TWI317298B - Uv light irradiation - Google Patents

Uv light irradiation Download PDF

Info

Publication number
TWI317298B
TWI317298B TW095112079A TW95112079A TWI317298B TW I317298 B TWI317298 B TW I317298B TW 095112079 A TW095112079 A TW 095112079A TW 95112079 A TW95112079 A TW 95112079A TW I317298 B TWI317298 B TW I317298B
Authority
TW
Taiwan
Prior art keywords
irradiation
light source
control unit
energy
unit
Prior art date
Application number
TW095112079A
Other languages
Chinese (zh)
Other versions
TW200700142A (en
Inventor
Yusuke Iida
Naoya Nakashita
Hiroyuki Inoue
Takahiro Oikawa
Kenji Horie
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Publication of TW200700142A publication Critical patent/TW200700142A/en
Application granted granted Critical
Publication of TWI317298B publication Critical patent/TWI317298B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/58Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving end of life detection of LEDs

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

1317298 九、發明說明: 【發明所屬之技術領域】 本發明係關於照射紫外線之紫外線照务寸, 爲關於具備藉LED組成光源之紫外線照射裝 【先前技術】 近年來,在眾多的產業領域上,使g $ (ultra violet curing :以下稱爲UV硬化法)做 布劑之UV硬化方法。 U V硬化方法係爲一種對u V硬化材料照 其產生光聚合反應(light chemical reaction of ,進而將單體(monomer)(液體)改變爲聚合错 體)之技術。一般之UV硬化材料包含單體、低 、光引發劑(1 i g h t i n i t i a t 〇 r)及添加劑。而, 照射,光引發劑即被激勵,藉該激勵能量, 聚合體。 因此’ UV硬化方法,相較於利用熱能量 ’具有不會散發有害物質於大氣中,硬化時 熱之製品也能適用等等諸多優點。 但是,UV硬化方法需使用具備紫外線燈 外線照射裝置。紫外線燈會隨著發光而逐漸 低照度之情事係爲眾知之事。因此,紫外線 降低到既定位準以下之時點係被定義爲「壽 ’意味超過壽命之紫外線燈係無法充份地發 因此’有必要推測紫外線燈之壽命,而 裝置,特別係 ρφα 置。 裝外線硬化法 爲黏結劑、塗 射紫外線,使 polymerization) I (polymer)(固 聚物(ο 1 i g 〇 m e r) 一旦被紫外線 單體則改變成 之熱硬化方法 間短,對不耐 做爲光源之紫 劣化’進而降 燈’當其照度 命」。換言之 揮功能。 在其變成無法 1317298 充份地發揮功目之則將其更換掉。例如,在專利文獻1上 有揭示累計管理紫外線燈之照射時間,以推測壽命之方法 Ο 又’專利文獻2係揭示測定紫外線燈之照度,對應其 降低量以決定照射時間之紫外線照射裝置。揭示於此專利 文獻2上之紫外線照射裝置,在到達壽命爲止之期間,與 紫外線燈之照度的劣化程度無關,而能對被照射物照射一 定之累計光量。 (專利文獻1)日本專利公開公報特開平〇 5 _ 5 7 〇〗號 (專利文獻2)日本專利公開公報特開平〇6_196555號 【發明內容】 (發明欲解決之課題) 隨著近年來急速之技術革新,開發出能產生紫外線之 LED(Light Emitting Diode:發光二極體)’因此,具備以 LED代替紫外線燈之紫外線照射裝置已實用化。相較於紫 外線燈,LED具有壽命長,本身之發熱對被照射物之影響 少等之優點’因此被期待將成爲今後之主流。 另外,紫外線燈從投入電源到成爲能使用之狀態止需 要一段時間。因此,以往的紫外線照射裝置不執行紫外線 燈之開、關控制,而是藉控制配置在照射口處之光開關 (shutter)之開度,以調整紫外線的照射量。亦即,在使用 狀態時’紫外線燈經常被施加—定的電壓。 相反地,LED能瞬時地產生發光量約略與供給之電流 成比例之紫外線’因此設置LED之紫外線產生裝置,藉控 1317298 制供給之電流値,能以更高精確度控制照射量。 但是’ LED雖然壽命比紫外線燈長,但一旦壽命達到1317298 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an ultraviolet ray irradiation target for irradiating ultraviolet rays, and relates to an ultraviolet ray irradiation device having a light source composed of LEDs. [Prior Art] In recent years, in many industrial fields, A UV curing method in which g $ (ultra violet curing: hereinafter referred to as UV curing method) is used as a cloth. The U V hardening method is a technique for producing a light chemical reaction of a u V hardening material, thereby changing a monomer (liquid) into a polymerization wrong body. Typical UV hardening materials include monomers, low, photoinitiators (1 i g h t i n i t i a t 〇 r) and additives. However, the illumination, the photoinitiator is excited, by the excitation energy, the polymer. Therefore, the 'UV hardening method has advantages in that it does not emit harmful substances in the atmosphere as compared with the use of heat energy, and the heat-resistant product can be applied. However, the UV curing method requires an external light irradiation device with an ultraviolet lamp. It is well known that ultraviolet light will gradually illuminate with illumination. Therefore, when the ultraviolet ray is lowered to a position below the positioning level, it is defined as "shou" which means that the ultraviolet ray lamp that exceeds the lifetime cannot be sufficiently filled. Therefore, it is necessary to estimate the life of the ultraviolet lamp, and the device, in particular, ρφα is placed. The hardening method is a bonding agent, and the ultraviolet ray is applied to make polymerization. I (polymer) (the solid polymer (ο 1 ig 〇mer) is shortly changed by the ultraviolet monomer, and the heat hardening method is short. In the case of the fascination of the ultraviolet ray, the illuminating light is changed. In other words, it is replaced by the function of the singularity. In the method of estimating the lifetime of the irradiation, the method of measuring the illuminance of the ultraviolet lamp, and the ultraviolet irradiation device for determining the irradiation time in accordance with the amount of reduction, discloses the ultraviolet irradiation device of Patent Document 2, and reaches the life. In the meantime, regardless of the degree of deterioration of the illuminance of the ultraviolet lamp, a certain amount of accumulated light can be irradiated to the object to be irradiated. [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei No. Hei No. 6-196555 (Patent Document 2) Japanese Patent Laid-Open Publication No. Hei 6-196555 Innovatively, we have developed an LED that emits ultraviolet light (Light Emitting Diode). Therefore, an ultraviolet irradiation device that replaces an ultraviolet lamp with an LED has been put into practical use. Compared with an ultraviolet lamp, LED has a long life and its own heat. In addition, it is expected that it will become the mainstream in the future. In addition, it takes a while for the ultraviolet lamp to be in a usable state after the power is turned on. Therefore, the conventional ultraviolet irradiation device does not perform the ultraviolet lamp. The opening and closing control is performed by controlling the opening of the optical switch disposed at the irradiation port to adjust the amount of ultraviolet rays to be irradiated. That is, in the state of use, the ultraviolet lamp is often applied with a constant voltage. Ground, the LED can instantaneously generate ultraviolet light whose amount is approximately proportional to the current supplied. , By controlling the current supply system Zhi 1,317,298, the amount of irradiation can be controlled with a higher accuracy. However, 'LED while live longer than ultraviolet light, but once the life of

時’則無法充份地發揮功能這點並無兩樣。因此’對L E D 也需推定壽命、管理更換時期等。 如上述,具備LED之紫外線照射裝置,因係控制供給 到LED之電流値,故LED的發光量非一定。因此,如以往 那樣,僅累計照射時間係無法以充份的精確度來推定壽命 〇 # 因此’本發明係爲了解決前述問題而開發,其目的係 提供一種具有能以高精確度執行壽命管理之指標的紫外線 照射裝置。 (解決課題所用之手段) 依本發明’係爲一種紫外線照射裝置,其具備從藉led 組成之先源照射紫外線之照射部;供給用於驅動光源之電 力之光源用電源部;藉依時間累計從光源用電源部供給之 電力的電流値,而算出光源產生之照射能量之控制部;及 • 顯不控制部所算出之照射能量,及/或將其輸出到外部之顯 示輸出手段。 又’依本發明,係爲一種紫外線照射裝置,其具備從 藉LED組成之光源照射紫外線之照射部;供給用於驅動光 源之電力的光源用電源部;測定從光源照射之紫外線的照 度之照度測定部;依時間累計在照度測定部上被測定之照 度’藉此算出光源產生之照射能量之控制部;及顯示控制 部所算出之照射能量’及/或將其輸出到外部之顯示輸出手 段。 1317298 較佳的是,控制部包含:判斷照射能量的累 超過被視爲光源壽命之値,若是超過之情形,則 已到達壽命,若是未超過之情形,則判定光源尙 命之壽命判定手段,顯示輸出手段係顯示該壽命 之判定結果,及/或將其輸出到外部。 較佳的是,控制部另包含藉運算照射能量之 被視爲光源的壽命之値的差,而算出光源的剩餘 餘壽命算出手段,顯示輸出手段係顯示剩餘壽命 之算出結果,及/或將其輸出到外部。 較佳的是,控制部另包含根據發光效率對光 照射能量之衰減特性,從照射能量之累積値來判 劣化狀態之劣化狀態判斷手段,顯示輸出手段係 狀態判斷手段之判斷結果,及/或將其輸出到外吾 較佳的是,另具備接收規定照射量依時之變 樣式(pattern)之輸入部,控制部另包含根據輸入 照射樣式,算出進行照射樣式之情形時之照射能 樣式算出手段,顯示輸出手段係顯示照射樣式算 算出結果,及/或將其輸出到外部。 較佳的是,控制部另包含從照射能量的累 爲光源的壽命之値的差,算出光源的剩餘壽命 執行照射樣式時之照射能量除該剩餘壽命,以 式之可執行次數之可執行次數算出手段,顯示 顯示可執行次數算出手段之算出結果,及/或將 積値是否 判定光源 未到達壽 判定手段 累積値與 壽命之剩 算出手段 源的累積 斷光源的 顯示劣化 15。 化的照射 部接收之 量之照射 出手段之 値與被視 另外,用 出照射樣 出手段係 [輸出到外 1317298 較佳的是,輸入部除了接收照射樣式外’另接收所要 之照射能量値,控制部另包含使照射樣式整體在照射量方 向上伸縮,俾產生照射樣式的照射能量與所要的照射能量 値一致那樣之新的照射樣式之照射樣式產生手段。 較佳的是,另包含儲存控制部算出之照射能量之記憶 部。 較佳的是,照射部係爲能更換者,記億部係與照射部 一體更換。 (發明的效果) 依本發明,藉依時間累計供給到光源之電力的電流 ’以算出屬於照射量及時間皆考慮到之指標的照射能量。 因此’即便照射量有變化,仍能取得能以高精確度進行壽 命管理之指標。 又’依本發明’藉此時間累計從光源照射之紫外線的 照度’能算出屬於照射量及時間皆考慮到之指標的照射能 量。因此’即便照射量有變化,仍能取得能以高精確度進 行壽命管理之指標。 【實施方式】 (實施發明用之最佳形態) 下文將一邊參照圖面、一邊詳細地說明本發明之實施 形態。另外’圖中相同或相當部分係賦與相同之符號,其 重複說明則省略。 (第1實施形態) 第1圖係爲本發明之第1實施形態的紫外線照射裝置 -9· 1317298 100之槪略構成圖。 參照第1圖’紫外線照射裝置丨〇 0係由四個照射部2 、四條連接電纜2 2、及本體部1所組成。 各個照射部2係經連接電纜2 2而接到本體部1,且各 個照射部2係能隨意地與本體部1裝拆。而,本體部1係 對應使用者的設定,而供給電力給各個照射部2 ^另外,本 體部1也將各個照射部2上之照射狀態等顯示給使用者。 照射部2係藉接受來自本體部1之電力以驅動光源, 進而產生紫外線並射向對象物。又,照射部2,若光源已 到達壽命而無法充份地發揮功能的情形,則被更換。 各個照射部2係由UV光源1 6和記憶部1 8所組成。 UV光源係由產生紫外線之LED所組成,對應自本體 部1所供給之電力而改變發光量。再者,UV光源之壓降量 因係約略一定,故供給到U V光源之電力係約略與供給之 電流値成正比。 記憶部1 8係與UV光源1 6 —體地形成,儲存從本體 部1接收之UV光源的照射能量的累積値,又,對應來自 本體部1的指令,讀出儲存之UV光源1 6的照射能量的累 積値。而,記億部1 8也事先儲存有對應於UV光源1 6之 發光效率的衰減特性。更甚者,記憶部1 8具有永久性記憶 區域,或即使當從本體部1拆離之情形,儲存之資料也不 會消失。因此,記憶部,例如,係爲E E p R 0 M (E 1 e c tr 0 n i c a 1It’s no different when you can’t fully function. Therefore, 'L E D also needs to be estimated life, management replacement period, and so on. As described above, the ultraviolet irradiation device including the LED controls the current supplied to the LED, so that the amount of light emitted from the LED is not constant. Therefore, as in the related art, the life cannot be estimated with sufficient accuracy only by the cumulative irradiation time. Therefore, the present invention has been developed in order to solve the aforementioned problems, and an object thereof is to provide a life management capable of performing with high precision. Indicator UV irradiation device. (Means for Solving the Problem) According to the present invention, an ultraviolet irradiation device includes an irradiation unit that irradiates ultraviolet rays from a source composed of led, and a power source unit that supplies power for driving the light source; A control unit that calculates the irradiation energy generated by the light source from the current 値 of the power supplied from the light source power supply unit; and • displays the irradiation energy calculated by the control unit and/or the display output means for outputting it to the outside. According to another aspect of the invention, there is provided an ultraviolet ray irradiation device comprising: an illuminating unit that irradiates ultraviolet light from a light source composed of an LED; a light source power supply unit that supplies electric power for driving the light source; and an illuminance that measures illuminance of the ultraviolet ray irradiated from the light source. a measuring unit; a control unit that calculates the illuminance measured by the illuminance measuring unit by time to calculate the illuminating energy generated by the light source; and an illuminating energy calculated by the display control unit and/or a display output means for outputting the illuminating energy to the outside . 1317298 Preferably, the control unit includes: determining that the accumulated excess of the irradiation energy is regarded as the life of the light source, and if it exceeds the condition, the life has been reached, and if it is not exceeded, determining the life determining means of the light source life command, The display output means displays the result of the determination of the life and/or outputs it to the outside. Preferably, the control unit further includes a difference between the lifetimes of the light sources calculated by calculating the irradiation energy, and calculating a remaining life calculation means of the light source, wherein the display output means displays the calculation result of the remaining life, and/or Its output is external. Preferably, the control unit further includes a deterioration state determination means for determining the deterioration state from the accumulation of the irradiation energy based on the attenuation characteristic of the light irradiation efficiency, and the display output means means the determination result of the state determination means, and/or Preferably, the output unit is provided with an input portion for receiving a predetermined pattern of the irradiation amount, and the control unit further calculates the illumination energy pattern when the irradiation pattern is calculated based on the input irradiation pattern. Means, the display output means displays the illumination pattern calculation result, and/or outputs it to the outside. Preferably, the control unit further includes a difference between the lifetime of the light source and the lifetime of the light source, and calculates the remaining life of the light source, and the irradiation energy when the illumination pattern is executed, in addition to the remaining life, the executable number of executable times The calculation means displays the result of the calculation of the display executable number calculation means, and/or whether or not the accumulation deterioration 15 of the cumulative cutoff light source that determines whether the light source has not reached the life determination means accumulation and the remaining life calculation means source. The illuminating unit receives the amount of the illuminating means and the illuminating means, and uses the illuminating sample means [output to the outer 1317298. Preferably, the input unit receives the desired illuminating energy in addition to receiving the illuminating pattern". Further, the control unit further includes an irradiation pattern generating means for expanding and contracting the entire irradiation pattern in the irradiation amount direction, and generating a new irradiation pattern in which the irradiation energy of the irradiation pattern coincides with the desired irradiation energy 値. Preferably, the memory unit that stores the irradiation energy calculated by the control unit is further included. Preferably, the illuminating unit is a replaceable person, and the occupant unit is replaced with the illuminating unit. (Effect of the Invention) According to the present invention, the electric current of the electric power supplied to the light source is accumulated by time to calculate the irradiation energy which is an index which is considered in consideration of the irradiation amount and the time. Therefore, even if there is a change in the amount of exposure, an index that can be managed with high accuracy can be obtained. Further, according to the present invention, the illuminance of the ultraviolet ray irradiated from the light source is accumulated by this time, and the illuminating energy which is an index which is considered in consideration of the amount of irradiation and time can be calculated. Therefore, even if the amount of exposure changes, an indicator of life management with high accuracy can be obtained. [Embodiment] (Best Mode for Carrying Out the Invention) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the repeated description is omitted. (First Embodiment) FIG. 1 is a schematic configuration view of an ultraviolet irradiation device -9· 1317298 100 according to a first embodiment of the present invention. Referring to Fig. 1, the ultraviolet irradiation device 丨〇 0 is composed of four irradiation units 2, four connection cables 2, and a main body 1. Each of the illuminating units 2 is connected to the main body unit 1 via a connecting cable 22, and each of the illuminating units 2 can be detachably attached to the main body unit 1. On the other hand, the main body unit 1 supplies power to each of the irradiation units 2 in accordance with the setting of the user. Further, the body unit 1 also displays the irradiation state and the like on each of the irradiation units 2 to the user. The illuminating unit 2 receives electric power from the main body unit 1 to drive the light source, and generates ultraviolet rays to be incident on the object. Further, the illuminating unit 2 is replaced if the light source has reached the end of its life and cannot function adequately. Each of the illuminating units 2 is composed of a UV light source 16 and a memory unit 18. The UV light source is composed of an LED that generates ultraviolet rays, and changes the amount of light emission in accordance with the power supplied from the body portion 1. Furthermore, since the voltage drop of the UV light source is approximately constant, the power supplied to the U V light source is approximately proportional to the supplied current 値. The memory unit 18 is integrally formed with the UV light source 16 and stores the accumulated energy of the irradiation energy of the UV light source received from the body unit 1. Further, in response to an instruction from the body unit 1, the stored UV light source 16 is read. The cumulative enthalpy of the illuminating energy. On the other hand, the tens of millions of units 18 are also stored in advance with attenuation characteristics corresponding to the luminous efficiency of the UV light source 16. Furthermore, the memory unit 18 has a permanent memory area, or even when detached from the body unit 1, the stored data does not disappear. Therefore, the memory portion, for example, is E E p R 0 M (E 1 e c tr 0 n i c a 1

Erasable and programmable Read Only Memory:電子可消 除及可程式之唯讀記憶體)’或者係由comPact flash(註冊 -10- 1317298 商標)smart media, SD memory card, memory stick, MMC (Multi Media Card:多媒體卡),XD picture card 等之 flash memory(快閃式記億體)所形成。 本體部1係由四個連接器部2 0、光源用電源部6、顯 示部8、記憶部1 〇、輸入部1 2 '介面(I / F)部1 4,及控制部 4所組成。 各個連接器部2 0係與連接電纜2 2連結,將連接電纜 2 2連接到光源用電源部6及控制部4。 光源用電源部6係對應來自控制部4之控制指令,供 給電力給各個照射部2。另外,光源用電源部6將供給至 各個照射部2之電力的電流値輸出到控制部4。 顯示部8係配置在本體部1之表面,將控制部4供給 之信號顯示給使用者。 記憶部1 〇係儲存來自控制部4之資料,另外,響應來 自控制部4之指令,讀出儲存之資料並輸出到控制部4。 另外,記憶部1 〇另儲存有使用者輸入之設定値等之資料。 輸入部12係配置在本體部1之表面,接收來自使用者 之設定。使用者對每個所要之週期之照射樣式,亦即對各 個照射部2,輸入照射量依時之變化。又,使用者也能對 各個照射部2,輸入所要之照射週期的照射能量値。 介面部1 4係橋接控制部4與外部裝置,例如個人電腦 等之資料之傳收。而介面部14係由例如USB(Universal Serial Bus) ' RS-232C(Reco mm ended Standard 232 Version C)' IEEE(Institute of Electrical and Electronic Engineers) 1317298 1 3 94、SCSI(Small Computer System Interface) ' Ethernet (註冊商標)、IEEE 1284(parallel port)等所組成。 控制部4接收自光源用電源部6對各個照射部2供給 之電流値,依每個既定之控制部週期進行累計。然後,控 制部4將光源46之壓降量乘以累計之電流値,以算出UV 光源1 6之照射能量。另外,控制部4將算出照射能量相加 到從照射部2的記憶部1 8讀出之照射能量之累積値,然後 ,藉該加算後之値來更新記憶部1 8所儲存之照射能量之累 積値。又,控制部4將算出之UV光源1 6之照射能量及照 射能量之累積値等顯示於顯示部8。 另外,控制部4讀出事先記儲存、記憶部—1之內_良發連\效 ¥之衰據特.性,取得被視爲壽命之光源用電源部之照射能 量値。然後,控制部4判斷UV光源1 6之照射能量之累積 値是否超過被視爲壽命之照射能量値,若是超過之情形’ 則判定U V光源1 6已到達壽命’若是未超過之情形’則判 定UV光源16尙未到達壽命。另外’控制部4運算被視爲 UV光源1 6到達壽命之照射能量値與UV光源1 6之照射能 量之累積値之差,而算出UV光源1 6到達壽命止之剩餘壽 命。另外,控制部4根據UV光源1 6之發光效率之衰減特 性,從照射部2之照射能量之累積値’而算出UV光源1 6 之劣化率。然後,控制部4將藉上述步驟求出之UV光源 1 6的壽命之有無到達,U V光源1 6之剩餘壽命及u v光源 1 6之劣化率等顯示於顯示部8。 另外,控制部4接收使用者經輸入部1 2對各個照射部 -12- 1317298 2輸入之照射樣式,算出在執行各個照射樣式之情形時之 照射能量。然後,控制部4用在對照射部2執行照射樣式 之情形時之照射能量,除以UV光源1 6之剩餘壽命,進而 算出在某一時點上照射部2能執行該照射樣式之次數。另 外,控制部4將藉上述步驟算出之能執行之次數顯示於顯 示部8。 又,控制部4接收使用者經輸入部,對照射部2輸入 之照射樣式及所要之照射能量値,使目前之照射樣式整體 在照射量方向上伸縮,以產生具有輸入之照射能量値之新 的照射樣式。 第2圖係本發明之第1實施形態之紫外線照射裝置i 〇 〇 之外觀圖。另外,爲了容易理解起見,顯示對本體部1只 連接1個照射部2之狀態。 參照第2圖,本體部1係爲箱型形狀,在其前面配置 有顯示部8及輸入部12。 連接電纜22,其一端係連接在本體部丨之背面,另一 端係與照射部2連接。再者,連接電纜2 2係對應被照射物 及配置被照射物之台架等,而設定成必要的長度。 照射部2係爲圓筒形狀,從接續到連接電纜22之端的 相反側照射紫外線。而,照射部2在照射紫外線之照射口 之附近有內建UV光源1 6。另外,照射部2在UV光源1 6 與連接電纜22之連接端之間插入記憶部1 8。 (LED之發光特性) 紫外線燈因係利用放電現象,而產生紫外線,故供給 -13- 1317298 電力與發光量之關係係爲非線性。換言之,對應供給之電 力的電壓値及電流値’發光效率及壽命大幅變化。因此, 以往之紫外線燈係被供以使效率及壽命成爲最大那樣之最 適之定電壓。 相反地,L E D係利用電子與質子之再結合所導致之能 量轉變(energy transition)來發射紫外線,因此,產生發光 效率高,對應供給之電子數之發光量。 第3圖係爲表示發光量對UV光源16之輸入電流的變 I化圖。 參照第3圖’ UV光源1 6之發光量係大槪正比於供給 到L E D之電子數’亦即輸入電流。因此,控制部*對應使 用者設定之照射樣式,藉調整光源用電源部6之電流値, 以控制紫外線的照射量。 但是’組成UV光源16之LED,係爲將屬於半導體之 LED晶片’用樹脂模製而成者。亦即,從LED晶片產生之 .紫外線係透過樹脂而照射。因此之故,隨著LED的發光, 透過樹脂之紫外線的累積量增加,從而樹脂逐漸劣化。而 ’因樹脂之劣化’導致紫外線的透射率降低,進而LED之 發光效率逐衰減。 從上述之理由’ UV光源i 6之發光效率應係對應發光 量和發光時間累計量’亦即,照射能量而衰減。 第4圖係爲表示發光效率對u V光源1 6之照射能量之 累積値的變化圖。另外,第4圖係以剛製造後之發光量做 -14- 1317298 爲基準(1 ο ο % )。 參照第4圖’設發光效率衰減到既定之門檻値,例如 80%止之時點作爲壽命,從某時點起到到達壽命止剩餘之 照射目旨量作爲剩餘壽叩。而’控制部4係藉累積u v你、 兀j ί/思 1 6之照射能量’以判定ϋν光源丨6是否已到達壽命,另外 ,算出在某時點上之發光效率之衰減率,換含夕,少、^ 探η乙’劣化狀 態或某時點上之剩餘壽命等。 但是,如第3圖所示,UV光源1 6之發光量係大致正 比於輸入電流’因此’照射能量能容易藉累計輸入電流而 被取得。因此’依從第1實施形態之紫外線照射裝置丨 係藉累計光源用電源部6供給之電流値,以算出照射能量 ’然後根據該算出之照射能量,執行UV光源丨6之壽命管 理。 (壽命管理功能) 控制部4對各個照射部2,算出UV光源1 6之照射能 量,進而管理壽命。 第5圖係爲在顯不部8上有關壽命管理之顯示畫面之 一例。 第5 (a)圖係爲表示UV光源1 6之照射能量之累積値之 例。 第5(b)圖係爲表示UV光源16之剩餘壽命之例。 第5 (c )圖係爲表示U V光源1 6之發光效率之例。 另外,於第5圖上,「ich」、「2ch」、「3ch」、 「4ch」係爲依照射部2連接於本體部1之順序,而附註之 -15- 1317298 號碼。 參照第5(a)圖、第5(b)圖及第5(c)圖,控制部4係響 應使用者經輸入部1 2輸入之指令,在顯示部8上切換顯示 UV光源1 6之照射能量之累積値、剩餘壽命、及發光效率 〇 參照第5(a)圖,控制部4從使用者收到顯示照射能量 之累積値之指令後,即將各個U V光源1 6之照射能量之累 積値輸出到顯示部8,顯示部8則對使用者顯示出各該累 I 積値。另外,照射能量係用屬於能量單位之焦耳(】0Ule = j) 來表示。 又,控制部4將各個照射部2的運轉狀態輸出到顯示 部8,顯示部8則對使用者顯示出各該資訊。另外,顯示 部8也顯示「照射中」以表示正在進行紫外線之照射, 「等待中」以表示未進行紫外線之照射,但已完成紫外線 照射之準備等之運轉狀態。再者,控制部4 ,針對各個UV 光源1 6,判斷照射能量之累積値是否已超過被視爲壽命之 > 照射能量値,若是有存在超過之UV光源〗6時,則判已到 達壽命,將識別該UV光源1 6之資訊輸出到顯示部8。顯 示部8則對該UV光源1 6顯示「要更換」,藉此,對使用 者催促更換照射部2。 參照第5(b)圖’控制部4從使用者收到顯示剩餘壽命 之指令後,即,針對各個u V光源1 6,將從照射能量之累 積値和被視爲u V光源1 6之壽命之値的差算出之剩餘壽命 輸出到顯示部8。顯示部8則顯示出該剩餘壽命。另外, -16- 1317298 針對已到達壽命之UV光源1 6,算出之剩餘壽命係爲負値 ’但負値之絕對値無意義,因此顯示部8上顯示出爲〇。 參照第5 (c)圖’控制部4從使用者收到顯示劣化率之 指令時,即針對各個UV光源16,將根據發光效率之衰減 特性’從照射能量之累積値算出之劣化率輸出到顯示部8 ’顯示部8則對使用者顯示出該劣化率。 第6圖係爲算出UV光源1 6之照射能量之累積値之流 程圖。 參照第ό圖’照射部2 一開始紫外線之照射時,控制 部4即重設(reset)照射能量値(步驟si 00)。 然後’控制部4判斷是否爲控制週期之時序(timing) (步驟S102)。若非爲控制週期之時序之情形(在步驟sl〇2 上係爲N 0之情形)’控制部4則等待到控制週期時序到來 爲止(步驟S 1 02)。若是爲控制週期時序之情形(在步驟s丨02 上係爲YES之情形),控制部4則運算控制週期X供給電流 値X電壓降量(步驟S丨〇4)。然後控制部4則將運算結果加算 於照射能量値(步驟S 106)。 然後’控制部4判斷照射部2是否完成照射(步驟S 1 0 8) 。若是尙未完成照射之情形(在步驟S i 〇8上係爲NO之情 形),控制部4則判斷是否爲控制週期時序(步驟S丨〇2)。控 制部4直到步驟S108變爲YES止,重複執行步驟S102、 S 1 04、S 1 0 6、S 1 0 8。控制部4藉重複執行上述那樣之累計 步驟’而算出從開始照射到結束照射止,U V光源1 6照射 之照射能量。 -17- 1317298 若是完成照射之情形(在步驟s 1 Ο 8上係爲Y E S之情形) ’控制部4則讀出儲存於照射部2內之照射能量累積値(步 驟S 1 1 0)。然後’控制部4將照射能量値加算於讀出之累積 値(步驟S U 2)。另外’控制部4將加算後之累積値儲存於 照射部2內(步驟S114)。 如上述那樣’控制部4算出UV光源1 6之照射能量之 累積値。 第7圖係爲執行U V光源1 6之壽命管理之流程圖。 參照第7圖’控制部4讀出儲存在照射部2之照射能 量之累積値(步驟S 2 0 0)。另外,控制部4讀出儲存在照射 部2內之被視爲UV光源16的壽命之値(步驟S202)。 控制部4判斷照射能量之累積値是否超過被視爲uv 光源16之壽命之値(步驟S2〇4)。若是超過之情形(在步驟 S2 0 4上係爲Y E S之情形),控制部4則將u V光源1 6已到 達壽命之訊息輸出到顯示部8(步騾S2〇6)。若是未超過之 情形(在步驟S204上係爲N0之情形),控制部4則不輸出 任何is號到顯不部。 其後’控制部4判斷有否從使用者收到顯示累積値之 指令(步驟S20 8)。若是收到顯示累積値之指令的情形(在步 驟S20 8上係爲YES之情形)’控制部4則將照射能量之累 積値輸出到顯示部8(步驟S210)。 若是未收到顯示累積値的情形(在步驟S2〇8上係爲NO 之情形)’控制部4則判斷有否從使用者收到顯示剩餘壽命 之ί曰令(步驟S 2 1 2)。若是有收到顯示剩餘壽命之指令的情 -18- 1317298 形(在步驟S2 1 2上係爲YES之情形),控制部4則算出照射 能量之累積値與被視爲UV光源1 6之壽命之値的差(步驟 S2 1 4)。然後’控制部4將算出之剩餘壽命輸出到顯示部8 (步驟 S 2 1 6)。 若是未收到顯示剩餘壽命之指令的情形(在步驟S2 1 2 上係爲N 0之情形),控制部4則判斷有否從使用者收到顯 示劣化率之指令(步驟S 2 1 8)。若是有收到顯示劣化率之指 令的情形(在步驟S2 1 8上係爲YES之情形),控制部4則讀 > 出儲存於照射部2內之u V光源1 6之衰減特性(步驟S 2 2 0) 。然後’控制部4則根據UV光源1 6之衰減特性,從照射 能量之累積値,算出衰減率(步驟S 222 )。接著,控制部4 將該算出之衰減率輸出到顯示部8(步驟S224)。 (照射樣式管理功能) 如上述那樣,紫外線照射裝置1 〇 〇係藉調整供給到UV 光源1 6之電流値,而隨意地控制照射量。因此,控制部4 係依對應於UV硬化材料等之被照射物的特性之照射樣式 而控制光源用電源部6。一般的生產線,大多爲相同的 產品連續生產之情況’因此,對各個製品,重複執行相同 的照射樣式。 但是’屬於被照射物之之U V硬化材料之反應量,係 對應被賦與之光能量而定。因此,欲進行精確度高之生產 管理’著眼於從紫外線照射裝置照射之照射能量係有其必 要。 因此’控制部4在接收使用者經輸入部1 2設定之照射 -19- 1317298 樣式後’於執行照射前,先算出該照射樣式所含之照射能 量’並顯示在顯示部8上。另外,控制部4,在執行照射 樣式當中’則是將已照射之紫外線之照射能量顯示於顯示 部8上。 第8圖係爲執行照射樣式時,在顯示部8上之顯示畫 面之一例。 參照第8圖,控制部4接收使用者設定之照射樣式, 算出在該控制樣式上之照射能量的設定量。然後,控制部 > 4將照射樣式及算出之照射能量之設定量輸出到顯示部8 ’顯示部8則對使用者顯示出這些資訊。另外,控制部4 依從照射樣式,在開始照射時,將該照射之經過時間及依 該照射樣式已照射之照射能量的照射量輸出到顯示部8, 顯示部8則對使用者顯示出這些資訊。 但是,在生產線上,重複進行相同之照射樣式的情形 ,能預測UV光源1 6到達壽命止,能執行該照射樣式之次 數。換言之,控制部4以照射樣式之照射能量除以在某時 > 點上之UV光源1 6之剩餘壽命,藉此算出能執行該照射樣 式之次數。 第9圖係爲在顯示部8上有關照射週期之照射能量之 顯示圖面之一例。 第9 (a)圖係爲表示照射樣式選擇畫面之例。 第9(b)圖係爲表示被選擇之照射樣式之照射能量之例 〇 第9(c)圖係爲表示被選擇之照射樣式之可執行次數之 -20- 1317298 例》 參照第9 (a)圖,控制部4將事先儲存於記憶部1 0內之 照射樣式,或過去使用者輸入之照射樣式輸出到顯示部8 ,顯示部8則對使用者顯示出識別號碼和有對應關係之照 射樣式。使用者係透過輸入部1 2,設定所要之照射樣式之 識別號碼。然後,控制部4對應從輸入部1 2接收之識別號 碼,選擇照射樣式。 參照第9(b)圖,針對各個照射部2,算出被選擇之照 I 射樣式之照射能量,接著將照射樣式之識別號碼及該算出 之照射能量輸出到顯示部8。顯示部8則對使用者顯示出 照射樣式的識別號碼和照射能量。 參照第9(c)圖,控制部4接收到顯示能執行次數之指 令時,針對各個照射部2,用被選擇之照射樣式之照射能 量除U V光源1 6之剩餘壽命,藉此,算出該照射樣式之能 執行次數,並輸出到顯示部8。顯示部8則對使用者顯示 出可執行之次數。 > 第1 0圖係爲算出可執行次數之流程圖。 參照第1 0圖,從使用者接收到顯示可執行次數之指令 時’控制部4即將照射樣式輸出到顯示部8 (步驟s 3 0 0)。 然後’控制部4判斷有否從使用者收到照射樣式之識別號 碼(步驟S 3 02)。若是無收到識別號碼之情形(在步驟S302 上係爲Ν Ο之情形)’控制部4則等待直到收到識別號碼爲 止(步驟S 3 02)。 若是收到識別號碼之情形(在步驟S 3 0 2上係爲Y E S之 -2 1- 1317298 1青形)’控制部4則算出被選擇之照射樣式的照射能量(步 驟S3 04)。然後’控制部4將算出之照射能量輸出到顯示部 8(步驟 S306)。 3 4 ’控制部4判斷有否從使用者收到顯示可執行次 數之指令(步驟S308)。 若是有收到顯示可執行次數之指令的情形(在步驟 S3 08上係爲YES之情形),控制部4則用算出之照射能量 除U V光源1 6之剩餘壽命(步驟s 3丨〇)。然後,控制部4將 > 除算結果輸出到顯示部8(步驟S312)。 若是無收到顯示可執行次數之指令的情形(在步驟 S 3 0 8上係爲Ν Ο之情形),控制部4則結束處理。 如上述那樣’藉算出照射樣式之可執行次數,預測照 射部2之更換時間’進而能避免因UV光源1 6到達壽命所 造成之突發性之生產線的停止。是於,能抑制生產線之生 產能力的降低。 另外’藉用可執行次數除更換照射部2所需之成本, > 能槪算照射樣式每執行1次之成本。於是,能容易地進行 生產管理上之成本調查。 (照射樣式產生功能) UV硬化材料之改變,被照射之形狀變更等之所謂生產 條件有變更時,有時必需隨著這種變更而調整照射樣式。 這種情形,藉利用以前之照射樣式,而僅變更樣本整體的 照射能量,能更迅速地進行調整。 因此,控制部4接收使用者經輸入部1 2對照射部2輸 -22- 1317298 入之照射樣式及所要之照射能量,使目前之照射樣式整體 在照射量方向上伸縮,進而產生具有輸入之所要照射能量 之新的照射樣式。 第1 1圖係爲在顯示部8上有關新的照射樣式的產生之 顯示畫面的一例。 參照第1 1圖,控制部4收到產生照射樣式之指令時, 即算出目前之照射樣式及該照射樣式所含之照射能量,並 輸出到顯示部8。顯示部8則對使用者顯示出目前之照射 樣式及其之照射能量之設定量。 使用者經輸入部1 2輸入所要之變更後之照射能量。然 後,控制部4,使目前之照射樣式在照射量方向上伸縮, 以產生使變更後之照射樣式之照射能量與使用者輸入之變 更後之照射能量一致那樣之新的照射樣式。 例如,變更前之照射樣式上之照射能量係爲「8000J」 ,而使用者輸入之變更後的照射能量若係爲「4000J」時, 控制部4則產生將變更前之照射樣式在照射量方向上壓縮 成一半之形狀的新照射樣式。 第1 2圖係爲新產生之照射樣式之流程圖。 參照第1 2圖,控制部4判斷有否從使用者收到產生照 射樣式之指令(步驟S400)。若是無收到產生照射樣式之指 令的情形(在步驟S400上係爲NO之情形),控制部4則等 待接收到產生照射樣式的指令爲止。 若是收到產生照射樣式之指令的情形(在步驟S 4 0 0上 係爲YES之情形),控制部4則算出被選擇之照射樣式的照 -23- 1317298 射能量(步驟S402)。然後’控制部4將算出之照射能量輸 出到顯示部8 (步驟S 4 0 4)。 然後’控制部4判斷有否從使用者收到變更後之照射 能量(步驟S4〇6)。若是無收到變更後之照射能量的情形 (在步驟S 4 0 6上係爲N 0之情形),控制部4則等待接收變 更後的照射能量(步驟S 4 0 6 )。 若是收到變更後之照射能量之情形(在步驟S 4 0 6上係 爲Y E S之情形控制部4則使算出之照射能量除以變更後 之照射能量(步驟S4 0 8)。然後,控制部4將除算的結果 乘於被選擇之照射樣式之整體,以產生新的照射樣式(步驟 S4 1 0)。另外,控制部4將新產生之照射樣式輸出到顯示部 8 (步驟 S 4 1 2 )。 如上述那樣,係使照射樣式在照射量方向上伸縮,以 產生新的照射樣式,因此能維持照射時間、照射停止時間 等所謂對應被照射物之原有特徵,而調整照射樣式。因此 ,對應生產條件的變更,能迅速地調整照射樣式。 本發明之第1實施形態,顯示部8及介面部1 4係達成 顯示輸出手段之功能。另外,控制部4係達成壽命判定手 段、剩餘壽命算出手段、劣化狀態判斷手段、照射樣式算 出手段、可執行次數算出手段及照射樣式產生手段等之功 能。 依本發明之第1實施形態’依時間累計供給到uv光 源之電力的電流値,藉此,能算出係已考慮到照射量及時 間兩者之指標的照射能量。因此’能執行對應uv光源的 -24- 1317298 發光量的變化之高精確度的壽命管理。另外,因僅需取得 供給UV光源之電力的電流値即可,故不必實際測定UV光 源產生之紫外線,進而能簡化組成。 又,依本發明之第1實施形態,根據發光量對UV光 源的照射能量之累積値的衰減特性,判斷U V光源是否已 到達壽命,而算出U V光源的剩餘壽命、判斷U V光源的劣 化狀態。另外,藉由照射樣式的照射能量來除UV光源1 6的 剩餘壽命,以算出照射樣式之可執行次數。因此,能以高 精確度執行UV光源之壽命管理,另外,對於使用紫外線 照射裝置之生產線上之生產管理,也能以高精確度進行。 又,依本發明之第1實施形態,能從照射能量之觀點 來設定有關規定時間與照射量之關係的照射樣式,因此, 依實際之UV硬化法的原理,能管理照射樣式》 又,依本發明之第1實施形態,各個照射部含有儲存 UV光源的照射能量之累積値之記憶部,因此即便照射部與 不同之本體部連接之情形,仍能將迄連接當時止照射之UV 光源的照射能量的累積値輸出到該不同之本體部。因此, 照射部不管是接到那一個本體部,皆能容易地取得迄連接 當時止照射照射能量之累積値。因此,與要連接之本體部 無關,而能正確地管理UV光源的壽命。 (第2實施形態) 上述第1實施形態,係針對依時間對供給到U V光源 之電力的電流値進行積分’藉此算出照射能量之情形進行 說明。 -25- 1317298 而’第2實施形態係針對實際地測定照射之紫外線, 以算出照射能量之情形說明。 第1 3圖係爲依從第2實施形態之紫外線照射裝置2〇〇 之槪略組成圖。 參照弟1 3圖’紫外線照射裝置2 0 0係由四個照射部5 、四條連接電纜22及本體部3所組成。 各個照射部5係在第1實施形態之照射部2上增設照 度測定部24而形成者。 ^ 照度測定部2 4係不妨礙從U V光源1 6照射紫外線那 樣’配置在發光面的附近。而,照度測定部24係測定自 U V光源1 6照射之紫外線的照度’經連接電纜2 2輸出到本 體部3。 本體部3係爲將第〗實施形態之本體部1上之控制部 4更換爲控制部7者。 控制部7係經連接電纜2 4,自照度測定部2 4接收U V 光源1 6之照度信號’接著依每個既定之控制週期進行累計 ^ 。然後’控制部7將Uv光源16之發光面積乘以已累計之 照度,以算出U V光源1 6之照射能量。另外,控制部7將 算出之照射能量加到自照射部5之記憶部1 8讀出之照射能 量之累積値’然後’用該加算後之値來更新記憶部1 8所儲 存之照射能量之累積値。 其它的功能因係與第1實施形態之控制部4之功能相 同,故省略其詳細說明。 U V光源1 ό之照度因係爲將單位時間產生之光能量以 -26- 1317298 單位面積予以規格化者’故藉將uv光源1 6的照度依時間 累計,並乘上UV光源16的發光面積,能算出UV光源16 產生之照射能量。 依本發明之第2實施形態,照度測定部藉UV光源實 際產生之照度,然後根據該測定之照度算出照射能量。因 此,控制部能取得接近實體之照射能量,進而能以更高精 確度進行壽命管理。 (其它之形態) > 上述之第1及第2實施形態’雖已說明具備顯示部及 輸入部之本體部,但並不限定於此組成。換言之,也可作 成爲經由介面部連接控制部和個人電腦等’將控制部輸出 之資料顯示在電腦上’或者將使用者在個人電腦上輸入之 指令傳送到控制部之組成。 上述之第1及第2實施形態’雖已說明照射部係作成 爲含有儲存U V光源的照射能量之累積値之記憶部的組成 ,但並不限定這種組成。換言之’也可作成爲含於本體部 > 之記億部內儲存有各個uv光源之照射能量之累積値之組 成。此組成因能抑制照射部的製造成本’故有利於更換頻 繁之情形。 另外,上述之第1及第2實施形態’雖已說明由本體 部和多數之照射部所組成之紫外線照射裝置,但本發明也 能適用於本體部和1個照射部所組成之紫外線照射裝置, 自不待言。 本文揭不之實施形態’全部之點皆應視爲例示,而非 -27- 1317298 限制性。本發明之範圍並非限定於上述之說明,而應、包括 申請專利範圍所陳述 '與申請專利範圍均等的意義及在該 範圍內之所有變更。 【圖式簡單說明】 第1圖係爲本發明第1實施形態之紫外線照射裝置之 槪略構成圖。 第2圖係爲本發明第1實施形態之紫外線照射裝置之 外觀圖。 第3圖係爲表示發光量對UV光源之輸入電流之變化 圖。 第4圖係爲表示發光效率對UV光源之照射能量的累 積値之變化圖。 第5圖係爲表示顯示部上有關壽命管理之顯示畫面的 一例。 第6圖係爲用於算出UV光源的照射能量之累積値之 流程圖。 第7圖係爲執行UV光源的壽命管理之流程圖。 第8圖係爲執行照射樣式時,在顯示部上之顯示畫面 之一例。 第9圖係爲在顯示部上有關照射週期之照射能量之顯 示畫面之一例。 第1 0圖係爲用於算出可執行次數之流程圖。 第1 1圖係爲在顯示部上有關新的照射樣式之產生的 顯示畫面之一例。 -28- 1317298 第1 2圖係爲新產生照射樣式之流程圖。 ' 第1 3圖係爲依從第2實施形態之紫外線照射裝置之槪 略組成圖。 【主要元件符號說明】 1、 3 本體部 2、 5 照射部 4、7 控制部 6 光源用電源部 • 8 顯示部 10 ' 18 記憶部 12 輸入部 14 介面(I/F)部 16 UV光源 20 連接器部 22 連接電纜 24 照度測定部 ^ 100、200紫外線照射裝置 -29-Erasable and programmable Read Only Memory) or comPact flash (registered -10- 1317298 trademark) smart media, SD memory card, memory stick, MMC (Multi Media Card: multimedia Card), XD picture card and other flash memory (flash type). The main body unit 1 is composed of four connector portions 20, a light source power supply unit 6, a display unit 8, a memory unit 1A, an input unit 1 2' interface (I/F) unit 14 and a control unit 4. Each of the connector portions 20 is connected to the connection cable 22, and the connection cable 22 is connected to the light source power supply unit 6 and the control unit 4. The light source power supply unit 6 supplies power to each of the irradiation units 2 in response to a control command from the control unit 4. Further, the light source power supply unit 6 outputs the current 値 of the electric power supplied to each of the irradiation units 2 to the control unit 4. The display unit 8 is disposed on the surface of the main body unit 1, and displays a signal supplied from the control unit 4 to the user. The memory unit 1 stores the data from the control unit 4, and in response to an instruction from the control unit 4, reads the stored data and outputs it to the control unit 4. In addition, the memory unit 1 stores another data such as setting settings entered by the user. The input unit 12 is disposed on the surface of the main body unit 1 and receives settings from the user. The user inputs the irradiation pattern for each desired period, that is, changes to the irradiation amount for each of the irradiation units 2. Further, the user can input the irradiation energy 値 of the desired irradiation period to each of the irradiation units 2. The interface 14 is a transmission of information between the bridge control unit 4 and an external device such as a personal computer. The interface 14 is composed of, for example, USB (Universal Serial Bus) 'RS-232C (Reco mm ended Standard 232 Version C)' IEEE (Institute of Electrical and Electronic Engineers) 1317298 1 3 94, SCSI (Small Computer System Interface) ' Ethernet (registered trademark), IEEE 1284 (parallel port), etc. The control unit 4 receives the current 供给 supplied from the light source power supply unit 6 to each of the irradiation units 2, and accumulates for each predetermined control unit cycle. Then, the control unit 4 multiplies the voltage drop amount of the light source 46 by the accumulated current 値 to calculate the irradiation energy of the UV light source 16. Further, the control unit 4 adds the calculated irradiation energy to the cumulative enthalpy of the irradiation energy read from the memory unit 18 of the illuminating unit 2, and then updates the illuminating energy stored in the memory unit 18 by the added enthalpy. Accumulated 値. Further, the control unit 4 displays the calculated irradiation energy of the UV light source 16 and the accumulation of the irradiation energy, etc. on the display unit 8. Further, the control unit 4 reads out the storage capacity of the storage unit, the memory unit-1, and the illuminating energy of the power source unit. Then, the control unit 4 determines whether or not the accumulation 値 of the irradiation energy of the UV light source 16 exceeds the irradiation energy 値 regarded as the lifetime, and if it exceeds the situation ′, it is determined that the UV light source 16 has reached the life 'if it is not exceeded' The UV light source 16 has not reached the end of its life. Further, the control unit 4 calculates the difference between the irradiation energy 値 which is regarded as the life of the UV light source 16 and the cumulative energy UV of the UV light source 16 , and calculates the remaining life of the UV light source 16 after the end of its life. Further, the control unit 4 calculates the deterioration rate of the UV light source 16 from the accumulation 照射' of the irradiation energy of the irradiation unit 2 based on the attenuation characteristic of the luminous efficiency of the UV light source 16. Then, the control unit 4 displays the presence or absence of the life of the UV light source 16 obtained by the above-described steps, and displays the remaining life of the U V light source 16 and the deterioration rate of the uv light source 16 on the display unit 8. Further, the control unit 4 receives the irradiation pattern input by the user via the input unit 12 to each of the irradiation units -12 to 1317298 2, and calculates the irradiation energy when the respective irradiation patterns are executed. Then, the control unit 4 divides the irradiation energy when the irradiation pattern is applied to the irradiation unit 2, and divides the remaining life of the UV light source 16 to calculate the number of times the irradiation unit 2 can execute the irradiation pattern at a certain point in time. Further, the control unit 4 displays the number of times that can be executed by the above-described steps is displayed on the display unit 8. Further, the control unit 4 receives the irradiation pattern input by the user via the input unit and the desired irradiation energy 値, and expands and contracts the current irradiation pattern as a whole in the irradiation amount direction to generate a new irradiation energy with input. Irradiation style. Fig. 2 is an external view of an ultraviolet irradiation device i 〇 第 according to the first embodiment of the present invention. Further, for the sake of easy understanding, a state in which only one irradiation unit 2 is connected to the main body unit 1 is displayed. Referring to Fig. 2, the main body portion 1 has a box shape, and a display portion 8 and an input portion 12 are disposed on the front surface thereof. The connecting cable 22 has one end connected to the back surface of the main body portion and the other end connected to the illuminating portion 2. Further, the connection cable 2 2 is set to have a required length in accordance with the object to be irradiated and the stage on which the object to be irradiated is placed. The illuminating unit 2 has a cylindrical shape and is irradiated with ultraviolet rays from the opposite side to the end of the connecting cable 22. Further, the illuminating unit 2 has a built-in UV light source 16 in the vicinity of the irradiation port for irradiating the ultraviolet ray. Further, the illuminating unit 2 inserts the memory unit 18 between the connection ends of the UV light source 16 and the connection cable 22. (Light-emitting characteristics of LED) Since the ultraviolet lamp generates ultraviolet rays due to the discharge phenomenon, the relationship between the power supply and the amount of luminescence is nonlinear. In other words, the voltage 値 and current 値' corresponding to the supplied power greatly change the luminous efficiency and life. Therefore, the conventional ultraviolet lamp is supplied with the optimum constant voltage for maximizing efficiency and life. On the contrary, L E D emits ultraviolet rays by an energy transition caused by recombination of electrons and protons, thereby generating a high luminous efficiency and corresponding to the amount of electrons supplied. Fig. 3 is a graph showing the change of the amount of luminescence to the input current of the UV light source 16. Referring to Fig. 3, the amount of luminescence of the UV light source 16 is greater than the number of electrons supplied to L E D, i.e., the input current. Therefore, the control unit* controls the amount of irradiation of the ultraviolet rays by adjusting the current 値 of the light source power supply unit 6 in accordance with the illumination pattern set by the user. However, the LED constituting the UV light source 16 is molded of a resin wafer of a semiconductor. That is, the ultraviolet light generated from the LED wafer is irradiated with the resin. Therefore, as the LED emits light, the cumulative amount of ultraviolet rays transmitted through the resin increases, and the resin gradually deteriorates. On the other hand, the deterioration of the ultraviolet ray is caused by the deterioration of the resin, and the luminous efficiency of the LED is attenuated. For the above reasons, the luminous efficiency of the UV light source i 6 should be attenuated by the irradiation energy corresponding to the amount of luminescence and the cumulative amount of luminescence time. Fig. 4 is a graph showing changes in luminous efficiency versus cumulative enthalpy of irradiation energy of the U V light source 16. In addition, Fig. 4 is based on the amount of luminescence immediately after manufacture - (1 ο ο % ). Referring to Fig. 4, the luminous efficiency is attenuated to a predetermined threshold, for example, 80% of the time is taken as the life, and the amount of the irradiation from the time point to the end of the life is used as the remaining life. And 'the control unit 4 accumulates the illuminating energy of uv you, 兀j ί/思1 6' to determine whether the ϋν source 丨6 has reached the end of its life, and calculates the decay rate of the luminous efficiency at a certain point in time. , less, ^ probe η B 'degraded state or remaining life at a certain point in time. However, as shown in Fig. 3, the amount of light emitted by the UV light source 16 is substantially proportional to the input current 'therefore, the irradiation energy can be easily obtained by accumulating the input current. Therefore, the ultraviolet ray irradiation apparatus according to the first embodiment calculates the irradiation energy by the current 値 supplied from the integrated light source power supply unit 6, and then performs the life management of the UV light source 丨6 based on the calculated irradiation energy. (Life Management Function) The control unit 4 calculates the irradiation energy of the UV light source 16 for each of the irradiation units 2, and further manages the life. Fig. 5 is an example of a display screen relating to life management on the display unit 8. Fig. 5(a) is an example showing the accumulation of illuminating energy of the UV light source 16. Fig. 5(b) is an example showing the remaining life of the UV light source 16. The fifth (c) diagram is an example showing the luminous efficiency of the U V light source 16. In addition, in Fig. 5, "ich", "2ch", "3ch", and "4ch" are in the order in which the irradiation unit 2 is connected to the main body unit 1, and the number -15- 1317298 is attached. Referring to FIGS. 5(a), 5(b) and 5(c), the control unit 4 switches the display of the UV light source 16 on the display unit 8 in response to a user inputting an instruction via the input unit 12. Accumulation of irradiation energy, remaining life, and luminous efficiency 〇 Referring to Fig. 5(a), after the control unit 4 receives an instruction to display the accumulation of irradiation energy from the user, the accumulation of the irradiation energy of each of the UV light sources 16 is obtained. The UI is output to the display unit 8, and the display unit 8 displays each of the accumulated I products for the user. In addition, the irradiation energy is expressed by Joules (*0Ule = j) belonging to the energy unit. Further, the control unit 4 outputs the operation state of each of the irradiation units 2 to the display unit 8, and the display unit 8 displays each of the information to the user. Further, the display unit 8 also displays "irradiation" to indicate that ultraviolet light is being irradiated, and "waiting for" indicates that the ultraviolet light is not irradiated, but the operation state such as preparation for ultraviolet irradiation is completed. Further, the control unit 4 determines whether or not the accumulation 照射 of the irradiation energy exceeds the energy ≥ the irradiation energy 各个 for each of the UV light sources 16 , and if the UV light source 6 is present, the life has been reached. The information identifying the UV light source 16 is output to the display unit 8. The display unit 8 displays "to be replaced" to the UV light source 16 to urge the user to replace the irradiation unit 2. Referring to Fig. 5(b), the control unit 4 receives an instruction to display the remaining life from the user, that is, for each of the U V light sources 166, the sum of the energy from the irradiation energy is regarded as the u V light source 16 The remaining life calculated from the difference in life is output to the display unit 8. The display unit 8 displays the remaining life. In addition, -16- 1317298 is calculated to be negative 値 ’ for the UV light source 166 that has reached the end of its life, but the absolute 値 of the negative 値 is meaningless, so the display unit 8 displays 〇. Referring to Fig. 5(c), when the control unit 4 receives a command to display the deterioration rate from the user, that is, for each of the UV light sources 16, the deterioration rate calculated from the accumulation of the irradiation energy by the attenuation characteristic of the luminous efficiency is output to The display unit 8' displays the display unit 8 to display the deterioration rate to the user. Fig. 6 is a flow chart for calculating the cumulative enthalpy of the irradiation energy of the UV light source 16. Referring to the second drawing, the irradiation unit 2 starts the irradiation of the ultraviolet rays, and the control unit 4 resets the irradiation energy 値 (step si 00). Then, the control unit 4 judges whether or not it is the timing of the control cycle (step S102). If it is not the timing of the control cycle (in the case of step S1〇2, it is N 0), the control unit 4 waits until the control cycle timing comes (step S102). If it is the case of the control cycle timing (in the case of YES at step s02), the control unit 4 calculates the control cycle X supply current 値X voltage drop amount (step S丨〇4). Then, the control unit 4 adds the calculation result to the irradiation energy 値 (step S106). Then, the control unit 4 determines whether or not the irradiation unit 2 has completed the irradiation (step S1 0 8). If the illumination is not completed (in the case of step S i 〇 8 is NO), the control unit 4 determines whether or not it is the control cycle timing (step S2). The control unit 4 repeats steps S102, S1 04, S 1 0 6 , and S 1 0 8 until the step S108 becomes YES. The control unit 4 calculates the irradiation energy of the U V light source 16 from the start of the irradiation to the end of the irradiation by repeating the above-described integration step ‘. -17- 1317298 If the irradiation is completed (in the case of Y E S in step s 1 Ο 8), the control unit 4 reads the irradiation energy accumulation 储存 stored in the irradiation unit 2 (step S 1 1 0). Then, the control unit 4 adds the irradiation energy to the accumulated accumulation 读出 (step S U 2). Further, the control unit 4 stores the accumulated accumulation 値 in the illuminating unit 2 (step S114). As described above, the control unit 4 calculates the cumulative enthalpy of the irradiation energy of the UV light source 16. Figure 7 is a flow chart for performing the life management of the U V light source 16. Referring to Fig. 7, the control unit 4 reads the cumulative enthalpy of the irradiation energy stored in the illuminating unit 2 (step S2 0 0). Further, the control unit 4 reads out the life of the UV light source 16 stored in the irradiation unit 2 (step S202). The control unit 4 determines whether or not the accumulation 照射 of the irradiation energy exceeds the lifetime of the uv light source 16 (step S2〇4). If it is exceeded (in the case of Y E S in step S2 0 4), the control unit 4 outputs a message that the u V light source 16 has reached the end of its life to the display unit 8 (step S2〇6). If it is not exceeded (in the case of N0 in step S204), the control unit 4 does not output any is number to the display. Thereafter, the control unit 4 determines whether or not an instruction to display the accumulation 値 has been received from the user (step S20 8). When the command to display the cumulative 値 is received (in the case of YES in step S20 8), the control unit 4 outputs the accumulated energy of the irradiation energy to the display unit 8 (step S210). If the cumulative 値 is not received (in the case of NO at step S2 ) 8), the control unit 4 determines whether or not the user has received a command to display the remaining life (step S 2 1 2). If there is a case of receiving an instruction indicating the remaining life (in the case of YES in step S2 1 2), the control unit 4 calculates the cumulative 照射 of the irradiation energy and the lifetime regarded as the UV light source 16. The difference is then (step S2 1 4). Then, the control unit 4 outputs the calculated remaining life to the display unit 8 (step S 2 16). If the command for displaying the remaining life is not received (in the case of N 0 in step S2 1 2), the control unit 4 determines whether or not an instruction to display the deterioration rate is received from the user (step S 2 18) . If there is a case where an instruction to display the deterioration rate is received (in the case of YES in step S2 18), the control unit 4 reads > the attenuation characteristic of the u V light source 16 stored in the irradiation unit 2 (step S 2 2 0) . Then, the control unit 4 calculates the attenuation rate from the accumulation 照射 of the irradiation energy based on the attenuation characteristic of the UV light source 16 (step S 222 ). Next, the control unit 4 outputs the calculated attenuation rate to the display unit 8 (step S224). (Irradiation Pattern Management Function) As described above, the ultraviolet irradiation device 1 随意 adjusts the amount of irradiation arbitrarily by adjusting the current 供给 supplied to the UV light source 16 . Therefore, the control unit 4 controls the light source power supply unit 6 in accordance with the illumination pattern corresponding to the characteristics of the object to be irradiated such as the UV hardening material. The general production line is mostly the case where the same product is continuously produced. Therefore, the same illumination pattern is repeatedly performed for each product. However, the amount of reaction of the U V hardening material belonging to the object to be irradiated depends on the amount of light energy to be imparted. Therefore, it is necessary to carry out production management with high precision, and it is necessary to focus on the irradiation energy from the ultraviolet irradiation device. Therefore, the control unit 4 receives the illumination -19- 1317298 pattern set by the user via the input unit 12, and then calculates the irradiation energy amount contained in the illumination pattern before performing the irradiation and displays it on the display unit 8. Further, the control unit 4 displays the irradiation energy of the irradiated ultraviolet light on the display unit 8 in the execution of the irradiation pattern. Fig. 8 is an example of a display screen on the display unit 8 when the illumination pattern is executed. Referring to Fig. 8, the control unit 4 receives the illumination pattern set by the user, and calculates the set amount of the irradiation energy in the control pattern. Then, the control unit > 4 outputs the irradiation pattern and the calculated amount of the irradiation energy to the display unit 8'. The display unit 8 displays the information to the user. Further, the control unit 4 outputs the irradiation time and the irradiation amount of the irradiation energy irradiated by the irradiation pattern to the display unit 8 in accordance with the irradiation pattern, and the display unit 8 displays the information to the user. . However, in the case of repeating the same illumination pattern on the production line, it is possible to predict the number of times the UV light source 16 can reach the end of its life. In other words, the control unit 4 calculates the number of times the irradiation pattern can be executed by dividing the irradiation energy of the irradiation pattern by the remaining life of the UV light source 16 at a certain time > point. Fig. 9 is an example of a display surface on the display unit 8 with respect to the irradiation energy of the irradiation period. The figure 9 (a) is an example showing the irradiation pattern selection screen. Fig. 9(b) is an example of the irradiation energy indicating the selected illumination pattern. Fig. 9(c) is a representation of the number of executables of the selected illumination pattern. -20-1317298 Example Reference 9 (a) The control unit 4 outputs the illumination pattern stored in the memory unit 10 in advance or the illumination pattern input by the user in the past to the display unit 8. The display unit 8 displays the identification number and the corresponding relationship to the user. style. The user sets the identification number of the desired illumination pattern through the input unit 12. Then, the control unit 4 selects the illumination pattern in accordance with the identification number received from the input unit 12. Referring to Fig. 9(b), the irradiation energy of the selected irradiation pattern is calculated for each of the irradiation units 2, and then the identification number of the irradiation pattern and the calculated irradiation energy are output to the display unit 8. The display unit 8 displays the identification number of the illumination pattern and the irradiation energy to the user. Referring to Fig. 9(c), when the control unit 4 receives the command to display the number of executions, the control unit 4 calculates the remaining life of the UV light source 16 by the irradiation energy of the selected illumination pattern for each of the illumination units 2, thereby calculating the remaining life of the UV light source 16 The number of times the illumination pattern can be executed is output to the display unit 8. The display unit 8 displays the number of times the user can execute. > Figure 10 is a flow chart for calculating the number of executables. Referring to Fig. 10, when the user receives an instruction to display the number of executions, the control unit 4 outputs the illumination pattern to the display unit 8 (step s 3 0 0). Then, the control unit 4 judges whether or not the identification number of the illumination pattern is received from the user (step S 3 02). If the identification number is not received (in the case of Ν 步骤 in step S302), the control unit 4 waits until the identification number is received (step S 3 02). In the case where the identification number is received (in the case of S E 0 -2 1 - 1317298 1 cyan), the control unit 4 calculates the irradiation energy of the selected illumination pattern (step S3 04). Then, the control unit 4 outputs the calculated irradiation energy to the display unit 8 (step S306). The control unit 4 determines whether or not an instruction to display the number of executables is received from the user (step S308). If there is a case where an instruction to display the number of executions is received (in the case of YES in step S3 08), the control unit 4 divides the remaining life of the U V light source 16 by the calculated irradiation energy (step s 3 丨〇). Then, the control unit 4 outputs the > division result to the display unit 8 (step S312). If there is no case where an instruction to display the number of executions is received (in the case of S 步骤 in step S308), the control unit 4 ends the processing. As described above, by calculating the number of executions of the irradiation pattern, the replacement time of the irradiation unit 2 is predicted to further avoid the sudden stop of the production line caused by the arrival of the UV light source 16 . Yes, it can suppress the reduction of the production capacity of the production line. In addition, the cost of replacing the irradiation unit 2 by the number of executables is > the cost per execution of the irradiation pattern can be calculated. Thus, the cost investigation for production management can be easily performed. (Illumination pattern generation function) When the UV curing material is changed, and the so-called production conditions such as the shape change of the irradiation are changed, it is necessary to adjust the irradiation pattern with such a change. In this case, by using the previous illumination pattern, only the irradiation energy of the entire sample can be changed, and the adjustment can be performed more quickly. Therefore, the control unit 4 receives the illumination pattern and the desired illumination energy that the user inputs into the illumination unit 2 via the input unit 12, and expands and contracts the current illumination pattern in the irradiation direction as a whole, thereby generating an input. A new illumination pattern that is intended to illuminate energy. Fig. 1 is an example of a display screen on the display unit 8 relating to the generation of a new illumination pattern. Referring to Fig. 1, when the control unit 4 receives the command to generate the illumination pattern, the control unit 4 calculates the current illumination pattern and the irradiation energy contained in the illumination pattern, and outputs it to the display unit 8. The display unit 8 displays the current illumination pattern and the amount of illumination energy set by the user. The user inputs the desired irradiation energy through the input unit 12 . Then, the control unit 4 expands and contracts the current irradiation pattern in the irradiation amount direction to generate a new irradiation pattern in which the irradiation energy of the changed irradiation pattern is matched with the irradiation energy after the user inputs the change. For example, if the irradiation energy in the irradiation pattern before the change is "8000J" and the irradiation energy after the change of the user input is "4000J", the control unit 4 generates the irradiation pattern before the change in the irradiation direction. A new illumination pattern that is compressed into a half shape. Figure 12 is a flow chart of the newly created illumination pattern. Referring to Fig. 12, the control unit 4 determines whether or not an instruction to generate an illumination pattern is received from the user (step S400). If there is no case where an instruction to generate an illumination pattern is received (in the case of NO in step S400), the control unit 4 waits until an instruction to generate an illumination pattern is received. If the command to generate the illumination pattern is received (in the case of YES in step S400), the control unit 4 calculates the illumination energy of the selected illumination pattern (step S402). Then, the control unit 4 outputs the calculated irradiation energy to the display unit 8 (step S 4 0 4). Then, the control unit 4 determines whether or not the received irradiation energy has been received from the user (step S4〇6). If the irradiation energy after the change is not received (in the case of N 0 in step S406), the control unit 4 waits for the received irradiation energy (step S460). In the case where the irradiation energy after the change is received (in the case of YES in step S406), the control unit 4 divides the calculated irradiation energy by the changed irradiation energy (step S4 0 8). Then, the control unit 4. Multiply the result of the division by the entire illumination pattern to generate a new illumination pattern (step S4 1 0). Further, the control unit 4 outputs the newly generated illumination pattern to the display unit 8 (step S 4 1 2) As described above, the irradiation pattern is stretched and contracted in the irradiation amount direction to generate a new irradiation pattern. Therefore, the original characteristics corresponding to the object to be irradiated, such as the irradiation time and the irradiation stop time, can be maintained, and the irradiation pattern can be adjusted. In the first embodiment of the present invention, the display unit 8 and the dielectric surface portion 14 are functions of a display output means, and the control unit 4 achieves a life determination means and remaining. The functions of the life calculation means, the deterioration state determination means, the illumination pattern calculation means, the executable number calculation means, and the illumination pattern generation means, etc. According to the configuration, the current 供给 of the electric power supplied to the uv light source is accumulated in time, whereby the irradiation energy in which the index of both the irradiation amount and the time is taken into consideration can be calculated. Therefore, the -24- 1317298 luminescence corresponding to the uv light source can be performed. The high-accuracy life management of the change in the amount of the volume can be achieved by simply obtaining the current 供给 supplied to the power of the UV light source, so that it is not necessary to actually measure the ultraviolet ray generated by the UV light source, and the composition can be simplified. According to the first embodiment, it is determined whether or not the UV light source has reached the life based on the attenuation characteristic of the amount of illuminating energy of the ultraviolet light source, and the remaining life of the UV light source is calculated, and the deterioration state of the UV light source is determined. The irradiation energy is used to remove the remaining life of the UV light source 16 to calculate the number of executions of the illumination pattern. Therefore, the life management of the UV light source can be performed with high precision, and also for the production management on the production line using the ultraviolet irradiation device. Further, according to the first embodiment of the present invention, it is possible to set the relevant regulations from the viewpoint of the irradiation energy. According to the principle of the actual UV curing method, the irradiation pattern can be managed according to the principle of the actual UV curing method. According to the first embodiment of the present invention, each of the irradiation units includes the accumulation of the irradiation energy for storing the UV light source. Therefore, even if the illuminating portion is connected to a different main body portion, the accumulation 値 of the irradiation energy of the UV light source connected to the illuminating light at that time can be output to the different body portion. Therefore, the illuminating portion is received regardless of whether In the main body portion, the cumulative enthalpy of the irradiation energy at the time of connection can be easily obtained. Therefore, the life of the UV light source can be accurately managed regardless of the main body to be connected. (Second embodiment) In the embodiment, the case where the irradiation energy is calculated by integrating the current 値 of the electric power supplied to the UV light source with time will be described. In the second embodiment, the case where the irradiation of the ultraviolet rays is actually measured to calculate the irradiation energy is described. Fig. 1 is a schematic diagram showing the composition of the ultraviolet irradiation device 2 according to the second embodiment. Referring to the first embodiment, the ultraviolet irradiation device 200 is composed of four irradiation portions 5, four connection cables 22, and a main body portion 3. Each of the illuminating units 5 is formed by adding an illuminance measuring unit 24 to the illuminating unit 2 of the first embodiment. The illuminance measuring unit 24 is disposed in the vicinity of the light-emitting surface without hindering the irradiation of the ultraviolet light from the U V light source 16. Further, the illuminance measuring unit 24 measures the illuminance of the ultraviolet ray irradiated from the U V light source 16 to the body portion 3 via the connection cable 2 2 . The main body unit 3 is a unit in which the control unit 4 on the main body unit 1 of the first embodiment is replaced with a control unit 7. The control unit 7 receives the illuminance signal ‘ of the U V light source 16 via the connection cable 24 and the self-illumination measuring unit 24, and then accumulates for each predetermined control period. Then, the control unit 7 multiplies the light-emitting area of the Uv light source 16 by the accumulated illuminance to calculate the irradiation energy of the U V light source 16. Further, the control unit 7 adds the calculated irradiation energy to the accumulation of the irradiation energy read from the memory unit 18 of the irradiation unit 5, and then updates the irradiation energy stored in the memory unit 18 with the added enthalpy. Accumulated 値. Since the other functions are the same as those of the control unit 4 of the first embodiment, detailed description thereof will be omitted. The illuminance of the UV light source 1 is based on the light energy generated per unit time from -26 to 1317298 unit area. Therefore, the illuminance of the uv light source 16 is accumulated over time, and the light-emitting area of the UV light source 16 is multiplied. The irradiation energy generated by the UV light source 16 can be calculated. According to the second embodiment of the present invention, the illuminance measuring unit calculates the illuminance actually generated by the UV light source, and then calculates the irradiation energy based on the measured illuminance. Therefore, the control unit can obtain the irradiation energy close to the entity, thereby enabling life management with higher accuracy. (Other forms) > Although the first and second embodiments described above have described the main body including the display unit and the input unit, the configuration is not limited thereto. In other words, it may be configured to transmit the information output from the control unit to the computer via the interface connection control unit and the personal computer or to transmit the command input by the user to the personal computer to the control unit. In the above-described first and second embodiments, the composition of the memory unit including the accumulation unit of the irradiation energy for storing the U V light source has been described, but the composition is not limited thereto. In other words, it is also possible to form a cumulative enthalpy of irradiation energy of each uv light source stored in the unit 100 of the main body portion. This composition is advantageous in the case of frequent replacement because it can suppress the manufacturing cost of the illuminating unit. Further, in the above-described first and second embodiments, the ultraviolet irradiation device including the main body portion and the plurality of irradiation portions has been described, but the present invention is also applicable to the ultraviolet irradiation device composed of the main body portion and one irradiation portion. , never to say. The embodiments disclosed herein are to be considered as illustrative and not as limited as -27-1317298. The scope of the present invention is not to be construed as being limited to the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the configuration of an ultraviolet irradiation device according to a first embodiment of the present invention. Fig. 2 is an external view of an ultraviolet irradiation device according to a first embodiment of the present invention. Fig. 3 is a graph showing changes in the amount of luminescence to the input current of the UV light source. Fig. 4 is a graph showing changes in the luminous efficiency of the irradiation energy of the UV light source. Fig. 5 is a view showing an example of a display screen relating to life management on the display unit. Fig. 6 is a flow chart for calculating the cumulative enthalpy of the irradiation energy of the UV light source. Figure 7 is a flow chart for performing life management of a UV light source. Fig. 8 is an example of a display screen on the display unit when the illumination pattern is executed. Fig. 9 is an example of a display screen for the irradiation energy of the irradiation period on the display unit. Figure 10 is a flow chart for calculating the number of executables. Fig. 1 is an example of a display screen relating to the generation of a new illumination pattern on the display unit. -28- 1317298 Figure 12 is a flow chart for the new generation of illumination patterns. Fig. 13 is a schematic diagram showing the composition of the ultraviolet irradiation device according to the second embodiment. [Description of main component symbols] 1. 3 Main body 2, 5 Irradiation part 4, 7 Control part 6 Light source power supply unit • 8 Display part 10 ' 18 Memory part 12 Input part 14 Interface (I/F) part 16 UV light source 20 Connector portion 22 connection cable 24 illuminance measuring unit ^ 100, 200 ultraviolet irradiation device -29-

Claims (1)

1317298 十、申請專利範圍: 1 . 一種紫外線照射裝置,其具備: 從藉LED組成之光源照射紫外線之照射部; 供給用於驅動前述光源之電力的光源用電源部; 藉依時間累計自前述光源用電源部供給之電力的電 流値’來算出前述光源產生之照射能量之控制部;及 顯示前述控制部所算出之前述照射能量,及/或將其 輸出到外部之顯示輸出手段。 > 2 .—種紫外線照射裝置,其具備: 從藉LED組成之光源照射紫外線之照射部; 供給用於驅動前述光源之電力的光源用電源部; 測定自前述光源照射之紫外線的照度之照度測定部 • . » 藉依時間累計前述照度測定部測定之照度,以算出 前述光源產生之照射能量之控制部;及 顯示則述控制部所算出之前述照射能量,及/或將其 輸出到外部之顯示輸出手段。 3 ·如申請專利範圍第1項之紫外線照射裝置,其中 、 前述控制部包含:判斷前述照射能量之累積値是否 超過被視爲前述光源壽命之値,若是超過之情形,則判 疋則述光源已到達毒命’若是未超過之情形,則判定前 述光源尙未到達壽命之壽命判定手段; 前述顯示輸出手段係顯示該壽命判定手段之判定結 果,及/或將其輸出到外部。 -30- 1317298 4 ·如申請專利範圍第1項之紫外線照射裝置,其中 則述控制部另包含藉運算前述照射能量之累積値與 被視爲目丨』述光源哥命之値的差’以算出前述光源剩餘壽 命之剩餘壽命算出手段; 前述顯不輸出手段係顯示前述剩餘壽命算出手段之 算出結果,及/或將其輸出到外部。 5 .如申請專利範圍第1項之紫外線照射裝置,其中 前述控制部另包含:根據發光效率對前述光源的累 > 積照射能量之衰減特性’而自前述照射能量之累積値, 判斷前述光源之劣化狀態之劣化狀態判斷手段: 前述顯不輸出手段顯示前述劣化狀態判斷手段之判 斷結果,及/或將其輸出到外部。 6 ·如申請專利範圍第1項之紫外線照射裝置,其中 另具備接收規定照射量之依時間經過的變化的照射 樣式之輸入部; 前述控制部另包含:根據前述輸入部接收之前述照 > 射樣式,來算出執行前述照射樣式時之照射能量的照射 樣式算出手段; 前述顯示輸出手段顯示前述照射樣式算出手段之算 出結果,及/或將其輸出到外部。 7 .如申請專利範圍第2項之紫外線照射裝置,其中 前述控制部另包含:判斷前述照射能量之累積値是 否超過被視爲前述光源壽命之値,若是超過之情形,刖 判定前述光源已到達壽命,若是未超過之情形,則判定 -3 1- 1317298 _ 前述光源尙未到達壽命的壽命判定手段; 目U述顯示輸出手段顯示該壽命判定手段之判定結果 ,及/或將其輸出到外部。 8 .如申請專利範圍第2項之紫外線照射裝置,其中 前述控制部另包含:藉運算前述照射能量之累積値 與被視爲BU述光源壽命之値的差,來算出前述光源剩餘 壽命之剩餘壽命算出手段; 目U述顯示輸出手段顯示前述剩餘壽命算出手段之算 > 出結果’及/或將其輸出到外部。 9 .如申請專利範圍第2項之紫外線照射裝置,其中 前述控制部另包含:根據發光效率對前述光源之累 積照射能量之衰減特性,而自前述照射能量之累積値判 斷前述光源之劣化狀態的劣化狀態判斷手段: 前述顯示輸出手段顯示前述劣化狀態判斷手段之判 斷結果,及/或將其輸出到外部。 1 0 .如申請專利範圍第2項之紫外線照射裝置,其中 > 另具備規定照射量依時間經過的變化之照射樣式之 輸入部; 前述控制部另包含:根據前述輸入部接收之前述照 射樣式’算出執行前述照射樣式時之照射能量之照射樣 式算出手段; 前述顯示輸出手段顯示前述照射樣式算出手段之算 出結果,及/或將其輸出到外部。 1 1 .如申請專利範圍第6項之紫外線照射裝置,其中 -32- 1317298 前述控制部另包含:自前述照射能量之累積値與被 視爲前述光源壽命之値的差,算出前述光源之剩餘壽命 ’另外’用執行前述照射樣式時之照射能量除該剩餘壽 命’以算出前述照射樣式之可執行次數的可執行次數算 出手段; 前述顯示輸出手段顯示前述可執行次數算出手段之 算出結果’及/或將其輸出到外部。 1 2 ·如申請專利範圍第1 〇項之紫外線照射裝置’其中 前述控制部另包含:自前述照射能量之累積値與被 視爲前述光源壽命之値的差,而算出前述光源的剩餘壽 命’另外,用執行前述照射樣式時之照射能量除該剩餘 壽命’以算出前述照射樣式之可執行次數的可執行次數 算出手段; 前述顯示輸出手段顯示前述可執行次數算出手段之 算出結果,及/或將其輸出到外部。 1 3 .如申請專利範圍第6項之紫外線照射裝置,其中 前述輸入部除了接收照射樣式外,另接收所要的照 射能量値; 前述控制部另包含:使前述照射樣式整體在照射能 量方向上伸縮’俾產生使前述照射樣式之照射能量與前 述所要之照射能量一致那樣之新的照射樣式之照射樣式 產生手段。 1 4 ·如申sr專利範圍弟1 0項之紫外線照射裝置,其中 則述輸入部除了接收照射樣式外,另接收所要的照 -33- 1317298 射能量値; ' 前述控制部另包含:使前述照射樣式整體在照射能 量方向上伸縮,俾產生使前述照射樣式之照射能量與前 述所要之照射能量値一致那樣之新的照射樣式之照射樣 式產生手段。 1 5 .如申請專利範圍第1項之紫外線照射裝置,其中 另具備用於儲存前述控制部算出之前述照射能量之 記憶部。 • 1 6 .如申請專利範圍第2項之紫外線照射裝置,其中 另具備用於儲存前述控制部算出之前述照射能量之 記憶部。 1 7 .如申請專利範圍第1 5項之紫外線照射裝置,其中 前述照射部係爲能更換者; 前述記憶部係與前述照射部一體地更換。 1 8 .如申請專利範圍第1 6項之紫外線照射裝置,其中 前述照射部係爲能更換者; ® 前述記憶部係與前述照射部一體地更換。 -34-1317298 X. Patent application scope: 1. An ultraviolet irradiation device comprising: an irradiation unit that irradiates ultraviolet rays from a light source composed of LEDs; a power source unit that supplies power for driving the light source; and the light source is accumulated from the light source by time a control unit that calculates an irradiation energy generated by the light source by a current 値' of the electric power supplied from the power supply unit; and a display output means for displaying the irradiation energy calculated by the control unit and/or outputting the same to the outside. > 2 . An ultraviolet irradiation device comprising: an irradiation unit that irradiates ultraviolet rays from a light source composed of LEDs; a light source power supply unit that supplies electric power for driving the light source; and an illuminance that measures illuminance of ultraviolet rays irradiated from the light source Measurement unit • The control unit that calculates the illuminance measured by the illuminance measurement unit to calculate the illuminance generated by the light source, and displays the illuminating energy calculated by the control unit and/or outputs the illuminating energy calculated by the control unit Display output means. 3. The ultraviolet irradiation device according to claim 1, wherein the control unit includes: determining whether the accumulation 前述 of the irradiation energy exceeds a life expectancy of the light source, and if it is exceeded, determining the light source If the poison life is not exceeded, the life determination means for determining that the light source has not reached the life is determined; and the display output means displays the determination result of the life determination means and/or outputs it to the outside. -30- 1317298 4 · The ultraviolet irradiation device of claim 1, wherein the control unit further includes the calculation of the accumulation of the aforementioned irradiation energy and the difference between the target light source and the target light source. The remaining life calculating means for calculating the remaining life of the light source; the display means for displaying the remaining life calculating means, and/or outputting the result to the outside. [5] The ultraviolet irradiation device of claim 1, wherein the control unit further comprises: judging the light source from an accumulation characteristic of the irradiation energy based on a luminous efficiency of the light source> Deterioration state determination means of the deterioration state: The display failure means displays the determination result of the deterioration state determination means and/or outputs it to the outside. [6] The ultraviolet irradiation device of claim 1, wherein the ultraviolet irradiation device further includes an input unit that receives an illumination pattern of a predetermined irradiation amount that changes over time; and the control unit further includes: the photograph received according to the input unit. The radiation pattern calculation means for calculating the irradiation energy when the irradiation pattern is executed, and the display output means displays the calculation result of the irradiation pattern calculation means and/or outputs it to the outside. 7. The ultraviolet irradiation device of claim 2, wherein the control unit further comprises: determining whether the cumulative enthalpy of the irradiation energy exceeds a lifetime of the light source, and if it is exceeded, determining that the light source has arrived If the life is not exceeded, it is determined that -3 1- 1317298 _ the above-mentioned light source 尙 has not reached the life determination means; the display means shows the determination result of the life determination means, and / or outputs it to the outside . 8. The ultraviolet irradiation apparatus according to claim 2, wherein the control unit further comprises: calculating a surplus of the remaining life of the light source by calculating a difference between the cumulative 値 of the irradiation energy and a 被 which is regarded as a life of the light source of the BU The life calculation means; the display means outputs the calculation of the remaining life calculation means > and the result 'and/or outputs it to the outside. 9. The ultraviolet irradiation device of claim 2, wherein the control unit further comprises: determining an attenuation characteristic of the cumulative illumination energy of the light source according to a luminous efficiency, and judging a deterioration state of the light source from the accumulation of the illumination energy Deterioration state determination means: The display output means displays the determination result of the deterioration state determination means and/or outputs it to the outside. 10. The ultraviolet irradiation device of claim 2, wherein the control unit further includes an input unit that defines an illumination pattern in which the irradiation amount changes according to time; the control unit further includes: the illumination pattern received according to the input unit 'The irradiation pattern calculation means for calculating the irradiation energy when the irradiation pattern is executed; the display output means displays the calculation result of the irradiation pattern calculation means and/or outputs it to the outside. 1 1 . The ultraviolet irradiation device of claim 6, wherein the control unit further includes: calculating a surplus of the light source from a difference between the cumulative energy of the irradiation energy and the lifetime of the light source; The lifetime "other" is an executable number calculation means for calculating the number of executions of the irradiation pattern by dividing the irradiation energy in the irradiation pattern by the execution of the irradiation pattern; and the display output means displays the calculation result of the executable number calculation means' and / or output it to the outside. [2] The ultraviolet irradiation device of the first aspect of the invention, wherein the control unit further includes: calculating a remaining life of the light source from a difference between the accumulation of the irradiation energy and a difference between the lifetimes of the light sources. Further, the executable number calculation means for calculating the number of executions of the irradiation pattern by dividing the remaining energy by the irradiation energy when the irradiation pattern is executed; the display output means displays the calculation result of the executable number calculation means, and/or Output it to the outside. The ultraviolet irradiation device of claim 6, wherein the input unit receives the desired irradiation energy 除了 in addition to the illumination pattern; and the control unit further includes: stretching the entire illumination pattern in the direction of the irradiation energy '俾The illumination pattern generation means for generating a new illumination pattern such that the irradiation energy of the illumination pattern matches the desired illumination energy. 1 4 · The ultraviolet irradiation device of the 10th item of the patent scope of the patent application, wherein the input unit receives the desired illumination - 33 - 1317298 emission energy 除了 in addition to receiving the illumination pattern; 'the control unit further includes: The entire illumination pattern expands and contracts in the direction of the irradiation energy, and a new illumination pattern generating means for causing the irradiation energy of the irradiation pattern to match the desired irradiation energy 値 is generated. The ultraviolet irradiation device according to the first aspect of the invention, further comprising a memory unit for storing the irradiation energy calculated by the control unit. The ultraviolet irradiation device of claim 2, further comprising a memory unit for storing the irradiation energy calculated by the control unit. The ultraviolet irradiation device of claim 15, wherein the irradiation unit is replaceable; and the memory unit is integrally replaced with the irradiation unit. The ultraviolet irradiation device of claim 16 wherein the irradiation unit is replaceable; and the memory unit is integrally replaced with the irradiation unit. -34-
TW095112079A 2005-04-06 2006-04-06 Uv light irradiation TWI317298B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110153A JP2006289192A (en) 2005-04-06 2005-04-06 Uv irradiation apparatus

Publications (2)

Publication Number Publication Date
TW200700142A TW200700142A (en) 2007-01-01
TWI317298B true TWI317298B (en) 2009-11-21

Family

ID=37076738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095112079A TWI317298B (en) 2005-04-06 2006-04-06 Uv light irradiation

Country Status (4)

Country Link
JP (1) JP2006289192A (en)
KR (1) KR100830779B1 (en)
CN (1) CN100490994C (en)
TW (1) TWI317298B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597323B2 (en) * 2008-04-01 2014-10-01 株式会社ミマキエンジニアリング Inkjet printer and printing method thereof
US8710995B2 (en) 2010-05-20 2014-04-29 Rohm Co., Ltd. Lighting apparatus
JP2014241289A (en) * 2014-08-08 2014-12-25 ローム株式会社 Electric apparatus management system
JP6623847B2 (en) * 2016-03-07 2019-12-25 ウシオ電機株式会社 Light source device and exposure apparatus having the same
CN107541727A (en) * 2016-06-28 2018-01-05 深圳市水务科技有限公司 Utilize the ultraviolet method that elemental metals surface forms electrical potential difference in the solution
JP2018056236A (en) * 2016-09-27 2018-04-05 日機装株式会社 Ultraviolet light irradiation device
JP7164970B2 (en) * 2018-05-10 2022-11-02 株式会社ディスコ processing equipment
JP7361589B2 (en) * 2019-12-17 2023-10-16 三菱電機株式会社 Sterilization equipment management device, sterilization equipment, water heater, sterilization equipment management method and program

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2580598B2 (en) * 1987-05-29 1997-02-12 株式会社島津製作所 Spectrophotometer
JPH055701A (en) * 1991-06-27 1993-01-14 Yokogawa Electric Corp Method for measuring life of lamp of ultra-violet absorption detector
JP2561981B2 (en) * 1991-07-02 1996-12-11 山武ハネウエル株式会社 UV discharge tube failure detection device
JPH0647000A (en) * 1992-07-29 1994-02-22 Canon Inc Photographing apparatus and flash apparatus
JPH06196555A (en) * 1992-12-24 1994-07-15 Nitto Denko Corp Ultraviolet ray irradiation system
JP2004358770A (en) * 2003-06-04 2004-12-24 Keyence Corp Method for curing ultraviolet curable resin and ultraviolet irradiation device
JP4303582B2 (en) * 2003-06-04 2009-07-29 株式会社キーエンス UV irradiation equipment
JP2005055800A (en) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd Deterioration compensation device of full color el display, full color el display on which the same is mounted, and deterioration compensation method therefor
JP4457625B2 (en) * 2003-10-02 2010-04-28 コニカミノルタエムジー株式会社 Inkjet printer

Also Published As

Publication number Publication date
CN100490994C (en) 2009-05-27
JP2006289192A (en) 2006-10-26
TW200700142A (en) 2007-01-01
CN1846877A (en) 2006-10-18
KR100830779B1 (en) 2008-05-20
KR20060107331A (en) 2006-10-13

Similar Documents

Publication Publication Date Title
TWI317298B (en) Uv light irradiation
US8816600B2 (en) Method of power and temperature control for high brightness light emitting diodes
JP5313711B2 (en) Optical measuring device
WO2010150119A2 (en) System and method for controlling led cluster
US20190216959A1 (en) Ultraviolet irradiation device
JP2009252960A (en) Method of estimating lifetime of optical semiconductor device and drive device
KR20100024979A (en) Ultraviolet rays irradiation system and curing reaction detecting device used in the same
US20090261751A1 (en) Fluorescent light temperature sensor
JP6719203B2 (en) Method for calibrating biological particle counter and apparatus for calibrating biological particle counter
CN106028581A (en) An illumination system
WO2015133528A1 (en) Light source device, endoscope device, and light source control method
CN101502180A (en) Methods and driving units for driving a gas discharge lamp
JP2005250130A (en) Illuminator for fluorescent observation
JP5496580B2 (en) LIGHTING DEVICE AND LIGHTING DEVICE CALIBRATION METHOD
JP2010181205A (en) Spectrofluorophotometer
KR20140015238A (en) Spectral scanning photocrosslinking device
JP2005347645A (en) Light volume control unit and light irradiation equipment
US11725088B2 (en) Prepreg compositions, their manufacture, and determination of their suitability for use in composite structures
EP3711929A1 (en) Stereolithography apparatus, stereolithography program, and stereolithography method
US20080274436A1 (en) Optically regulated dental light unit
JP6816138B2 (en) Endoscope system
KR100793562B1 (en) Ultraviolet ray irradiating device
KR100870748B1 (en) Ozone generating apparatus
JP2006346559A (en) Ultraviolet irradiation device and ultraviolet irradiation system
JP2005204910A (en) Endoscope apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees