TWI317166B - On-chip esd protection circuit using enhancement-mode hemt/mesfet technology - Google Patents

On-chip esd protection circuit using enhancement-mode hemt/mesfet technology Download PDF

Info

Publication number
TWI317166B
TWI317166B TW95131035A TW95131035A TWI317166B TW I317166 B TWI317166 B TW I317166B TW 95131035 A TW95131035 A TW 95131035A TW 95131035 A TW95131035 A TW 95131035A TW I317166 B TWI317166 B TW I317166B
Authority
TW
Taiwan
Prior art keywords
electron mobility
semiconductor field
transistor
protection circuit
field effect
Prior art date
Application number
TW95131035A
Other languages
Chinese (zh)
Other versions
TW200812059A (en
Inventor
Cheng-Kuo Lin
Yu-Chi Wang
Joseph-Liu
Jean Sun
Original Assignee
Win Semiconductors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Win Semiconductors Corp filed Critical Win Semiconductors Corp
Priority to TW95131035A priority Critical patent/TWI317166B/en
Publication of TW200812059A publication Critical patent/TW200812059A/en
Application granted granted Critical
Publication of TWI317166B publication Critical patent/TWI317166B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

1317166 ' 九'發明說明: 【發明所屬之技術領域】 - 本發明係一種關於半導體電子電路中靜電放電(ESD) .的防護電路,特別是關於三五族化合物半導體晶片内靜電 放電防護電路,利用增強型(enhancement mode)高電子遷移 率電晶體(HEMT)/金屬半導體場效電晶體(MESFET)分流靜 電放電供以保護主要電路免於靜電放電的損壞。 【先前技術】 ® 根據靜電放電產生的原因與對積體電路放電的方式可分 為四類靜電放電模式:人體放電模式(Human-Body Model,HBM)、機器放電模式(Machine Model,MM)、元 件充電模式(Charged-Device Model,CDM)與電場感應模 式(Field-Induced Mode卜FIM);當靜電放電發生的時候, 產生的高壓與高電流會對積體電路造成嚴重的破壞,因此 在主要電路與外界的接觸上需要靜電放電(ESD)防護電 鲁路。傳統的靜電放電防護電路採用大量二極體串聯來吸收 放電,不只佔去不少空間,因其增加的寄生電阻(parasitic impedance)與寄生電容(parasitic capacitance)也會對所保護 的電路造成不少的影響,尤其是在低訊號的射頻(RF)元件 中’傳統的靜電放電防護電路的寄生效應(parasitic effect) 會破壞射頻元件的性能,例如減低射頻元件的功率放大倍 率、降低射頻應用頻率以及產生雜訊等等。 一種特別用於射頻元件中的靜電放電防護電路由 Maoyou Sun於美國專利申請號:10/255,787所揭示,該電 1317166 路乃是利用與被保護的電路並聯之電晶體來分流靜電放電 的突波5由於電晶體具有南電流低壓差的特性’因此能在 ,發生靜電放電的瞬間將放電經由電晶體快速地移除;除此 之外,電晶體還具有開關(switch)的功能,若將電晶體與 二極體組串並聯,並將電晶體閘極(gate)與二極體組串連 接,透過變動的二極體的數目便可以變動電晶體的開關電 壓,使得該靜電放電防護電路不會因正常使用中的電壓而 打開電晶體造成短路。該靜電放電防護電路不需要大量串 鲁接二極體,取而代之的是用來觸發電晶體的少量二極體串 以及與之並聯的電晶體,因大量二極體串產生的寄生效應 (parasitic effect)便可以減少,同時可以得到較快速的 放電分流效果,適合用於需要維持高品質訊號的射頻元件。 對於射頻元件中常用的功率放大器(PA),同樣也需要寄 生效應(parasitic effect)低的靜電放電防護電路;同時, 若該靜電放電防護電路可以與被保護的電路整合 #(integrate)在同一晶片上,對於降低成本、減低功率的耗 損以及壓縮元件尺寸將是一大利基。尤其是用於射頻元件 中的三五族化合物半導體的功率放大器(PA),常使用異質 接面雙極電晶體(HBT)來達到增益的效果若上述孫博士 (Dr. Sun)於申請號10/255,787所揭示的電晶體部分改成異 質接面雙極電晶體(HBT)則可以將靜電放電防護電路直接 做在功率放大器的晶片上;如Y i n Ma與D i amond Bar於美 國專利申請號:10/501, 651所揭示的達靈頓對(Dari ington pair)靜電放電防護電路,即是利用兩個異質接面雙極電晶 6 1317166 體(HBT)組合而成的達靈頓對(Dari ington pair)來承接大 量電流的放電’一樣地也是利用二極體串來觸發分流;對 -於達靈頓對(Dari ing ton pair)形成的寄生效應(parasitic effect)’馬博士(Dr· Ma)另外加上一個與達靈頓對 (Darlington pair)串接的二極體來減低其寄生電容。 上述的功率放大器晶片内靜電放電防護電路,乃是因應 功率放大器常用的異質接面雙極電晶體(HBT)來設計晶片 内靜電放電防護電路;而射頻元件中常應用的電晶體不只 •異質接面雙極電晶體(HBT) ’偽型態高電子遷移率電晶體 (pseudo morphic- pHEMT)或金屬半導體場效電晶體 (MESFET)也因其有低雜訊或低製作成本的優點,在市場上 佔有一定的地位。面對與異質接面雙極電晶體(HBT)磊晶 (epitaxy)結構完全不同的偽型態高電子遷移率電晶體 (pHEMT)或金屬半導體場效電晶體(MESFET)時,晶片内的靜 電放電防護電路便需要改成以偽型態高電子遷移率電晶體 鲁(pHEMT)或金屬半導體場效電晶體(MESFET)為主的防護電 路;然而空乏型(depletion mode)偽型態高電子遷移率電 晶體(pHEMT)或金屬半導體場效電晶體(MESFET)不像異質 接面雙極電晶體(HBT)或雙極接面電晶體(BJT)—樣是常閉 (normally off)電晶體,反而是常開(normally 〇n)電晶 體’在負壓時便可以啟動的狀態下,無法利用二極體串來 觸發放電分流;對此,本發明利用增強型(enhancement mode) 偽型態高電子遷移率電晶體(pHEMT)或金屬半導體場效電 晶體(MESFET)的常閉特性來取代靜電放電防護電路中電晶 7 •1317166 體的位置。 因此,本發明揭示的利用增強型(enhancement mode) 偽塑態高電子遷移率電晶體(pHEMT)或金屬半導體場效電 晶體(MESFET)的靜電放電防護電路可以與被保護的電路整 合在同一晶片内;同時’本發明另揭示的雙閘極設計,可 在不浪費電路空間下達到寄生電容縮減的目的,以維持被 保護的主要電路性能,例如:增益性、線性化與頻寬。 【發明内容】 • 本發明之基本結構為並聯一觸發二極體串與分流裝置, 在超出正常使用電壓之高壓突波事件發生時,供以分流高 壓突波以保護主要電路不受侵害;在以高電子遷移率電晶 體/金屬半導體場效電晶體(HEMTs/MESFET)為主的晶片 上,該分流裝置同樣使用高電子遷移率電晶體/金屬半導體 場效電晶體(HEMTs/MESFET)使該防護電路得以作為晶片 内之防護電路,以達到節省晶片空間與製作成本之目的。 為了能使分流裝置得以被觸發,本發明利用具有常閉 • ^ (normally off)性質之增強型(enhancement mode)高電子遷 移率電晶體/金屬半導體場效電晶體(HEMTs/MESFET)為分 流裝置;另外’在不浪費晶片内空間條件下’本發明採雙 閘極設計以期達到縮減防護電路中寄生電容之目的,供以 維持被保護電路之精密效能。 為達上述發明之目的,本發明所設之利用增強型 (enhancement mode)高電子遷移率電晶體(HEMT)/金屬半導 體場效電晶體(MESFET)之晶片内靜電放電(ESD)防護電 1317166 路,包括一個内部電路端(pad point)、一個接地端(ground point) —個連接該内部電路端與該接地端並與該内部電路 端座於同一晶片基板上之晶片内二極體串(diode string),以 及至少一個與該二極體串並聯之連接該内部電路端與該接 地端並與該内部電路端座於同一晶片基板上之晶片内增強 型高電子遷移率電晶體/金屬半導體場效電晶體。該二極體 串(diode string)供以觸發靜電放電突波之分流,而該增強型 高電子遷移率電晶體/金屬半導體場效電晶體之閘極銜接 鲁該二極體串之陰極端,供以接受二極體串之觸發以承接靜 電放電之分流。 為了讓本發明上述以及其他目的、特徵、和優點能更 明顯易懂,以下配合圖式以及較佳實施例以說明本發明。 【實施方式】 第1圖係說明本發明靜電放電(ESD)防護電路1之概念 圖,該防護電路1包括了一個供以銜接内部電路的内部電 I路端110、接地端130、一觸發二極體串121以及與觸發二 極體串121並聯之靜電放電分流裝置122。 當靜電放電事件120發生時(如第1-1圖所示),該防護 電路1中的靜電放電分流裝置122可將該靜電放電產生的 高壓高電流順利的分流到接地端130。然而,内部電路端 110在正常使用下是有電壓變化的,因此該靜電放電防護電 路必須要能分別什麼時候是需要分流,而什麼時候是正常 使用電壓不需啟動分流;如第2圖所述之觸發二極體串121 即供以分辨高壓突波來襲事件,當高壓突波發生時,位於 9 1317166 内部電路端110與接地端130之間的電壓差即大於該觸發 二極體串121的臨界順偏壓降(Vth),使得該觸發二極體串 ,121被打通,銜接靜電放電分流裝置122閘極221之端點電 .壓與接地端開始有了壓差’因而啟動了該靜電放電分流裝 置122,内部電路端110之高壓突波得以分流至接地端 130。在本實施例中,所述的靜電放電分流裝置122係為增 強型偽型態高電子遷移率電晶體/金屬半導體場效電晶體 (E-mode pHEMTs/MESFET)。 ® 在精簡空間與成本的條件下,該觸發用二極體之數目以 能在正常電壓使用下未觸發分流之最小數目為原則,例 如:觸發用二極體之數目N =正常電壓Vpad/臨界順偏壓 降Vth ;另外,如前所述,在以偽型態高電子遷移率電晶 體/金屬半導體場效電晶體(pHEMTs/MESFET)為主的晶片 上,該靜電放電分流裝置122若為晶片内設計,則應使用 增強型(enhancement mode)的偽型態高電子遷移率電晶體/ φ金屬半導體場效電晶體(pHEMTs/MESFET),乃是因其不同 於空乏型(depletion mode)爲型態高電子遷移率電晶體/金 屬半導體場效電晶體(pHEMTs/MESFET)之常閉(normally off)性質。 第3圖係表示該靜電放電防護電路1對内部電路產生寄 生電容(parasitic capacitance)之來源,該寄生電容來源有 二:一是來自觸發二極體串121;二是來自增強型 (enhancement mode)偽型態高電子遷移率電晶體/金屬半導 體場效電晶體(pHEMTs/MESFET)。由於觸發二極體串121 •1317166 產生之寄生電容Ct相對於增強型(enhancement mode)偽塑 態高電子遷移率電晶體/金屬半導體場效電晶體 • (pHEMTs/MESFET)產生之寄生電容Ce要來得小,總寄生電 容Ct()tali約略等於來自於增強型(enhancement mode)偽型態 南電子遷移率電晶體/金屬半導體場效電晶體 (pHEMTs/MESFET)之寄生電容Ce。如前所述,在射頻元件 中靜電放電防護電路中產生之寄生電容,會對欲保護的電 路性能造成一定的影響,因此,良好的防護電路其寄生效 馨應是越小越好;串接增強型(enhancement mode)偽型態高電 子遷移率電晶體/金屬半導體場效電晶體(pHEMTs/MESFET) 串可順利縮減該寄生電容。如第4圖所示,串接的第一、 第二增強型(enhancement mode)偽型態高電子遷移率電晶 體/金屬半導體場效電晶體(pHEMTs/MESFET)之寄生電容 Cel、Ce2可使總寄生電容Ctc)tai2變為原來總寄生電容Ct()tall 之一半;然而串接所需的空間與成本係成倍數增加,雖然 $減低了寄生電容,卻使晶片所需之空間變大,就應用上來 說,晶片内設計之優勢便也減少了。 本發明中另一個重要突破便如第5圖所示,維持原有增 強型(enhancement mode)偽型態高電子遷移率電晶體/,金屬 半導體場效電晶體(pHEMTs/MESFET)之空間大小’而其閘 極採用雙閘極設計,使雙閘極(dual gate)增強型偽型態高電 子遷移率電晶體/金屬半導體場效電晶體除其中一閘極銜 接於二極體串121之終端陰極端供以接受該二極體串121 之觸發外,另一閘極銜接於增強型偽型態高電子遷移率電 11 1317166 -晶體/金屬半導體場效電晶體之汲極,以取代原有增強型 (enhancement mode)偽型態高電子遷移率電晶體/金』半導 體場效電晶體(pHEMTs/MESFET)串接之設計,在不涫費介 間的條件下達到縮減寄生電容的結果。而如第6圖所示, 其為上述雙閘極設計之各種不同樣態’乃為增Z型 (enhancement mode)偽型態高電子遷移率電晶體/金屬半導 體場效電晶體(PHEMTS/MESFET)其中一間極仍連接於觸發 二極體_ 121供以被觸發’而另一閘極則是與内部電路端 籲相連、或是與該觸發二極體串121之間任—結點相連,以 求達到不同縮減寄生電容,與達到需要不同觸發電壓之電 路設計之要求。 第7圖即顯示該防護電路其中一例之佈局結果,分別顯 示觸發二極體串121與匹配用電阻720之位置,藉由該電 阻720以調整内部電路匹配之阻抗;同時,該增強型 (enhancement mode)偽型態高電子遷移率電晶體/金屬半導 修體場效電晶體(pHEMTs/MESFET)以多指形(multi_finger)閘 極設計對稱交叉分佈於觸發二極體串121之兩側,而指形 數目則由所需之裝置大小L與指狀閘極的寬度w決定’例 如.裝置大小1mm = 4 (指形數目)χ 125 μιη(閘極寬度)χ 2(對稱兩侧設計)、或是裝置大小lmm = 8 (指形數目)χ 62.5 μιη(閘極寬度)x 2(對稱兩侧設計)。 實施時,上述二極體串121的方向與數目應使在正常使 用期間之最南電壓下,該二極體串121為不導通的狀態。 【圖式簡單說明】 12 •1317166 第1圖係為本發明靜電放電(esd)防護電路之概念圖。 f 1-1圖係為靜電放電事件發生時之示意圖。 第2圖係為本發明靜電放電(ESD)防護電路之各項元件配 置實施例圖。 第3圖係表示本發明靜電放電(ESD)防護電路對内部電路 產生寄生電容(parasitic capacitance)之來源。 第4圖係表示本發明靜電放電(ESD)防護電路在串接增強 型(enhancement mode)偽型態高電子遷移率電晶體/ 金屬半導體場效電晶體(pHEMTs/MESFET)下之寄 生電容。 第5圖係表示本發明靜電放電(ESD)防護電路在維持原有 空間大小下其雙閘極電路實施例圖。 第6圖係表示本發明靜電放電(ESD)防護電路不同雙閉極 之閘極接點電路實施例圖。 第7圖係顯示本發明靜電放電(ESD)防護電路其中—例< 佈局結果。 【主要元件符號說明】 110 :内部電路端 120 :靜電放電事件 121 :觸發二極體串 122 :靜電放電分流裝置 130 :接地端 221 :分流裝置閘極1317166 'Nine' invention description: [Technical field to which the invention pertains] - The present invention relates to a protection circuit for electrostatic discharge (ESD) in a semiconductor electronic circuit, and more particularly to an electrostatic discharge protection circuit for a three-five-group compound semiconductor wafer. An enhancement mode high electron mobility transistor (HEMT)/metal semiconductor field effect transistor (MESFET) shunt electrostatic discharge to protect the main circuit from electrostatic discharge damage. [Prior Art] ® According to the cause of electrostatic discharge and the way of discharging the integrated circuit, it can be divided into four types of electrostatic discharge modes: Human-Body Model (HBM), Machine Discharge Mode (Machine Model, MM), Charged-Device Model (CDM) and Field-Induced Mode (FIM); when electrostatic discharge occurs, the high voltage and high current generated will cause serious damage to the integrated circuit, so the main Electrostatic discharge (ESD) protection is required for the contact of the circuit with the outside world. The traditional ESD protection circuit uses a large number of diodes in series to absorb the discharge, which not only takes up a lot of space, but also increases the parasitic impedance and parasitic capacitance. The effects, especially in low-signal radio frequency (RF) components, 'the parasitic effect of traditional ESD protection circuits can degrade the performance of RF components, such as reducing the power amplification of RF components, reducing the frequency of RF applications, and Generate noise and so on. An electrostatic discharge protection circuit, particularly for use in a radio frequency device, is disclosed in U.S. Patent Application Serial No. 10/255,787, the entire disclosure of which is incorporated herein by reference. 5 Because the transistor has the characteristic of low current difference of the south current, it can quickly remove the discharge via the transistor at the moment of electrostatic discharge; in addition, the transistor also has the function of a switch, if it is charged The crystal is connected in series with the diode group, and the gate of the transistor is connected to the diode string. The switching voltage of the transistor can be changed by the number of the changed diodes, so that the electrostatic discharge protection circuit does not A short circuit is caused by opening the transistor due to the voltage in normal use. The ESD protection circuit does not require a large number of string-connected diodes, but instead is used to trigger a small number of diode strings of the transistor and the transistors connected in parallel, due to parasitic effects caused by a large number of diode strings (parasitic effect) It can be reduced, and a faster discharge shunt can be obtained, which is suitable for RF components that need to maintain high quality signals. For a power amplifier (PA) commonly used in RF components, an electrostatic discharge protection circuit with a low parasitic effect is also required; and if the ESD protection circuit can be integrated with the protected circuit, the same chip is integrated. In addition, it will be a big niche for reducing costs, reducing power consumption and compressing component size. In particular, power amplifiers (PAs) for tri-five compound semiconductors used in RF components often use heterojunction bipolar transistors (HBT) to achieve gain effects, as described above by Dr. Sun in Application No. 10. The change of the transistor portion disclosed in /255,787 to a heterojunction bipolar transistor (HBT) allows the ESD protection circuit to be directly applied to the wafer of the power amplifier; such as Y in Ma and D i amond Bar in U.S. Patent Application No. The Dari ington pair electrostatic discharge protection circuit disclosed in 10/501, 651 is a Darlington pair using two heterojunction bipolar electro-crystal 6 1317166 bodies (HBT). Dari ington pair) to accept a large amount of current discharge 'also uses a diode string to trigger the shunt; the parasitic effect on the Dari ing ton pair' Dr. Ma (Dr· Ma) Add a diode connected in series with the Darlington pair to reduce its parasitic capacitance. The above-mentioned electrostatic discharge protection circuit in the power amplifier chip is designed to design an electrostatic discharge protection circuit in a chip in response to a heterojunction bipolar transistor (HBT) commonly used in a power amplifier; and a transistor commonly used in a radio frequency component is not only a heterojunction. Bipolar transistor (HBT) 'pseudo morphic-pHEMT or metal-semiconductor field-effect transistor (MESFET) is also on the market due to its low noise or low manufacturing cost. Occupy a certain position. In the case of a pseudo-type high electron mobility transistor (pHEMT) or a metal-semiconductor field-effect transistor (MESFET) that is completely different from a heterojunction bipolar transistor (HBT) epitaxy structure, static electricity in the wafer The discharge protection circuit needs to be changed to a protection circuit based on pseudo-type high electron mobility transistor (pHEMT) or metal semiconductor field effect transistor (MESFET); however, depletion mode pseudo-type high electron mobility A rate transistor (pHEMT) or a metal semiconductor field effect transistor (MESFET) is not like a heterojunction bipolar transistor (HBT) or a bipolar junction transistor (BJT) - it is a normally off transistor. On the contrary, in the normally open state, the transistor can be activated in the state of negative pressure, and the diode shunt cannot be used to trigger the discharge shunt; for this reason, the present invention utilizes an enhancement mode pseudo-type high. The normally closed nature of an electron mobility transistor (pHEMT) or a metal semiconductor field effect transistor (MESFET) replaces the position of the electron crystal 7 • 1317166 body in the ESD protection circuit. Therefore, the electrostatic discharge protection circuit disclosed in the present invention utilizing an enhancement mode pseudo-plastic high electron mobility transistor (pHEMT) or a metal semiconductor field effect transistor (MESFET) can be integrated on the same wafer as the protected circuit. At the same time, the dual gate design disclosed in the present invention can achieve the purpose of reducing parasitic capacitance without wasting circuit space to maintain the main circuit performance to be protected, such as gain, linearization and bandwidth. SUMMARY OF THE INVENTION The basic structure of the present invention is a parallel-trigger diode string and a shunt device. When a high-voltage surge event exceeding the normal use voltage occurs, a high-voltage surge is applied to protect the main circuit from damage; On a wafer dominated by high electron mobility transistor/metal semiconductor field effect transistors (HEMTs/MESFETs), the shunt device also uses high electron mobility transistor/metal semiconductor field effect transistors (HEMTs/MESFET) to The protection circuit can be used as a protection circuit in the wafer to save wafer space and manufacturing cost. In order to enable the shunt device to be triggered, the present invention utilizes an enhancement mode high electron mobility transistor/metal semiconductor field effect transistor (HEMTs/MESFET) having a normally closed nature as a shunt device. In addition, the invention is designed to reduce the parasitic capacitance in the protection circuit in order to maintain the precision performance of the protected circuit. For the purpose of the above invention, the present invention provides an intra-system electrostatic discharge (ESD) protection circuit 1317166 using an enhancement mode high electron mobility transistor (HEMT)/metal semiconductor field effect transistor (MESFET). The method includes an internal circuit point (pad point) and a ground point—a diode string connected to the internal circuit end and the ground terminal and the internal circuit end on the same wafer substrate (diode) String), and at least one in-wafer enhanced high electron mobility transistor/metal semiconductor field connected in series with the diode in parallel with the internal circuit terminal and the ground terminal and the internal circuit terminal on the same wafer substrate Effect transistor. The diode string is provided to trigger a shunt of the electrostatic discharge surge, and the gate of the enhanced high electron mobility transistor/metal semiconductor field effect transistor is coupled to the cathode end of the diode string. To accept the trigger of the diode string to take over the shunt of the electrostatic discharge. The above and other objects, features, and advantages of the invention will be apparent from [Embodiment] FIG. 1 is a conceptual diagram of an electrostatic discharge (ESD) protection circuit 1 of the present invention. The protection circuit 1 includes an internal electrical terminal 110, a ground terminal 130, and a triggering diode for connecting internal circuits. The polar body string 121 and the electrostatic discharge shunt device 122 connected in parallel with the trigger diode string 121. When the electrostatic discharge event 120 occurs (as shown in Figure 1-1), the electrostatic discharge shunt device 122 in the protection circuit 1 can smoothly shunt the high voltage and high current generated by the electrostatic discharge to the ground terminal 130. However, the internal circuit terminal 110 has a voltage change under normal use, so the ESD protection circuit must be able to separately shunt when and when it is normally used without starting the shunt; as shown in FIG. 2 The trigger diode string 121 is provided for distinguishing the high voltage surge event. When a high voltage surge occurs, the voltage difference between the internal circuit terminal 110 and the ground terminal 130 at 9 1317166 is greater than the trigger diode string 121. The critical parasitic voltage drop (Vth) causes the trigger diode string 121 to be turned on, and the end point of the gate 221 of the electrostatic discharge shunt device 122 is connected. The voltage and the ground end begin to have a pressure difference, thus starting the The electrostatic discharge shunt device 122, the high voltage surge of the internal circuit terminal 110 is shunted to the ground terminal 130. In the present embodiment, the electrostatic discharge shunt device 122 is an enhanced pseudo-type high electron mobility transistor/metal-semiconductor field effect transistor (E-mode pHEMTs/MESFET). ® In the case of reduced space and cost, the number of diodes used for triggering is based on the minimum number of untriggered shunts under normal voltage usage. For example, the number of triggering diodes N = normal voltage Vpad / critical The forward bias drops Vth; in addition, as described above, on the wafer mainly based on the pseudo-type high electron mobility transistor/metal-semiconductor field effect transistor (pHEMTs/MESFET), the electrostatic discharge shunt device 122 is For in-wafer design, an excitation mode high-electron mobility mobility transistor / φ metal-semiconductor field effect transistor (pHEMTs/MESFET) should be used, because it is different from the depletion mode. The normally off nature of the type high electron mobility transistor/metal semiconductor field effect transistor (pHEMTs/MESFET). Figure 3 is a diagram showing the source of parasitic capacitance generated by the ESD protection circuit 1 to the internal circuit. The source of the parasitic capacitance is two: one is from the trigger diode string 121; the other is from the enhancement mode. Pseudotype high electron mobility transistor/metal semiconductor field effect transistor (pHEMTs/MESFET). Due to the parasitic capacitance Ct generated by the trigger diodes 121 • 1317166 relative to the enhancement mode, the parasitic capacitance Ce generated by the high-electron mobility transistor/metal-semiconductor field-effect transistor • (pHEMTs/MESFET) To be small, the total parasitic capacitance Ct()tali is approximately equal to the parasitic capacitance Ce from the enhancement mode pseudo-type south electron mobility transistor/metal semiconductor field effect transistor (pHEMTs/MESFET). As mentioned above, the parasitic capacitance generated in the ESD protection circuit in the RF component will have a certain impact on the performance of the circuit to be protected. Therefore, the good protection circuit should have the same parasitic effect as the smaller; The enhancement mode of the high-electron mobility mobility transistor/metal-semiconductor field-effect transistor (pHEMTs/MESFET) string can smoothly reduce the parasitic capacitance. As shown in FIG. 4, the parasitic capacitances Cel and Ce2 of the first and second enhancement mode high-electron mobility transistor/metal-semiconductor field-effect transistor (pHEMTs/MESFET) can be connected in series. The total parasitic capacitance Ctc)tai2 becomes half of the original total parasitic capacitance Ct()tall; however, the space and cost required for the series connection are multiplied, although the parasitic capacitance is reduced, the space required for the wafer is increased. In terms of applications, the advantages of in-wafer design are also reduced. Another important breakthrough in the present invention is as shown in Fig. 5, maintaining the original enhancement mode of the pseudotype high electron mobility transistor /, the space size of the metal semiconductor field effect transistor (pHEMTs / MESFET) The gate adopts a double gate design, so that the dual gate enhanced pseudo-type high electron mobility transistor/metal semiconductor field effect transistor has one of the gates connected to the terminal of the diode string 121. The cathode end is provided to receive the trigger of the diode string 121, and the other gate is connected to the bucker of the enhanced pseudo-type high electron mobility electric 11 1317166 - crystal/metal semiconductor field effect transistor to replace the original The enhancement mode of the high-electron mobility mobility transistor/pH" semiconductor field effect transistor (pHEMTs/MESFET) is designed to reduce the parasitic capacitance without any intermediate conditions. As shown in Fig. 6, it is a variety of different states of the double gate design described above. It is an enhancement mode pseudo-type high electron mobility transistor/metal semiconductor field effect transistor (PHEMTS/MESFET). One of the poles is still connected to the trigger diode _121 for being triggered' and the other gate is connected to the internal circuit or to the node between the trigger diodes 121 In order to achieve different reduction of parasitic capacitance, and to meet the requirements of circuit design that requires different trigger voltages. FIG. 7 shows the layout result of one example of the protection circuit, respectively showing the position of the trigger diode string 121 and the matching resistor 720, and the resistor 720 is used to adjust the impedance of the internal circuit matching; meanwhile, the enhancement type (enhancement) Mode) The pseudo-type high electron mobility transistor/metal semi-conductor field effect transistor (pHEMTs/MESFET) is symmetrically cross-distributed on both sides of the trigger diode string 121 in a multi-finger gate design. The number of fingers is determined by the required device size L and the width w of the finger gates. For example, device size 1 mm = 4 (number of fingers) χ 125 μιη (gate width) χ 2 (symmetric side design) Or the device size lmm = 8 (number of fingers) χ 62.5 μιη (gate width) x 2 (symmetric design on both sides). In practice, the direction and number of the diode strings 121 are such that the diode strings 121 are in a non-conducting state at the southernmost voltage during normal use. [Simple diagram of the diagram] 12 • 1317166 Figure 1 is a conceptual diagram of the electrostatic discharge (esd) protection circuit of the present invention. The f 1-1 diagram is a schematic diagram of the occurrence of an electrostatic discharge event. Fig. 2 is a view showing the arrangement of various components of the electrostatic discharge (ESD) protection circuit of the present invention. Figure 3 is a diagram showing the source of the parasitic capacitance of the internal circuit of the electrostatic discharge (ESD) protection circuit of the present invention. Figure 4 is a graph showing the parasitic capacitance of the electrostatic discharge (ESD) protection circuit of the present invention in a series mode of the pseudo mode high electron mobility transistor/metal semiconductor field effect transistor (pHEMTs/MESFET). Fig. 5 is a view showing an embodiment of the double gate circuit of the electrostatic discharge (ESD) protection circuit of the present invention while maintaining the original space. Fig. 6 is a view showing an embodiment of a gate contact circuit of different double closed electrodes of the electrostatic discharge (ESD) protection circuit of the present invention. Fig. 7 is a view showing an example of the electrostatic discharge (ESD) protection circuit of the present invention. [Main component symbol description] 110: Internal circuit terminal 120: Electrostatic discharge event 121: Trigger diode string 122: Electrostatic discharge shunt device 130: Ground terminal 221: Shunt device gate

Ct :觸發二極體串之寄生電容 13 Ι3Ϊ7166 'Ce :增強型(enhancement mode)偽型態高電子遷移率電晶體 /金屬半導體場效電晶體(pHEMTs/MESFET)之寄生電容 -Ctotai2 :總寄生電容 .Cel :第一增強型(enhancement mode)偏型態高電子遷移率 電晶體/金屬半導體場效電晶體(pHEMTs/MESFET)之寄 生電容Ct : Trigger capacitance of the trigger diode string 13 Ι3Ϊ7166 'Ce : Entropy mode pseudo-type high electron mobility transistor / metal semiconductor field effect transistor (pHEMTs / MESFET) parasitic capacitance -Ctotai2 : total parasitic Capacitance.Cel: parasitic capacitance of the first enhancement mode of high electron mobility transistor/metal semiconductor field effect transistor (pHEMTs/MESFET)

Ce2 :第二增強型(enhancement mode)偽型態高電子遷移率 電晶體/金屬半導體場效電晶體(pHEMTs/MESFET)之寄 ® 生電容Ce2: second enhancement mode pseudo-type high electron mobility transistor/metal-semiconductor field effect transistor (pHEMTs/MESFET)

Ct〇tal2 · 總寄生電容 720 :匹配用電阻 L :裝置大小 W :指狀閘極的寬度Ct〇tal2 · Total parasitic capacitance 720 : Matching resistance L : Device size W : Width of finger gate

Claims (1)

,1317166 和年屮月十曰修正本 L----- L 十、申請專利範圍: 1、一種利用增強型(enhancementmode)高電子遷移率電晶體 : 金屬半導體場效電晶體(MESFET)之晶片内靜電 放電(ESD)防護電路,包括: 一個内部電路端(pad p〇int); $ —個接地端(ground point); 一個連接該内部電路端與該接地端並與該内部電路 端座於同一晶片基板上之晶片内二極體串(diode string),供 以觸發靜電放電突波之分流;以及 至少一個與該二極體串並聯之連接該内部電路端與 該接地端並與該内部電路端座於同一晶片基板上之晶片 内增強型高電子遷移率電晶體/金屬半導體場效電晶體,該 _ 增強型高電子遷移率電晶體/金屬半導體場效電晶體之閘 極銜接該二極體串之陰極端,似接受二極體串之觸發以 承接靜電放電之分流; 其中,該辦型高電子遷料t晶體/金屬料體場致 電晶體為雙閘極(dual gate)增強型高電子遷移率電晶體/金 屬半導體场效電晶體,供以減少該增強型高電子遷移率電 晶體/金屬半導體場效電晶體的電容值,使該利用增強型高 15 1317166 電子遷移率電晶體/金屬半導體場效電晶體之晶片内靜電 放電防護電路得以應用於射頻(RF)與高速光電積體電路 : (〇EIC)運作之電路。 2、 如申料利範圍第丨項所述之防護電路,其中,該雙閑 極(dual gate)增強型南電子遷移率電晶體/金屬半導體場效 φ 毛曰曰體除其中—閘極銜接於該二極體串之陰極端點供以 接受該二極體串之觸發外,另1極銜接於該增強型高電 子遷移率電金料特場料晶體之汲極。 3、 如申請專利翻第1項所述之防護電路,其中,該雙間 極㈣㈣增強型高電子遷移率電晶齡屬半導體場效 電純除其中-閘極銜接於該二極體串之陰極端點供以 接受一極體串之觸發外,另__. η a t,-,. 力閘極銜接於該二極體串中任 泰意兩個二極體串聯間的結點。 4、 如申請專利範圍第丨項所 狀防護電路,其中,該二極 體串在連接到該接地端之間連接 ^ 1固电阻,供以調整 靜電防護之觸發電壓。 5、 如申請專利範圍第1項所述之防護電路,巧 體串的方向與數目應使在正常使用期間之最高電财’該 一極體串為不導通的狀態。 16 1317166 6、 如申請專利範圍第項所述之防護電路,其中, ’、 °发雙聞 極(dual gate)增強型高電子遷移率電晶體/金屬半導體場致 電晶體採多指形(multi-fmger)佈局(iayout)對稱交又分佈於 二極體串的兩侧,該雙閘極(dual gate)增強型高電子遷移率 電晶體/金屬半導體場效電晶體的裝置大小(device size)為 指形的數目(finger number)乘以閘極寬度(gate width)再乘 以2(對稱佈局)。 7、 如申睛專利範圍第6項所述之防護電路,其中,該雙閘 極(dual gate)增強型高電子遷移率電晶體/金屬半導體場效 電晶體的裝置大小1mm = 4 (指形數目)x 125 μιη(閘極 見度)X 2。 8、 如申凊專利範圍第6項所述之防護電路,其中,該雙閘 極(dual gate)增強型高電子遷移率電晶體/金屬半導體場效 電晶體的裝置大小lmm = 8 (指形數目)χ62 5 μιη(閘極 寬度)x2。 17, 1317166 and the first ten months of the revised version of L----- L, the scope of application for patents: 1, an enhanced mode (enhancementmode) high electron mobility transistor: metal semiconductor field effect transistor (MESFET) wafer An internal electrostatic discharge (ESD) protection circuit comprising: an internal circuit terminal (pad p〇int); a ground point; a connection between the internal circuit end and the ground terminal and the internal circuit terminal a diode string on the same wafer substrate for diverting the electrostatic discharge surge; and at least one of the diode connected in parallel with the diode and the ground and the interior The circuit is mounted on an intra-wafer enhanced high electron mobility transistor/metal semiconductor field effect transistor on the same wafer substrate, and the gate of the _ enhanced high electron mobility transistor/metal semiconductor field effect transistor is connected to the second The cathode end of the polar body string is similar to the trigger of the diode string to receive the shunt of the electrostatic discharge; wherein, the high electron relocation t crystal/metal body field call crystal is a dual gate Enhanced high electron mobility transistor/metal semiconductor field effect transistor for reducing the capacitance of the enhanced high electron mobility transistor/metal semiconductor field effect transistor, making the utilization enhanced by 15 1317166 electron mobility The on-wafer electrostatic discharge protection circuit of the transistor/metal semiconductor field effect transistor can be applied to a circuit for operating a radio frequency (RF) and a high speed optoelectronic integrated circuit: (〇EIC). 2. The protection circuit as described in the scope of claim 2, wherein the dual gate enhanced south electron mobility transistor/metal semiconductor field effect φ 曰曰 其中 除 — 闸 闸 闸 闸 闸The cathode end of the diode string is provided to receive the trigger of the diode string, and the other pole is coupled to the drain of the enhanced high electron mobility electric gold material field crystal. 3. The protection circuit according to claim 1, wherein the double-pole (four) (four) enhanced high electron mobility electron-electric age is a semiconductor field effect pure except that the gate is connected to the diode string The cathode end is provided to receive the trigger of the one-pole string, and the other __. η at, -,. force gate is connected to the junction between the two diode series in the diode string. 4. The protection circuit according to the scope of claim 2, wherein the diode string is connected to the ground terminal to connect a solid resistor to adjust the trigger voltage of the static electricity protection. 5. If the protection circuit described in item 1 of the patent application is applied, the direction and number of the strings should be such that the highest power during normal use is in a non-conducting state. 16 1317166 6. The protection circuit according to the scope of the patent application, wherein the ', ° dual-gate dual-enhanced high electron mobility transistor/metal semiconductor field call crystal adopts multiple fingers (multi- The fmger) iayout is symmetrically distributed on both sides of the diode string, and the device size of the dual gate enhanced high electron mobility transistor/metal semiconductor field effect transistor is The finger number is multiplied by the gate width and multiplied by 2 (symmetric layout). 7. The protection circuit according to claim 6, wherein the dual gate enhanced high electron mobility transistor/metal semiconductor field effect transistor has a device size of 1 mm = 4 (finger shape) Number) x 125 μηη (gate visibility) X 2 . 8. The protection circuit according to claim 6, wherein the dual gate enhanced high electron mobility transistor/metal semiconductor field effect transistor has a device size of lmm = 8 (finger shape) Number) χ 62 5 μιη (gate width) x2. 17
TW95131035A 2006-08-23 2006-08-23 On-chip esd protection circuit using enhancement-mode hemt/mesfet technology TWI317166B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95131035A TWI317166B (en) 2006-08-23 2006-08-23 On-chip esd protection circuit using enhancement-mode hemt/mesfet technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95131035A TWI317166B (en) 2006-08-23 2006-08-23 On-chip esd protection circuit using enhancement-mode hemt/mesfet technology

Publications (2)

Publication Number Publication Date
TW200812059A TW200812059A (en) 2008-03-01
TWI317166B true TWI317166B (en) 2009-11-11

Family

ID=44767917

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95131035A TWI317166B (en) 2006-08-23 2006-08-23 On-chip esd protection circuit using enhancement-mode hemt/mesfet technology

Country Status (1)

Country Link
TW (1) TWI317166B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190887A (en) * 2013-05-03 2015-12-23 密克罗奇普技术公司 Compact electrostatic discharge (esd) protection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595626B (en) * 2014-07-28 2017-08-11 聯穎光電股份有限公司 Electrostatic discharge protection circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190887A (en) * 2013-05-03 2015-12-23 密克罗奇普技术公司 Compact electrostatic discharge (esd) protection structure
CN105190887B (en) * 2013-05-03 2018-11-09 密克罗奇普技术公司 Compact static discharge (ESD) protects structure

Also Published As

Publication number Publication date
TW200812059A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
US9685432B2 (en) Compact electrostatic discharge (ESD) protection structure
WO2006041087A1 (en) High-frequency integrated circuit
US7592673B2 (en) ESD protection circuit with isolated diode element and method thereof
US8804290B2 (en) Electrostatic discharge protection circuit having buffer stage FET with thicker gate oxide than common-source FET
US8964342B2 (en) Compound semiconductor ESD protection devices
US7881030B1 (en) Enhancement-mode field effect transistor based electrostatic discharge protection circuit
US10438940B2 (en) ESD protection for depletion-mode devices
EP2497109A2 (en) Package configurations for low emi circuits
CN108807376B (en) Bidirectional transient voltage suppressor of low-voltage MOS auxiliary trigger SCR
US7881029B1 (en) Depletion-mode field effect transistor based electrostatic discharge protection circuit
US6898060B2 (en) Gated diode overvoltage protection
US8970998B2 (en) Compound semiconductor ESD protection devices
JP2004103786A (en) Semiconductor device
TWI317166B (en) On-chip esd protection circuit using enhancement-mode hemt/mesfet technology
US20220094159A1 (en) Electrostatic discharge protection circuit
US6894351B2 (en) Semiconductor device for electrostatic protection
SE1150203A1 (en) Semiconductor component consisting of a lateral JFET combined with a vertical JFET
Muthukrishnan et al. A novel on-chip protection circuit for RFICs implemented in D-mode pHEMT technology
Chiu et al. Enhancement-and depletion-mode InGaP/InGaAs pHEMTs on 6-inch GaAs substrate
Chen et al. Recent development in flourine-ion-implanted GaN-based heterojunction power devices
WO2023095468A1 (en) High frequency integrated circuit and electronic device
US9099862B1 (en) Self ESD protected device and method thereof
TWI255029B (en) Electrostatic discharge protection device
TW202410382A (en) Protective structure with depletion-mode and enhancement-mode transistors
CN117730408A (en) Semiconductor device and method of manufacturing the same