as shown in the area 405 of the magnetic shift register 10A, can be used as the magnetic domain 410, 420, and a different type of magnetic material can be used as the alternating magnetic 415, 425. In another embodiment, multiple types of magnetic materials can be used according to different material units. ^ In the register 〇A, different ferromagnetic layers are introduced, and the minimum local volume is established, similar to the "bit energy well", so that The domain walls between the opposite dipole domains are in the alternating ferromagnetic layers 410, 415, etc. The boundaries are each aligned. Thus the extent and size of the two domains can be determined by the thickness of the magnetic layer. A current tap 45 applied to the magnetic shift register 10A results in domains 410, 415, 420, 425 within region 405, Moves by $ in the direction of current 45. However, unless current pulse 45 has sufficient energy and time, magnetics 410, 415, 420, 425 do not move across the boundaries between two different types of magnetic materials. - Sub-bit movement without allowing the magnetic domain to drift past its proper position. In addition to locating the possible locations of the magnetic domains, the use of different magnetic material layers also allows for a higher tolerance to current intensity and time. In this example, the portion of the magnetic flux register 1A passing through the writing device 15 and the reading device 20 may be a homogenous material, as shown in FIG. 4C, or a different magnetic material layer, as shown in FIG. M04142TW_doc 16 1324405 Alternating magnetic regions 410, 420, etc. and the lengths of 415, 425, etc. may be different β ^ ' although in the magnetic shift registration II 10 , each type of magnetic region 41 〇; 420 4 and 415, 425 are the same length Preferably, but this is not important, and these degrees can be slightly changed in the magnetic shift register 1GA. What is important is that the current introduced by the current pulse introduces the magnetic stress to a state of 2 ambiguity. 〃 Move another magnetic shift made of homogenous magnetic material, 1GB, which can change the width or the standard of the data track n. Actually, the magnetic shift register (10) is shaped to 'regional small position. It can be built in the magnetic shift register 1〇Β. In the forming method of Fig. 5, the introduction of such as 5G5 _ magnetic material · 05, _ can be placed or filled with metal or insulating material. These indentations 505, 5G6 can be uniformly t-interval between the gaps, and the unevenness of the inter-grid. Indentation, 506 is aligned with each other on either side of the beryllium rail 511. - The two sides of the strip 511 are made with indentations. Magnetic shift register

Si Ϊt —錢壓痕5〇5、506係用來定位^^ 而歷痕僅在資料軌511的一;嘉叮坦糾口执认―^ 卜或更多 邊以者軌道作出更密集的定位點)。 早 實施例中’壓痕邮、506以突出物代替,1 —貝料執511的寬度係區域性的增加而非減少。所需的是: 4IBM04142TW.doc 1324405 藉由改變疇壁的區域位能而定位磁疇的一手段。 域交i另 磁移註冊器應不需要均勻地以壓痕或突出物埴補, 或沿著其長度交替之各磁鳴。磁移註翻⑽僅需填補足 夠數量的定位點,使得資料區域35僅在每一電流脈衝, 移動-個增加量’或某特定的增加量。舉例而言,每_ 磁疇中僅一個定位點即足夠,其N可為一個以上。 儲存處40可包含或可不包含這些壓痕。穿越寫入装 置15及讀取裝置20的磁移註冊器10B的底部51〇可能^ 含或可能不包含這些壓痕505、506。 在另一貫施例中’磁移註冊器10B係以不同鐵磁性材 質與壓痕505、506的結合製造而成,結合了磁移註冊器 10A及10B的特徵。 ° 一般而言,磁移註冊器10的資料執U係經形成包含 石夕與/或介電材質交替層的一多層堆疊製造而成。具有大 約0. 5至10微米高,1〇〇奈米X 1〇〇奈米的橫切面之介 層洞在此矽或介電交替層的多層堆疊中蝕刻。雖然在此提 供5+多尺寸’需要知道的是’這些尺寸僅供參考,本發明 並不限制於這些數值及尺寸。舉例而言,介層洞的高度之 範圍可界於大約0.5微米及大約10微米之間。介層^的 橫切面可界於大約10奈米X 1〇奈米及大約1微米x i 微米之間。這些介層洞接著以鐵磁性或亞鐵磁性材質填 補,形成圖1之磁移註冊器10之資料執11的資料區域35 及儲存處40。 4IBM04142TW.doc 18 一介層洞可具有橢圓形、長方形或正方形的橫切面。在 -一單一矽層的情況下’存有一種根據drams所使用的溝槽-電容器,建立這些尺寸的介層洞的製造技術。製造這些4 ,電容器的習知技術已達到大約1至1Q微米深及大約〇 J 微米橫切面的尺寸。參考美國專利號6,544,838·; 6’ 284’ 666 ; 5, 811,357 ;以及 6345399,包含在此供參考。 這些製造技術係用來製造磁移註冊器10的資料軌,如 圖 6、7、8、9、10、11、12 及 13 所示。 圖6(圖6A、6B、6C、6D)說明資料軌η之底部(中 央區域42)之形成之一實施例。一絕緣體6〇5,例如矽氧 化物或矽氮化物形成有一大約3〇〇奈米的厚度。施加光阻 =劑至絕緣體605且以一長方形610的格式圖案化。利用 標準钱刻技術’將長方形61〇侧一大約2⑼奈米的深 度,以形成溝槽615。發氮化物的钱刻製程的額外詳情請 參考美國專利號6, 051,504,而二氧化㈣侧製程的額 外詳情請參考美國專利號5,811,357,包含在此供參考。 圖6C中,溝槽615以一材質填補,以形成方塊62〇。 ^塊620可包含,例如’自鐵磁性材質及亞鐵磁性材質之 群組所選之一同質磁性材質,且對應至中央區域42。在此 情況下’方塊620被平坦化且被拋光。用於方塊62〇的鐵 磁性或亞鐵磁性材質之範例為一透磁合金、錦鐵合金、鈷 鐵合金、以-或多個錦、録及鐵所組成之—合金,以及以 一或多個鎳、銘及鐵與任一或多個m終、妃及 鉑所組成之一合金之群組。或者,方塊62〇可以一非同質 磁性材貝形成,,如,包含類似圖中之區域仙、 及4巧、425所不之不同鐵磁性或亞鐵磁性材質的交替區 域。这些ϋ域可以在圖6巾沒相示的額外程序製造而 4 旧 M04142TW.doc 19Si Ϊt — money indentation 5〇5, 506 is used to locate ^^ and the trace is only on the data track 511; Jiayutan confession ——^ Bu or more sides to make more dense positioning point). In the early embodiment, the indentation, 506 was replaced by a protrusion, and the width of the 1 - beetle 511 was increased rather than reduced. What is required is: 4IBM04142TW.doc 1324405 A means of locating magnetic domains by changing the energy of the region of the domain wall. The magnetic flux register should not need to be uniformly patched with indentations or protrusions, or alternately oscillated along its length. The magnetic shift (10) only needs to fill a sufficient number of anchor points such that the data region 35 moves by an amount of increase or a certain amount of increase per current pulse. For example, only one positioning point per _ magnetic domain is sufficient, and N may be more than one. The storage 40 may or may not contain these indentations. The bottom 51 of the magnetic shift register 10B that traverses the writing device 15 and the reading device 20 may or may not contain these indentations 505, 506. In another embodiment, the magnetic shift register 10B is fabricated with a combination of different ferromagnetic materials and indentations 505, 506, incorporating the features of the magnetic shift registers 10A and 10B. ° In general, the data transfer U of the magnetic shift register 10 is fabricated by forming a multi-layer stack comprising alternating layers of stone and/or dielectric materials. The cross-section of the cross-section having a height of about 0.5 to 10 micrometers and 1 nanometer X 1 nanometer is etched in the multilayer stack of the tantalum or dielectric alternating layers. Although 5+ multiple sizes are provided herein, it is to be understood that these dimensions are for reference only, and the present invention is not limited to these values and dimensions. For example, the height of the via may be in the range of between about 0.5 microns and about 10 microns. The cross-section of the interlayer can be between about 10 nm X 1 nanometer and about 1 micron x i micron. These via holes are then filled with ferromagnetic or ferrimagnetic materials to form the data area 35 and the storage location 40 of the data file 11 of the magnetic shift register 10 of Fig. 1. 4IBM04142TW.doc 18 A via can have an elliptical, rectangular or square cross section. In the case of a single layer, there is a manufacturing technique for establishing vias of these sizes based on the trench-capacitors used by the drams. Conventional techniques for making these 4, capacitors have reached dimensions of about 1 to 1 micron deep and about 〇 J micrometer cross sections. Reference is made to U.S. Patent Nos. 6,544,838, 6, to 284, 666, 5, 811,357, and 6,345, 399, incorporated herein by reference. These manufacturing techniques are used to fabricate the data track of the magnetic shift register 10 as shown in Figures 6, 7, 8, 9, 10, 11, 12 and 13. Fig. 6 (Figs. 6A, 6B, 6C, 6D) illustrates an embodiment of the formation of the bottom (central region 42) of the data track η. An insulator 6?5, such as a tantalum oxide or tantalum nitride, is formed to have a thickness of about 3 nanometers. A photoresist = agent is applied to the insulator 605 and patterned in a rectangular 610 format. The rectangle 61 is flanked by a depth of approximately 2 (9) nanometers using a standard engraving technique to form a trench 615. For additional details of the niobium enrichment process, please refer to U.S. Patent No. 6,051,504, and the U.S. Patent No. 5,811,357, the disclosure of which is incorporated herein by reference. In Figure 6C, the grooves 615 are filled with a material to form a block 62. The block 620 can comprise, for example, a homogenous magnetic material selected from the group of ferromagnetic materials and ferrimagnetic materials, and corresponding to the central region 42. In this case, the square 620 is flattened and polished. An example of a ferromagnetic or ferrimagnetic material for the block 62A is a permalloy, a brocade alloy, a cobalt-iron alloy, an alloy composed of - or a plurality of brocades, and a nickel, and one or more nickels. , Ming and the group of iron and one or more of the alloys of m, yttrium and platinum. Alternatively, block 62 can be formed from a non-homogeneous magnetic material, such as an alternating region of a similar ferromagnetic or ferrimagnetic material, such as the area in the figure, and 4, 425, and 425. These fields can be manufactured in the additional program shown in Figure 6. 4 Old M04142TW.doc 19

Claims (1)

十、申請專利範圍: 包含: Ϊ. 一種製造包含一資料軌之一磁移暫存器 在一絕緣基材蝕刻一溝槽; 》 、 ’ 以 -溝槽材質填補該溝槽,以形成—中央區域. 形成-多層堆4結構,於該絕緣基該槽材 =成穿過财層堆秋狀二介翻,區 域,以及 以一* 磁性材备填補該二介層洞,而形成—資料區域及一儲 ίί:使該資料區域、該中央區域、以及該儲存處形成 琢負料軌。 2. ^明求項ϊ所述之方法,其中該溝槽材質包含一同性 姑皙。 3·如請求項2所述之方法,其中該同f磁性材質係選自於: 由鐵磁性材質及亞鐵磁性材質所組成之群組。 4. 如请求項3所述之方法,其中該同質磁性材質係選自下列 各項所組成之群組:一透磁合金、一鎳鐵合金、一钻鐵合 金、以一或多個鎳、鈷及鐵所組成之一合金、以及以一或 夕個鎳、銘及鐵與任一或多個硼、錯、給、鉻、把及翻所 形成之一合金。 5. 如請求項1所述之方法,其中該溝槽材質包含一異質磁性 材質。 6.如請求項5所述之方法,其中該異質磁性材質係選自於: 4 旧 M04142TW.doc 43 月求項16所述之方法,其中材質B包含氮化矽(Si3N4)。 1所述之方法’更包含形成-上倾罩層,於該 日隹®結構及該二介層洞之上。 9 ^清求項18所述之方法’射該上保護罩層包含—介電材 20 如5齋求項18所述之方法,其中該上保護罩層包含氮化矽。 21. 法,其中該纖概厚度大約介 22. ίί求項12戶斤述之方法 ,其中材質Α及材質Β具有不同钱 X k率,對應一先前所選之钱刻劑。 Ιίί^ i2所述之方法,其中材質A及材質B之厚度對應 、料軌中之各轉壁(domain wall)分隔物。 24. 如凊求項23所述之方法,其中材質A及材質B之該厚度類 似,且大約介於0. 5到10微米之間。 又 25. 如請求項23所述之方法,其中材質A及材質B之該厚度不 同。 予又 以 26.如請求項11所述之方法,更包含飯刻材質a及材質b, 4IBM04142TW.doc 45 41324405 形成對應該資料轨中之各壽壁之一系列缺口。 27.如明求項11所述之方法,更包含钱刻材質八及6,以形 對應該資料軌中之各疇壁之一系列突起物。 28.如請求項1所述之方法,其中形成該二介層洞包含選擇性 地餘刻該二介層洞。X. Patent application scope: Contains: 一种. A magnetic shift register containing one data track etches a trench on an insulating substrate; ”, 'fills the trench with a trench material to form a central Area. Forming - a multi-layer stack 4 structure, in which the trough material = through the autumn layer of the financial layer, the region, and a * magnetic material to fill the second intervening hole, forming a data area And a storage ίί: causing the data area, the central area, and the storage to form a load rail. 2. The method of the present invention, wherein the groove material comprises a homosexual aunt. 3. The method of claim 2, wherein the same magnetic material is selected from the group consisting of a ferromagnetic material and a ferrimagnetic material. 4. The method of claim 3, wherein the homogeneous magnetic material is selected from the group consisting of: a permalloy, a nickel-iron alloy, a diamond alloy, one or more nickel, cobalt, and An alloy consisting of iron, and alloyed with one or more of nickel, iron and iron, and one or more of boron, erroneous, giving, chrome, turning and turning. 5. The method of claim 1, wherein the trench material comprises a heterogeneous magnetic material. 6. The method of claim 5, wherein the heterogeneous magnetic material is selected from the group consisting of: 4, M04142, TW. The method of claim 16, wherein the material B comprises tantalum nitride (Si3N4). The method of 1 further includes forming an up-damp layer over the corrugated® structure and the second via. The method of claim 18, wherein the upper protective cover layer comprises a dielectric material, such as the method of claim 18, wherein the upper protective cover layer comprises tantalum nitride. 21. The method, wherein the thickness of the fibril is about 22. ίί, the method of 12 households, wherein the material Α and the material Β have different money X k rates, corresponding to a previously selected money engraving agent. Ιίί^ The method of i2, wherein the thickness of the material A and the material B correspond to each of the domain wall partitions in the track. The thickness of the material of the material A and the material B is similar, and is between 0.5 and 10 microns. 25. The method of claim 23, wherein the thickness of the material A and the material B are different. 26. The method of claim 11, further comprising a meal material a and a material b, 4IBM04142TW.doc 45 41324405 forming a series of gaps in each of the life walls in the data track. 27. The method of claim 11, further comprising engraving materials 8 and 6 to shape a series of protrusions of each of the domain walls in the data track. 28. The method of claim 1 wherein forming the two vias comprises selectively engraving the vias. 29.如請求項28所述之方法,其中該介層洞包含各内侧壁;且 更包含於該等内側壁上形成一絕緣基材。 30·如請求項29所述之方法,其於該軸繼上職該絕緣基 材包含氧化該等内側壁。 31. 如請求項30所述之方法,其中該絕緣基材包含二氧化矽。 32. 如請求項31所述之方法,其中該絕緣基材之厚度大約介於 3奈米到30奈米之間。29. The method of claim 28, wherein the via comprises inner sidewalls; and further comprising forming an insulating substrate on the inner sidewalls. 30. The method of claim 29, wherein the insulating substrate on the shaft comprises oxidizing the inner sidewalls. The method of claim 30, wherein the insulating substrate comprises cerium oxide. The method of claim 31, wherein the insulating substrate has a thickness of between about 3 nm and 30 nm. 33·如請求項1所述之方法,其中形成該二介層洞包含形成且 有一大致方形的橫斷面之該二介層洞。 八 34. 如請求項丨所述之方法,其中形成該二介層洞包含形成具 有一大致長方形的橫斷面之該二介層洞。 35. 如明求項1所述之方法,其中形成該二介層洞包含形成具 有一大致圓形的橫斷面之該二介層洞。 ^ 4IBM04142TW.doc 46 丄JZ呼410 含: 钱刻一絕緣基材,以形成二低溝槽; 以一導電溝槽材質填補該二低溝槽,而於該資料執之一上 部分形成複數個傳導墊; 於該絕緣基材及該二低溝槽上,形成一多層堆疊結構; 形,穿過該多層堆疊結構之二介層洞,以暴露該二低溝槽; 於^多層堆疊結構形成一上溝槽,連接該二介層洞;以及 以磁性材質填補該二介層洞及該上溝槽,而形成該資料 執之一資料區域、一中央區域、以及一儲存處。33. The method of claim 1, wherein forming the two vias comprises forming the two vias having a substantially square cross section. The method of claim 3, wherein forming the two vias comprises forming the second via having a substantially rectangular cross section. The method of claim 1, wherein forming the two via holes comprises forming the second via holes having a substantially circular cross section. ^ 4IBM04142TW.doc 46 丄JZ呼410 contains: money engraved an insulating substrate to form two low grooves; fills the two low grooves with a conductive groove material, and forms a plurality of parts on the data a conductive pad; forming a multi-layer stack structure on the insulating substrate and the two low trenches; forming a second via hole through the multi-layer stack structure to expose the two low trenches; Forming an upper trench connecting the two via holes; and filling the two via holes and the upper trench with a magnetic material to form a data region, a central region, and a storage portion of the data. 崎護罩層,於 介電 46· g求項45所述之方法’其中該底部保護罩層包含一 矽氮化 1請求項46所述之方法’其中該底部保護罩層包含 48. 其找—罩層 之厚度大約 成該二介層•形 4IBM04142TW.doc 48 1324405 5〇·如請求項43所述之方法,其中形成該二介層洞包含使用一 非選擇性蝕刻製程,蝕刻該多層堆疊結構中的該二介層洞。 51·如5月求項50所述之方法,其中該介層洞包含内側壁;以及 其中形成該二介層洞更包含使用一選擇性蝕刻製程,藉由 比餘刻材質Β快的速度蝕刻材質A,而選擇性地姓刻該曰介 層洞之各内側壁。 同質磁性材質填補該 52·如請求項51所述之方法’更包含以一 二介層洞。 鐵磁性材質及亞鐵磁性材質之群組。 53.如請求項52所述之方法,其中該同質磁性材質係選自包含 之二導體介層洞,以暴露該二低溝槽。 54.如請求項44所述之方法, 更包s形成穿過該多層堆疊結構 導電材質填補該二導 55.如請求項54所述之方法,更包含以 體介層洞。 該二低槽包她The method of claim 45, wherein the bottom protective cover layer comprises a method of nitriding 1 claim 46, wherein the bottom protective cover layer comprises 48. The method of claim 43 wherein forming the two vias comprises etching the multilayer stack using a non-selective etch process. The method of claim 43 is the method of claim 43. The second via in the structure. 51. The method of claim 50, wherein the via comprises an inner sidewall; and wherein forming the via also includes using a selective etch process to etch the material at a faster rate than the etched material A, and selectively engraving the inner side walls of the interlayer hole. The homogenous magnetic material fills the 52. The method described in claim 51 further includes a two-layer hole. Group of ferromagnetic materials and ferrimagnetic materials. The method of claim 52, wherein the homogenous magnetic material is selected from the group consisting of two conductor vias to expose the two low trenches. 54. The method of claim 44, further comprising forming a conductive material through the multilayer stack structure to fill the second guide. 55. The method of claim 54, further comprising an intervening via. The second low slot packs her 含: 在一絕緣基材敍刻一溝槽; 該絕緣 4IBM04142TW.doc 49 .以一溝槽材質填補該溝槽,以形成一中央區域; 形成一均勻層於該絕緣基材及該溝槽材質上; 形,穿過該均勻層之二介層洞,以暴露該中央區域;以及 以父錯磁性材質層填補該二介層洞,而形成一資料區域及 一儲存處,使得該資料區域、該中央區域、以及該儲存處 形成該資料軌。 58· ίΐ求項57所述之方法,其中以交錯磁性材質層填補該二 ”層洞包含利用至少二交錯材質,填補每一該介層洞。 59· 項58所述之方法,其中形成該二介層洞包含使用- 選擇性餘刻製程,银刻該均勻層中之該二介層洞。 所述之方法,其中該二交錯材質係選自包含鐵 磁性材質及亞鐵磁性材質之群組。 61之57所述之方法’其中該均勻層具有大約1〇微米 10 62.如請求項57所述之方法 微米之厚度。 ,其+該均勻層具有至少大約 63.如請求項57所述之方法, 層上。 更包含形成一保護罩層於該均勻 64.如請求項57所述之方法 ,其中該保護罩層包含石夕氮化物。 4 旧 M04142TW.doc 50 1324405 65. 如請求項57所述之方法,其中蝕刻該絕緣基材中之該溝槽 包含於該絕緣基材將該溝槽之形狀圖案化。 66. 如請求項57所述之方法,其中該均勻層包含一材質,係選 自以矽及一介電材質所組成之群組。 67. 如請求項66所述之方法,其中該均勻層包含一材質,係選 自以二氧化矽及矽氮化物所組成之群組。The method comprises: engraving a trench on an insulating substrate; the insulating 4IBM04142TW.doc 49. filling the trench with a trench material to form a central region; forming a uniform layer on the insulating substrate and the trench material Forming a second via hole through the uniform layer to expose the central region; and filling the second via hole with a parent magnetic material layer to form a data region and a storage region, such that the data region, The central area, and the storage area, form the data track. The method of claim 57, wherein filling the two" layer holes with a staggered magnetic material layer comprises filling each of the via holes with at least two interlaced materials. 59. The method of claim 58, wherein the forming The second via hole comprises a use-selective engraving process for engraving the two via holes in the uniform layer. The method, wherein the two interlaced materials are selected from the group consisting of ferromagnetic materials and ferrimagnetic materials. The method of claim 57, wherein the uniform layer has a thickness of about 1 μm 10 62. The thickness of the method of claim 57, wherein the uniform layer has at least about 63. The method of the present invention, further comprising forming a protective cover layer in the uniforming method of claim 57, wherein the protective cover layer comprises a stone nitride. 4 Old M04142TW.doc 50 1324405 65. The method of claim 57, wherein etching the trench in the insulating substrate comprises patterning the trench in the insulating substrate. The method of claim 57, wherein the uniform layer comprises a Material, selected from The group consisting of a dielectric material. 67. The method of claim 66 request, wherein the conformal layer comprises a material selected from the group from the group of silicon dioxide and silicon nitride in the composition of the. 4IBM04142TW.doc 514IBM04142TW.doc 51
TW93134683A 2004-11-12 2004-11-12 Method of fabricating data tracks for use in a magnetic shift register memory device TWI324405B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93134683A TWI324405B (en) 2004-11-12 2004-11-12 Method of fabricating data tracks for use in a magnetic shift register memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93134683A TWI324405B (en) 2004-11-12 2004-11-12 Method of fabricating data tracks for use in a magnetic shift register memory device

Publications (1)

Publication Number Publication Date
TWI324405B true TWI324405B (en) 2010-05-01

Family

ID=45074165

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93134683A TWI324405B (en) 2004-11-12 2004-11-12 Method of fabricating data tracks for use in a magnetic shift register memory device

Country Status (1)

Country Link
TW (1) TWI324405B (en)

Similar Documents

Publication Publication Date Title
US6955926B2 (en) Method of fabricating data tracks for use in a magnetic shift register memory device
US7108797B2 (en) Method of fabricating a shiftable magnetic shift register
US7416905B2 (en) Method of fabricating a magnetic shift register
JP6271350B2 (en) Magnetic memory, shift register memory, and magnetic memory manufacturing method
EP1622161B1 (en) Vortex magnetic random access memory
JP4945721B2 (en) Magnetoresistive element and magnetic memory device
JP2006237183A (en) Method of manufacturing data track to be used in magnetic shift register memory device
TWI309415B (en) System and method for storing data in an unpatterned, continuous magnetic layer
TWI389126B (en) System and method for transferring data to and from a magnetic shift register with a shiftable data column
KR101288477B1 (en) Information storage device using magnetic domain wall moving
CN101751991B (en) Resistance-change memory device
JP6093146B2 (en) Magnetic memory having fine magnetic wires and writing method thereof
US7247510B2 (en) Magnetic recording medium and magnetic memory apparatus
CN101178929A (en) Data storage device using magnetic domain wall movement and method of operating the same
JP2006270069A (en) Magnetoresistance effect element and high-speed magnetic recording device based on domain wall displacement by pulse current
JP2009536420A (en) Data storage apparatus and method thereof
JP4138254B2 (en) Memory cell structure and method of manufacturing the same
KR20100094974A (en) Magnetic memory element, method for driving the magnetic memory element, and nonvolatile storage device
JP4799983B2 (en) Magnetic memory, magnetic memory drive circuit, magnetic memory wiring method, and magnetic memory drive method
JP2012038884A (en) Magnetic memory element and method for manufacturing magnetic memory element
KR20100058476A (en) Method and apparatus for fabricating sub-lithography data tracks for use in magnetic shift register memory devices
KR20110038626A (en) Magnetic memory element and its driving method and nonvolatile memory device
JP5526707B2 (en) Driving method of information storage element
TWI324405B (en) Method of fabricating data tracks for use in a magnetic shift register memory device
JP4817616B2 (en) Magnetoresistive element and memory device using the magnetoresistive element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees