TWI315007B - Liquid crystal display panel - Google Patents

Liquid crystal display panel Download PDF

Info

Publication number
TWI315007B
TWI315007B TW93121165A TW93121165A TWI315007B TW I315007 B TWI315007 B TW I315007B TW 93121165 A TW93121165 A TW 93121165A TW 93121165 A TW93121165 A TW 93121165A TW I315007 B TWI315007 B TW I315007B
Authority
TW
Taiwan
Prior art keywords
color filter
display panel
liquid crystal
disposed
driving circuit
Prior art date
Application number
TW93121165A
Other languages
Chinese (zh)
Other versions
TW200602720A (en
Inventor
Chia-Te Lin
Ta-Shuang Kuan
Ming-Yih Lai
Kuo-Chou Yu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW93121165A priority Critical patent/TWI315007B/en
Publication of TW200602720A publication Critical patent/TW200602720A/en
Application granted granted Critical
Publication of TWI315007B publication Critical patent/TWI315007B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

1315007 九、發明說明: 【發明所屬之技術領域】 本發明係提供一種液晶顯示面板,尤指一種在石夕基板上 設置微型彩色濾光片(micro color filter)的矽基液晶 crystal on silicon,LCOS)顯示面板。 【先前技術】 在現今的平面顯示器技術中,電漿顯示器(plasma display panel,PDP)面板以及液晶顯示器(liquid crystai display,LCD)面板可以說是兩大主流,此二者均由無數個 被稱作晝素(pixel cell)之顯示格點所構成。前者是應用於較 大尺寸的市場,但因I產技術尚未突破,成本仍高,距離 普及化仍有一段距離;後者則係以近年來頗為盛行的薄膜 電晶體型液晶顯示器(thin film transistor LCD,TFT LCD)作 為代表,主要應用於30英吋以下的市場,然而在製作薄膜 電晶體型液晶顯示器時,薄膜電晶體容易發生缺陷而使得 液晶顯示器產品最後產生點缺陷或線缺陷,故需辅以各種 補償技術來維持高生產良率。 石夕基液晶(liquid crystal on silicon, LCOS)顯示器則是一 1315007 種使用石夕晶片(silicon chip)作為基底材料的液晶顯示器,並 利用標準的CMOS製程在矽晶片之上製作出晝素陣列、驅 動積體電路以及其他電子元件,其優點為可以完全採用 CMOS半導體製程,而由於CMOS半導體製程已經是一種 非常成熟的工業技術,故可藉由它來製作出較一般液晶顯 示器穩定性更高且信賴度更高的產品,同時又可以縮小每 一個像素間距至ΙΟ/zm之下,並因此而得到較高的解析 度。若與電漿顯示器相比,則在成本上又有絕對的優勢, 其不僅具有液晶顯示器的各種優點,而且在輔以適當投影 技術(projection technology)的前提之下,又可以被廣泛應用 於大尺寸的市場,故近年來吸引不少大廠投入研發的矽晶 液晶顯示面板,是顯示器族群中最具潛力的一種產品。 請參考第1圖,第1圖為一習知液晶顯示面板10的剖 面示意圖。如第1圖所示,液晶顯示面板10包含有一石夕基 板12,石夕基板12表面並依序設有一驅動電路14、一液晶 層16、一透明導電層18、彩色濾光片22,以及玻璃基板 24。其中驅動電路14係包含有複數個矩陣排列的像素電 路,各像素電路並包含有一金屬電極,以用來驅動液晶顯 示面板10進行顯示。為說明方便起見,在第1圖中僅以分 別位於一第一像素區20、一第二像素區30以及一第三像 1315007 素區40的金屬電極14a、14b與14c代表,而彩色濾光片 22係由複數個不同顏色的彩色濾光片所組成,如第1圖中 分別位於第一像素區20、第二像素區30以及第三像素區 40之紅色濾光片22a、綠色濾光片22b以及藍色濾光片22c。 在此將進一步況明液晶顯不面板10的顯不原理’大體 而言,當液晶顯示面板10欲顯示影像時,會於驅動電路與 透明導電層18上施加適當的電壓,以於液晶層16兩側形 成適當的電場來調整液晶層16中各液晶分子的扭轉方 向,而使通過液晶層的光線在經過矽基底12表面的驅動電 路反射後,會形成不同灰階強度的影像。而當光源藉由液 晶層16及驅動電路14的控制而形成灰階光源後,將再經 由分別塗佈著紅、綠、藍三色的顏料光阻的彩色濾光片 22a、22b與22c,來產生紅、藍、綠三色的光線,這些色 光將分別經由金屬電極14a、14b與14c的反射,而於人眼 中混合形成彩色影像。 由於此方法需要藉由三個彩色濾光片將白光分成紅、 藍、綠三種基色光,再將此三種色光重新組合以形成彩色 影像,因此有著機構複雜、體積大、高成本與性能不穩定 等缺點。此外,在液晶顯示面板10之製作過程中,往往是 1315007 根據液晶層16之位置,將製程分成兩個部分(矽基板12侧 與玻璃基板24側)來進行,亦即先分別於兩基板之表面形 成適當的元件後,才將二者結合,並於其中灌入液晶分子 而形成液晶層16,而由於彩色濾光片22係設置於玻璃基 板之一侧,但各像素區域之位置則係定義於石夕基板上,因 此在進行玻璃基板24與矽基板12的結合製程時,往往不 能使彩色濾光片22a、22b與22c與下方的金屬電極14a、 14b與14c精確地對準,而易因對位不準造成三種色光不 均勻的狀況發生。再者,當彩色濾光片22在將白光轉換成 不同顏色的色光(如紅、綠或藍光)時,勢必會吸收一定程 度的能量而產生熱量累積,長時間下來亦會造成顯示面板 過熱的問題,使得顯示品質降低。 因此,要如何發展出一種新的液晶顯示面板結構,以解 決習知技術中之問題,便成為當前之重要課題。 【發明内容】 本發明的目的是提供一種在矽基板上設置微型彩色濾 光片的矽基液晶顯示面板,以解決前述問題。 在本發明的較佳實施例中係揭露一種矽基液晶顯示面 板,其包含有一矽基底以及一第一微型彩色濾光片、一第 1315007 二微型彩色濾光片以及一第三微型彩色濾光片分別設於矽 基底上之一第一像素區、一第二像素區以及一第三像素 區’其上並依序堆疊有一下配向層、一液晶層、一上配向 層、一透明導電層以及一玻璃基板,其中第一微型彩色濾 光片、第二微型彩色濾光片以及第三微型彩色濾光片均係 由複數個光學薄膜堆疊而成,且當光線射入矽基液晶顯示 面板時,將自該第一像素區域、該第二像素區域與該第三 像素區域内分別反射出一第一頻率範圍、一第二頻率範圍 與一第三頻率範圍的光線。 由於本發明係利用微型彩色濾光片來形成彩色影像, 因此可有效簡化製程,並縮小顯示面板的體積,此外,由 於微型彩色濾光片係設置於液晶層下方靠近矽基板之一 側’因此可大幅提升彩色濾、光4與下方像素區域間對位之 精確度,進而提昇液晶顯示面板的顯示品質。 【實施方式】 請參考第2圖,第2圖為本發明第一實施例中一液晶 顯示面板110之結構示意圖。如第2圖所示,液晶顯示面 板no包含有-石夕基板112,石夕基板112表面並依序設有一 驅動電路H4、-下配向層116、微型彩色滤光片陣列118、 一液晶層122、一上配向層124、—透明導電層126以及一 1315007 玻璃基板128。其中驅動電路114係包含有複數個矩陣排 列的晝素電路,而各晝素電路均包含有—金屬電極,以用 來驅動上方之液晶| 122進行顯示。為說明方便起見,在 第2圖中僅以分別位於—第—像素區12()、—第二像素區 130以及一第二像素區14〇的金屬電極1Ma、U4b與U4c 代表,而微型彩色濾光片陣列118同樣係包含有複數個微 型彩色;慮光片,以用來處理不同頻率範圍之光線,如第1 圖中分別位於第一像素區120、第二像素區13〇以及第三 像素區140之第一微型彩色濾光片118a、第二微型彩色濾 光片118b以及弟二微型彩色濾光片118c,其中第一微型彩 色濾光片118a、弟二微型彩色濾光片n 8b以及第三微型彩 色濾光片118c分別只允許一第一頻率範圍、一第二頻率範 圍與一第二頻率範圍的光線通過,而在本發明之較佳實施 例中,第一頻率範圍、第二頻率範圍與第三頻率範圍的光 線係分別為紅光、綠光與藍光,此外,微型彩色渡光片陣 列118中各微型彩色濾光片之位置係分別與下方之金屬電 極114a、114b與114c相對應,以使通過第一微型彩色濾 光片118a、第二微型彩色濾光片U8b以及第三微型彩色遽 光片118c的光線會分別被下方之金屬電極114a、114b與 114c向上反射’以使不同頻率範圍的光線再重新混合,而 形成彩色影像。 在本發明之較佳實施例中,液晶層122之厚度約為0.5 1315007 至10微米’上下兩側並分別設有一上配向層124與一下配 向層116,以使液晶層122在不施加電場的狀況下具有一 預傾方向’而提昇液晶顯示面板的顯示品質。在本發明之 較佳實施例中,所採用之配向類型係為垂直配向(vertical alignment) ’然而本發明之配向方式並不限於此,而可以其 他配向方式進行’例如扭轉向列(twist nematic)型。 而第一微型彩色濾光片118a、第二微型彩色濾光片 118b以及第三微型彩色濾光片n8c皆係由複數層光學薄 膜堆疊而成,並包含有一低反射率光學薄膜堆疊,例如氧 化石夕(Si〇2)薄膜’或一高反射率光學薄膜堆疊,如氧化鈦 ⑽2)或氧化组薄膜。在本發明之較佳實施例中,低 反射率光學薄卿疊係由氧切_2)薄膜所構成 ’而南反 射率光學薄膜堆疊則係由氧化鈦⑽2)或氧化组(Ta2〇5)薄 、斤構成般而5 ’微型彩色濾光片陣列118之總厚度 、勺為1至5微米。此外’各微型彩色濾光片間並鑛有一非 透明層,其材料可為銘、鉻、鎳、銅、鐵、鋅、鈦、金、 銀、翻、鎢、銦、组、錯、碳中之任一者或其組合物,以 減v漏光的情形發生’進而改善提高圖像和雜訊之對比值。 由於本案中之微型彩色濾光片陣列係位於液晶層 2之下方’換吕之’在製作過程中,微型彩色滤光片陣 列118與驅動電路114均係製作於石夕基板112上,因此, I3l5〇〇7 玻璃基板128與矽基板112間所兩 下降,使得因對位不準而影響精確度可大幅 進而提昇產品之可靠度。此外,由=的狀況大幅滅少, -設—·因此 邊電路區域增設—冷料置,以移_微卿色渡之題 列118而累積的熱量,避免料面板则溫度1升二陣 響顯示品質。 外而影 婉別/ 本發明第二實施例中1干% 面板別之剖面示意圖。如第3圖所示,液晶顯示^^ % 同樣係包含有—碎基板212,發基板犯表面並依私1〇 一驅動電路214、微型彩色濾、光片陣列216、-下配向^ 218、一液晶層222、一上配向層以、一透明導電層= 以及一玻螭基板228。且微型彩色濾光片陣列216同樣係 包含有二個微型彩色濾光片216a、216b與21心,且其位置 同樣係分別對應至驅動電路214中之金屬電極214a、214b % 與21 本實施例與前述第一實施例之最大不同點在於各 微蜇衫色濾光片係位於下配向層218之下方,亦即直接形 成於各金屬電極上,因此可藉由微型彩色濾光片與下方金 屬電極間之介面來提供一較佳之反射率,一般而言,金屬 電極之反射率約為90%,而利用微塑彩色濾光片/金屬電極 、 間之介面則可提供約97%之反射率,換言之,顯示面板之 焭度可進一步提昇,以改善顯示品質。 12 1315007 相較於習知技術,由於本發明係利用微型彩色濾光片 陣列來形成彩色影像,相較於傳統之彩色濾光片,本發明 可大幅縮小顯示面板之體積,並進一步簡化製程。此外, 由於本案中之微型彩色濾光片陣列係位於液晶層之下方, 換言之,在製作過程中,微型彩色濾光片陣列與驅動電路 均係製作於矽基板上,因此,玻璃基板與矽基板間所需要 之對位精確度可大幅下降,使得因對位不準而影響顯示品 質的狀況大幅減少,進而提昇產品之可靠度。此外,由於 t 微型彩色濾光片陣列係設置於矽基板側,因此可於矽基板 表面之週邊電路區域增設一冷卻裝置,以移除因微型彩色 濾光片陣列而累積的熱量,避免顯示面板因溫度上升而影 響顯示品質。 以上所述僅為本發明之較佳實施例,凡依本發明申請 專利範圍所做之均等變化與修飾,皆應屬本發明專利之涵 鲁 蓋範圍。 【圖式簡單說明】 第1圖為一習知顯示面板之剖面示意圖。 第2圖為本發明第一實施例中一顯示面板之剖面示意圖。 第3圖為本發明第二實施例中一顯示面板之剖面示意圖。 13 1315007 【主要元件符號說明】 10 液晶顯不面板 14 驅動電路 16 液晶層 20 第一像素區域 22a 第一微型彩色濾光片 22c 第三微型彩色濾光片 30 第二像素區域 110 液晶顯不面板 114 驅動電路 116 下配向層 118a 第一微型彩色濾光片 118b 第二微型彩色濾光片 118c 第三微型彩色濾光片 120 第一像素區域 122 液晶層 126 透明電極 130 第二像素區域 210 液晶顯不面板 214 驅動電路 216 微型彩色濾光片陣列 216b 第二微型彩色濾光片 12碎基板 14a、b、c 金屬電極 18透明電極 22彩色濾光片陣列 22b第二微型彩色濾光片 2 4玻璃基板 40第三像素區域 112砍基板 114a、b、c金屬電極 118微型彩色濾光片陣列 124上配向層 128玻璃基板 140第三像素區域 212矽基板 214a、b、c金屬電極 216a 第一微型彩色濾光片 216c 第三微型彩色濾光片1315007 IX. Description of the Invention: [Technical Field] The present invention provides a liquid crystal display panel, and more particularly, a liquid crystal on silicon, which is provided with a micro color filter on a stone substrate. ) display panel. [Prior Art] In today's flat panel display technology, a plasma display panel (PDP) panel and a liquid crystal display (LCD) panel can be said to be two mainstreams, both of which are called by countless It is composed of display pixels of a pixel cell. The former is applied to the larger size market, but because the I production technology has not yet broken through, the cost is still high, and there is still a long distance from the popularization; the latter is a thin film transistor type liquid crystal display (thin film transistor) which is quite popular in recent years. LCD, TFT LCD) is mainly used in the market below 30 inches. However, when manufacturing a thin film transistor type liquid crystal display, the thin film transistor is prone to defects, which causes the liquid crystal display product to finally produce point defects or line defects. A variety of compensation techniques are used to maintain high production yields. The liquid crystal on silicon (LCOS) display is a 1315507 liquid crystal display using a silicon chip as a substrate material, and a halogen substrate is fabricated on a germanium wafer using a standard CMOS process. Driving integrated circuits and other electronic components has the advantage of being able to fully adopt CMOS semiconductor processes, and since CMOS semiconductor processes are already a very mature industrial technology, it can be used to make higher stability than general liquid crystal displays. A more reliable product, while reducing the pitch of each pixel to below ΙΟ/zm, and thus getting a higher resolution. Compared with the plasma display, it has an absolute advantage in cost. It not only has various advantages of the liquid crystal display, but also can be widely applied to the large scale under the premise of appropriate projection technology. The size of the market, so in recent years has attracted many large companies to invest in the development of the crystal LCD panel, is the most potential product in the display group. Please refer to FIG. 1. FIG. 1 is a cross-sectional view showing a conventional liquid crystal display panel 10. As shown in FIG. 1 , the liquid crystal display panel 10 includes a substrate 12 , and a driving circuit 14 , a liquid crystal layer 16 , a transparent conductive layer 18 , and a color filter 22 are sequentially disposed on the surface of the substrate 12 . Glass substrate 24. The driving circuit 14 includes pixel circuits of a plurality of matrix arrangements, and each of the pixel circuits includes a metal electrode for driving the liquid crystal display panel 10 for display. For convenience of description, in FIG. 1, only the metal electrodes 14a, 14b, and 14c respectively located in a first pixel region 20, a second pixel region 30, and a third image 1315007 prime region 40 are represented, and the color filter is used. The light sheet 22 is composed of a plurality of color filters of different colors, such as the red filter 22a located in the first pixel region 20, the second pixel region 30, and the third pixel region 40 in FIG. 1, and the green filter. The light sheet 22b and the blue color filter 22c. Further, the principle of the liquid crystal display panel 10 will be further described. In general, when the liquid crystal display panel 10 is to display an image, an appropriate voltage is applied to the driving circuit and the transparent conductive layer 18 to the liquid crystal layer 16. An appropriate electric field is formed on both sides to adjust the twist direction of each liquid crystal molecule in the liquid crystal layer 16, and the light passing through the liquid crystal layer is reflected by the driving circuit on the surface of the germanium substrate 12 to form images of different gray scale intensities. When the light source is formed by the control of the liquid crystal layer 16 and the driving circuit 14 to form a gray scale light source, the color filters 22a, 22b and 22c respectively coated with the pigment photoresists of red, green and blue colors are respectively applied. The three colors of red, blue and green are generated, and these colored lights are respectively reflected by the metal electrodes 14a, 14b and 14c, and mixed in the human eye to form a color image. Since the method needs to divide the white light into three primary colors of red, blue and green by three color filters, and then recombining the three color lights to form a color image, the mechanism is complicated, bulky, high in cost and unstable in performance. And so on. In addition, in the manufacturing process of the liquid crystal display panel 10, 1315007 is usually divided into two parts according to the position of the liquid crystal layer 16 (the side of the substrate 12 and the side of the glass substrate 24), that is, the two substrates are respectively After forming a suitable component on the surface, the two are combined, and liquid crystal molecules are poured therein to form the liquid crystal layer 16. Since the color filter 22 is disposed on one side of the glass substrate, the position of each pixel region is It is defined on the Shishi substrate, so when the bonding process of the glass substrate 24 and the ruthenium substrate 12 is performed, the color filters 22a, 22b and 22c and the underlying metal electrodes 14a, 14b and 14c are often not precisely aligned. It is easy to cause three kinds of color unevenness due to misalignment. Moreover, when the color filter 22 converts white light into color light of different colors (such as red, green or blue light), it will inevitably absorb a certain amount of energy to generate heat accumulation, and the display panel may be overheated for a long time. The problem is that the display quality is degraded. Therefore, how to develop a new liquid crystal display panel structure to solve the problems in the prior art has become an important issue at present. SUMMARY OF THE INVENTION An object of the present invention is to provide a bismuth-based liquid crystal display panel in which a micro color filter is provided on a ruthenium substrate to solve the aforementioned problems. In a preferred embodiment of the present invention, a 矽-based liquid crystal display panel includes a 矽 substrate and a first micro color filter, a 1350507 two-micro color filter, and a third micro color filter. The sheets are respectively disposed on one of the first pixel region, the second pixel region and the third pixel region of the germanium substrate, and are sequentially stacked with a lower alignment layer, a liquid crystal layer, an upper alignment layer and a transparent conductive layer. And a glass substrate, wherein the first micro color filter, the second micro color filter, and the third micro color filter are all stacked by a plurality of optical films, and when the light is incident on the 矽-based liquid crystal display panel A light of a first frequency range, a second frequency range, and a third frequency range is reflected from the first pixel region, the second pixel region, and the third pixel region, respectively. Since the present invention utilizes a micro color filter to form a color image, the process can be simplified and the volume of the display panel can be reduced. Further, since the micro color filter is disposed under the liquid crystal layer near one side of the substrate, The accuracy of alignment between the color filter, the light 4 and the lower pixel area can be greatly improved, thereby improving the display quality of the liquid crystal display panel. [Embodiment] Please refer to FIG. 2, which is a schematic structural view of a liquid crystal display panel 110 according to a first embodiment of the present invention. As shown in FIG. 2, the liquid crystal display panel no includes a shixi substrate 112, and a driving circuit H4, a lower alignment layer 116, a micro color filter array 118, and a liquid crystal layer are sequentially disposed on the surface of the shixi substrate 112. 122. An upper alignment layer 124, a transparent conductive layer 126, and a 1315507 glass substrate 128. The driving circuit 114 includes a plurality of matrix-arranged pixel circuits, and each of the pixel circuits includes a metal electrode for driving the upper liquid crystal | 122 for display. For convenience of description, in FIG. 2, only the metal electrodes 1Ma, U4b, and U4c respectively located in the -first pixel region 12 (), the second pixel region 130, and a second pixel region 14 , are represented, and the micro The color filter array 118 also includes a plurality of micro-colors; a light-receiving sheet for processing light of different frequency ranges, as shown in FIG. 1 in the first pixel region 120, the second pixel region 13 and the first The first micro color filter 118a, the second micro color filter 118b, and the second micro color filter 118c of the three pixel area 140, wherein the first micro color filter 118a and the second micro color filter n 8b and the third micro color filter 118c respectively allow only a first frequency range, a second frequency range and a second frequency range to pass light, and in a preferred embodiment of the invention, the first frequency range, The light systems of the second frequency range and the third frequency range are red light, green light and blue light, respectively. Further, the positions of the micro color filters in the micro color filter array 118 are respectively opposite to the metal electrodes 114a, 114b below. Relative to 114c Therefore, the light passing through the first micro color filter 118a, the second micro color filter U8b, and the third micro color light film 118c is reflected upward by the lower metal electrodes 114a, 114b, and 114c, respectively. Light in different frequency ranges is remixed to form a color image. In a preferred embodiment of the present invention, the liquid crystal layer 122 has a thickness of about 0.51315007 to 10 micrometers on the upper and lower sides and is respectively provided with an upper alignment layer 124 and a lower alignment layer 116, so that the liquid crystal layer 122 is not applied with an electric field. In the case of a pretilt direction, the display quality of the liquid crystal display panel is improved. In a preferred embodiment of the invention, the type of alignment employed is a vertical alignment. However, the alignment of the present invention is not limited thereto, but may be performed in other alignment modes, such as twist nematic. type. The first micro color filter 118a, the second micro color filter 118b, and the third micro color filter n8c are stacked by a plurality of optical films and include a low reflectivity optical film stack, such as oxidation. Shi Xi (Si〇 2) film 'or a high reflectivity optical film stack, such as titanium oxide (10) 2) or oxidized film. In a preferred embodiment of the invention, the low reflectivity optical thin stack is composed of an oxygen cut 2) film and the south reflectance optical film stack is composed of titanium oxide (10) 2) or an oxidation group (Ta 2 〇 5). The total thickness of the 5' micro color filter array 118 and the spoon are 1 to 5 microns. In addition, there is a non-transparent layer between the micro-color filters, and the materials can be Ming, Chromium, Nickel, Copper, Iron, Zinc, Titanium, Gold, Silver, Turn, Tungsten, Indium, Group, Wrong, Carbon. Either one or a combination thereof occurs to reduce the occurrence of light leakage, thereby improving the contrast value of the image and the noise. Since the micro color filter array in the present case is located below the liquid crystal layer 2, the micro color filter array 118 and the driving circuit 114 are all fabricated on the stone substrate 112. Therefore, The I3l5〇〇7 glass substrate 128 and the germanium substrate 112 are both lowered, so that the accuracy is affected by the misalignment, which can greatly improve the reliability of the product. In addition, the situation of = is greatly reduced, - set - so the side of the circuit area is added - cold material set, to accumulate the heat accumulated in the list of 118, to avoid the temperature of the panel is 1 liter and two bursts Display quality. Externally, it is a cross-sectional view of the 1%% panel of the second embodiment of the present invention. As shown in FIG. 3, the liquid crystal display ^^% also includes a broken substrate 212, the substrate is smashed and the driving circuit 214, the micro color filter, the optical array 216, the lower alignment ^ 218, A liquid crystal layer 222, an upper alignment layer, a transparent conductive layer = and a glass substrate 228. The micro color filter array 216 also includes two micro color filters 216a, 216b and 21, and the positions thereof are correspondingly corresponding to the metal electrodes 214a, 214b and 21 in the driving circuit 214, respectively. The biggest difference from the foregoing first embodiment is that each micro-shirt color filter is located below the lower alignment layer 218, that is, directly formed on each metal electrode, so that the micro color filter and the underlying metal can be used. The interface between the electrodes provides a better reflectivity. In general, the reflectivity of the metal electrode is about 90%, and the micro-plastic filter/metal electrode and the interface between the electrodes provide about 97% reflectance. In other words, the brightness of the display panel can be further improved to improve the display quality. 12 1315007 Compared with the prior art, the present invention utilizes a miniature color filter array to form a color image. Compared with the conventional color filter, the present invention can greatly reduce the volume of the display panel and further simplify the process. In addition, since the micro color filter array in the present case is located below the liquid crystal layer, in other words, in the manufacturing process, the micro color filter array and the driving circuit are all fabricated on the germanium substrate, and therefore, the glass substrate and the germanium substrate The accuracy of the alignment required between the two can be greatly reduced, so that the situation in which the display quality is affected by the misalignment is greatly reduced, thereby improving the reliability of the product. In addition, since the t micro color filter array is disposed on the side of the substrate, a cooling device can be added to the peripheral circuit region of the surface of the substrate to remove heat accumulated by the micro color filter array, thereby avoiding the display panel. The display quality is affected by the temperature rise. The above description is only the preferred embodiment of the present invention, and all the equivalent changes and modifications made by the scope of the present invention should be within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view of a conventional display panel. 2 is a cross-sectional view showing a display panel in the first embodiment of the present invention. Figure 3 is a cross-sectional view showing a display panel in a second embodiment of the present invention. 13 1315007 [Description of main component symbols] 10 LCD display panel 14 Driver circuit 16 Liquid crystal layer 20 First pixel region 22a First micro color filter 22c Third micro color filter 30 Second pixel region 110 LCD panel 114 drive circuit 116 lower alignment layer 118a first micro color filter 118b second micro color filter 118c third micro color filter 120 first pixel region 122 liquid crystal layer 126 transparent electrode 130 second pixel region 210 liquid crystal display No panel 214 drive circuit 216 micro color filter array 216b second micro color filter 12 broken substrate 14a, b, c metal electrode 18 transparent electrode 22 color filter array 22b second micro color filter 2 4 glass Substrate 40 third pixel region 112 chopping substrate 114a, b, c metal electrode 118 micro color filter array 124 upper alignment layer 128 glass substrate 140 third pixel region 212 矽 substrate 214a, b, c metal electrode 216a first micro color Filter 216c third micro color filter

14 1315007 218 下配向層 222液晶層 224 上配向層 226透明電極 228 玻璃基板14 1315007 218 Lower alignment layer 222 Liquid crystal layer 224 Upper alignment layer 226 Transparent electrode 228 Glass substrate

1515

Claims (1)

秦ί315007 十、申請專利範圍:Qin 315007 X. Patent application scope: 1 · 一種顯示面板,其包含有: 一矽基底,該矽基底表面設有一像素區域丨 · 一驅動電路設於該矽基底之該像素區域上; 一微型彩色濾光片設於該驅動電路上,其中該微型彩色 濾光片係由複數個光學薄膜堆疊而成,且包含有一低反 射率光學薄卿疊或-高反射率光學薄卿疊,該低反 射率光學薄膜堆疊係包含有氧化石夕薄膜,該高反射率光 # 學薄膜堆疊係包含有氧化鈦薄膜或氧化钽薄膜; 一液晶層設於該微型彩色濾光片上; 上配向層设於該液晶層上:以及 一透明導電層設於該上配向層上; 其中當光線射入該顯示面板時,將只有一特定頻率範 圍内的光線能通過該微型彩色濾光片,並向上反射以 影像。 厲 ▲ 2.如申料利$謂第1項之顯*面板,其巾軸示面板另 包含有-下配向層,設於該微製彩色遽光片與該液晶層 之間。 如申請專祕圍第1項之顯示面板,其巾軸示面板另 16 !315007 包含有一下配向層,設於該微型彩色濾光片與該矽基底 之間。 如申睛專利範圍第1項之顯示面板,其中該驅動電路用 來驅動該顯示面板,該驅動電路另包含有複數個金屬電 極將通過該微型彩色濾、光片的光線向上反射,以形成 影像。 5’如申凊專利範圍第1項之顯示面板,其中該液晶層中之 液晶分子係以垂直配向型或扭轉向列型來進行排列。 6·如申請專利範圍第1項之顯示面板,其中該液晶層之厚 度約為0.5至10微米。 7.—種矽基液晶顯示面板,其包含有: · 石夕基底’該石夕基底表面設有一第一像素區、一第二像 素區以及一第三像素區; —第一驅動電路、一第二驅動電路、一第三驅動電路分別設於 該石夕基底上之該第一像素區、該第二像素區以及該第三 像素區; —第一微型彩色濾光片、一第二微型彩色濾光片以及一 17 1315007 第三微型彩色濾光片分別設於該第一驅動電路、該 第二驅動電路、該第三驅動電路上,其中該第一微型彩 色濾光片、該第二微型彩色濾光片以及該第三微型彩色 濾光片均係由複數個光學薄膜堆疊而成,且分別包含有 一低反射率光學薄膜堆疊或一高反射率光學薄膜堆疊, 該低反射率光學薄膜堆疊係包含有氧化矽薄膜,該高反 射率光學薄膜堆疊係包含有氧化鈦薄膜或氧化钽薄膜; 一下配向層設於該第一微型彩色濾光片、該第二微型彩 色濾光片以及該第三微型彩色濾光片上; 一液晶層設於該下配向層上; 一上配向層設於該液晶層上;以及 一透明導電層設於該上配向層上; 其中當光線射入該顯示面板時,將自該第一像素區 域、該第二像素區域與該第三像素區域内分別反射出一第 一頻率範圍、一第二頻率範圍與一第三頻率範圍的光線。 8.如申請專利範圍第7項之顯示面板,其中該第一驅動電 路、該第二驅動電路、該第三驅動電路用來驅動該顯示面 板,並該等驅動電路另包含有複數個具有一反射功能之金 屬電極,使通過該第一微型彩色濾光片、該第二微型彩 色濾光片以及該第三微型彩色濾光片的光線向上反 18 1315007 射’以形成影像。 如申凊專利範圍f 7項之顯示面板,其中該第一頻率範 圍第—頻率範圍與第三頻率範圍内的光線係分別為紅 光、綠光或藍光。 、、申明專利圍第7項之顯示面板,其中該液晶層中之 液晶分子係以垂直配向型或扭轉向列型來進行排列。 # U·如申請專利範圍第7項之顯示面板,其中該液晶層之厚 度約為0.5至10微米。 示面板另 12.如申請專利範圍帛7項之顯示面板,其中該顯 包含有一冷卻裝置’設於該矽基板上。1 . A display panel comprising: a substrate having a pixel region disposed on a surface of the substrate; a driving circuit disposed on the pixel region of the substrate; a micro color filter disposed on the driving circuit The micro color filter is formed by stacking a plurality of optical films and comprising a low reflectivity optical thin stack or a high reflectivity optical thin stack, the low reflectivity optical thin film stack comprising an oxidized stone a thin film, the high reflectivity light film stack comprises a titanium oxide film or a hafnium oxide film; a liquid crystal layer is disposed on the micro color filter; an upper alignment layer is disposed on the liquid crystal layer: and a transparent conductive The layer is disposed on the upper alignment layer; wherein when light is incident on the display panel, only light in a specific frequency range can pass through the micro color filter and be reflected upward to image. Li ▲ 2. If the application of the material is the panel of the first item, the towel shaft display panel further includes a lower-aligning layer disposed between the micro-color light-emitting sheet and the liquid crystal layer. For example, if the display panel of the first item of the special secret enclosure is applied, the towel shaft display panel 16 315007 includes a lower alignment layer disposed between the micro color filter and the crucible base. The display panel of claim 1, wherein the driving circuit is configured to drive the display panel, the driving circuit further comprising a plurality of metal electrodes to reflect light passing through the micro color filter and the light sheet to form an image. . 5' The display panel of claim 1, wherein the liquid crystal molecules in the liquid crystal layer are arranged in a vertical alignment type or a twisted nematic type. 6. The display panel of claim 1, wherein the liquid crystal layer has a thickness of about 0.5 to 10 μm. 7. A cerium-based liquid crystal display panel, comprising: - a stone substrate, wherein the surface of the stone substrate is provided with a first pixel region, a second pixel region and a third pixel region; - a first driving circuit, a a second driving circuit and a third driving circuit are respectively disposed on the first pixel region, the second pixel region and the third pixel region on the substrate, and a first micro color filter and a second micro a color filter and a 17 1315007 third micro color filter are respectively disposed on the first driving circuit, the second driving circuit, and the third driving circuit, wherein the first micro color filter, the second The micro color filter and the third micro color filter are each formed by stacking a plurality of optical films, and each comprises a low reflectivity optical film stack or a high reflectivity optical film stack, the low reflectivity optical film. The stacking system comprises a ruthenium oxide film, the high reflectivity optical film stack comprising a titanium oxide film or a ruthenium oxide film; a lower alignment layer is disposed on the first micro color filter, the second micro a color filter and the third micro color filter; a liquid crystal layer is disposed on the lower alignment layer; an upper alignment layer is disposed on the liquid crystal layer; and a transparent conductive layer is disposed on the upper alignment layer; When the light is incident on the display panel, a first frequency range, a second frequency range, and a third frequency range are respectively reflected from the first pixel area, the second pixel area, and the third pixel area. The light. 8. The display panel of claim 7, wherein the first driving circuit, the second driving circuit, and the third driving circuit are used to drive the display panel, and the driving circuits further comprise a plurality of The metal electrode of the reflective function causes the light passing through the first micro color filter, the second micro color filter, and the third micro color filter to be inverted to form an image. For example, in the display panel of claim 7 of the patent range, the light systems in the first frequency range of the first frequency range and the third frequency range are respectively red light, green light or blue light. The display panel of the seventh aspect of the patent, wherein the liquid crystal molecules in the liquid crystal layer are arranged in a vertical alignment type or a twisted nematic type. # U. The display panel of claim 7, wherein the liquid crystal layer has a thickness of about 0.5 to 10 μm. The display panel is further as shown in claim 7, wherein the display panel comprises a cooling device disposed on the substrate. 1919
TW93121165A 2004-07-15 2004-07-15 Liquid crystal display panel TWI315007B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93121165A TWI315007B (en) 2004-07-15 2004-07-15 Liquid crystal display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93121165A TWI315007B (en) 2004-07-15 2004-07-15 Liquid crystal display panel

Publications (2)

Publication Number Publication Date
TW200602720A TW200602720A (en) 2006-01-16
TWI315007B true TWI315007B (en) 2009-09-21

Family

ID=45073023

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93121165A TWI315007B (en) 2004-07-15 2004-07-15 Liquid crystal display panel

Country Status (1)

Country Link
TW (1) TWI315007B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399585B (en) * 2010-08-10 2013-06-21 Au Optronics Corp Liquid crystal display panel and color filter substrate
TWI465805B (en) * 2012-04-24 2014-12-21 Au Optronics Corp Display device
US9459500B2 (en) * 2015-02-09 2016-10-04 Omnivision Technologies, Inc. Liquid crystal on silicon panels and associated methods

Also Published As

Publication number Publication date
TW200602720A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
US7215391B2 (en) Liquid crystal on silicon display with micro color filters positioned on the top surface of the transparent substrate
TWI359298B (en) Liquid crystal display device and method for fabri
JP3996546B2 (en) Optical interference color display
US20040141096A1 (en) Flat display device with touch panel
TW573164B (en) Reflective LCD, semi-transmitting reflective LCD and electronic device
TW200413787A (en) Optical interference type reflection panel and the manufacturing method thereof
TWI344570B (en) Method for providing a gap in a liquid crystal display panel, and a liquid crystal display panel
TWI267681B (en) Liquid crystal display
JP2002055350A (en) Structure of liquid crystal display and method for forming the same
WO2021056729A1 (en) Array substrate, display panel, and manufacturing method for array substrate
WO2013097443A1 (en) Display panel, display device, and drive method for display device
JP2000029012A (en) Liquid crystal display device
US20050019679A1 (en) [color filter substrate and fabricating method thereof]
TW526357B (en) Reflective liquid crystal display element and image display device using the same
TWI250333B (en) LCD apparatus and electronic machine
CN114924436A (en) Array substrate and liquid crystal display panel
US20040141118A1 (en) Liquid crystal display device
JP2005526272A (en) Silicon-based color LCD device
TWI315007B (en) Liquid crystal display panel
JP2005148745A (en) Array substrate and its manufacturing method, and liquid crystal display having same
TWI326785B (en)
US20060285056A1 (en) Wide viewing angle liquid crystal display and the method for achieving wide viewing angle effect
TW200533995A (en) Upper substrate and liquid crystal display apparatus having the same
TWI342423B (en) Transflective liquid crystal display device
US20050270443A1 (en) Liquid crystal display panel

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent