TWI323851B - Method for transferring a substrate in a processing system and computer-readable medium - Google Patents

Method for transferring a substrate in a processing system and computer-readable medium Download PDF

Info

Publication number
TWI323851B
TWI323851B TW93113249A TW93113249A TWI323851B TW I323851 B TWI323851 B TW I323851B TW 93113249 A TW93113249 A TW 93113249A TW 93113249 A TW93113249 A TW 93113249A TW I323851 B TWI323851 B TW I323851B
Authority
TW
Taiwan
Prior art keywords
processing chamber
change
chamber
robot
transfer processing
Prior art date
Application number
TW93113249A
Other languages
Chinese (zh)
Other versions
TW200508937A (en
Inventor
Dongchoon Suh
Akihiro Hosokawa
Hung The Nguyen
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW200508937A publication Critical patent/TW200508937A/en
Application granted granted Critical
Publication of TWI323851B publication Critical patent/TWI323851B/en

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Description

1323851 般係關於用於判 的方法與設備。 定一半導體 if年ί月红修正替換頁 【發明所屬之技術頜域】 本發明之該等實施例一 製程系統中相對之處理室位置 【先前技術】 半導體基材處理一般係對基材施予數道 材上形成數個元件、導體及絕緣體。此等製程 般係於一經裝設之製程處理室中,用以執行該 一單一步驟。為能有效完成所有的製程步雜序 將數個製程處理室耦接至中央傳送室,其内設 以利於將基材傳送於該等製程處理室間。具有 半導趙製程平台一般廣知為群組工具(cluster 應用小松公司(AKT)的PECVD、PRODUCER®、 以及加州聖塔克拉拉市之應用材料公司 ENDURA®製程平台》 一般而言,群組工具至少包含一具有一機 中之中央傳送處理室。該傳送處理室邊係由一 處理室環繞之。該製程處理室一般係用於處理 如,執行不同的製程步驟如蝕刻、物理氣相沉 植、光微影及其他製程《該傳送處理室有時係 介面(factory interface),其中該工斑介面内設 除式之基材儲存匣盒,每一夹盒都可裝數片基 將基材傳送於該傳送處理室的真空環境以及該 製程以於基 之每一者一 製造製程之 列,一般會 有一機械臂 此等配置之 tool),例如 CENTURA® 所上市之 械臂設於其 或多個製程 該基材,例 積、離子佈 連接至工廠 有數個可移 材。為便於 工廠介面之 5 1.3238511323851 General methods and equipment for judgment. The invention relates to the position of the processing chamber in the processing system of the first embodiment of the present invention. [Prior Art] The processing of the semiconductor substrate is generally performed on the substrate. Several components, conductors and insulators are formed on several materials. These processes are typically employed in a process chamber that is installed to perform the single step. To efficiently perform all of the process steps, a plurality of process chambers are coupled to the central transfer chamber to facilitate transport of the substrate between the process chambers. Semi-guided process platforms are generally known as group tools (cluster application Komatsu (AKT) PECVD, PRODUCER®, and Applied Materials ENDURA® process platform in Santa Clara, Calif.) In general, group tools There is at least one central transfer processing chamber having a machine. The transfer processing chamber is surrounded by a processing chamber. The processing chamber is generally used for processing, for example, performing different process steps such as etching, physical vapor deposition. , photolithography and other processes "The transfer processing chamber is sometimes a factory interface, wherein the work spot interface is provided with a removable substrate storage cassette, each of which can hold a plurality of substrates. The vacuum environment conveyed to the transfer processing chamber and the process for each of the manufacturing processes, generally having a robotic arm configured in such a manner, for example, the arm of the CENTURA® is located at or above The process of the substrate, the sample, the ion cloth is connected to the factory and there are several movable materials. For the convenience of the factory interface 5 1.323851

4怦丨月七曰修正替換頁I4怦丨月七曰Revision replacement page I

~ ·· ~ _ ·-… I ___P 大致氛圍的環境之間,會於該傳送處理室及該工廠介 設置一承載室。 於平面顯示器製程中,玻璃基材(如該些用於製 腦螢幕、大型視窗電視及PDA顯示器以及手機等)已 的因平面顯示器的需求而逐漸增大。例如,用於平面 器製造的玻璃基材不過幾年已由550mmx650mm增 1500mmxl800mm,且在未來幾年内預期將可超過四平 尺。 為提供較大面積之基材,製程系統必須加大尺4 如於典型群組工具中,一用於將上述大型基材移動於 製程處理室間之傳送處理室的内徑已由約80英时增 135英吋,藉以容納基材尺寸。該較大傳送處理室所 的尺寸及質量會使此等處理室對於熱效應所導致的變 為敏感。處理室變形會致使該環繞之處理室的位置相 該傳送處理室中心而由基材傳送期間機械臂之移動發 變。 當該製程處理室的位置移動時,該傳送處理室及 程處理室之間傳送的基材定位之正確性及再現性會降 某些情況下,基材定位的正確性及再現性會超過基材 的容忍度,亦即確保良好製程結果及避免基材傳送期丨 如,該製程處理室取出一基材時,因一基材錯置於該 處理室内之基材支撐件上或基材末端作用器上)受損 的容忍度。由於元件密度及基材尺寸的增加,形成於 寸基材上的元件數目也會增多,因此各基材的價值也 面間 造電 明顯 顯示 加至 方公 。例 該等 加至 增加 形更 對於 生改 該製 低。 定位 ί (例 製程 所需 大尺 因此 6 ff年ί月夂El修正替換頁 提高。因此,料 良率昏北五 的損傷或因基材錯置所導致不合的低 艮早备非吾人樂見。 當環繞•該傳误虑 虚 、處理至的不同處理室溫度變化時’該製 例如,配、、處理室之間的相對位置改變會更為嚴重。 .^ 乂執行電槳增強化學氣相沉積(PECVD)製程的 處理室可能合4 '作在約攝氏4〇〇度,該溫度可能會將鄰接 於該傳送處理室之一 面的溫度加熱至約攝氏75度。若該 PECVD劁赵由播Λ 至的溫度因維修或其他理由而降低時,所 降低的熱負荷會導较後-达南m 一 f导致傳送處理室收縮,而改變了該面相對 於該傳送處理室之中心線的位置與方纟。其他經定位於該 傳送處理室周圍的面可能會也會受類似影響。 於穩定狀態的熱條件下,該製程處理室及傳送處理室 之間的相對位置係已知的,藉以讓機械臂移動作校準。然 而’該等處理室之任一熱參數的改變都會造成任何處理室 中基材交換位置移離其已校準位置,因而大幅增加基材傳 送期間錯置的可能性。不正確定位的基材在傳送期間相當 容易受到損傷,且會提高元件製造時的缺陷率。因此,若 能了解或預測該等處理室間相對位置的改變將可確保基材 作適當放置。 因此’業界亟待一種用以判定一基材之交換位置的方 法與設備’以確保群组工具中重複傳遞基材的正確性。 【發明内容】 本發明係提供一種用於判定一製程處理室中一基材 7 1323851 I月夕曰修正替換頁 交換位置的方法與設備。於一實施例中,一種判定一製 系統中一基材交換位置的方法包括判定一製程處理室内 初始交換位置,以及辨析該交換位置的變動。該辨析步 可進一步包含感應一傳送處理室(具有該製程處理室與 相耦接)之一面之溫度的改變、感應該系統狀態的改變或 應該製程處理室之位置改變及除前述外之其他改變。 【實施方式】 第1圖係描述一經配置用於判定基材交換位置以 加基材置放正確率及再現性之半導體製程系統100之一 施例,尤其係製程系統1 0 0歷經熱負荷的改變。該例示 製程系統100 —般包括一傳送處理室102,其係由一或 個製程處理室104所環繞;一工廠介面110以及一或多 真空隔絕處理室106。於第1圖之該實施例中,一真空 絕處理室 106係置於該傳送處理室 102以及該工廠介 1 1 0間,以利於基材傳送於該傳送處理室1 02中所維持 一真空環境以及該工廠介面110中一實質週圍環境中。 傳送機器人108係中心地設於該傳送處理室102中以將 材移動於該等處理室104、106之間。一可受惠於本發明 製程系統的範例係應用小松(AKT)公司(其為加州聖塔 拉拉市美商應用材料之分公司)所上市之25K電漿增強 化學氣相沉積製程系統。雖然用於決定一基材交換位置 方法及設備係參照前述例示性之製程系統1 〇〇來作說明 但應瞭解本發明亦適用並可實施於其他具不同配置結構 程 驟 其 感 增 實 性 多 個 隔 面 之 基 之 克 型 之 9 之 8 ff年ί月夂日修正替換頁 製程系統,且本發明係特別適用在具有易受溫度變化而麩 使其相對位置發生改變之系統的處理室。 該工廠介面110 一般係存放一或多個基材儲存氐 H4,每一儲存S Η4係經配置以儲存數個基材112於其 中。該工廠介δ "0 一般係維持在或接近大氣壓力。於〆 實施例中,經過濾之空氣係提供至該工廠介面ιι〇以將该 工薇介面11〇内之粒子丨農度降至最低,並對應地提高基讨 潔淨度。 該傳送處理室1〇2係由一適用於處理及/或清潔化學 物之結構性材料所製造,例如鉬或合金鋼。於一實施例中, 該傳送處理至1 〇2係由單一鋁合金塊所製成。該傳送處理 室102可界定出一可排空之内體積128,基材係經由該内 體積128傳送於該等耦接至該傳送處理室1〇2外部之製輥 處理室1 0 4之間》—栗系統(未示出)係經由一設於該處理 室底部之埠126叙接該傳送處理室1〇2以維持該傳送處理 室102内的真空。於一實施例中,該泵系統包括一串接於 一渦輪分子(turbomolecular)或一低溫泵(cry〇genic puinp) 之低真空泵(roughing PumP) β 該傳送處理室102包括數個面(以圖號i42a_f標示, 且統稱為面142),用以架設與之相連之不同製程及真空隔 絕處理室1〇4、106。通道144係通過耦接各個處理室1〇4、 106至該傳送處理室102之該内部體積128的面丨42。各通 道144係選擇地由一狹缝閥146封閉,該狹缝閥可移動於~ ·· ~ _ ·-... I ___P A carrier room is placed between the environment and the factory. In the flat panel display process, glass substrates (such as those used for brain screens, large window televisions and PDA displays, and mobile phones) have been increasing due to the demand for flat panel displays. For example, glass substrates used in the manufacture of flat panels have increased by 1500 mm x 800 mm from 550 mm x 650 mm for several years and are expected to exceed four square feet in the next few years. In order to provide a larger area of the substrate, the process system must be increased by a ruler. As in a typical group tool, the inner diameter of the transfer processing chamber for moving the large substrate between the process chambers has been about 80 inches. It is 135 inches long to accommodate the size of the substrate. The size and quality of the larger transfer chambers can make these chambers sensitive to thermal effects. The deformation of the process chamber causes the position of the surrounding process chamber to change toward the center of the transfer chamber and the movement of the arm during transport by the substrate. When the position of the process chamber is moved, the correctness and reproducibility of the substrate transfer between the transfer processing chamber and the processing chamber may be degraded. In some cases, the correctness and reproducibility of the substrate positioning may exceed the base. Tolerance of the material, that is, to ensure good process results and to avoid the substrate transfer period. For example, when the process chamber takes out a substrate, a substrate is misplaced on the substrate support of the processing chamber or at the end of the substrate. Impaired tolerance on the actuator. Due to the increase in the density of the components and the size of the substrate, the number of components formed on the substrate is also increased, so that the value of each substrate is also apparently added to the surface. For example, the addition of the shape to the increase is more effective for the change. Positioning ί (In the case of the process, the size of the process is required. Therefore, the 6 ff year ί ί 夂 El correction replacement page is improved. Therefore, the damage of the yield of the material is faint or the misplacement caused by the misplacement of the substrate is not good. When the surrounding is disturbed and the temperature of the different processing chambers is changed, the relative position change between the processing and processing chambers is more serious. ^^ 乂 Performing the electric pad to enhance the chemical vapor phase The processing chamber of the deposition (PECVD) process may be 4' at about 4 degrees Celsius, which may heat the temperature adjacent to one side of the transfer processing chamber to about 75 degrees Celsius. If the PECVD is broadcasted to When the temperature is lowered for maintenance or other reasons, the reduced heat load will cause the transfer chamber to contract, and the position and the position of the surface relative to the center line of the transfer chamber will be changed. Other surfaces positioned around the transfer processing chamber may also be similarly affected. Under steady state thermal conditions, the relative position between the process chamber and the transfer chamber is known, so that the robot arm mobile Calibration. However, any change in the thermal parameters of these processing chambers will cause the substrate exchange position in any processing chamber to move away from its calibrated position, thus greatly increasing the likelihood of misalignment during substrate transfer. The substrate is relatively susceptible to damage during transport and will increase the defect rate during component manufacture. Therefore, understanding or predicting changes in the relative position between the processing chambers will ensure proper placement of the substrate. A method and apparatus for determining the exchange position of a substrate to ensure the correctness of repeated transfer of the substrate in the group tool. SUMMARY OF THE INVENTION The present invention provides a method for determining a substrate 7 1323851 in a process chamber. The method and apparatus for correcting the exchange position of a page in a month. In one embodiment, a method for determining a substrate exchange position in a system includes determining an initial exchange position in a process chamber, and discriminating the change in the exchange position. The discriminating step may further comprise sensing a temperature of one of the processing chambers (having the processing chamber coupled to the phase) The change, the change of the state of the system or the change of the position of the process chamber and other changes besides the foregoing. [Embodiment] FIG. 1 is a configuration for determining the exchange position of the substrate to be placed correctly. One embodiment of the rate and reproducibility of the semiconductor process system 100, particularly the process system 1000, undergoes a change in thermal load. The exemplary process system 100 generally includes a transfer processing chamber 102 that is comprised of one or one process chamber 104 is surrounded by a factory interface 110 and one or more vacuum isolation processing chambers 106. In the embodiment of Fig. 1, a vacuum processing chamber 106 is placed in the transfer processing chamber 102 and the factory interface 110 In order to facilitate substrate transfer in a vacuum environment maintained in the transfer processing chamber 102 and a substantial surrounding environment in the factory interface 110. The transfer robot 108 is centrally disposed in the transfer processing chamber 102 to move the material between the processing chambers 104, 106. An example of a process system that can benefit from the present invention is the application of a 25K plasma enhanced chemical vapor deposition process system marketed by Komatsu (AKT), a division of Applied Materials, Santa Clara, California. Although the method and apparatus for determining a substrate exchange position are described with reference to the foregoing exemplary process system, it should be understood that the present invention is also applicable and can be implemented in other configurations having different configurations. The partitioning system is modified by the replacement of the page processing system, and the present invention is particularly applicable to a processing chamber having a system susceptible to temperature changes and bran changing its relative position. The factory interface 110 typically stores one or more substrate storage ports H4, each of which is configured to store a plurality of substrates 112 therein. The plant's δ "0 is generally maintained at or near atmospheric pressure. In the embodiment, the filtered air is supplied to the factory interface to minimize the particle agronomy in the particle interface 11 and correspondingly improve the cleanliness. The transfer processing chamber 1 2 is made of a structural material suitable for processing and/or cleaning chemicals, such as molybdenum or alloy steel. In one embodiment, the transfer process to 1 〇 2 is made from a single aluminum alloy block. The transfer processing chamber 102 can define an evacuatable inner volume 128 through which the substrate is transferred between the roll processing chambers 104 coupled to the outside of the transfer processing chamber 1〇2. The pump system (not shown) maintains the transfer chamber 1〇2 via a crucible 126 disposed at the bottom of the processing chamber to maintain the vacuum within the transfer processing chamber 102. In one embodiment, the pump system includes a low-pressure pump (roughing PumP) β connected in series to a turbomolecular or a cryogenic pump (cry〇genic puinp). The transfer processing chamber 102 includes a plurality of faces (indicated by No. i42a_f, collectively referred to as face 142), is used to erect different processes and vacuum isolation processing chambers 1, 4, 106 connected thereto. The passage 144 is coupled to each of the processing chambers 112, 106 to the face 42 of the interior volume 128 of the transfer processing chamber 102. Each channel 144 is selectively closed by a slit valve 146 that is movable

月占日修正替換頁i /隔絕該處理式環境之封閉位置以及助於基材傳送於 處理室104、106間之開放位置。 各製程處理室104 —般检固於該傳送處理室 部之該等面142之一者。可利用之製程處理室1〇4之 包括蝕刻處理室、物理氣相沉積處理室、熱處理室、 氣相沉積處理室、離子轟擊處理室、定向處理室、光 理室及其類似者。不同製程處理室104可連接至傳送 室1 02以提供於該基材表面形成一預定結構或特徵所 的製程序列。 該真空隔絕處理室一般係連接於該工礙介面 及該傳送處理室102之間。該真空隔絕處理室106 — 於繁助基材U2傳送於該傳送處理室102之真空環境 工康介面110之週遭環境間’而不致損失該傳送處理室 之真空。該真空隔絕處理室106之各側包括一基材傳 道,其係由該等狹缝閥146(僅顯示該真空隔絕處理室 之該傳送處理室之側)之一者來選擇性封閉’以選擇性 真空隔絕處理室106與該傳送處理室106及該工廠 隔離。 該基材傳送機器人ι〇8 —般係設於該傳送處理室 趙積128中,以幫助基材112傳送於環繞該傳送 02之不同處理室間。該傳送機器人108订包括— 用以於傳送期間支撐該基# M2。該傳送機器人 彳,每一者都連接至一獨立吁控制的馬1 「有兩個葉片 七兩個签 ,雙葉片式機器人),該傳送機器人或可兵 該等 之外 例示 化學 罩處 處理 需要 ! 110 般用 及該 1 02 送通 106 將該 介面 102 處理 或多 108 象(已 片, 10 if年(沾日修正替換頁 經由一共同連结耗接至該傳送機器人1〇8β該傳送機 108之轉轴一般係與延伸垂直於第1圖令由機器移動 考之申心線148之該面共軸。 第2圖係該傳送機器人1〇8之一實施例的上平 圖’該機器人具有一單一葉片或末端作用器202以支 基材112(示於平台)。該機器人1〇8之末端作用器202 一鏈結206連接至一機器人本體204。該機器人本體 一般係裝設於該傳送處理室140之中心線148上,以 末端作用器202(其上載有基材112)可徑向定位並繞該 處理室102之中心線Μ8旋轉。 該鏈結206包括一第一連桿212,旋轉地連接至 二連桿214之一轴部216。該第一連桿212係以第一 接至一設於該機器人本體204内之第一馬達(未示出) 第一馬達可使該第一連桿212繞該中心線148(其係共 通過該機器人本趙204)旋轉。該第二連桿214之第一 於轴部216處旋轉地連接至該第一連桿212之一第二 第一及第二連桿212、214繞該轴部216之旋轉方位係 一第二馬達(亦未示出)控制,該第二馬達可設於該機 本體204。該第二馬達可控制該第二連桿214繞該軸_ 旋轉。為由該機器人本趙204徑向延伸該末端作用器 該第一馬達係順時針旋轉該第一連桿212,同時該第 桿214係逆時針旋轉。為使該末端作用器202繞該機 本艘204旋轉,當該第一馬達使該第一連桿212繞該 人本體2 04旋轉時,該第一及第二連桿212、214間的 器人 所參 面視 撐一 係藉 204 使該 傳送 -第 端連 。該 軸地 端係 端。 藉由 器人 ! 216 2〇2, 二連 器人 機器 角度 if阳月《日修正替換—The monthly replacement correction page i / isolates the closed position of the processing environment and facilitates the transfer of the substrate to the open position between the processing chambers 104, 106. Each process chamber 104 is generally affixed to one of the faces 142 of the transfer process chamber. The process chambers 1 to 4 which may be utilized include an etching processing chamber, a physical vapor deposition processing chamber, a heat treatment chamber, a vapor deposition processing chamber, an ion bombarding treatment chamber, an orientation processing chamber, a photocatalytic chamber, and the like. Different process chambers 104 can be coupled to the transfer chamber 102 to provide a programming sequence for forming a predetermined structure or feature on the surface of the substrate. The vacuum isolation processing chamber is generally connected between the work interface and the transfer processing chamber 102. The vacuum isolation processing chamber 106 - the bulk substrate U2 is transferred between the ambient environment of the vacuum environment of the transfer processing chamber 102 without losing the vacuum of the transfer processing chamber. Each side of the vacuum isolation processing chamber 106 includes a substrate passageway that is selectively closed by one of the slit valves 146 (only the side of the transfer processing chamber of the vacuum isolation processing chamber is shown) to select The vacuum isolation processing chamber 106 is isolated from the transfer processing chamber 106 and the factory. The substrate transfer robot ι 8 is typically disposed in the transfer processing chamber 128 to assist in transporting the substrate 112 between different processing chambers surrounding the transport 02. The transfer robot 108 includes - for supporting the base # M2 during transfer. The transfer robots, each connected to an independent control horse 1 "two-blade seven-two-sign, two-blade robots", which are required to be processed by an exemplary chemical hood 110 General use and the 1 02 feed 106 to process the interface 102 or more 108 images (single, 10 if years (the date correction replacement page is connected to the transfer robot 1〇8β via a common link) The axis of rotation of 108 is generally coaxial with the plane extending perpendicular to the first line of the machine line 148 of the machine movement test. Fig. 2 is a top plan view of the embodiment of the transfer robot 1〇8 There is a single blade or end effector 202 for supporting the substrate 112 (shown on the platform). The end effector 202 of the robot 1 8 is connected to a robot body 204. The robot body is generally mounted on the robot body On the centerline 148 of the transfer processing chamber 140, the end effector 202 (which carries the substrate 112) is radially positionable and rotatable about the centerline Μ8 of the processing chamber 102. The link 206 includes a first link 212. Rotatingly connected to one of the two links 214 The first link 212 is first connected to a first motor (not shown) disposed in the robot body 204. The first motor can surround the first link 212 around the center line 148 (the The robot is rotated by the robot 204. The first link of the second link 214 is rotatably connected to the first link 212 and the second first and second links 212, 214. The rotational orientation of the shaft portion 216 is controlled by a second motor (also not shown), and the second motor can be disposed on the machine body 204. The second motor can control the second link 214 to rotate about the axis. In order to radially extend the end effector by the robot 204, the first motor rotates the first link 212 clockwise, while the first rod 214 rotates counterclockwise. To make the end effector 202 around the machine The ship 204 rotates. When the first motor rotates the first link 212 around the human body 2 04, the object between the first and second links 212 and 214 The transmission - the first end. The shaft ends the end. By the person! 216 2〇2, the two connected machine angle if the sun "day Being replaced -

L ___ I 會被保持固定。访士 _ 疋該末端作用器202可以類似方式經由其他 運動而移動。 該第一連桿214之第二端係於腕部2U處連接至該末 端作用器2G2。該腕部218可讓該末端作用器加及第二 連桿2 1 4之角度方位於機器運動期間發生改變以使該末 端作用β 202之徑向方位相對於該機器人本體2〇4被維 持該末端作帛H 202之徑向方位可藉一習知方式維持, 例如第三馬連、傳動帶或鏈結,然此處並未圖示出。 為能監控該製程處理室1〇4相對於該傳送處理室1〇2 之位置及方位,數個感應器可連接至該傳送處理室及/ 或製程處理至104,以提供—顯示處理室位置之度量或由 位置資訊可辨析之度量。當該位置資訊顯示該基材交換位 置時,該機器人之移動可作校正而使基材損傷程度降至最 低並提阿製程效果及再現性。於一實施例中,溫度資訊 可用於辨析位置資訊。該溫度資訊可直接感測或使用該製 程處理室1 04之已知狀態(亦即,處理室關機或怠機、處理 至冷部速度及類似者)模型計算出。於其他實施例中,經驗 值資料可用於預測處理室位置,或可直接感測處理室位置。 第3圏係該製程系統ι〇〇通過該面ι42Β之一部份截 面圖’其係表示一連接至傳送處理室1〇2緊接該面 的溫度感應器302»未示於第3圖之其他面142可同樣設 有溫度感應器。 於一實施例中,該溫度感應器302係一熱電耦螺接至 或固定至傳送處理室〗〇2緊接該面14 2B。可以預期的是, 12 1323851 其他 溫度 器人 一顯 342, 於一 相沉 該製 體散 行偏 並經 344 ° 漿中 基材 心之 係以 支撐 教示 心線 該基 換位 月知修正替換頁 類型的溫度感應器亦可俅 便用,例如紅外線感應器。該 感應器302係耗接至—咖^ 控制器304其可控制該傳送機 108之運動。該溫度感 歇應Is 302可提供該控制器3〇4 示該面142B之溫度的訊號。 連接至該面142B該窗 製程處理至1〇4 —般包括一底部 側壁34〇及一可界定出—製程體積3 44之蓋子ns。 實施例中,該製程處理t 1〇4可為一電漿增強化學氣 積處理室(PECVD)。—晶座或基材支撐部係設於 程體積344中,且一般於製程期間係支撐晶圓。一氣 流板348係連接至該蓋子338,並可藉一電源35〇進 壓 氣體供應器352可連接至該製程處理室1〇4, 由該散流板348提供製程及其他氣體至該製程體積 該供應器352可提供一製程氣體’該製程氣體係於電 分解且沉積於基材上。 該製程處理室104具有一預定基材交換位置312(以 112之虛影表示),一般與通過該基材支撐部346之中 該製程處理室104的中心線360共轴。該交換位置312 該製程處理室104之一固定結構界定’例如,該基材 部346之該中心線360。於系統校準期間,機器人被 移動至所教示的位置,該位置對準交換位置312及中 360。於基材傳送期間,由該末端作用器2 02支撐之 材112會移至該被教示之位置,以使當該基材位於交 置312時該中心線360通過該基材之中央點。 該控制器304 —般包括一 CPU306、記憶體308以及 13 1323851 辅助電路310。該CPU306可為任何用於工業 不同處理室之電腦處理器及副處理器之任一種 3〇8係耦接至該CPU3 06。該記憶體308或電腦 可為一或多個立即可用之記憶體,例如隨機 (RAM)、唯讀記憶體(ROM)、軟碟、硬碟、裝 其他任一種區域或遠端之數位儲存裝置。該輔 係連接該CPU306以利用傳統方式支援該處理 路310可包括快取、電源供應器、時脈電路、3 路、副系統及類似者。 於一實施例中,若所教示位置與交換位: 系統歷經溫度改變)時,該控制器3 04係使用該 3 02所提供的資訊以校正該傳送機器人108之 保該基材112於基材交換位置312之正碟性及 例如,利用該溫度感應器302提供给該控制蓋 142B溫度,該控制器304可辨析該機器人位於 室102之中心線148中心處之旋轉軸以及該 1 04内之該交換位置3 1 2間的位置相對變化^該 也可藉由連接或與之呈介面之該等感應器302 142之溫度,以判定其他面142的溫度是否影 3 12» 該控制器304可經由儲存於記憶體308中 析處理室位置之相對變化,並因此辨析該基: 312之當前位置,該演算法係利用該溫度感應 應之至少一面142的溫度作為變數。例如描繪 設定以控制 »該記憶體 可讀取媒體 存取記憶體 置缓衝器或 助電路310 器。此等電 險入-輸出電 £不對位(當 溫度感應器 移動,以確 重複定位。 胃304之面 該傳送處理 製程處理室 ,控制器304 監控其他面 響交換位置 之演算法辨 付交換位置 器302所感 於4A-B之 14 1323851 降丨月夕曰修正替換頁 簡化製程處理室結構俯視圖中,若該感應器302以面I420 連接該傳送處理室104感應一溫度變化時,該控制器3 〇4 會判斷該溫度變化是否會導致任一面142 A-F相對於该傳 送處理室中心線148之角度方位或距離變化。若該控制器 304判斷一可感知之溫度改變會導致面142B(在傳送期間 基材將通過該面)之位置或方位的改變時,該控制器304 會調整各連桿212、214之角度位置,以使該末端作用器 202可位於一經校正之交換位置402*確保該基材之精確定 位及無損傷傳送,並提if)製程表現、再現性以及元件良率。 換言之,該機器人之定位係由該教示位置調整至一經校正 位置,接著對準該偏移的交換位置。 於另一實施例中,該控制器3 04可利用儲存在記憶體 308中經驗資料(包括有關因溫度影響使製程處理室中心 線360之位置偏移的資訊)辨析處理室位置的相對改變。該 控制器304具有表示該傳送處理室102之溫度改變的資 訊’例如,環繞之製程處理室1〇4之一者的狀態改變(諸如 開啟或關閉、清潔、抽吸向下及類似者)。該經驗資料可包 括如,與製程處理室狀態改變有關之該面142在每單位時 間之溫度損失,以及該製程處理室對應於該溫度條件及其 他之移動量。該製程處理室之中心線360位置係由控制器 3 04針對各製程處理室狀態及各狀態改變之時間間隔而模 組化。利用此資訊,該控制器304將可調整該傳送機器人 之移動,以確保該末端作用器202可位於該經校正之交換 位置4〇2(類似前文所述)。 15 1323851L ___ I will be kept fixed. The visitor _ 疋 the end effector 202 can be moved via other movements in a similar manner. The second end of the first link 214 is coupled to the end effector 2G2 at the wrist 2U. The wrist 218 can change the angle of the end effector and the second link 2 14 to be changed during the movement of the machine such that the radial orientation of the end effect β 202 is maintained relative to the robot body 2〇4. The radial orientation of the end 帛H 202 can be maintained by a conventional means, such as a third zipper, belt or chain, which is not illustrated here. To be able to monitor the position and orientation of the process chamber 1〇4 relative to the transfer chamber 1〇2, a plurality of sensors can be coupled to the transfer chamber and/or process to 104 to provide a display chamber location. A measure or a measure that can be distinguished by location information. When the position information indicates the substrate exchange position, the movement of the robot can be corrected to minimize the damage of the substrate and to improve the effect and reproducibility of the substrate. In one embodiment, temperature information can be used to resolve location information. The temperature information can be directly sensed or calculated using a known state of the process chamber 104 (i.e., process chamber shutdown or downtime, process to cold section speed, and the like). In other embodiments, the empirical value data can be used to predict the processing chamber location or to directly sense the processing chamber location. The third section is a partial cross-sectional view of the process system through the surface ι 42 ' ' indicates a temperature sensor 302 connected to the transfer processing chamber 1 紧 2 immediately adjacent to the surface » not shown in FIG. 3 The other face 142 can also be provided with a temperature sensor. In one embodiment, the temperature sensor 302 is screwed or fixed to the transfer processing chamber 〇 2 immediately adjacent to the surface 14 2B. It can be expected that 12 1323851 other temperature devices will be displayed 342, and the body will be scattered in a phase and passed through the base of the substrate in the 344 ° slurry to support the teaching of the heart line. Types of temperature sensors can also be used, such as infrared sensors. The sensor 302 is consuming to the controller 304 which controls the movement of the conveyor 108. The temperature sensing should be 302 to provide a signal to the controller 3〇4 indicating the temperature of the face 142B. Connected to the face 142B, the window process is generally 1 to 4 including a bottom side wall 34 and a cover ns defining a process volume 3 44. In an embodiment, the process t1〇4 may be a plasma enhanced chemical gas processing chamber (PECVD). - The crystal holder or substrate support is disposed in the volume 344 and is typically supported during the process. An air flow plate 348 is coupled to the cover 338 and can be coupled to the process chamber 1 〇 4 by a power source 35. The flow plate 348 provides process and other gases to the process volume. The supply 352 can provide a process gas 'the process gas system is electrically decomposed and deposited on a substrate. The process chamber 104 has a predetermined substrate exchange location 312 (shown as a ghost image of 112) that is generally coaxial with the centerline 360 of the process chamber 104 through the substrate support portion 346. The exchange location 312 of one of the process chambers 104 defines a structure, for example, the centerline 360 of the substrate portion 346. During system calibration, the robot is moved to the taught position, which is aligned with swap locations 312 and 360. During substrate transfer, the material 112 supported by the end effector 102 will move to the taught position such that the centerline 360 passes through the center point of the substrate when the substrate is in position 312. The controller 304 generally includes a CPU 306, a memory 308, and a 13132385 auxiliary circuit 310. The CPU 306 can be coupled to the CPU 306 for any of the computer processors and sub-processors used in various industrial processing rooms. The memory 308 or the computer can be one or more ready-to-use memories, such as random (RAM), read only memory (ROM), floppy disk, hard disk, digital storage device in any other area or remote location. . The auxiliary system is coupled to the CPU 306 to support the processing circuit 310 in a conventional manner, which may include a cache, a power supply, a clock circuit, a 3-way, a secondary system, and the like. In an embodiment, if the position and the exchange position are taught: the system changes over temperature, the controller 306 uses the information provided by the 308 to correct the transfer robot 108 to protect the substrate 112 on the substrate. The positive polarity of the swap location 312 and, for example, the temperature provided to the control cover 142B by the temperature sensor 302, the controller 304 can discern the axis of rotation of the robot at the center of the centerline 148 of the chamber 102 and the 10 04 The position of the exchange position 3 1 2 is relatively changed. The temperature of the other sensors 142 can also be determined by the temperature of the sensors 302 142 connected or interfaced with the device. The algorithm utilizes the temperature of at least one side 142 of the temperature sensing as a variable via the relative change in the location of the processing chamber stored in memory 308, and thus the current position of the base: 312. For example, the settings are set to control » the memory readable medium access memory buffer or the help circuit 310. These power-in and out-outs are not aligned (when the temperature sensor moves to ensure repeated positioning. The face of the stomach 304 is transported to process the process chamber, and the controller 304 monitors the algorithm for other face-to-face exchange positions. The sensor 302 senses 4A-B 14 1323851 丨 丨 曰 曰 correction replacement page simplifies the process chamber structure top view, if the sensor 302 is connected to the transfer processing chamber 104 by the surface I420 to sense a temperature change, the controller 3 〇4 will determine if the temperature change would result in an angular orientation or distance change of either face 142 AF relative to the transfer process chamber centerline 148. If the controller 304 determines that a perceptible temperature change would result in face 142B (during transmission) When the position or orientation of the substrate will pass through the face, the controller 304 adjusts the angular position of each of the links 212, 214 such that the end effector 202 can be positioned at a corrected exchange position 402* to ensure the base Precise positioning and damage-free transfer of materials, and if) process performance, reproducibility and component yield. In other words, the positioning of the robot is adjusted from the teaching position to a corrected position, followed by alignment of the offset exchange position. In another embodiment, the controller 304 can utilize the empirical data stored in the memory 308 (including information regarding the positional shift of the process chamber centerline 360 due to temperature effects) to discern the relative change in chamber position. The controller 304 has a status indicating that the temperature of the transfer processing chamber 102 has changed, e.g., a state change (such as on or off, cleaning, suction down, and the like) of one of the process chambers 1-4. The empirical data may include, for example, temperature loss per unit time of the face 142 associated with a change in state of the process chamber, and the process chamber corresponding to the temperature condition and other amounts of movement. The centerline 360 position of the process chamber is modularized by the controller 34 for each process chamber state and the time interval for each state change. Using this information, the controller 304 will adjust the movement of the transfer robot to ensure that the end effector 202 can be located at the corrected exchange position 4 (similar to the foregoing). 15 1323851

丨辟,月irg修正替換頁I 第5圖係描述用於判定連接一傳送處理室1〇2之製程 處理室104内經校正之基材交換位置4〇2之方法5〇〇之一 實施例的流程圖。本發明之實施例中該方法5〇〇通常係儲 存在記憶體308中,—般稱為軟體常式。該軟體常式也可 由一第二CPU(未示出)儲存及/或執行之,該CPU係遠端地 位於由該控制器304所控制之硬體中。 該方法500係始於步驟5〇2,其當該末端作用器係位 於該製程處理室1〇4内一教示位置(對準一預定交換位置) 時會取得一第一組機器人度量。該製程處理室内該經教示 之位置可由一機器人校正步驟產生,其包括將記錄機器人 旋轉及延伸資訊(定位該機器人108之一末端作用器202 於該製程處理室1〇4),以幫助正確且重複地進行基材傳 送。於一實施例中,當該末端作用器將基材置於該製程處 理室104内相對於該製程處理室中心線360中心處時,該 末端作用器202會與該交換位置相較準》於一實施例中, 該第一組機器人度量可包括該第一及第二連桿212、214 之角度資訊。 於步驟5 04中,溫度資訊之度量係由該控制器304 所取得。該溫度資訊之度量可由與該製程處理室104之狀 態相關或由該感應器302(適用於感應該面142之概度資訊) 之至少—者取得之。於步驟5〇6,該控制器304可辨析該 製程處理室丨04之交換位置相對於該傳送歲往无 心線148的改變(例如,判定一偏移之交換位置4〇2)。 —u π雹定位該末端作 於步驟508中,該控制器304可判疋 16 1323851 用器202於該移動之交換位置402之第二组機器人度量 一般而言,若該等感應器 302 包括一穩定狀態之溫度 件,該第二组機器人度量(例如該第一及第二連桿212、2 之角度位置)可儲存以作繼續利用。於設定510處,定位 該機器人108之末端作用器202處之基材112會移至該 動之交換位置402。 第6圖係描述一種用於判定一製程處理室104内經 正之基材交換位置的方法之另一實施例的流程圖,該製 處理室係連接至一傳送處理室102。當一機器人108之 端作用器 2 02係與一製程處理室104内一基材交換位 312相較準時,該方法600係藉取得一第一組機器人度 而始於步驟602。 於步驟6 04處,該至少一製程處理室104或該傳送 理室1 02之狀態改變係由該控制器304所測得。該偵測 包括一感應之指示器、一預定事件、或該控制器304之 示,以改變該製程處理室1 04之狀態。於步驟606處, 控制器304會依據儲存於該控制器記憶體308之經驗 訊,回應該改變狀態而辨析該製程處理室104之一者内 交換位置相對於該傳送處理室102之中心線的改變。步 604可額外包括辨析該交換位置的改變,其係依據由一 多個狀態改變之過去時間而進行辨析。 於步驟608中,該控制器304會判定需定位該末端 用器使之與該移動之基材交換位置402相較準之一第二 機器人度量。一般而言,若該等感應器302指出一穩定 條 14 於 移 校 程 末 置 量 處 可 指 該 資 該 驟 或 作 組 狀 17 辦f月έτ日修正替换頁丨 , 月 月 ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir ir Flow chart. In the embodiment of the invention, the method 5 is typically stored in a memory 308, commonly referred to as a software routine. The software routine can also be stored and/or executed by a second CPU (not shown) that is remotely located in the hardware controlled by the controller 304. The method 500 begins at step 5 〇 2, which takes a first set of robot metrics when the end effector is in a teaching position (aligned to a predetermined exchange position) within the process chamber 1〇4. The taught position within the process chamber can be generated by a robotic calibration step that includes rotating the record robot and extending the information (locating one of the end effects of the robot 108 to the process chamber 1〇4) to aid in correctness and The substrate transfer was repeated. In one embodiment, when the end effector places the substrate in the process chamber 104 relative to the center of the process chamber centerline 360, the end effector 202 will be aligned with the exchange location. In an embodiment, the first set of robot metrics may include angle information of the first and second links 212, 214. In step 504, the measurement of the temperature information is obtained by the controller 304. The measure of temperature information may be obtained from at least the state of the process chamber 104 or by at least the sensor 302 (applicable to sense the profile information of the face 142). In step 5-6, the controller 304 can discern the change in the swap position of the process chamber 相对04 relative to the transfer centerline 148 (e.g., determine an offset swap position 4〇2). - u π 雹 locating the end in step 508, the controller 304 can determine the second set of robot metrics of the user 132 at the mobile exchange location 402, if the sensors 302 include one The steady state temperature component, the second set of robot metrics (e.g., the angular positions of the first and second links 212, 2) can be stored for continued use. At setting 510, the substrate 112 at the end effector 202 of the robot 108 is moved to the active exchange location 402. Figure 6 depicts a flow diagram of another embodiment of a method for determining a positive substrate exchange location within a process chamber 104 that is coupled to a transfer processing chamber 102. When the end effector 02 of a robot 108 is aligned with a substrate exchange location 312 in a process chamber 104, the method 600 begins with step 602 by taking a first set of robot degrees. At step 604, the state change of the at least one process chamber 104 or the transfer chamber 102 is measured by the controller 304. The detection includes an inductive indicator, a predetermined event, or the controller 304 to change the state of the processing chamber 104. At step 606, the controller 304 will determine the exchange position of one of the process chambers 104 with respect to the center line of the transfer processing chamber 102 according to the experience stored in the controller memory 308. change. Step 604 can additionally include discriminating the change in the swap location, which is based on the elapsed time of the plurality of state changes. In step 608, the controller 304 determines that the end effector is to be aligned with the moving substrate exchange location 402 for a second robot metric. In general, if the sensor 302 indicates that a stable strip 14 is at the end of the shifting process, it may refer to the capital or the group.

態溫度條件時,該笛I 弟一組機器人度量(例如該第一及第 桿 214之角度位置)會作儲存以供繼续利用。於 處疋位於該機器人1〇8之末端作用器2〇2上之 2 02會移動至經校正之交換位置。 回到第3圖,該製程系統1〇〇亦可設有數個適用 測該製程處理器104(其中一者示於第3圈)之中心線 的感應器362。該感應ρ 362之各者可直接耦合至該 1〇〇或作定位以提供與各自製程處理室1〇4之中心線 有關之資訊。 於實施例中’該感應器362係一圖像抓取裝置 連接至該製程處理室1〇4底部3々2。例如,該感應器 可與設於該製程處理室104中之該基材支撐部346之 線360共轴。該中心線360也可為該製程處理室1〇4 〜線。當該傳送處理室102或該製程處理室丨〇4之— 熱條件發生改變時,該基材支撐部346之中心線36〇 移’該感應器362會提供該控制器3〇4該基材支禮部 之中心線360之移動(例如當前位置)資料以及經由習 器圖像技術所辨析而與之校準的交換位置資料。由訪_ 器362所提供之資訊,該控制器3〇4會調整該傳送機 之移動(如前所述)’以確保該基材112係定位於一經 (亦即當前的)之交換位置。應可理解的是,其他感應器 可提供該製程處理室104之位置資訊或該基材支撑部 之中心線360資訊亦可利用之。 亦可選擇的是,一感應器364也可辨析用於提供 二連 設定 基材 以偵 360 系統 360 ,其 362 中心 之中 者内 會偏 346 知機 感應 器人 校正 362 346 來自 18 1323851 丨ffM月Θ修正瞀換頁 該傳送處理室104之中心線148之位置資訊。驾 所提供之資訊可用於追蹤該機器人之中心線 (其係與該處理室中心線148共轴)。當該機器 為機器人移動之參考點時,計算出該機器人之 的改變,以增加該機器人以及製程處理室中心 置的正確性,以辨析更為精確之交換位置。 第7圖係描述一種用於判定一製程處理室 材交換位置之方法700之另一實施例的流程圖 係始於步驟702處,其當一機器人之末端作用 製程處理室104内之一預定基材交換位置312 可藉此取得一第一組機器人度量。 於步驟 704處,處理室位置之度量係由 362之至少一者之控制器304所取得。於步驟 控制器304可辨析該製程處理室104相對於該 102之中心線148之位置/方位改變。當該基材 該製程處理室104移動時,藉由辨析該製程處 位置/方位之改變,該交換位置亦會隨之辨析出 於步驟70 8處,傳送處理室位置之度量可 器364之控制器304取得。該傳送處理室位置 該控制器304所利用,以正確地辨析該傳送處 當前中心線148及該製程處理室104(其已與該 較準)之中心線360之當前位置間的距離及角方 驟710處,該控制器304可判定一第二組機器 末端作用器 202定位於該當前(亦即經校正έ Ϊ感應器364 以及旋轉轴 人中心線成 中心線位置 線之相對位 :104中一基 。該方法700 器202與該 相較準時, 該等感應器 7 0 6處’該 傳送處理室 交換位置與 理室104之 〇 由該等感應 之度量可為 理室102之 交換位置相 [方位。於步 度量以將該 勺)交換位置 19 402 ·1-323851 第8圖係第3圊中該製程處理室l〇4之俯視圊。 多個感應器802係與該等製程處理室104或傳送處 102之至少一者相交界以提供該控制器該製程處理室 之位置的表示資訊。於一實施例中’該等感應器802 包括兩個可用於偵測該製程處理室1 04沿兩軸移動之 位移變換器。該控制器302可利用該等感應器802所 之位置資訊來判定該製程處理室104之中心線360 動,以使該傳送機器人108之移動可被調整以破保該 112在該製程處理室1 04内重複與正確的置放。 因此,已提供用於判定—基材交換位置之方法與 的不同實施例。該基材交換位置可作更新以回應因熱 導致之處理室位置的變動。故’熱效應對該交換位置 置影響可對各基材傳送器進行即時判定’藉以讓該控 3 02為各傳送器調整該基材112之位置,確保正確、 害、基材替換並提昇製程及元件良率° 雖然前述係關於本發明之較佳實施例’然本發明 他及進一步的實施例亦可於不悖離其基本範圍下進 飾,且其範圍應由下文之申請專利範圍決定之。 【圖式簡單說明】 可獲得及詳細領會本發明前述特徵之方法在參 發明實施例以及附加圖示後將更為彰顯。 第1圖係經配接以判定一基材傳送位置之半導 一或 理室 104 至少 線性 提供 之移 基材 裝置 效應 之位 制器 無損 之其 行潤 照本 體製 20 1323851 月々日修正替換頁 程系統之一實施例的平面圖; 第2圖係第1圖之該製程系統之該傳送機器人之一實 施例的俯視圖; 第3圖係第1圖之該製程系統之一部份截面圖; 第4A-B圖係描述一機器人之一末端作用器位於一預 定基材傳送位置以及一經校正之基材傳送位置之部份截面 圖; 第 5圖係描述一用於判定一製程處理室内之一基材 交換位置之方法之一實施例的流程圖; 第 6圖係描述一用於判定一製程處理室内之一基材 交換位置之方法之另一實施例的流程圖; 第 7圖係描述一用於判定一製程處理室内之一基材 交換位置之方法之另一實施例的流程圖; 第8圖係描述第3圖之該製程處理室之一俯視圖。 然而應了解的是,該等附加之圖示僅係本發明之一般 實施例,因此不應視為是本發明範圍之限制,本發明亦涵 蓋其他等效之實施例。 【元件代表符號簡單說明】 100 半 導 體 製 程系統 1 02 傳 送 處 理 室 104 製 程 處 理 室 106 真 空 隔 絕 處理室 108 傳 送 機 器 人 110 工 廢 介 面 112 基 材 114 儲 存 匣 122 基 材 126 埠 21 1323851 (f年ί月r日修正替然買 128 内 體 積 140 傳 送 處 理 室 142 面 144 通 道 146 狹 縫 閥 148 中 心 線 202 末 端 作 用器 204 機 器 人 本 體 206 鍵 結 212 第 — 連 桿 214 第 二 連 桿 216 軸 部 218 腕 部 302 溫 度 感 應 器 304 控 制 器 308 記 憶 體 310 辅 助 電 ί 路 3 12 基 材 交 換 位 置 328 蓋 子 340 側 壁 342 底 部 344 體 積 346 基 材 支 撐部座 348 氣 體 散 流 板 350 電 源 352 氣 體 供 應 器 360 中 心 線 362 感 應 器 364 感 應 器 402 經 校 正 之 交 換位置 802 感 應 器 22In the case of a temperature condition, the set of robot metrics (e.g., the angular positions of the first and second rods 214) are stored for continued use. The 02 located at the end effector 2〇2 of the robot 1〇8 moves to the corrected exchange position. Returning to Figure 3, the process system 1 can also be provided with a plurality of sensors 362 adapted to measure the centerline of the process processor 104 (one of which is shown on the third lap). Each of the sensing ρ 362 can be directly coupled to the 〇〇 or positioned to provide information regarding the centerline of the respective process chambers 〇4. In the embodiment, the sensor 362 is connected to the bottom of the process chamber 1〇4 by an image capture device. For example, the inductor can be coaxial with the line 360 of the substrate support 346 disposed in the process chamber 104. The centerline 360 can also be the process chamber 1〇4~ line. When the thermal condition of the transfer processing chamber 102 or the process chamber 丨〇4 is changed, the center line 36 of the substrate support portion 346 is moved. The sensor 362 provides the controller 3〇4 to the substrate. The movement (eg, current location) of the centerline 360 of the blessing department and the exchange location data calibrated by the device image technology. From the information provided by the visitor 362, the controller 3〇4 adjusts the movement of the conveyor (as previously described) to ensure that the substrate 112 is positioned in an exchanged position (i.e., current). It should be understood that other sensors may provide location information of the process chamber 104 or centerline 360 information of the substrate support portion may also be utilized. Alternatively, an inductor 364 can also be used to provide a two-way setting substrate to detect the 360 system 360, and the center of the 362 center is biased 346. The sensor is corrected by the human sensor 362 346 from 18 1323851 丨ffM The monthly correction is changed to the position information of the center line 148 of the transfer processing chamber 104. The information provided by the driver can be used to track the centerline of the robot (which is coaxial with the process centerline 148). When the machine is the reference point for the robot to move, the change of the robot is calculated to increase the correctness of the robot and the processing chamber center to discriminate the more precise exchange position. Figure 7 is a flow chart depicting another embodiment of a method 700 for determining a process chamber exchange location, beginning at step 702, when a robot end acts on a predetermined basis within the process chamber 104 The material exchange location 312 can thereby take a first set of robot metrics. At step 704, the measurement of the processing chamber location is obtained by controller 304 of at least one of 362. The controller 304 can discern the position/orientation change of the process chamber 104 relative to the centerline 148 of the 102. When the substrate processing chamber 104 is moved, by analyzing the change in the position/orientation of the process, the exchange position is also analyzed to control the transfer of the process chamber position 364 at step 708. The device 304 takes it. The transfer processing chamber location is utilized by the controller 304 to properly resolve the distance and corner between the current centerline 148 of the transfer and the current position of the centerline 360 of the process chamber 104 (which has been aligned) At step 710, the controller 304 can determine that a second set of machine end effectors 202 are positioned at the current (ie, the corrected έ Ϊ sensor 364 and the axis of the center line of the axis of rotation of the center line are in the opposite position: 104 When the method 700 is in alignment with the method, the sensors are exchanged at the location of the transfer processing chamber and the chamber 104 is determined by the measurement of the senses. [Azimuth. Step measurement to the spoon) exchange position 19 402 · 1-323851 Fig. 8 is the top view of the process chamber l〇4 in the third row. A plurality of sensors 802 interface with at least one of the process chambers 104 or the transfer locations 102 to provide representation information of the controller's location of the process chamber. In one embodiment, the inductors 802 include two displacement transducers that are operable to detect movement of the process chamber 104 along two axes. The controller 302 can use the position information of the sensors 802 to determine the center line 360 of the process chamber 104 so that the movement of the transfer robot 108 can be adjusted to break the 112 in the process chamber 1 Repeat within 04 and place correctly. Accordingly, different embodiments have been provided for determining the method and substrate exchange location. The substrate exchange location can be updated to respond to changes in the processing chamber location due to heat. Therefore, the influence of the thermal effect on the exchange position enables an instant determination of each substrate conveyor, so that the control 302 adjusts the position of the substrate 112 for each conveyor, ensuring correctness, damage, substrate replacement and process improvement. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; . BRIEF DESCRIPTION OF THE DRAWINGS The method of obtaining and detailing the above-described features of the present invention will be more apparent from the embodiments of the invention and the accompanying drawings. Figure 1 is a matching device that is mated to determine a substrate transfer position of the semiconductor or the chamber 104 is at least linearly provided by the substrate device effect. A plan view of one embodiment of the transfer system; FIG. 2 is a plan view of one embodiment of the transfer robot of the process system of FIG. 1; FIG. 3 is a partial cross-sectional view of the process system of FIG. 4A-B is a partial cross-sectional view showing a robot end effector at a predetermined substrate transfer position and a corrected substrate transfer position; FIG. 5 is a diagram for determining a basis in a process chamber. Flowchart of one embodiment of a method of material exchange location; Figure 6 is a flow chart depicting another embodiment of a method for determining a substrate exchange location within a process chamber; Figure 7 depicts a A flow chart of another embodiment of a method for determining a substrate exchange location in a process chamber; FIG. 8 is a top plan view of the process chamber of FIG. However, it is to be understood that the appended claims are intended to be a [Simplified Description of Component Representation Symbol] 100 Semiconductor Process System 1 02 Transfer Processing Room 104 Process Processing Room 106 Vacuum Isolation Processing Room 108 Transfer Robot 110 Work Waste Interface 112 Substrate 114 Storage 匣 122 Substrate 126 埠 21 1323851 (f年月月r day correction buy 128 inner volume 140 transfer processing chamber 142 face 144 channel 146 slit valve 148 center line 202 end effector 204 robot body 206 bond 212 first - link 214 second link 216 shaft portion 218 wrist 302 Temperature sensor 304 Controller 308 Memory 310 Auxiliary power circuit 3 12 Substrate exchange position 328 Cover 340 Side wall 342 Bottom 344 Volume 346 Substrate support seat 348 Gas diffuser 350 Power supply 352 Gas supply 360 Center line 362 Sensor 364 sensor 402 corrected exchange position 802 sensor 22

Claims (1)

1323851 申請專利範圍 ι· 一種於一製程系統中傳送一基材之方法,該製程系統具 有至少一製程處理室連接至一傳送處理室,該傳送處理 室可存放一機器人,該方法至少包含: 教示該機器人移動至界定於該製程系統中之一交換 位置; 藉由感應該製程系統之一部份内的溫度改變或感應 該至少一製程處理室之狀態改變之至少一者來監控該製 程系統内之一條件; 依據所監控之條件判定於該交換位置之一偏移;以 及 校正該機器人之移動,以補償於該交換位置經判定 之偏移。 2.如申請專利範圍第1項所述之方法,其中該監控更包含 下列至少一者:感應一不同於一第一製程處理室之第二 製程處理室的狀態改變,其中該第一製程處理室具有界 定於其中之該交換位置、偵測該至少一製程處理室之溫 度改變、計算出熱膨脹速率、追蹤該至少一製程處理室 之狀態改變間的時間、感應該傳送處理室之一面,且該 機器人須延伸經該面以到達該交換位置、或感應該傳送 處理室之另一面,其係不同於該傳送處理室中該機器人 須延伸以到達該交換位置所經之面。 23 1323851 3. 如申請專利範圍第1項所述之方法,其中該判定更至少 包含下列至少一者: 感應該至少一製程處理室之位置改變、感應表示該 至少一製程處理室之一中心線之一位置的度量、感應表 示該傳送處理室之一 _心線之一位置的度量、依據經驗 資料來辨析該交換位置之一改變、或依據模組資料以辨 析該交換位置之一改變。 4. 如申請專利範圍第1項所述之方法,其中該校正更至少 包含: 測量該至少一製程處理室相對於該傳送處理室之該 位置及方位之至少一者之一改變;以及 調整該機器人之移動以補償所測量到的改變。 5. 如申請專利範圍第1項所述之方法,其中該校正更至少 包含: 感應該至少一製程處理室相對於該傳送處理室之該 位置及方位之至少一者的改變;以及 調整該機器人之移動以補償所感應到的改變。 6. 如申請專利範圍第1項所述之方法,其中該校正更至少 包含: 辨析該至少一製程處理室相對於該傳送處理室之該 位置及方位之至少一者的改變;以及 24 1323851 調整該機器人之移動以補償所感應到的改變。 7. 如申請專利範圍第6項所述之方法,其中該辨析一改變 更至少包含下列至少一者:模組化該傳送處理室之熱膨 脹、模組化該至少一製程處理室之熱膨脹、以及運用代 表該至少一製程處理室因熱效應而相對於該傳送處理 室之相對位置的經驗資料。 8. 如申請專利範圍第1項所述之方法,其中該交換位置之 偏移係由於該傳送處理室之該熱分佈(thermal profile) 改變或至少一製程處理室之熱分佈改變之至少一者所 致。 9. 一種於一製程系統中用於傳送一基材之方法,該製程系 統具有至少一第一製程處理室,其連接至存放一機器人 之傳送處理室,該方法至少包含: 界定該第一製程處理室之一交換位置; 感應該系統之至少一元件的溫度,該元件會致使該 交換位置之偏移; 對應於所感應之溫度,辨析該交換位置的偏移;以 及 校正機器人移動以補償該交換位置之偏移。 10. 如申請專利範圍第9項所述之方法,其中該感應更至少 25 1323851 包含: 感應該傳送處理室之至少一面之一溫度,且其中該 辨析更至少包含: 由該溫度已感應之該傳送處理室之一面,判定該面 之該位置及方位之至少一者的改變。 11. 一種於一製程系統中傳送一基材之方法,該製程系統具 有至少一第一製程處理室,其連接至一存放一機器人之 傳送處理室,該方法至少包含: 教示該機器人,使之移至界定於該第一製程處理室 中之一交換位置,其係相對於該傳送處理室内一預先界 定之參考點所界定; 偵測該交換位置之偏移;以及 校正該經教示之機器人移動,以補償該交換位置之 偏移。 1 2.如申請專利範圍第1 1項所述之方法,其中該偵測更至 少包含下列之至少一者: 感應該傳送處理室之一溫度分佈、依據該第一製程 處理室之一狀態改變以模組化該傳送處理室之一溫度 分佈、依據一連接至該傳送處理室之第二製程處理室之 一狀態改變以模組化該傳送處理室之一溫度分佈、依據 經驗資料以判定該傳送處理室之一溫度分佈、判定該傳 送處理室之一面與一感應之一溫度改變相對應之該位 26 1323851 置及方位之至少一者的改變、於數個位置感應該傳送處 理室之溫度、判定該第一製程處理室之位置及方位之至 少一者的改變、或判定界定於該傳送處理室中該參考點 之一位置改變。 13. —種於一製程系統中用於傳送一基材之方法,該製程系 統具有至少一第一製程處理室,其係連接至存放一機器 人之一傳送處理室,該方法至少包含: 建立該傳送處理室内之一預先界定之參考點以及該 第一製程處理室之一交換位置; 教示一機器人以移動至該交換位置; 監控該參考點及該交換位置間相對的位置改變;以 及 校正該機器人之該經教示之位置以回應該相對位置 改變,藉以讓該機器人到達該交換位置。 14. 如申請專利範圍第13項所述之方法,其中監控該參考 點及交換位置間之相對位置改變更至少包含: 偵測置於該第一製程處理室中一基材支撐部之橫向 位置的改變。 15.如申請專利範圍第14項所述之方法,其中該監控該參 考點及交換位置間之相對位置改變更至少包含: 偵測因該傳送處理室之熱變化所致該傳送處理室之 27 1.323851 該參考點之橫向位置的改變。 16.—種具有數個指令儲存於其上之電腦可讀取媒體,該 指令包括數個指令,當被一處理器執行時可使具有至 一製程處理室連接至存放一機器人之一傳送處理室 一製程系統以執行: 教示該機器人,使之移至一界定於該製程系統中 交換位置; 藉由感應該製程系統之一部份内的溫度改變或感 該至少一製程處理室之狀態改變之至少一者來監控該 程系統内之一條件; 依據所監控之條件判定於該交換位置之一偏移; 及 校正該機器人之移動,以補償於該交換位置經判 之偏移。 17.如申請專利範圍第16項所述之電腦可讀取媒體,其 該監控更至少包含下列至少一者:感應一第二製程處 室之一狀態改變,其中該第二製程處理室係不同於該 有該交換位置界定於其中之一第一製程處理室、偵測 至少一製程處理室之一溫度改變、計算出熱膨脹速率 追蹤至少一製程處理室之狀態改變間的時間、感應該 送處理室之一面,且該機器人須延伸經該面以到達該 換位置、或感應該傳送處理室之另一面,其係不同於 些 少 之 之 應 製 以 定 中 理 具 該 、 傳 交 該 28 1323851 所經 傳送處理室中該機器人須延伸以到達該交換位置 之面。 29 1323851 f ι· mmM ., 丨代年f月f日修正替换頁 - -----------— —一 :t」、:複苳也堯聲」:::―^ (一) 、本案指定代表圖為:第5圖。 (二) 、本代表圖之元件代表符號簡單說明 502當機器人之末端作用器位於一製程5〇8判定一可將末端作用器定位於一經 處理室中一預定之基材交換位置時校正之交換位置之第二户 取得一第一组機器人度量 番 八皮 504取得溫度資訊之一度量 506辨析該製程處理室相對於一傳送處 理室之一中心線之交換位置的改變 510將—定位於該末端作用器上之基材 移至一經校正之交換位置 Γ巧徵的化學式:取%顯不發明 ............-----.•一 丄-. 41323851 Patent Application ι. A method of transferring a substrate in a process system, the process system having at least one process chamber connected to a transfer processing chamber, the transfer processing chamber storing a robot, the method comprising at least: Moving the robot to an exchange location defined in the process system; monitoring the process system by sensing at least one of a temperature change in a portion of the process system or sensing a change in state of the at least one process chamber a condition; determining an offset in the swap position based on the monitored condition; and correcting movement of the robot to compensate for the determined offset of the swap position. 2. The method of claim 1, wherein the monitoring further comprises at least one of: sensing a state change of a second process chamber different from a first process chamber, wherein the first process The chamber has the exchange location defined therein, detecting a temperature change of the at least one process chamber, calculating a thermal expansion rate, tracking a time between state changes of the at least one process chamber, sensing one side of the transfer processing chamber, and The robot has to extend across the face to reach the exchange location, or to sense the other side of the transfer processing chamber, which is different from the face in the transfer processing chamber that the robot has to extend to reach the exchange location. The method of claim 1, wherein the determining comprises at least one of: sensing a change in position of the at least one process chamber, sensing a centerline of the at least one process chamber The measurement of one location, the indication represents a measure of the position of one of the transmission processing chambers, the change of one of the exchange locations based on empirical data, or the change of one of the exchange locations based on the module data. 4. The method of claim 1, wherein the correcting further comprises: measuring one of at least one of the position and orientation of the at least one process chamber relative to the transfer processing chamber; and adjusting the The movement of the robot to compensate for the measured changes. 5. The method of claim 1, wherein the correcting further comprises: sensing a change in at least one of the position and orientation of the at least one process chamber relative to the transfer processing chamber; and adjusting the robot Move to compensate for the sensed change. 6. The method of claim 1, wherein the correcting further comprises: analysing a change in at least one of the position and orientation of the at least one process chamber relative to the transfer processing chamber; and 24 1323851 adjustment The robot moves to compensate for the sensed change. 7. The method of claim 6, wherein the discriminating one change comprises at least one of: modularizing thermal expansion of the transfer processing chamber, modularizing thermal expansion of the at least one processing chamber, and An empirical data representative of the relative position of the at least one process chamber relative to the transfer processing chamber due to thermal effects is utilized. 8. The method of claim 1, wherein the shifting position is offset by at least one of a change in the thermal profile of the transfer processing chamber or a change in heat distribution of at least one process chamber Caused. 9. A method for transporting a substrate in a process system, the process system having at least a first process chamber coupled to a transfer processing chamber for storing a robot, the method comprising: defining the first process An exchange location of one of the processing chambers; sensing a temperature of at least one component of the system, the component causing an offset of the swap location; determining an offset of the swap location corresponding to the sensed temperature; and correcting robot movement to compensate for The offset of the swap location. 10. The method of claim 9, wherein the sensing further comprises at least 25 1323851 comprising: sensing a temperature of at least one side of the transfer processing chamber, and wherein the discriminating comprises at least: the temperature sensed by the temperature One of the processing chambers is transferred to determine a change in at least one of the position and orientation of the surface. 11. A method of transporting a substrate in a process system, the process system having at least a first process chamber coupled to a transfer processing chamber for storing a robot, the method comprising at least: teaching the robot to Moving to an exchange location defined in the first process chamber, defined relative to a predefined reference point within the transfer processing chamber; detecting an offset of the swap position; and correcting the taught robot movement To compensate for the offset of the swap location. 1 2. The method of claim 1, wherein the detecting further comprises at least one of: sensing a temperature distribution of one of the transfer processing chambers, changing according to a state of the first processing chamber; Modulating a temperature distribution of one of the transfer processing chambers according to a state change of one of the second process processing chambers connected to the transfer processing chamber to modularize a temperature distribution of the transfer processing chamber, and determining the Transmitting a temperature distribution of one of the processing chambers, determining a change of at least one of the position and the orientation of the one surface of the transfer processing chamber corresponding to a temperature change of a sense, sensing the temperature of the transfer processing chamber at a plurality of positions Determining a change in at least one of a position and an orientation of the first process chamber, or determining a change in a position of the reference point defined in the transfer processing chamber. 13. A method for transporting a substrate in a process system, the process system having at least a first process chamber coupled to a transfer processing chamber of a robot, the method comprising: establishing the Transmitting a pre-defined reference point in the processing chamber and exchanging a position of the first processing chamber; teaching a robot to move to the exchange position; monitoring a relative position change between the reference point and the exchange position; and correcting the robot The taught position is changed in response to the relative position so that the robot reaches the exchange position. 14. The method of claim 13, wherein monitoring the relative positional change between the reference point and the swapping location comprises at least: detecting a lateral position of a substrate support portion disposed in the first processing chamber Change. 15. The method of claim 14, wherein the monitoring the relative positional change between the reference point and the exchange location comprises at least: detecting the transfer processing chamber due to thermal changes in the transfer processing chamber. 1.323851 The change in the lateral position of this reference point. 16. A computer readable medium having a plurality of instructions stored thereon, the instructions comprising a plurality of instructions which, when executed by a processor, can be coupled to a processing chamber for storage to one of the robots for processing a process-system for performing: teaching the robot to move to an exchange location defined in the process system; by sensing a temperature change in a portion of the process system or sensing a change in state of the at least one process chamber At least one of the conditions in the system is monitored; an offset is determined at the swap location based on the monitored condition; and the movement of the robot is corrected to compensate for the offset of the swap position. 17. The computer readable medium of claim 16, wherein the monitoring further comprises at least one of: sensing a state change of a second process chamber, wherein the second process chamber is different Having the exchange location defined in one of the first process chambers, detecting a temperature change of one of the at least one process chambers, calculating a thermal expansion rate, tracking a time between state changes of at least one process chamber, and sensing the send processing One of the chambers, and the robot has to extend through the face to reach the change position, or to sense the other side of the transfer processing chamber, which is different from the lesser ones to be used for the centering tool, and to pass the 28 1323851 The robot must extend through the transfer processing chamber to reach the face of the exchange location. 29 1323851 f ι· mmM ., Amendment of the replacement page for the f-day of the next year - -------------: t",: 苳 苳 」 "::::^ ( a) The representative representative of the case is: Figure 5. (2) The representative symbol of the representative figure is a simple description 502. When the end effector of the robot is located in a process 5〇8, the correction can be performed when the end effector is positioned in a predetermined substrate exchange position in the processing chamber. The second household of the position obtains a first set of robot metrics, and the change 510 of the temperature information of the process chamber is determined to be positioned at the end of the exchange position of the process chamber relative to a centerline of a transfer processing chamber. The substrate on the actuator is moved to a corrected exchange position. The chemical formula of the Γ 征 : 取 取 取 取 取 取 取 显 显 ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ......
TW93113249A 2003-05-12 2004-05-11 Method for transferring a substrate in a processing system and computer-readable medium TWI323851B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US46996803P 2003-05-12 2003-05-12

Publications (2)

Publication Number Publication Date
TW200508937A TW200508937A (en) 2005-03-01
TWI323851B true TWI323851B (en) 2010-04-21

Family

ID=45074113

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93113249A TWI323851B (en) 2003-05-12 2004-05-11 Method for transferring a substrate in a processing system and computer-readable medium

Country Status (1)

Country Link
TW (1) TWI323851B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9824908B2 (en) * 2015-05-05 2017-11-21 Kawasaki Jukogyo Kabushiki Kaisha Conveying system, conveying robot and teaching method of the same

Also Published As

Publication number Publication date
TW200508937A (en) 2005-03-01

Similar Documents

Publication Publication Date Title
US8260461B2 (en) Method and system for robot calibrations with a camera
US10468284B2 (en) Substrate processing apparatus and substrate processing method
JP5573861B2 (en) Transport system
US20080101912A1 (en) Deposition analysis for robot motion correction
TWI552842B (en) Transfer position teaching method and apparatus, and substrate processing apparatuses
WO2005091355A1 (en) Method for detecting transfer shift of transfer mechanism and semiconductor processing equipment
JP2008173744A (en) Conveying position alignment method for conveying system
US6944517B2 (en) Substrate apparatus calibration and synchronization procedure
WO2002047871A1 (en) Substrate transfer method
JP4961893B2 (en) Substrate transport apparatus and substrate transport method
TW201809689A (en) Method for acquiring data indicating electrostatic capacitance
CN104364888A (en) Substrate treatment device, temperature measurement system, method for measuring temperature of treatment device, transportation device, and memory medium
US7505832B2 (en) Method and apparatus for determining a substrate exchange position in a processing system
JP2007281249A (en) Conveyance robot and position correcting method thereof
US20220216073A1 (en) Processing module and processing method
JP4395873B2 (en) Displacement amount detection method and displacement amount correction method for thin plate-like object
TWI323851B (en) Method for transferring a substrate in a processing system and computer-readable medium
KR20230069218A (en) Level monitoring and active adjustment of substrate support assemblies
JP2009049200A (en) Substrate processing apparatus, substrate processing method and storage medium
JP4357619B2 (en) Multi-chamber system
US8021513B2 (en) Substrate carrying apparatus and substrate carrying method
JP4468159B2 (en) Substrate processing apparatus and transfer position alignment method thereof
KR20210017943A (en) Film-forming system, method for locating error portion of film-forming system, computer readable recording medium, computer program recorded in recording medium
JP2024064684A (en) METHOD FOR MEASURING POSITIONAL MISSIFIER OF SUBSTRATE PLACEMENT TABLE AND SUBSTRATE PROCESSING APPARATUS
JP2020150151A (en) Manufacturing method for semiconductor device, substrate processing apparatus, and program

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees