TWI313941B - Laser diode with extra optical confinement layers - Google Patents

Laser diode with extra optical confinement layers Download PDF

Info

Publication number
TWI313941B
TWI313941B TW95132326A TW95132326A TWI313941B TW I313941 B TWI313941 B TW I313941B TW 95132326 A TW95132326 A TW 95132326A TW 95132326 A TW95132326 A TW 95132326A TW I313941 B TWI313941 B TW I313941B
Authority
TW
Taiwan
Prior art keywords
layer
laser diode
confinement
unit
type
Prior art date
Application number
TW95132326A
Other languages
Chinese (zh)
Other versions
TW200814348A (en
Inventor
Tien Tsorng Shih
Tai Fu Tseng
Original Assignee
Univ Nat Kaohsiung Applied Sci
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Kaohsiung Applied Sci filed Critical Univ Nat Kaohsiung Applied Sci
Priority to TW95132326A priority Critical patent/TWI313941B/en
Publication of TW200814348A publication Critical patent/TW200814348A/en
Application granted granted Critical
Publication of TWI313941B publication Critical patent/TWI313941B/en

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

1313941 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種固態發光元件,特別是指一種用 於光通信的雷射二極體。 【先前技術】 用於光通信的傳輸光源可分為DFB雷射二極體( Distributed-feedback LD)與 FP 雷射二極體二種其中, DFB雷射二極體是利用光拇技術於光腔 波 振’為單-縱向模態的發光,主要應用在高 傳輸應用,但是其製程較為複雜、價格較為高昂;而即雷 射二極體為多縱模發光’因為有較大的輸出光譜線寬( 所以除了主要發光波長之外,還伴隨著強度較 弱的其他波長,也因此在傳輸中會具有較大的色散現象產 生,而適用於短距離與低速的傳輪應用,但因其製作成本 較低、價格相對較低廉,因此廣泛的被應用在區域網路傳 輸中。 參閱圖1’傳統的雷射二極體!屬脊狀波導的結構形式 ,包含-層基材11、-層形成在該層基材u上的光偈限結 構2,及兩片用以提供電能的電極a。 該基材11經過施體(doner)摻雜而可導電。 該光揭限結構2具有-層與該層基材u連接而使其他 層體易於磊晶成長的緩衝層21 (buffer iayer)、一層自該層 緩衝層21向上蟲晶形成的n型批覆層22 (η·—㈣以 )、-層形成在該層η型批覆層22上的下侷限層23、一層 5 1313941 形成找下偈限層23上的主動層單元24、—層形成在該主 動層早το 24上的上揭限層25、一層形成在該上褐限層乃 上且^括巾央區261與—將該中央區26ι環圍其中之外 圍區262的餘刻停止層26 ( etching·,layer ),及一層自 該中央區261向上形成的P型批覆層27 (p-cladding layer) 該同時配合參閲圖2、圖3,蝕刻停止層26主要在製 程中用以阻絕餘刻過程的繼續以成形出預定態樣的層體, 進而使该#射二極冑1呈脊狀波導的結構形式;上、下揭 限層25、23配合該n、P型批覆層22、27,並呈脊狀導的 結構形式而成折射率漸變分限異質結# (抑純* separate confinement hetero-structure ; GRINSCH),相對該 、動層單元24形成—具有大能隙且折射率小的波導區,作 為揭限載子(carrier)與光場(Gptieal field)之用;該主動1313941 IX. Description of the Invention: [Technical Field] The present invention relates to a solid-state light-emitting element, and more particularly to a laser diode for optical communication. [Prior Art] The transmission source for optical communication can be divided into two types: DFB laser diode (radio-feedback LD) and FP laser diode. The DFB laser diode uses light thumb technology for light. Cavity wave vibration is a single-longitudinal mode illumination, mainly used in high transmission applications, but its process is more complicated and expensive; that is, the laser diode is multi-longitudinal mode illumination because of the large output spectrum. Line width (so in addition to the main illuminating wavelength, it is accompanied by other wavelengths with weaker intensity, so it will have a larger dispersion phenomenon in transmission, and is suitable for short-distance and low-speed transmission applications, but because of The production cost is relatively low and the price is relatively low, so it is widely used in regional network transmission. Refer to Figure 1 'Traditional laser diode! Structure of ridge waveguide, including - layer substrate 11, - The layer forms an optical limiting structure 2 on the layer substrate u, and two electrodes a for supplying electric energy. The substrate 11 is doped by donor doping. The optical uncovering structure 2 has - the layer is connected to the layer substrate u such that A buffer layer 21 (buffer iayer) in which the layer is easy to epitaxially grow, an n-type cladding layer 22 (n·-(iv)) formed from the buffer layer 21 upwardly, and a layer formed on the layer n-type The lower confinement layer 23, the layer 5 1313941 on the layer 22 forms the active layer unit 24 on the lower confinement layer 23, the upper uncovering layer 25 formed on the active layer early το 24, and a layer formed on the upper layer The limiting layer is the upper portion of the central region 261 and the peripheral layer 26 of the peripheral region 262 surrounding the central region 26 ι, and a layer of P formed upward from the central region 261. The p-cladding layer 27 is simultaneously referred to FIG. 2 and FIG. 3, and the etch stop layer 26 is mainly used in the process to block the continuation of the residual process to form a layer of a predetermined state, thereby making the # The emitter diode 1 is in the form of a ridge waveguide; the upper and lower barrier layers 25, 23 are combined with the n, P type cladding layers 22, 27, and have a ridge-like structure to form a refractive index gradient bound heterojunction. # (反纯* separate confinement hetero-structure; GRINSCH), formed relative to the dynamic layer unit 24 - with great power And a small refractive index waveguide, exposing limit as carrier (Carrier) light field (Gptieal field) with only; the active

層軍元24具有多重量子井241( Multi-QuantumWell ; MQW )而可產生光子。 該二片電極12分別與該基材u及該p型批覆層27相 連接並形成歐姆接觸,而可用以對該層线層單元24提供 電月b,而供注入該層主動層單元24的載子來源。 上述的雷射二極體1因為主要是利用η、p型批覆層22 27配合上、下光偈限層25、23形成折射率漸變分限異質 結構’相對於线層單元24形成能隙較大折射率較小的結 構’用以同時侷限載子與㈣;由於此等技術乃是為了提 供更佳的光侷限效益所形成的雷射結構,但也相對地必須 1313941 • 少許犧牲載子注入主動層單元24的效益’因此需要較大的 ·· 臨界電流值提供較多的載子密度才能導致居量反轉( population inversion )形成雷射,特別是载子注入主動層單 元24時較易隨溫度上升發生溢流(〇verfi〇w )現象而會降 低載子於主動層單元24的復合效率。 除此之外,由於雷射二極體i的光侷限結構,是採用 折射率漸變分限異質結構來形成光場的侷限,因此並無法 • 有效縮小雷射光場分佈的面積,這也使得傳統的雷射二極 - 體1並無法到達10Gb/s的操作速率。 而為了配合現今光纖網路頻寬的需求,須將區域的低 速光纖網路與長距離的光纖高速傳輸網路做一連接—利用The layer element 24 has a multi-quantum well 241 (Multi-QuantumWell; MQW) to generate photons. The two electrodes 12 are respectively connected to the substrate u and the p-type cladding layer 27 and form an ohmic contact, and can be used to supply the layer layer unit 24 with an electric moon b for injecting the layer active layer unit 24. Carrier source. The above-described laser diode 1 is mainly formed by using the η, p-type cladding layer 22 27 to form the refractive index gradation-limiting heterostructure with the upper and lower photo-limiting layers 25 and 23, and the energy gap is larger with respect to the layer unit 24. The structure with a smaller refractive index is used to simultaneously limit the carrier and (4); since these techniques are laser structures formed to provide better optical confinement benefits, but also relatively 1313941 • a little sacrificial carrier injection active The benefit of layer unit 24 'is therefore required to be larger. · The critical current value provides more carrier density to cause population inversion to form a laser, especially when the carrier is injected into the active layer unit 24 The temperature rise occurs by the overflow (〇verfi〇w) phenomenon, which reduces the recombination efficiency of the carrier at the active layer unit 24. In addition, due to the optical confinement structure of the laser diode i, it is a limitation of forming a light field by using a refractive index gradient-limited heterostructure, and thus cannot effectively reduce the area of the laser light field distribution, which also makes the conventional The laser diode - body 1 does not reach the operating rate of 10 Gb / s. In order to meet the needs of today's fiber-optic network bandwidth, it is necessary to connect the low-speed fiber network in the region with the long-distance fiber-optic high-speed transmission network.

電子式色散補償(Electronic Dispersion Compensation ; EDC )技術作為訊號色散補償,是最受矚目的技術之一,但在 此技術的實施下,必須需要能直接做高速調變的雷射光源 -因此,假若能將傳統較低廉的雷射二極體丨的操作速率 # 進一步的提升到10Gb/s ’則將非常適用於這樣的傳輸應用 之中’而有助於技術的發展。 【發明内容】 本發明之目的,即在提供一操作速率能達10Gb/see以 上且適用光通信之電子式色散補償技術的雷射二極體。 人於疋,本發明具有特殊光侷限結構的雷射二極體,包 含一層基材、一層特殊光侷限結構,及兩片電極。 X特殊光侷限結構形成在該基材上,並具有一層與該 基材連接的第-型批覆層、一層形成在該第—型批覆層: 7 1313941 2下崎元、一層形成在該下傷限單元上且具有多重量 井而可產生光子的主動層單元、-層形成在該主動層單 凡上的上偈限單元,及一層形成在該上褐限單元上的第二 :批覆層,該下侷限單元包括—層由具有高折射率係數的 材料構成且與該第-型批覆層連接的下光揭限層,該上偈 限早几包括一層具有一中央區與一環圍該中央區的触刻停 止層,及-層由具有高折射率係數的材料構成且形成在該 中央區上的上光揭限層,該第二型批覆層對應連接在上光 侷限層上使該雷射二極體呈脊狀波導的結構,且該上、下 光侷限層侷限水平方向光場,並補償垂直方向的光場偏移 0 該二片電極分別與該第一、二型批覆層形成歐姆接觸 ’用以對該主動層提供電能。 本發明的功效在於採用载子抑制層降低载子的溢流現 象1並利用由高折射係數材料構成之上、下光偈限層減少 光场的刀佈面積,藉此提高元件的高頻特性響應,進而提 昇元件操作速率至10Gb/sec以上。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 在本發明被詳細描述之前,要注意的是,在以下的說 明内容中,類似的元件是以相同的編號來表示。 參閱圖4,本發明一種具有特殊光侷限結構的雷射二極 1313941 體3 —較佳實施例,屬脊狀波導的結構形式,包含一層基材 31、一層形成在該層基材31上的特殊光侷限結構及兩片 電極32。 該層基材31經過施體摻雜而可導電,在本例中是以磷 化姻(InP)為材料構成的基板(substrate)。 該特殊光侷限結構4以金屬有機氣相化學沉積技術( MOCVD)自該層基材31向上蟲晶形成,具有一層與該層基 材31連接而使後續層體易於磊晶成長的緩衝層μ、一層自 該層緩衝層41向上磊晶形成的第一型批覆層42、一層形成 在該層第-型批覆層42上的下缝單元43、—層形成在該 下侷限單元43上的主動層單元44、一層形成在該主動層單 疋44上的上侷限單元45,及一層形成在該上侷限單元“上 的第二型批覆層46,其中,該第一、二型批覆層42、46分 別是以經過摻雜的磷化銦(ΙηΡ)構成@ η、ρ型批覆層( n/p、cladding layer) 〇 忒層主動層單元44以砷化鋁鎵銦(A1GaInAs)構成, 具有由數麵縮型應力量子井441與伸張型應力障壁442組 成的多重量子井而可產生光子,該產生的光場再經由該上、 下侷限單元45、43產生最佳的侷限效果。 邊下侷限單元43包括一層與該第一型批覆層42上界面 連接的的下光侷限層431,及一層形成在該下光侷限層431 上並與該主動層單元44下界面連接的載子抑制層432。 及上侷限單元45包括一層與該主動層單元44上界面連 接的载子抑制I 451、一層形成在該載子抑制層451上且具 1313941 有-中央區彻與-將該中央區彻環圍其中之外圍區 4522的餘刻停止層452,及—層自該中央區4521向上形成 的上光侷限層453。 該上、下光偈限層453、431分別是以具有高折射係數 的碟化銦鎵石申(InGaAsP)構成,厚度介於〇 〇5〜〇 5叫,且 能隙介於❻抓⑽,而可侷限水平方向的光場,並可因 該制停止層452在製程中阻絕#刻過程的繼續,而使上光 偈限層453與第二型批覆層46成形出預定態樣,進而使該 雷射二極體^脊狀波導的結構形式,而以上、下光褐限層 453、431補償垂直方向光場的偏移。 ,二層載子抑制層432、451分別以銘化錮WAs =成’厚度介於㈣Μ).15μιη,用以防止载子溢流,降低 雷射t 在高溫操作時的臨限電流值,並提昇電子-電 洞的後合率以增加雷射二極體3的共振頻率。 上方Π電極32分難該基材31及該特殊絲限結構4 二第二,覆層46相連接並形成歐姆接觸,用以對該主 s早70 44提供電能,以注入載子。 由雷射共振頻率與關係式可知 fr 」/ VsT dy^ 2π V ~eN~ZdwW~ZTL~ (1 ~ Ith) 其中,是光傳播速率 的侷限因子 r是整體雷射二極體 dg/屯是微分增益值 Nw是量子井441數目 10 1313941 厚度 dw是單一量子井441 wact是主動層單元44厚度(在此為脊狀波導結構 的寬度) L是光腔的長度 4上光褐限層453㈣具有高折射率值,因此可提升對應於 中央區彻與外圍區他結構的折射率差值而形成較大的 水平光場的倡限’同時,下光侷限層431可針對垂直光場的 位移作補•,避免上光侷限層453的高折射率值導致垂直方 ,的光場向上偏移’而可有效提升對雷射光場的偈限性( 5 ’減小光場分佈面積’進一步提升雷射的共振頻率值達 10Gb/s的操作速率。 〆閱圖4 @5’與傳統的雷射二極體1不同的是,本 發明具有特殊光侷限結構4的雷射二極體3並不採用「僅 二型批覆層22、27配合上、下侷限層… 射率漸變分限異質社槿 , 、貝-構」對先產生侷限;而是省略此上、Electronic Dispersion Compensation (EDC) technology is one of the most eye-catching technologies for signal dispersion compensation. However, in the implementation of this technology, it is necessary to directly perform high-speed modulation of the laser source - therefore, if The ability to further increase the operating rate of conventional low-cost laser diodes to 10Gb/s 'is well suited for such transmission applications' and contribute to the development of technology. SUMMARY OF THE INVENTION It is an object of the present invention to provide a laser diode of an electronic dispersion compensation technique that can operate at an optical rate of 10 Gb/see or more. In the invention, the laser diode of the invention has a special optical confinement structure, comprising a substrate, a special optical confinement structure, and two electrodes. The X special light confinement structure is formed on the substrate, and has a first type of coating layer connected to the substrate, and a layer formed on the first type of cladding layer: 7 1313941 2, the lower layer is formed at the lower limit An active layer unit on the unit having a plurality of weights to generate photons, an upper limiting unit formed on the active layer, and a second: batch coating formed on the upper brown limiting unit, The lower confinement unit includes a lower light uncovering layer composed of a material having a high refractive index coefficient and connected to the first type of clad layer, the upper cap including a layer having a central region and a surrounding central region. a etch stop layer, and the layer is composed of a material having a high refractive index coefficient and is formed on the central region, and the second type of cladding layer is correspondingly connected to the glazing confinement layer to make the laser The polar body has a structure of a ridge waveguide, and the upper and lower optical confinement layers limit the horizontal direction light field, and compensate the vertical field light field offset. The two electrodes respectively form an ohmic contact with the first and second type cladding layers. 'Use to provide power to the active layerThe effect of the invention is to reduce the overflow phenomenon of the carrier by using the carrier suppression layer 1 and to reduce the light-area of the optical field by using the high refractive index material to form the upper and lower optical limiting layers, thereby improving the high frequency characteristics of the component. In response, the component operating rate is increased to more than 10 Gb/sec. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. Before the present invention is described in detail, it is noted that in the following description, similar elements are denoted by the same reference numerals. Referring to FIG. 4, a laser diode 1313941 body 3 having a special optical confinement structure, which is a structural form of a ridge waveguide, comprises a substrate 31 and a layer formed on the substrate 31. Special light confinement structure and two electrodes 32. The layer substrate 31 is electrically conductive by doping with a donor, and in this example, is a substrate made of phosphoric acid (InP). The special optical confinement structure 4 is formed by the metal organic vapor phase chemical deposition (MOCVD) from the substrate 31 to the upper surface of the substrate 31, and has a buffer layer connected to the layer substrate 31 to facilitate subsequent epitaxial growth of the layer. a first type of cladding layer 42 formed by epitaxially epitaxially forming from the buffer layer 41, a layer of lower slitting unit 43 formed on the layer of the first type of cladding layer 42, and an active layer formed on the lower confinement unit 43 a layer unit 44, an upper confinement unit 45 formed on the active layer unit 44, and a second type of cladding layer 46 formed on the upper confinement unit, wherein the first and second type cladding layers 42 46 is composed of doped indium phosphide (ΙηΡ), @η,ρ-type cladding layer (n/p, cladding layer), and the active layer unit 44 is composed of aluminum gallium indium arsenide (A1GaInAs). The multiple quantum wells composed of the surface-reduced stress quantum wells 441 and the extension-type stress barriers 442 can generate photons, and the generated light field again produces optimal limiting effects via the upper and lower confinement units 45, 43. Unit 43 includes a layer and the first type of cladding layer 42 a lower-level confinement layer 431 connected to the surface, and a carrier suppression layer 432 formed on the lower optical confinement layer 431 and connected to the lower interface of the active layer unit 44. The upper confinement unit 45 includes a layer and the active layer unit a carrier suppression I 451 connected to the upper interface of 44, a layer formed on the carrier suppression layer 451 and having a 1313941 - central region and a residual stop layer 452 of the peripheral region 4522 surrounded by the central region, And a glazing confinement layer 453 formed upward from the central region 4521. The upper and lower optical confinement layers 453 and 431 are respectively formed of InGaAsP having a high refractive index, and the thickness is between 〇〇5~〇5, and the energy gap is between the grabs (10), but the light field in the horizontal direction can be limited, and the stop layer 452 can be blocked in the process. The layer 453 and the second type of cladding layer 46 form a predetermined pattern, thereby making the structure of the laser diode ridge waveguide, and the upper and lower brown limiting layers 453, 431 compensate for the deviation of the vertical direction light field. The two-layer carrier suppression layers 432 and 451 are respectively inscribed 锢WAs = into thickness Between (4) Μ).15μιη, to prevent carrier overflow, reduce the threshold current of laser t during high temperature operation, and increase the electron-hole back-end rate to increase the resonant frequency of laser diode 3. The upper germanium electrode 32 is difficult to separate the substrate 31 and the special filament limiting structure 4 and second, and the cladding layer 46 is connected and forms an ohmic contact for supplying electrical energy to the main s early 70 44 to inject the carrier. The laser resonance frequency and relationship can be seen as fr ́ / VsT dy^ 2π V ~eN~ZdwW~ZTL~ (1 ~ Ith) where is the limiting factor of the light propagation rate r is the overall laser diode dg / 屯 is differential The gain value Nw is the number of quantum wells 441 10 1313941 The thickness dw is a single quantum well 441 wact is the thickness of the active layer unit 44 (here the width of the ridge waveguide structure) L is the length of the optical cavity 4 on the light brown limit layer 453 (four) has a high The refractive index value can therefore increase the refractive index difference corresponding to the central region and the structure of the peripheral region to form a larger horizontal light field. Meanwhile, the lower optical confinement layer 431 can compensate for the displacement of the vertical light field. • Avoiding the high refractive index value of the glazing confinement layer 453 causing the vertical side, the light Upward offset 'and can effectively enhance the mechanics of the laser beam limiting field (5' to reduce the optical field distribution area 'to further enhance the value of the resonance frequency of laser 10Gb / s rate operation. Referring to FIG. 4 @5', unlike the conventional laser diode 1, the laser diode 3 having the special optical confinement structure 4 of the present invention does not use "only the type 2 cladding layer 22, 27 is matched, The lower limit layer... The rate of gradual change is limited to the heterogeneous community, and the shell-and-construction first imposes limitations;

下侷限層23、25的妹槿,w秘^, +L 臨界電流,並改採; ,、有同折射率之磷化銦鎵砷材料組 上、下侷限單元45、43的卜'' 下先聽層453、431,用以 有效減少雷射光場的分佈面 單元44上、下μ 檟且同時以位於该層主動層 账^ 下兩界面之能障較高的載子抑制層432、451 降低咼溫操作時的臨m 以增加微分升電子—電洞的復合率 臨界電流劣於解決熱效應與載子堆積導致 光侷限層453、^兩旁且亦此同時’本發明所採用的上、下 兩旁亦成折射率漸變分限異質結構而可 11 1313941 更加提幵70件高頻特性的響應,進而將操作速率提升至 10Gb/sec 以上。 练上述,本發明為具有特殊光侷限結構4的雷射二極 體3主要是以具有高折射率的磷化銦鎵砷材料建構上、下 光侷限層453、431,以提升水平方向的光場侷限,並對垂 直光%的位移做補償,並同時採用坤化鋁鎵銦材料建構主 動層單元44,並配合於其上、下界面以能隙較大之鋁化錮 φ 砷材料建構的載子抑制層432、451,藉著砷化鋁鎵銦材料 • 具有較大的導電帶井深比(Conduction band offset rati〇 )及 能隙較大之砰化鋁鎵銦材料的配合,而可有效抑制注入到 主動層單兀44的電子產生溢流現象,避免電子—電洞的累 積而進一步導致的熱效應和臨界電流劣化問題,降低元件 操作時的臨限電流值並提升電子和電洞的復合率,以獲得 更高的共振頻率(relaxation oscillation frequency),進而提 昇元件的操作速率達l〇Gb/sec,而適用於改進舊型多模光 馨纖網路以銜接新型高速光纖網路之電子式色散補償技術中 ,確實達到本發明的創作目的。 惟以上所述者’僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一剖視示意圖’說明一習知的雷射二極體; 圖2是一能帶圖’說明圖1之雷射二極體的能帶狀況 12 1313941 圖3是一折射率分布圖,說明圖1之雷射二極體的頻 帶; 圖4是一剖視示意圖,說明本發明之具有特殊光侷限 結構的雷射二極體的一較佳實施例; 圖5是一能帶圖,說明圖4之本發明雷射二極體的能 帶狀況; 圖6是一折射率分布圖,說明圖4之本發明雷射二極 體的頻帶。 13 1313941The lower limit layer 23, 25 sisters, w secret ^, + L critical current, and change mining;, with the same refractive index of indium gallium arsenide material group upper and lower confinement units 45, 43 under the '' The first listening layer 453, 431 is used to effectively reduce the upper and lower 槚 of the distribution surface unit 44 of the laser light field, and at the same time, the carrier suppression layer 432, 451 having a higher energy barrier at the lower interface of the active layer of the layer. Reducing the temperature of the enthalpy operation to increase the differential kinetics - the recombination rate of the hole is lower than the thermal effect and the accumulation of the carrier causes the optical confinement layer 453, ^ both sides and at the same time 'the upper and lower sides of the invention Both sides also have a refractive index gradient-limited heterogeneous structure, and 11 1313941 further improves the response of 70 high-frequency characteristics, thereby increasing the operating rate to 10 Gb/sec or more. In view of the above, the present invention is a laser diode 3 having a special optical confinement structure 4 mainly for constructing upper and lower optical confinement layers 453 and 431 with an indium gallium arsenide material having a high refractive index to enhance horizontal light. The field is limited, and the displacement of the vertical light is compensated. At the same time, the active layer unit 44 is constructed by using the Kunhua aluminum gallium indium material, and is constructed with the aluminized yttrium arsenic material with a large energy gap at the upper and lower interfaces. The carrier suppression layers 432 and 451 are effective by the combination of a large aluminum gallium indium arsenide material and a large conduction band offset rati〇 material and a large energy gap aluminum gallium indium material. The electrons injected into the active layer unit 兀44 are suppressed from overflowing, the thermal effect and the critical current degradation problem caused by the accumulation of electron-holes are avoided, the threshold current value during component operation is reduced, and the composite of electrons and holes is improved. Rate, to obtain a higher resonance oscillation frequency, thereby increasing the operating speed of the component up to l〇Gb/sec, and is suitable for improving the old multimode optical fiber network to connect to the new high speed Electronic dispersion compensation of the fiber network, meet the object of the present invention creation. However, the above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention, All remain within the scope of the invention patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a conventional laser diode; FIG. 2 is an energy band diagram illustrating the energy band condition of the laser diode of FIG. 1 13 1313941 FIG. Is a refractive index profile illustrating the frequency band of the laser diode of FIG. 1; FIG. 4 is a cross-sectional view showing a preferred embodiment of the laser diode of the present invention having a special optical confinement structure; 5 is a band diagram illustrating the energy band condition of the laser diode of the present invention of FIG. 4; and FIG. 6 is a refractive index profile illustrating the frequency band of the laser diode of the present invention of FIG. 13 1313941

【主要元件符號說明】 1 雷射二極體 4 特殊光侷限結構 11 基材 41 緩衝層 12 電極 42 第一型批覆層 2 光侷限結構 43 下侷限單元 21 緩衝層 431 下光偈限層 22 η型批覆層 432 載子抑制層 23 下偈限層 44 主動層單元 24 主動層單元 441 量子井 241 多重量子井 442 障壁 25 上偈限層 45 上偈限單元 26 姓刻停止層 451 載子抑制層 261 中央區 452 钱刻停止層 262 外圍區 4521 中央區 27 Ρ型批覆層 4522 外圍區 3 雷射二極體 453 上光偈限層 31 基材 46 第二型批覆層 32 電極 14[Main component symbol description] 1 Laser diode 4 Special optical confinement structure 11 Substrate 41 Buffer layer 12 Electrode 42 First type cladding layer 2 Optical confinement structure 43 Lower confinement unit 21 Buffer layer 431 Lower aperture layer 22 η Type batch coating 432 carrier suppression layer 23 lower layer 44 active layer unit 24 active layer unit 441 quantum well 241 multiple quantum well 442 barrier 25 upper limiting layer 45 upper limiting unit 26 last stop layer 451 carrier suppression layer 261 Central Area 452 Money Stop Layer 262 Peripheral Area 4521 Central Area 27 批 Type Overlay 4522 Peripheral Area 3 Laser Diode 453 Glazing Layer 31 Substrate 46 Second Type Coating 32 Electrode 14

Claims (1)

1313941 申請專利範圍: •種具有特殊光侷限結構的雷射二極體,包含 —層基材; 1 盘,其:遠接 結構,形成在該基材上並具有-層 覆;=的第一型批覆層、-層形成在該第-型批 右夕舌& — g形成在該下侷限單元上且具 有多重量子井而可產生1313941 Patent application scope: • A laser diode with a special optical confinement structure, comprising a layer substrate; a disk: a remote structure formed on the substrate and having a layer covering; a type of blanket layer, a layer formed on the first type of right linger tongue & - g formed on the lower confinement unit and having multiple quantum wells to produce 2. 該子的主動層單元、一層形成在 單早①上的上侷限單元,及—層形成在該上侷限 =第二型批覆層,該下侷限單4括—層由具有 :射率係數的材料構成且與㈣—型批覆層連接的下 :侷限層’該上侷限單元包括一層具有一中央區與一環 h t AH #㈣停止層’及__層由具有高折射率係數 的材料構成且形成在該中央區上的上光侷限層,該第二 型批覆層對應連接在上光侷限層上使該雷射:極體呈脊 狀波導的結構’且該上、下光侷限層侷限水平方向光場 ,並補償垂直方向的光場偏移; 及二片電極’分別與該第―、二型批覆層形成歐姆 接觸用以對該主動層提供電能。 依據申請專利範圍第1項所述之具有特殊光侷限結構的 雷射二極體,其中,該上、侷限單元分別還具有一層與 15 3. 1 玄主動層單元上、下界面相連接且能隙大於該層主動層 單元fb隙而可以抑制載子溢流的載子抑制層。 依據申請專利範圍第2項所述之具有特殊光侷限結構的 雷射二極體’其中,該基材是以磷化錮構成,該上、下 1313941 光侷限層是以碟化细 化銦鎵砷材料構成,能隙介於 〇-9eV~1<3eV’而該二層载子抑制層是以銘化”材料構 成。 舟 依據申請專利範圍第 雷射二極體,其中 0·05〜0.5 /z m,且該 0.001 〜0.15# m。 4. 項所述之具有特殊光侷限結構的 °亥層上、光侷限層的厚度介於 層載子抑制層的厚度分別介於 迷之具有特殊光侷限έ士槿 雷射二極體,其中,該層主動 :限、,·。構的 數個壓縮型應力量子井與伸張 于开匕括 應力I且發光波長為 162. The active layer unit of the sub-layer, the upper limit unit formed on the single early 1 , and the layer formed on the upper limit = the second type of overlay layer, the lower limit of the single-layer layer has: the rate coefficient The material is constructed and connected to the (4)-type cladding layer: the confined layer 'the upper confinement unit includes a layer having a central region and a ring ht AH #(four) stop layer' and the __ layer is composed of a material having a high refractive index coefficient and Forming a glazing confinement layer on the central region, the second type of cladding layer correspondingly connected to the glazing confinement layer to make the laser: the polar body is a ridge waveguide structure and the upper and lower optical confining layers are limited to a level The light field is directional and compensates for the light field shift in the vertical direction; and the two electrodes 'form ohmic contact with the first and second type cladding layers respectively to supply electric energy to the active layer. A laser diode having a special optical confinement structure according to claim 1, wherein the upper and the confinement units respectively have a layer connected to the upper and lower interfaces of the 15 3. 1 Xuan active layer unit and capable of The carrier suppression layer having a larger gap than the active layer unit fb of the layer can suppress the overflow of the carrier. A laser diode having a special optical confinement structure according to claim 2, wherein the substrate is made of yttrium phosphide, and the upper and lower 1313941 optical confinement layers are dished and refined indium gallium. The arsenic material is composed of an energy gap of 〇-9eV~1<3eV' and the two-layer carrier suppression layer is composed of a materialized material. The boat is in accordance with the patent application range of the first laser diode, wherein 0.05~0.5 /zm, and the value of 0.001 ~ 0.15 # m. 4. The thickness of the layer of the layer of light having a special optical confinement structure, the thickness of the layer of the layer is different between the thickness of the layer-supporting layer, respectively. Limiting the gentleman's laser diode, in which the layer is active, limited, and several compression-type stress quantum wells are stretched to open the stress I and have an emission wavelength of 16
TW95132326A 2006-09-01 2006-09-01 Laser diode with extra optical confinement layers TWI313941B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95132326A TWI313941B (en) 2006-09-01 2006-09-01 Laser diode with extra optical confinement layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95132326A TWI313941B (en) 2006-09-01 2006-09-01 Laser diode with extra optical confinement layers

Publications (2)

Publication Number Publication Date
TW200814348A TW200814348A (en) 2008-03-16
TWI313941B true TWI313941B (en) 2009-08-21

Family

ID=44768525

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95132326A TWI313941B (en) 2006-09-01 2006-09-01 Laser diode with extra optical confinement layers

Country Status (1)

Country Link
TW (1) TWI313941B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987588A (en) * 2020-09-17 2020-11-24 创兆光有限公司 Semiconductor laser with optical field concentration structure

Also Published As

Publication number Publication date
TW200814348A (en) 2008-03-16

Similar Documents

Publication Publication Date Title
US7476558B2 (en) Method for manufacturing selective area grown stacked-layer electro-absorption modulated laser structure
KR101595873B1 (en) Direct modulated laser
JP2004146833A (en) Electrically pumped vertical cavity surface-emitting laser(vcsel) having a plurality of active regions
CN105720479B (en) A kind of high speed semiconductor laser with beam-spreading structure
WO2012155911A1 (en) Reflectivity-modulated grating mirror
JP2016171173A (en) Semiconductor optical element
CN110970797B (en) High-speed high-bandwidth vertical cavity surface emitting laser
CN103430406B (en) There is the multistage QCL of P type isolated area
JP6209129B2 (en) Semiconductor optical device
CN111987588A (en) Semiconductor laser with optical field concentration structure
JP2008166371A (en) Optical semiconductor element and its manufacturing method
JP2006261340A (en) Semiconductor device and its manufacturing method
US9819153B2 (en) Optical semiconductor device and manufacturing method thereof
JPH09331110A (en) Optical semiconductor device and manufacture thereof
TWI313941B (en) Laser diode with extra optical confinement layers
JP4599700B2 (en) Distributed feedback laser diode
US20030137023A1 (en) Optoelectronic device, and method for producing an optoelectronic device
JP3987138B2 (en) Semiconductor laser element
JP2011040632A (en) Semiconductor optical element
CN108988124B (en) Monolithic integration tunnel junction laser for microwave oscillation source
CN114465090B (en) Multi-junction distributed feedback laser and preparation method thereof
CN114498295B (en) DFB laser with gain coupling grating and preparation method thereof
TWI811802B (en) Ridge/Buried Hybrid DFB Semiconductor Laser Epitaxial Manufacturing Method and DFB Semiconductor Laser Structure Made Using It
WO2022196394A1 (en) Photonic crystal surface-emitting laser and method for manufacturing same
KR101251042B1 (en) single-mode high-speed vertical-cavity surface-emitting laser

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees