TWI313905B - Radio frequency test key structure - Google Patents

Radio frequency test key structure Download PDF

Info

Publication number
TWI313905B
TWI313905B TW95137087A TW95137087A TWI313905B TW I313905 B TWI313905 B TW I313905B TW 95137087 A TW95137087 A TW 95137087A TW 95137087 A TW95137087 A TW 95137087A TW I313905 B TWI313905 B TW I313905B
Authority
TW
Taiwan
Prior art keywords
area
signal
metal layer
ground
region
Prior art date
Application number
TW95137087A
Other languages
Chinese (zh)
Other versions
TW200818362A (en
Inventor
Yue Shiun Lee
Cheng Hsiung Chen
Tsz Hui Kuo
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW95137087A priority Critical patent/TWI313905B/en
Publication of TW200818362A publication Critical patent/TW200818362A/en
Application granted granted Critical
Publication of TWI313905B publication Critical patent/TWI313905B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

1313905 九、發明說明: 【發明所屬之技術領域】 本發明有關一種射頻測s式鍵結構,特別是_ ___種可設置 於切割道中的射頻測試鍵結構。 【先前技術】 在通信系統高度發展的現代化資訊社會之中,無線電 通訊已被廣泛運用於人與人之間的日常生活溝通上,人們 能藉由方便的無線電裝置隨時隨地進㈣訊交換、㈣分 享與意見溝通。1313905 IX. Description of the Invention: [Technical Field] The present invention relates to a radio frequency measurement s-type key structure, in particular, an RF test key structure that can be disposed in a scribe line. [Prior Art] In the modern information society with a highly developed communication system, radio communication has been widely used in daily life communication between people. People can use any convenient radio device to exchange information at any time and place. (4) Sharing and communication.

U無線電被廣泛地運m各制無線電產品不 斷地推陳出新。在無線電設備的製程中,為維持產品品質 的穩定,因此必須針對所生產之射頻元件㈣^叫腦^ device)持續進行線上測試.。1仫 你於晶圓之切割道或於一監 控片(monitor wafer)表面製作族金 卞後數個測試鍵(test key)結 構,亦即在進行晶粒上射頻开 貝7^件之各項半導體製程的同 時,便採用相同的步驟於晶_七丄 曰曰圓之切割道或於監控片表面製 作一測試用兀件,來模擬晶板 上之相同製程。然後再利用 探針(probe)等測試裝置接觸測 啊州忒鍵,量測測試元件的各項 參數,以測試結果作為檢视淘 ^ θ _ 衣缸疋否正常之指標並監控各 製程步m缺陷’⑼有致控制產品品質。 1313905 • 請參考第i圖,第ί圖為一傳統射頻測試鍵之示意圖。 . 如第1圖所示’射頻測試鍵10包含有一基底12、一底部 金屬層與一頂部金屬層。基底12上包含有—待測元件 (device under test,DUT) 18 ’例如一金屬氧化半導體 (metal-oxide semiconductor ’ MOS)電晶體。待測元件 18 具 有四個連接端,依圖中前、右、後、左之順序分別為間極 連接端182、源極連接端184、汲極連接端186與基底連接 肇端188,並分別電連接至待測元件18之閘才亟、源極、汲極 與基底。底部金屬層由一前區塊142、—右區塊144、一後 區塊146與一左區塊148所構成。前區塊142、右區塊144、 後區塊146與左區塊148環繞於待測元件18四周,並分別 接攘於對應之閘極連接端182、源極連接端184、没極連接 端186與基底連接端188。其中,前區塊M2與後區塊146 上分別定義有一前訊號墊14a與一後訊號墊14b,用來與 ♦探針電連接。 頂部金屬層位於底部金屬層上方,且頂部金屬層與底 部金屬層之間另設有一介電層(圖未示)。頂部金屬層包含 有右金屬片164與左金屬片168’分別利用導電插塞(via Plug)穿過介電層(圖未示)以分別電連接至底部金屬層之右 區塊144與左區塊148。右金屬片164與左金屬片168各 為一狹長之金屬片,平行於一第一方向1。在右金屬片164 « 之前後二端各定義有一接地墊164a與一接地塾164b,在 8 1313905 左金屬片168之前後二端各定義有一接地墊1683與—接地 , 塾168b ’使得接地墊168a、前訊號墊i4a與接地塾I64a 垂直於第一方向1而排列成一前排連接區域,並使得接地 墊168b、後訊號墊14b與接地墊164b垂直於第一方向j 而排列成一後排連接區域。如此一來,探針卡之探針就可 分別接觸於射頻測試鍵10之前排連接區域與後排連接區 域,進行待測元件18之測試。 然而’由於傳統射頻測試鍵10的結構設計所佔之寬幅 過大,無法設置於切割道中,而增加製程與測試之困難, 因此習知技術衍生出一種位於切割道之射頻測試鍵。請參 考第2圖’第2圖為一習知射頻測試鍵之示意圖。如第2 圖所示’射頻測試鍵20包含有一基灰22、至少四條金屬 連線242、244、246、248與六個矩形金屬塾261、262、 φ 263、264、265、266。基底22上包含有一待測元件28, 待測元件28之四邊分別具有一閘極連接端282、一源極連 接端284、一汲極連接端286與一基底連接端288,並分別 電連接至待測元件28之閘極、源極、汲極與基底。其中, 金屬連線242、244、24_6、248與矩形金屬墊261、262、 263、264、265、266是利用多重金屬内連線製程製備,且 六個矩形金屬墊261、262、263、264、265、266係呈單行 排列而平行設置於一切割道區域30内,由左至右依序為接 地墊261、訊號塾262、接地藝263、接地墊264、訊號势 1313905 265與接地墊266,用來與探針電連接。金屬連線242用來 • 電連接訊號墊262與閘極連接端282、金屬連線244用來 電連接接地墊266與源極連接端284、金屬連線246用來 電連接訊號墊265與汲極連接端286,而金屬連線248則 是用來電連接接地墊261與基底連接端288。 習知射頻測試鍵20係利用細長之金屬連線進行電性連 響接,由於導體之電阻係與戴面積成反比,因此細長之金屬 連線會明顯地增加射頻測試鍵20的内部電阻,使得射頻測 試鍵20的測試結果與實際射頻元件的測試結果差異過 大。如此一來,即使習知射頻測試鍵20可設置於切割道區 域30中,但卻無法正確地模擬出射頻元件的電子特性,失 去射頻測試鍵20的準確性。 p 【發明内容】 據此,本發明之主要目的在於提供一種射頻測試鍵結 構,以解決習知技術無法克服之難題,進而提升射頻測試 鍵結構的準確性。 根據本發明之申請專利範圍,本發明係提供一種位於 切割道區域之射頻測試鍵結構,包含有一基底、一待測元 ' 件與至少二金屬層。基底上定義有至少一切割道區域。待 • 測元件位於基底上之切割道區域内,包含有至少二訊號連 10 1313905 接端與至少二接地連接端。金屬層位於切割道區域内,包 ' 含有一底部金屬層位於基底上方,與一頂部金屬層位於底 - .· · 部金屬層上方。頂部金屬層係為成片的金屬墊,其上定義有 至少二訊號墊區域與至少二接地墊區域,訊號墊區域電連 接至待測元件之訊號連接端,接地墊區域電連接至待測元 件之接地連接端。訊號墊區域與接地墊區域係呈單行排列 而平行於切割道區域,且頂部金屬層包含有一絕緣開口位 籲於前述二訊號墊區域與前述二接地墊區域之間以及前述二 • · . ' . 訊號墊區域彼此之間,使前述二訊號墊區域與前述二接地 墊區域分隔,並使前述二訊號墊區域彼此分隔。 由於本發明射頻測試鍵結構之訊號墊區域與接地墊區 域係呈單行排列,因此可設置於切割道區域中。此外,射 頻測試鍵結構之底部金屬層與頂部金屬層都具有大面積之 •接地金屬區域,因此可形成一電磁屏蔽,保護射頻測試鍵 結構不受外部電磁干擾,進而提升射頻測試鍵結構的準確 性。 為了使貴審查委員能更近一步了解本杳明之特徵及 技術内容,請參閱以下有關本發明之詳細說明與附圖。然 而所附圖式僅供參考與輔助說明用,並非用來對本發明加 以限制者。 1313905 【實施方式】 «丨 請參考第3圖與第4圖’第3圖為本發明第一較佳實 施例射頻測試鍵結構之各層組件之電路佈局的示意圖,而 第4圖為第3圖所示之射頻測試鍵結構之俯視示意圖。如 第3圖與第4圖所示,射頻測試鍵結構50由下而上包含有 一基底52、一底部金屬層54、至少一内部金屬層56與一 頂部金屬層58。基底52可以為部分的晶圓、石夕覆絕緣層 籲(silicon-on-insulator,SOI)或應變石夕(strained silicon)等包含 有多晶石夕、摻雜多晶石夕等材質之半導體基底。而且,基底 52上定義有複數個晶粒區域522與至少一切割道區域524 位於晶粒區域522之間。基底52之切割道區域524具有一 狹長測試區域526,作為射頻測試鍵結構50之預定位置。 基底52之狹長測試區域526上可包含有一待測元件 _ 62 ’在本第一較佳實施例中,待測元件62為一射頻元件, 例如一 M0S電晶體或是一 MOS電晶體之等效電路。待測 元件62之四邊具有四個連接端,依圖中前、右、後、左之 順序分別為接地連接端622、訊號連接端624、接地連接端 626與訊號連接端628,並分別電連接至待測元件62之源 極、汲極、基底52與閘極。 • . - 底部金屬層54位於基底52上方之狹長測試區域526 内’本質上係為一狹長之矩形金屬片,且可電連接至—接 1313905 -地點(圖未示)。底部金屬層54具有一容置開口⑽,用以 -暴露出待測元件62之訊號連接維624與訊號連接端似, 且底。P金屬@ 54更與待測元件62之接地連接端⑵、接 地連接端626相接觸,藉以電連接至待測元件⑺之源極與 基底52。 u金屬層58係為成片的金屬塾’位於狹長測試區域 • 526内之底部金屬層54上,本質上為一狹長之矩形金屬 片。在本第一較佳實施例令,頂部金屬層58上定義有二個 訊號塾區域與四個接地塾區域,呈單行排列而平行於狹長 測試區域526,由左至右依序為接地墊區域%卜訊號墊區 域582、接地墊區域583、接地墊區域584、訊號墊區域585 與接地墊區域586(G-S-G-G-S-G),用來與測試之探針電連 接。根據相對位置做區分,接地墊區域581與接地墊區域 ❿586為邊緣接地墊區域,而槔地墊區域583與接地墊區域 584為中央接地墊區域。此外,本第一較佳實施雖以八角 形之訊號塾區域582、585與接地墊區域581、583、584、 586為例進行圖示說明,但並不以此為限制,訊號墊區域 582、585與接地塾區域581、583、584、586之形狀可為 矩形、六角形、八角形或圓形等任意之幾何形狀,尤以愈 接近圓形之訊號墊區域與接地墊區域具有愈好的電性效 果’其皆應屬本發明之涵蓋範圍。 1313905 . 頂部金屬層58包含有至少一絕緣開口,位於訊號墊區 •域582、585與接地塾區域58!、. 583、584、586之間以及 訊號墊區域582、585彼此之間,.使訊號墊區域582、585 與接地塾區域58卜583、584、586分隔,並使訊號墊區域 582、585彼此分隔。例如此處頂部金屬層58包含有一第 一絕緣開口 642,第一絕緣開口 642環繞於訊號墊區域 582、585與接地墊區域583、584周圍,並且通過接地墊 馨區域583、584之間。因此,第一絕緣開口 642可於頂部金 屬層58内電性分離接地墊區域581與訊號墊區域582、電 性分離接地墊區域581與訊號塾區域585、電性分離接地 墊區域586與訊號墊區域582、並且電性分離接地墊區域 586與訊號墊區域585。如圖所示,第一絕緣開口 642可使 頂部金屬層58之邊緣區域構成一框形結構588,接地墊區 域581與接地墊區域586可透過框形結構588而彼此電連 _接,並使得頂部金屬層588鄰接於待測元件62的部分係呈 現由邊緣至待測元件62漸縮狀。除了第一絕緣開口 642, 頂部金屬層5 8另包含有一第二絕緣開口 644與一第三絕緣 開口 646。第二絕緣開口 644環繞於接地墊區域583周圍, 用以於頂部金屬層58内電性分離接地墊區域583與訊號墊 區域582。第三絕緣開口 646環繞於接地墊區域584周圍, •用以於頂部金屬層58内電性分離.接地墊區域584與訊號墊 區域585。 1313905 • 如此一來,訊號墊區域582與訊號墊區域585便可透 '過大面積之頂部金屬層58而分別電逹接至待挪元件62之 。凡號連接端624與訊號連接端628,而不會與接地墊區域 Ml、583、584、586電性接觸,更不會因為複雜而狹窄的 連接線路而使射頻測試鍵結構5 〇的測試結果偏離了待測 元件62本身的電子特性。尤其注意的是,頂部金屬層588 _鄰接於待測元件62的部分係呈現漸縮狀,而非急劇地銳 減。截面積銳減會導致射頻測試鍵結構的電阻值增加,而 降低射頻測試鍵結構的準確性。換句話說,由於頂部金屬 層588的結構係呈現漸縮狀,因此本發明可提升射頻測試 鍵結構50在測試時的準確性。 底部金屬層54與頂部金屬層58之間可包含有至少一 内部金屬層56 ’内部金屬層56的數量與結構可視晶粒產 _品之設計與待測元件62的特性而定,例如愈高頻的待測元 件62可使用愈多層内部金屬層56,而且於底部金屬層54、 各内部金屬層56與一頂部金屬層58之間可分別包含有一 介電層’用以避免各金屬層互相電性影響。現以單一内部 金屬層56為例’内部金屬層56包含有一區塊561、一區 塊563、一區塊564與一區塊566,分別對應至頂部金屬層 • 58之接地墊區域581、接地墊區域583、接地墊區域584 與接地墊區域586。區塊561、區塊563、區塊564與區塊 566之上利用複數個導電插塞(圖未示)穿過介電層(圖未示) 1313905 而分別電連接至相對應之接地墊區域581、接地塾區域 583、接地墊區域584與接地墊區域586 α區塊、區塊 563區塊564與區塊566之下則利用複數個導電插塞(圖 未示)穿過介電層而電連接至底部金屬層54。 除了區塊561、區塊563、區塊564與區塊566之外, 内部金屬層56亦可另包含有一外框,如第5圖所示之本發 _明第二較佳實施例’外框568對應於頂部金屬層58之樞形 結構588而設置,提供射頻測試鍵結構5〇更完善之電磁屏 蔽與保護。其中,區塊56卜區塊563、區塊564、區塊566 與外框568皆為金屬材.質。 有鑑於此,訊號墊區域582與訊號墊區域585可透過 頂部金屬層58而分別電連接至待測元件62之訊號連接端 馨624與訊號連接端628。接地塾區域581、接地塾區域⑻、 接地墊區域584與接地塾區域586則係電連接至待測元件 62之接地連接蠕622、接地連接端626與接地點。如此一 來,探針卡之探針就可接觸於射頻測試鍵結構50之訊號墊 區域582、585與接地塾區域581、583、584、586,進行 待測元件62之測試。 、。用參考第6圖,第6圖為本發明第三較隹實施例射頻 I式鍵、(構之各層組件之電路佈局的示意圖。如第6圖所 16 1313905 不》射頻測試鍵結構70包含有一基底72、一底部金屬層 74、至少一内部金屬層76與一頂部金屬層78。基底72可 以為一晶圓,定義有複數個晶粒區域722,與至少一切割 道區域724位於晶粒區域722之間。基底72之切割道區域 724具有一狭長測試區域726,作為射頻測試鍵結構70之 .· · 預定位置。 基底72之狹長測試區域726上可包含有一待測元件 82,待測元件82為一射頻元件,例如一 MOS電晶體或是 一 MOS電晶體之等效電路。待測元件82之四邊具有四個 連接端,分別為接地連接端822、訊號連接端824、接地連 接端826與訊號連接端'828,並分別電蓮接至待測元件82 之源極、汲極、基底72與閘極。 底部金屬層74位於基底72上方之狹長測試區域726 内,本質上係為一狹長之矩形金屬片,且可電連接至一接 地點(圖未示)。底部金屬層74具有一容置開口 742,用以 暴露出待測元件82之訊號連接端824與訊號連接端828。 底部金屬層74與待測元件82之接地連接端822、接地連 接端826相接觸,藉以電連接至待測元件82之源極與基底 72。 頂部金屬層78係為成片的金屬墊,位於狹長測試區域 I313905 .726内之内部金屬層76上,本質上為一狹長之矩形金屬 •片。本實施例之頂部金屬層78上定義有二個訊號墊區域與 〜個接地墊區域’呈單行排列而平行設置於狹長測試區域 726内’由左至右依序為接地墊區域78卜訊號墊區域782、 矾號墊區域785與接地墊區域786(G-S-S-G),用來與測試 之探針電連接。訊號墊區域782、785與接地墊區域781、 • 786之形狀可為矩形、六角形、八角形或圓形,依結構需 要而定,此處以八角形之訊號墊區域782、785與接地墊區 域781、783、784、786為例進行說明。 頂部金屬層78包含有至少一絕緣開口,位於訊號墊區 域782、785與接地墊區域781、786之間以及訊號墊區域 782、785彼此之間,使訊號墊區域782、785與接地墊區 域781、786分隔,並使訊號墊區域782、785彼此分隔。 籲例如此處頂部金屬層78包含有一絕緣開口 842,絕緣開口 842延伸而環繞於訊號墊區域782周圍與訊號墊區域785 周圍,可於頂部金屬層78内電性分離接地墊區域781與訊 號墊區域782、電性分離接地墊區域781與訊號墊區域 785、電性分離接地墊區域7g6與訊號墊區域782、並且電 性分離接地墊區域786與訊號墊區域785。此外,絕緣開 • 口 842使頂部金屬層78之邊緣區域構成一框形結構788, 接地墊區域781與接地墊區域786可透過框形結構788而 .彼此電連接。由於頂部金屬層788鄰接於待測元件82的部 18 1313905 分係呈現由邊緣至待測元件82漸縮狀,因此本發明可提升 . . . ' 射頻測試鍵結構50的準確性。 内部金屬層76包含有一區塊761與一區塊766,分別 對應至頂部金屬層78之接地墊區域781與接地墊區域 786。區塊761與區塊766之上利用複數個導電插塞(圖未 示)電連接至對應之接地墊區域781與接地墊區域786。區 _塊761與區塊766之下則利用複數個導電插塞(圖未示)電 連接至底部金屬層74。除了區塊761與區塊766之外,内 部金屬層76亦可另包含有一外框(圖未示),外框係相對應 於頂部金屬層78之框形結構788而設置,提供射頻測試鍵 結構70更進一步之保護。其中,區塊761、區塊766與外 .· · 框皆為金屬材質。 JI 因此,訊號墊區域782與訊號墊區域784可透過頂部 金屬層78而分別電連接至待測元件82之訊號連接端824 與訊號連接端828。接i也墊區域781與接地墊區域786則 係電連接至待測元件82之接地連接端822、接地連接端826 . . ' 與接地點。如此一來,探針卡之探針就可接觸於射頻測試 鍵結構70之訊號墊區域782、785與接地墊區域78卜786, 進行待測元件82之測試。 * 另外,本發明之射頻測試鍵結構另可具備不同之樣 19 1313905 以配合不同将測元件之結構與不同规袼啤功能之探對 卡的探針配置,例如: 第四較佳實施例:射頻測試鍵結構包含有二個訊號塾區域 與二個接地㈣域,排列由左至右依序為訊號塾區 域、接地墊區域、接地墊區域與訊號墊區域 (S-G-G-S); 第五較佳實施例:射頻測試鍵結構包含有二個訊號塾區域 與二個接地塾區域’排列由左至右依序為訊號墊區 域、接地墊區域、訊號墊區域與接地墊區域 (S-G-S-G); 第六較佳實施例:射頻測試鍵結構包含有二個訊號塾區域 與三個接地墊區域,排列由左至右依序為接地墊區 域、訊號墊區域、.揍地墊區域、訊號墊區域與接地墊 區域(G-S-G-S-G)。 特別注思的是,上述各實施例之待測元件以可替換為 其他測試兀件,例如替換為一斷路元件(〇pen c〇mp〇nent)、 一短路元件(short component)或一通路元件(thr〇ugh component)。斷路元件、短路元件或通路元件之四邊同樣 具有四個連接端’可電連接至射_試鍵結構之訊號整區 域與接地墊區域。然而,於斷 _ '辦略件内,四個連接端彼此 不電性連接,以形成斷路之雷肷 电略。於短路元件内,四個連 接端可利用導線直接電性連接,丨、,^ ^ 从形成短路之電路。於通 20 1313905 ’與_·鍵結構之訊號級 1接=用導後直接電性連接'而與射_二 品域相電連接之二_連接㈣不電性連接。 舉例說明,當進行一 MOS電晶體之測試時,可同時製 作一具有MOS電晶體之射頻測試鍵結構與一具有短路元 件之射頻測試鍵結構。之後,利用探針測量具有M〇s電晶 _體之射頻測5式鍵結構與具有娘路元件之、射頻測試鍵續構, 再用二個射頻測試鍵結構的測試數據進行比對與計算,以 得到所測量之MOS電晶體的電子特性。 由於頂部金屬層之訊號些區域與接地整區域係呈單行 排列而平行於狹長測試區域,因此本發明之射頻測試鍵結 構便可設置於切割道等狹長區域中,既可於製程中進行即 癱時測試,又不會佔據過多之晶粒區域的空間。 響 此外,由於訊號墊區域係利用大面積的頂部金屬層電 連接至待測元件,因此可利用射頻測試鍵結構而正確地測 得射頻元件的電子特性.,避免因複雜而狹窄的連接線路導 致射頻測試鍵結構扭曲了待測元件的電子特性,而使待測 元件的測試結果改變。 . 另一方面,由於底部金屬層、内部金屬層與頂部金屬 1313905 •層可彼此電連接,並且電連接至接地點,因此可使整個射 .頻測試鍵結構構成-立體的電磁屏蔽。尤其底部金屬層與 頂部金屬層皆為大面積的金屬結構.,且,頂部金屬層又具有 框形結構來隔離外部電子訊號,因此本發明之射頻測試鍵 結構可提供一良好的電磁屏蔽,保護射頻測試鍵結構不受 外^電磁干擾,進而提升射頻測試鍵結構的準確性。尤其 ⑩注意的是’本發明所述之㈣金屬層係為—選擇性之元 件,換句話說,本發明之射頻測試鍵結構亦可不具備内部 金屬層,而是利用複數個導電插塞使頂部金屬層之接地塾 區域電連接至底部金屬層,構成—立體的電磁屏蔽。 以上所述僅為本發明之較佳實施例,凡依本發明申請專 利範圍所做之均㈣化與修飾,皆制本魏之涵蓋範圍。 # 【圖式簡單說明】 第1圖為一傳統射頻測試鍵之示意圖。 第2圖為一習知射頻測試鍵之示意圖。 第3圖為本發明第一較佳實施例射頻測試鍵結構之電路佈 局的示意圖。 第4圖為第3圖所示之射頻賊鍵結構、之俯視示意圖。 第5圖為本發明第二較佳實施例射頻測試鍵結構之電路佈 局的示意圖。 第6圖為本發明第三較佳實施例射頻測試鍵結構之電路佈 22 1313905 局的示意圖。 【主要元件符號說明】 1 第一方向 10 12 基底 14a 14b 後訊號墊 18 20 射頻測試鍵 22 • 28 待測元件 30 50 射頻測試鍵結構 52 54 底部金屬層 56 58 頂部金屬層 62 70 射頻測試鍵結構 72 74 底部金孱層 76 78 頂部金屬層 82 φ 142 前區塊 144 146 後區塊 148 164 右金屬片 164a 164b 接地墊 168 168a 接地墊 168b 182 閘極連接端 184 186 汲極連接端 188 242 金屬連線 244 * 246 金屬連線 248 射頻測試鍵 前訊號墊 待測元件 基底 切割道區域 基底 内部金屬層 待測元件 基底 内部金屬層 待測元件 右區塊 左區塊 接地墊 左金屬片 接地墊 源極連接端 基底連接端 金屬連線 金屬連線 23 1313905 261 接地墊 263 接地墊 265 訊號墊 282 閘極連接端 286 汲極連接端 522 晶粒區域 526 狹長測試區域 561 區塊 564 區塊 568 外框 582 訊號墊區域 584 接地墊區域 586 接地塾區域 622 接地連接端 626 接地連接端 642 第一絕緣開口 646 第三絕緣開口 724 切割道區域 742 容置開口 766 區塊 782 訊號塾區域 786 接地墊區域 262 訊號墊 264 接地墊 266 接地塾 284 源極連接端 288 基底連接端 524 切割道區域 542 容置開口 563 區塊 566 區塊 581 接地墊區域 583 接地塾區域 585 訊號墊區域 588 框形結構 624 訊號連接端 628 訊號連接端 644 第二絕緣開口 722 晶粒區域 726 狹長測試區域 761 區塊 781 接地墊區域 785 訊號墊區域 788 框形結構 24 1313905 822 接地連接端 824 訊號連接端 826 接地連接端 828 訊號連接端 842 絕緣開口 25U-radio is widely used to transport new radio products. In the process of radio equipment, in order to maintain the stability of product quality, it is necessary to continue online testing for the produced RF components (4). 1. You can make several test key structures after the dicing of the wafer or on the surface of a monitor wafer, that is, the various elements of the RF on the die. At the same time as the semiconductor process, the same procedure is used to simulate the same process on the crystal plate by making a test piece on the surface of the wafer or the surface of the monitor. Then, using a test device such as a probe to contact the 啊州忒 key, measure the parameters of the test component, and use the test result as an indicator to check whether the 淘 θ _ 衣 疋 is normal and monitor each process step m Defect '(9) has the effect of controlling product quality. 1313905 • Please refer to the i-th diagram, which is a schematic diagram of a conventional RF test button. As shown in Fig. 1, the RF test key 10 includes a substrate 12, a bottom metal layer and a top metal layer. The substrate 12 includes a device under test (DUT) 18' such as a metal-oxide semiconductor (MOS) transistor. The device under test 18 has four connection ends, which are respectively a front connection terminal 182, a source connection end 184, a drain connection end 186 and a base connection end 188 in the order of front, right, rear and left in the figure, and are respectively electrically connected. Connected to the gate of the device under test 18, the source, the drain and the substrate. The bottom metal layer is comprised of a front block 142, a right block 144, a rear block 146 and a left block 148. The front block 142, the right block 144, the rear block 146 and the left block 148 surround the component 18 to be tested, and are respectively connected to the corresponding gate connection end 182, the source connection end 184, and the immersion connection end. 186 is coupled to the substrate 188. The front block M2 and the rear block 146 respectively define a front signal pad 14a and a rear signal pad 14b for electrically connecting with the probe. The top metal layer is above the bottom metal layer, and a dielectric layer (not shown) is further disposed between the top metal layer and the bottom metal layer. The top metal layer includes a right metal piece 164 and a left metal piece 168' respectively passing through a dielectric layer (not shown) by a via plug to electrically connect to the right block 144 and the left area of the bottom metal layer, respectively. Block 148. The right metal piece 164 and the left metal piece 168 are each an elongated metal piece parallel to a first direction 1. In the right metal piece 164 «, a ground pad 164a and a grounding bar 164b are respectively defined at the front and rear ends. Before the left metal piece 168 of the 8 1313905, a ground pad 1683 and a ground are respectively defined at the rear end, and the ground pad 168a is made. The front signal pad i4a and the grounding pad I64a are arranged perpendicular to the first direction 1 to form a front row connection region, and the ground pad 168b, the rear signal pad 14b and the ground pad 164b are arranged perpendicular to the first direction j to form a rear row connection region. . In this way, the probes of the probe card can respectively contact the connection area of the front row and the connection area of the rear row of the RF test key 10 to test the component 18 to be tested. However, since the structural design of the conventional RF test button 10 is too large to be placed in the scribe line, which increases the difficulty of the process and the test, the conventional technique derives an RF test button located at the scribe line. Please refer to Figure 2'. Figure 2 is a schematic diagram of a conventional RF test button. As shown in Fig. 2, the radio frequency test key 20 includes a base ash 22, at least four metal wires 242, 244, 246, 248 and six rectangular metal iridium 261, 262, φ 263, 264, 265, 266. The substrate 22 includes a device 28 to be tested. The four sides of the device under test 28 have a gate connection end 282, a source connection end 284, a drain connection end 286 and a base connection end 288, respectively, and are electrically connected to The gate, source, drain and substrate of the device under test 28. Wherein, the metal wires 242, 244, 24_6, 248 and the rectangular metal pads 261, 262, 263, 264, 265, 266 are prepared by a multiple metal interconnect process, and six rectangular metal pads 261, 262, 263, 264 are used. 265 and 266 are arranged in a single row and are arranged in parallel in a dicing area 30. The grounding pad 261, the signal 塾262, the grounding 263, the grounding pad 264, the signal potential 1313905 265 and the grounding pad 266 are sequentially arranged from left to right. Used to electrically connect to the probe. The metal connection 242 is used to electrically connect the signal pad 262 with the gate connection end 282, the metal connection 244 for electrically connecting the ground pad 266 and the source connection end 284, and the metal connection 246 for electrically connecting the signal pad 265 to the drain connection. The terminal 286 and the metal connection 248 are used to electrically connect the ground pad 261 and the substrate connection end 288. The conventional RF test key 20 is electrically connected by an elongated metal connection. Since the resistance of the conductor is inversely proportional to the wearing area, the elongated metal connection significantly increases the internal resistance of the RF test key 20, so that the internal resistance of the RF test key 20 is significantly increased. The test result of the RF test key 20 is too different from the test result of the actual RF component. As a result, even if the conventional RF test key 20 can be disposed in the dicing area 30, the electronic characteristics of the RF component cannot be correctly simulated, and the accuracy of the RF test key 20 is lost. SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide an RF test key structure that solves the problems that cannot be overcome by conventional techniques, thereby improving the accuracy of the RF test key structure. According to the patent application scope of the present invention, the present invention provides a radio frequency test key structure located in a scribe line region, comprising a substrate, a device to be tested, and at least two metal layers. At least one scribe line region is defined on the substrate. The component to be tested is located in the area of the scribe line on the substrate, and includes at least two signal terminals 10 1313905 and at least two ground terminals. The metal layer is located in the area of the dicing street, and the package 'containing a bottom metal layer is located above the substrate, and a top metal layer is located above the bottom metal layer. The top metal layer is a metal pad with a minimum of two signal pad regions and at least two ground pad regions. The signal pad region is electrically connected to the signal connection end of the device to be tested, and the ground pad region is electrically connected to the device to be tested. Ground connection. The signal pad area and the ground pad area are arranged in a single row parallel to the scribe line area, and the top metal layer includes an insulating opening between the two signal pad regions and the aforementioned two ground pad regions and the foregoing two. The signal pad regions are spaced apart from each other such that the two signal pad regions are separated from the two ground pad regions, and the two signal pad regions are separated from each other. Since the signal pad area and the ground pad area of the RF test key structure of the present invention are arranged in a single row, they can be disposed in the scribe line area. In addition, the bottom metal layer and the top metal layer of the RF test key structure have a large area of the ground metal region, so that an electromagnetic shielding can be formed to protect the RF test key structure from external electromagnetic interference, thereby improving the accuracy of the RF test key structure. Sex. In order to enable the reviewing committee to take a closer look at the features and technical contents of the present invention, please refer to the following detailed description of the invention and the accompanying drawings. The drawings are for illustrative purposes only and are not intended to limit the invention. 1313905 [Embodiment] «Please refer to FIG. 3 and FIG. 4'. FIG. 3 is a schematic diagram showing the circuit layout of each layer component of the radio frequency test key structure according to the first preferred embodiment of the present invention, and FIG. 4 is a third diagram. A top view of the RF test key structure shown. As shown in Figures 3 and 4, the RF test key structure 50 includes a substrate 52, a bottom metal layer 54, at least one inner metal layer 56 and a top metal layer 58 from bottom to top. The substrate 52 may be a part of a wafer, a silicon-on-insulator (SOI) or a strained silicon, and the like, including a semiconductor such as polycrystalline or doped polysilicon. Substrate. Moreover, a plurality of die regions 522 and at least one scribe runner region 524 are defined between the die regions 522. The scribe line region 524 of the substrate 52 has an elongated test region 526 that serves as a predetermined location for the RF test key structure 50. The narrow test area 526 of the substrate 52 may include a device to be tested _62'. In the first preferred embodiment, the device under test 62 is a radio frequency component, such as a MOS transistor or a MOS transistor. Circuit. The four sides of the component to be tested 62 have four connection ends, which are respectively a ground connection end 622, a signal connection end 624, a ground connection end 626 and a signal connection end 628 in the order of front, right, rear and left in the figure, and are respectively electrically connected. The source, the drain, the substrate 52 and the gate of the device under test 62. The bottom metal layer 54 is located in the elongated test area 526 above the substrate 52. It is essentially an elongated rectangular metal sheet and can be electrically connected to the location of the 1313905 (not shown). The bottom metal layer 54 has a receiving opening (10) for exposing the signal connecting dimension 624 of the component to be tested 62 to the signal connecting end, and the bottom. The P metal @54 is further in contact with the ground connection terminal (2) and the ground connection terminal 626 of the device under test 62, thereby being electrically connected to the source of the device under test (7) and the substrate 52. The metal layer 58 is a piece of metal 塾 'located on the bottom metal layer 54 in the elongated test area 526, essentially a narrow rectangular metal piece. In the first preferred embodiment, the top metal layer 58 defines two signal 塾 regions and four ground 塾 regions, arranged in a single row and parallel to the elongated test region 526, and the ground pad region is sequentially arranged from left to right. The signal pad area 582, the ground pad area 583, the ground pad area 584, the signal pad area 585 and the ground pad area 586 (GSGGSG) are used to electrically connect to the probe being tested. According to the relative position, the ground pad area 581 and the ground pad area ❿ 586 are edge ground pad areas, and the pad area 583 and the ground pad area 584 are central ground pad areas. In addition, the first preferred embodiment illustrates the octagonal signal 塾 regions 582 and 585 and the ground pad regions 581, 583, 584, and 586 as an example, but is not limited thereto, and the signal pad region 582, The shape of the 585 and the grounding 塾 regions 581, 583, 584, 586 may be any geometric shape such as a rectangle, a hexagon, an octagon or a circle, and the better the signal pad area and the ground pad area are closer to a circle. Electrical effects are all within the scope of the present invention. 1313905. The top metal layer 58 includes at least one insulating opening between the signal pad region 582, 585 and the ground germanium regions 58!, 583, 584, 586 and the signal pad regions 582, 585. The signal pad regions 582, 585 are separated from the ground germanium regions 58 583, 584, 586 and separate the signal pad regions 582, 585 from each other. For example, the top metal layer 58 herein includes a first insulating opening. The first insulating opening 642 surrounds the signal pad regions 582, 585 and the ground pad regions 583, 584 and passes between the ground pad regions 583, 584. Therefore, the first insulating opening 642 can electrically separate the ground pad region 581 and the signal pad region 582, the electrically separated ground pad region 581 and the signal 塾 region 585, the electrically separated ground pad region 586 and the signal pad in the top metal layer 58. Region 582 and electrically separate ground pad region 586 from signal pad region 585. As shown, the first insulating opening 642 allows the edge regions of the top metal layer 58 to form a frame structure 588 through which the ground pad region 581 and the ground pad region 586 can be electrically connected to each other through the frame structure 588. The portion of the top metal layer 588 that abuts the element under test 62 exhibits a tapered shape from the edge to the element under test 62. In addition to the first insulating opening 642, the top metal layer 58 further includes a second insulating opening 644 and a third insulating opening 646. The second insulating opening 644 surrounds the ground pad region 583 for electrically separating the ground pad region 583 from the signal pad region 582 in the top metal layer 58. The third insulating opening 646 surrounds the ground pad region 584, and is used to electrically separate the ground metal pad 58 from the ground pad region 584 and the signal pad region 585. 1313905 • In this manner, the signal pad area 582 and the signal pad area 585 can be electrically connected to the component 62 to be moved through the oversized top metal layer 58. The connecting end 624 and the signal connecting end 628 are not in electrical contact with the ground pad area M1, 583, 584, 586, and the test result of the radio frequency test key structure 5 不会 is not caused by the complicated and narrow connecting line. It deviates from the electronic characteristics of the element under test 62 itself. It is particularly noted that the portion of the top metal layer 588 _ adjacent to the element under test 62 is tapered rather than sharply sharpened. A sharp decrease in the cross-sectional area results in an increase in the resistance of the RF test key structure and a decrease in the accuracy of the RF test key structure. In other words, since the structure of the top metal layer 588 is tapered, the present invention can improve the accuracy of the RF test key structure 50 during testing. Between the bottom metal layer 54 and the top metal layer 58 may comprise at least one inner metal layer 56. The number and structure of the inner metal layer 56 may depend on the design of the die and the characteristics of the component to be tested 62, for example, the higher The frequency detecting component 62 can use a plurality of inner metal layers 56, and a dielectric layer ′ can be respectively included between the bottom metal layer 54, each of the inner metal layers 56 and a top metal layer 58 to avoid mutual metal layers. Electrical impact. Now taking a single internal metal layer 56 as an example, the inner metal layer 56 includes a block 561, a block 563, a block 564 and a block 566, respectively corresponding to the ground pad region 581 of the top metal layer 58 and grounding. Pad area 583, ground pad area 584 and ground pad area 586. Block 561, block 563, block 564 and block 566 are electrically connected to the corresponding ground pad region through a plurality of conductive plugs (not shown) through a dielectric layer (not shown) 1313905. 581, grounding germanium region 583, grounding pad region 584 and grounding pad region 586 alpha block, block 563 block 564 and block 566 under a plurality of conductive plugs (not shown) through the dielectric layer Electrically connected to the bottom metal layer 54. In addition to the block 561, the block 563, the block 564, and the block 566, the inner metal layer 56 may further include an outer frame, as shown in FIG. 5, which is the second preferred embodiment of the present invention. Block 568 is provided corresponding to the pivotal structure 588 of the top metal layer 58 to provide a more complete electromagnetic shielding and protection of the RF test key structure. The block 56, the block 563, the block 564, the block 566 and the outer frame 568 are all made of metal. In view of this, the signal pad area 582 and the signal pad area 585 can be electrically connected to the signal connection terminal 624 and the signal connection end 628 of the device under test 62 through the top metal layer 58 respectively. The grounding germanium region 581, the grounding germanium region (8), the grounding pad region 584 and the grounding germanium region 586 are electrically connected to the ground connection creeper 622, the ground connection terminal 626 and the grounding point of the device under test 62. In this way, the probe of the probe card can contact the signal pad area 582, 585 of the RF test key structure 50 and the grounding area 581, 583, 584, 586 for testing the component 62 to be tested. ,. Referring to FIG. 6, FIG. 6 is a schematic diagram showing a circuit configuration of a radio frequency I type key according to a third embodiment of the present invention (a circuit layout of each layer component of the structure. As shown in FIG. 6 13 1313905 no) the radio frequency test key structure 70 includes a substrate 72, a bottom metal layer 74, at least one inner metal layer 76 and a top metal layer 78. The substrate 72 can be a wafer defining a plurality of die regions 722, and at least one scribe region 724 is located in the die region Between the 722. The scribe line region 724 of the substrate 72 has a slit test area 726 as a predetermined position of the RF test key structure 70. The narrow test area 726 of the substrate 72 may include a device to be tested 82, the component to be tested 82 is an RF component, such as an MOS transistor or an equivalent circuit of a MOS transistor. The four sides of the component to be tested 82 have four terminals, which are a ground connection terminal 822, a signal connection terminal 824, and a ground connection terminal 826. The signal connection terminal '828 is connected to the source, the drain, the substrate 72 and the gate of the device under test 82. The bottom metal layer 74 is located in the narrow test area 726 above the substrate 72, which is essentially a The rectangular metal piece is electrically connected to a grounding point (not shown). The bottom metal layer 74 has a receiving opening 742 for exposing the signal connection end 824 and the signal connection end 828 of the component 82 to be tested. The bottom metal layer 74 is in contact with the ground connection end 822 and the ground connection end 826 of the device under test 82, thereby being electrically connected to the source of the device under test 82 and the substrate 72. The top metal layer 78 is a metal pad located in a sheet. The inner metal layer 76 in the narrow test area I313905.726 is essentially an elongated rectangular metal piece. The top metal layer 78 of the embodiment defines two signal pad areas and a ground pad area as a single line. Arranged and arranged in parallel in the elongated test area 726 'from left to right, the ground pad area 78, the signal pad area 782, the nick pad area 785 and the ground pad area 786 (GSSG) are used to test the probe. The signal pad area 782, 785 and the ground pad area 781, • 786 may be rectangular, hexagonal, octagonal or circular, depending on the structure, here the octagonal signal pad area 782, 785 and ground. pad The fields 781, 783, 784, and 786 are taken as an example. The top metal layer 78 includes at least one insulating opening between the signal pad regions 782, 785 and the ground pad regions 781, 786 and the signal pad regions 782, 785 The signal pad regions 782, 785 are separated from the ground pad regions 781, 786, and the signal pad regions 782, 785 are separated from each other. For example, the top metal layer 78 here includes an insulating opening 842, and the insulating opening 842 extends around the signal. Around the pad region 782 and around the signal pad region 785, the ground pad region 781 and the signal pad region 782, the electrically separated ground pad region 781 and the signal pad region 785, and the electrically separated ground pad region can be electrically separated in the top metal layer 78. 7g6 and signal pad area 782, and electrically separate ground pad area 786 and signal pad area 785. In addition, the insulating opening 842 causes the edge regions of the top metal layer 78 to form a frame structure 788 through which the ground pad region 781 and the ground pad region 786 can be electrically connected. Since the top metal layer 788 is adjacent to the portion 18 1313905 of the element under test 82, the portion appears to be tapered from the edge to the element under test 82, the present invention can improve the accuracy of the RF test key structure 50. The inner metal layer 76 includes a block 761 and a block 766 corresponding to the ground pad region 781 and the ground pad region 786 of the top metal layer 78, respectively. Block 761 and block 766 are electrically coupled to corresponding ground pad region 781 and ground pad region 786 by a plurality of conductive plugs (not shown). The area _ block 761 and the block 766 are electrically connected to the bottom metal layer 74 by a plurality of conductive plugs (not shown). In addition to the block 761 and the block 766, the inner metal layer 76 may further include an outer frame (not shown), and the outer frame is disposed corresponding to the frame structure 788 of the top metal layer 78 to provide a radio frequency test key. Structure 70 is further protected. Among them, the block 761, the block 766 and the outer frame are all made of metal. Therefore, the signal pad area 782 and the signal pad area 784 can be electrically connected to the signal connection end 824 and the signal connection end 828 of the device under test 82 through the top metal layer 78, respectively. The pad area 781 and the ground pad area 786 are electrically connected to the ground connection end 822 of the device under test 82, the ground connection end 826 . . . and the ground point. In this way, the probe of the probe card can contact the signal pad area 782, 785 and the ground pad area 78 of the RF test key structure 70 to test the component to be tested 82. In addition, the RF test key structure of the present invention can be provided with different types of 19 1313905 to match the probe configuration of the different components of the test component and the different beer functions, for example: Fourth preferred embodiment: The RF test key structure comprises two signal 塾 regions and two ground (four) domains arranged in order from left to right for the signal 塾 region, the ground pad region, the ground pad region and the signal pad region (SGGS); Example: The RF test key structure includes two signal 塾 regions and two ground 塾 regions arranged in order from left to right for the signal pad region, the ground pad region, the signal pad region and the ground pad region (SGSG); A preferred embodiment: the RF test key structure includes two signal 塾 regions and three ground pad regions, arranged from left to right in order to ground pad region, signal pad region, 揍 pad region, signal pad region and ground pad Area (GSGSG). It is particularly noted that the components to be tested of the above embodiments can be replaced with other test components, for example, replaced by a circuit breaker component, a short component or a channel component. (thr〇ugh component). The four sides of the circuit breaking element, the shorting element or the path element also have four terminals 'which can be electrically connected to the signal entire area and the ground pad area of the radiation-test key structure. However, in the disconnected device, the four terminals are not electrically connected to each other to form a thunder of the disconnection. In the short-circuiting component, the four terminals can be directly electrically connected by wires, and the circuit can be short-circuited. Yutong 20 1313905 ' is connected to the signal level of the _· key structure 1 = directly electrically connected after the conductor' and is electrically connected to the second _ domain (the fourth) is not electrically connected. For example, when testing a MOS transistor, an RF test key structure having a MOS transistor and an RF test key structure having a short-circuit element can be simultaneously fabricated. After that, the probe is used to measure the radio frequency measurement type 5 key structure with the M〇s electro-crystal body and the RF test key continuation with the Niang road component, and then the test data of the two RF test key structures are used for comparison and calculation. To obtain the electronic characteristics of the measured MOS transistor. Since the signal regions of the top metal layer and the grounded entire region are arranged in a single row and parallel to the elongated test region, the RF test key structure of the present invention can be disposed in a narrow region such as a dicing street, which can be performed in the process. When testing, it does not occupy too much space in the grain area. In addition, since the signal pad area is electrically connected to the device to be tested by using a large area of the top metal layer, the electronic characteristics of the RF element can be accurately measured by using the RF test key structure to avoid complicated and narrow connection lines. The RF test key structure distorts the electronic characteristics of the component to be tested, and changes the test result of the component to be tested. On the other hand, since the bottom metal layer, the inner metal layer and the top metal 1313905 • layers can be electrically connected to each other and electrically connected to the ground point, the entire radio frequency test key structure can be constructed to constitute a three-dimensional electromagnetic shield. In particular, the bottom metal layer and the top metal layer are both large-area metal structures. Moreover, the top metal layer has a frame structure to isolate external electronic signals, so the RF test key structure of the present invention can provide a good electromagnetic shielding and protection. The RF test key structure is not subject to external electromagnetic interference, thereby improving the accuracy of the RF test key structure. In particular, it is noted that the (four) metal layer described in the present invention is a selective element. In other words, the radio frequency test key structure of the present invention may not have an internal metal layer, but a plurality of conductive plugs may be used to make the top portion. The grounding 塾 region of the metal layer is electrically connected to the bottom metal layer to form a three-dimensional electromagnetic shielding. The above description is only the preferred embodiment of the present invention, and all the modifications and modifications made by the patent application scope of the present invention are within the scope of the present invention. # [Simple description of the diagram] Figure 1 is a schematic diagram of a conventional RF test button. Figure 2 is a schematic diagram of a conventional RF test button. Figure 3 is a schematic diagram showing the circuit layout of the radio frequency test key structure of the first preferred embodiment of the present invention. Fig. 4 is a top plan view showing the structure of the radio frequency thief key shown in Fig. 3. Figure 5 is a schematic diagram showing the circuit layout of the radio frequency test key structure of the second preferred embodiment of the present invention. FIG. 6 is a schematic diagram of a circuit board 22 1313905 of a radio frequency test key structure according to a third preferred embodiment of the present invention. [Main component symbol description] 1 First direction 10 12 Substrate 14a 14b Rear signal pad 18 20 RF test key 22 • 28 Element to be tested 30 50 RF test key structure 52 54 Bottom metal layer 56 58 Top metal layer 62 70 RF test key Structure 72 74 bottom metal layer 76 78 top metal layer 82 φ 142 front block 144 146 rear block 148 164 right metal piece 164a 164b ground pad 168 168a ground pad 168b 182 gate connection 184 186 drain connection 188 242 Metal Connection 244 * 246 Metal Connection 248 RF Test Key Front Signal Pad Test Element Base Cutting Channel Area Base Internal Metal Layer Test Element Base Internal Metal Layer Test Element Right Block Left Block Ground Pad Left Metal Plate Grounding Pad Source connection base connection metal connection metal connection 23 1313905 261 Grounding pad 263 Grounding pad 265 Signal pad 282 Gate connection 286 Drain connection 522 Grain area 526 Narrow test area 561 Block 564 Block 568 Block 582 Signal Pad Area 584 Grounding Pad Area 586 Grounding Area 622 Grounding Connection 626 Grounding Connection 642 An insulating opening 646 a third insulating opening 724 a cutting track area 742 a receiving opening 766 a block 782 a signal 塾 area 786 a ground pad area 262 a signal pad 264 a ground pad 266 a ground 塾 284 a source connection end 288 a base connection end 524 a scribe line area 542 Locating opening 563 block 566 block 581 grounding pad area 583 grounding 塾 area 585 signal pad area 588 frame structure 624 signal connection end 628 signal connection end 644 second insulation opening 722 grain area 726 narrow test area 761 block 781 Ground pad area 785 Signal pad area 788 Frame structure 24 1313905 822 Ground connection 824 Signal connection 826 Ground connection 828 Signal connection 842 Insulation opening 25

Claims (1)

1313905 十、申請專利範圍: I·-種位於切割道區域之射頻測試鍵結構,包含有: 基底亥基底上定義有至少一切割道區域; 一待測ϋ件’位於該基底上之㈣割道區域内,包含有 至少二訊號連接端與至少二接地連接端;以及 至少二金屬層’位於該切割道區域内,該等金屬層包含 ,^一底部金屬層位於該基底上方,與—頂部金屬層位於該 三部金屬層上方,該頂部金屬層係為成片的金屬塾,其上 疋義有至少二訊號塾區域與至少二接地塾區域,該等訊號 塾區域電連接至該㈣元件线#職連接端,該等接地 區域電連接线待測元件之料接地連制,該等訊號 墊區域與該等接地墊區域係呈單行排列而平行於該切判道 區域’且該頂部金屬層包含有至少一絕緣開口位於該等訊 就墊區域與該等接地塾區域之間以及該等訊號塾區域彼此 ,間’使該等訊號墊區域與該等接地墊區域分隔,並使該 專讯號塾區域彼此分隔。 • · 2.如申請專利範圍第!項所述之射頻測試鍵結構,並中兮 等訊號㈣域與該等接地㈣域之排列由左至右依序為二 该訊號墊區域、一該接地墊區域、另一該訊號墊區 —該接地墊區域。 其中該 、如申凊專利㈣第1項所述之射_試鍵結構, 26 1313905 等訊號塾區㉟與該等接地堅區域之排歹由左至右依序為一 -該訊號墊區域、一該接地墊區域、另一該接地墊區域與另 一該訊號墊區域。 4. 如申請專利範圍第丨項所述之射頻測試鍵結構,其中該 等Λ號墊區域與該等接地墊區域之排列由左至右依序為一 該接地塾區域、一該訊號塾區域、另一該訊號墊區域與另 ® —該接地墊區域。 5. 如申請專利範圍帛!項所述之射頻測試鍵結構,其中該 頂。I5金屬層_L疋義有二訊號塾區域與三接地墊區域,該等 訊號塾區域與該等接地墊區域之排列由左至右依序為一該 接地墊區域、一該訊號墊區域、一該接地墊區域、另一該 訊號墊區域與另一該接地墊區域。 I 6.如中睛專利範圍第】項所述之射頻測試鍵結構,其令該 頂部金屬層上定義有二訊號塾區域與四接地塾區域,該等 訊號塾區域與該等接地塾區域之排列由左至右依序為」該 接地墊區域、-該訊號塾區域、一該接地塾區域、一該接 地墊區域、另一該訊號塾區域與另一該接地塾區域。 如申明專利|巳圍第】項所述之射頻測誠鍵結構,其中該 等接地塾區域係透過複氣個導電插塞與該底部金屬層而電 27 1313905 連接至該待測元件之該等接地連接端。 8/如申請專利範圍第1項所述之射頻測試鍵結構,其中該 塾區域係透過該頂部金屬層而電連接至該待測元 9.如申明專利範圍第!項所述之射頻測試鍵結構,其 框形結構’該等接地塾區域係透過該頂 丨鱼屬層之該框形結構互相電連接。 讥如申清專利範圍第i項所述之射頻測試鍵結構,其中 該底部金屬層包含有一狹長之矩形金屬片。 1如申請專利範圍第1項所述之射頻測試鍵結構,其中 _該等金屬層另包含有至少一内部金屬層,位於該頂部金屬 層與該底部金屬層H連接料接軸區域與 金屬層。 12.如申π專利範圍第!項所述之射頻測試鍵結構,其中 該絕緣開口延伸而環繞於各該訊號墊區域周圍。、 13:如中料難圍第6項所述之射頻賴鍵結構,其中 該等接地㈣域由左至右分別為-邊緣接㈣區域、1中 央接地墊區域、-中央接地塾區域與―邊緣接地塾區域, 28 1313905 δ亥頂部金屬層總共具有三該.絕緣開口,二該絕緣開口分別 ,環繞於各3亥中央接地墊區域周圍,而另一該絕緣開口環繞 於該等訊號墊區域與該等中央接地墊區域周圍,並且通過 該等中央接地墊區域之間。 14·如申睛專利範圍第丨項所述之射頻測試鍵結構,其中 該絕緣開口使得該頂部金屬層鄰接於該待測元件的部分係 修呈現由邊緣至該待測元件漸縮狀。 15. —種射頻測試鍵結構,包含有: 一基底,該基底上定義有一狹長測試辱域; 一待測元件,位於該基底上方之該狹長測試區域内; 底邛金屬層,位於該基底上方之該狹長測試區域 内’且該底部金屬層具有一容置開口,以暴露出部分之該 •待測元件;以及 頁邛金屬層,位於έ亥狹長測試區域内之該底部金屬 層上方,該頂部金屬層係為成片的金屬塾,其上定義有至 ^二訊號塾區域與至少二接地塾區拷,該等訊號塾區域與 汶等接地塾區域係呈單行排列而平行於該狹長測試區域, 該等接地塾區域係電連接至該底部金屬層,且該頂部金屬 層包含有至少-絕緣開口位於該等訊號墊區域與該等接地 塾區域之間以及該等訊號塾區域彼此之間,使該等訊號塾 區域與該等接地替區域分隔,並使該等訊號塾區域彼此分 29 1313905 隔。 16.如申請專利範圍第15項所述之射頻測試鍵結構,其中 該等訊號塾區域與該等接地墊區域之排列由左至右依序為 一 s亥汛號墊區域、一該接地墊區域、另一該訊號墊區域與 另一該接地墊區域。 .· · . 鲁17.如申請專利範圍第15項所述之射頻測試鍵結構,其中 該等訊號塾區域與該等接地墊區域之排列由左至右依序為 一该訊號墊區域、一該接地墊區域、另一該接地墊區域與 另一該訊號墊區域。 18·如申請專利範圍第〗5項所述之射頻測試鍵結構,其中 该等訊號墊區域與該等接地墊區域之排列由左至右依序為 鲁一該接地墊區域、一該訊號墊區域、另一該訊號墊區域與 另一該接地墊區域。 19.如申請專利範圍第15項所述之射頻測試鍵結構,其中 該頂部金屬層上定義有二訊號墊區域與三接地墊區域,該 等訊號墊區域與該等接地墊區域之排列由左至右依序為一 該接地墊區域、一該訊號墊區域、一該接地墊區域、另一 s亥訊號塾區域與另一該接地墊區域。 30 1313905 .20.如申請專利範圍第15項所述之射頻測試鍵結構,其中 •該頂部金屬層上定義有二訊號墊區域舆四接地墊區域,紱 等訊號墊區域與該等接地墊區域之排列由左至右依序為一 該接地墊區域、一該訊號墊區域、一該接地墊區域、一該 接地墊區域、另一該訊號墊區域與另一該接地墊區域。 21. 如申請專利範圍第15項所述之射頻測試鍵結構,其中 ♦該等接地墊區域係透過複數個導電插塞與該底部金屬層而 電連接至該待測元件。 22, 如申請專利範圍第Μ.項所述之射頻測試鍵結構,其中 5亥等汛號墊區域係透過該頂部金屬層而電連接至該待測元 件。 # 23.如申請專利範圍第15項所述之射頻測試鍵結構,另包 含有至少一内部金屬層,位於該頂部金屬層與該底部金屬 層之間,電連接該等接地墊區域與該底部金屬層。 Μ·*如申請專利範圍第15項所述之射頻測試鍵結構,其中 該等接地塾區域與該底部金屬層電連接至一接地點、 頂部金屬層與該底部金屬層構成一電磁屏蔽。 -25.如申請專利範圍第%項所述之射頻測試鍵結構,其中 31 1313905 〆頁。f5金屬層具有-框形結構,該等接地墊區域透過該項 部金屬層之該㈣結構互相電連接,使該頂部金屬層之該 框形結構與該底部金屬層構成該電磁屏蔽。 26.如申响專利|巳圍帛15項所述之射頻測試鍵結構,发中 該絕緣開口延伸而環繞於各該訊號㈣域關。^ ^如申請專利範㈣2Q項所述之射頻測試鍵結構,其中 该等接地塾區域由左至右分別為—邊緣接地塾區域、一中 央接地墊區域、-中央接地墊區域與—邊緣接地塾區域, 該頂部金屬層總共具有三該絕緣開σ,二該絕緣開口分別 %繞於各該t央接地墊區域,而另—該絕緣開口環繞 於该等訊號墊區域與該f中央接地純域周圍,並且: 該等中央接地墊區域之簡。 Β 汉如申請專利範圍第15項所述之射___^ 该絕緣開口使得該頂部金屬層鄰接於該待測元件 〔 呈現由邊緣至該待測元件漸縮狀。 、。刀 321313905 X. Patent application scope: I.- RF test key structure located in the scribe line area, comprising: at least one scribe line area defined on the base substrate; (a) secant on the base The area includes at least two signal connections and at least two ground connections; and at least two metal layers are located in the scribe line region, the metal layers include a bottom metal layer above the substrate, and a top metal The layer is located above the three metal layers, and the top metal layer is a sheet metal raft having at least two signal 塾 regions and at least two ground 塾 regions, and the signal 塾 regions are electrically connected to the (four) component lines In the grounding connection, the grounding area of the electrical connection line of the grounding area is connected, and the signal pad area and the grounding pad area are arranged in a single row and parallel to the cutting area and the top metal layer Included in the at least one insulating opening between the area of the pad and the grounding area and the signal 塾 area and each other, such that the signal pad area is connected to the same Spacer pad area, and the area designed Sook signal separated from each other. • · 2. If you apply for a patent scope! The radio frequency test key structure described in the item, and the arrangement of the signal (4) field and the ground (4) field are sequentially arranged from left to right to the signal pad area, a ground pad area, and another signal pad area. The ground pad area. Wherein, the _ test key structure described in item 1 of the application patent (4), the signal 塾 area 35 of 26 1313905 and the row of the grounding hard areas are sequentially left to right - the signal pad area, One of the ground pad regions, the other of the ground pad regions, and another of the signal pad regions. 4. The RF test key structure as described in the scope of the patent application, wherein the arrangement of the nickname pad area and the ground pad area is sequentially from left to right, the ground 塾 area, and the signal 塾 area. And the other signal pad area and the other - the ground pad area. 5. If you apply for a patent range! The radio frequency test key structure described in the item, wherein the top. The I5 metal layer _L 疋 has a second signal 塾 region and a three ground pad region, and the arrangement of the signal 塾 region and the ground pad regions is sequentially from left to right, the ground pad region, a signal pad region, One of the ground pad area, the other of the signal pad area and the other of the ground pad area. I 6. The radio frequency test key structure described in the middle of the patent scope, wherein the top metal layer defines a two-signal 塾 region and a four-ground 塾 region, and the signal 塾 region and the ground 塾 region The arrangement is sequentially from left to right, the ground pad area, the signal 塾 area, a ground 塾 area, a ground pad area, another signal 塾 area and another such ground 塾 area. The radio frequency test key structure described in the above-mentioned claim, wherein the grounding 塾 region is connected to the component to be tested through a ventilating conductive plug and the bottom metal layer and the electrical component 27 1313905 Ground connection. 8/ The RF test key structure of claim 1, wherein the 塾 region is electrically connected to the test element through the top metal layer. 9. As claimed in the patent scope! The radio frequency test key structure described in the item, wherein the frame structure is electrically connected to each other through the frame structure of the top squid layer. For example, the RF test key structure described in the patent scope of claim ii, wherein the bottom metal layer comprises an elongated rectangular metal piece. 1 . The radio frequency test key structure according to claim 1 , wherein the metal layer further comprises at least one inner metal layer, and the top metal layer and the bottom metal layer H are connected to the joint region and the metal layer. . 12. For example, the scope of the application of π patent! The radio frequency test key structure of the item, wherein the insulating opening extends around the area of each of the signal pad regions. 13: If the material is difficult to surround the RF-based structure as described in item 6, wherein the grounding (four) domains are from left to right - edge connection (four) area, 1 central ground pad area, - central grounding area and - The edge grounding 塾 region, 28 1313905 δ hai top metal layer has a total of three. Insulation openings, two of the insulating openings respectively surround the 3 hai central ground pad area, and the other insulating opening surrounds the signal pad area Around the central ground pad area and between the central ground pad areas. 14. The radio frequency test key structure of claim 2, wherein the insulating opening causes a portion of the top metal layer adjacent to the device to be tested to be tapered from the edge to the device under test. 15. An RF test key structure comprising: a substrate defining a narrow test scoping domain; a device to be tested located in the elongated test area above the substrate; a bottom metal layer above the substrate And the bottom metal layer has a receiving opening to expose a portion of the device to be tested; and a sheet metal layer above the bottom metal layer in the narrow test area The top metal layer is a piece of metal bismuth, on which a region of at least two signals and at least two grounding regions are defined, and the signal 塾 region and the grounding 塾 region of Wen and the like are arranged in a single row and parallel to the slit test. a region, the grounding germanium regions are electrically connected to the bottom metal layer, and the top metal layer includes at least an insulating opening between the signal pad regions and the grounding germanium regions and the signal regions Separating the signal areas from the grounding areas and separating the signal areas from each other by 29 1313905. 16. The radio frequency test key structure according to claim 15, wherein the arrangement of the signal 塾 region and the ground pad regions is sequentially from left to right, and the ground pad is The region, another of the signal pad regions and another of the ground pad regions. The radio frequency test key structure of claim 15, wherein the arrangement of the signal 塾 region and the ground pad regions is sequentially from left to right as a signal pad region, The ground pad area, the other ground pad area, and another of the signal pad areas. 18. The RF test key structure as described in claim 5, wherein the signal pad area and the ground pad area are arranged from left to right in order to be the ground pad area and a signal pad. The region, another of the signal pad regions and another of the ground pad regions. 19. The radio frequency test key structure according to claim 15, wherein the top metal layer defines a second signal pad area and a three ground pad area, and the signal pad area and the ground pad area are arranged by the left. To the right is a ground pad area, a signal pad area, a ground pad area, another s-signal area and another ground pad area. 30 1313905 .20. The radio frequency test key structure according to claim 15 wherein: the top metal layer defines a second signal pad area, a fourth ground pad area, a signal pad area and the ground pad area. The arrangement is from left to right in sequence as a ground pad area, a signal pad area, a ground pad area, a ground pad area, another signal pad area and another ground pad area. 21. The radio frequency test key structure of claim 15, wherein the ground pad regions are electrically connected to the device under test through a plurality of conductive plugs and the bottom metal layer. 22. The RF test key structure as described in claim </ RTI> wherein the area of the pad is electrically connected to the device to be tested through the top metal layer. #23. The radio frequency test key structure of claim 15, further comprising at least one inner metal layer between the top metal layer and the bottom metal layer electrically connecting the ground pad region and the bottom portion Metal layer. The RF test key structure of claim 15, wherein the grounding germanium region and the bottom metal layer are electrically connected to a grounding point, and the top metal layer and the bottom metal layer form an electromagnetic shield. -25. The RF test key structure as described in item % of the patent application, wherein 31 1313905 is the title page. The f5 metal layer has a -frame structure, and the ground pad regions are electrically connected to each other through the (4) structure of the metal layer such that the frame structure of the top metal layer and the bottom metal layer constitute the electromagnetic shield. 26. The RF test key structure as recited in claim 15 of the present invention, wherein the insulating opening extends around the signal (four) domain. ^ ^ As in the application of the patent (4) 2Q item of the RF test key structure, wherein the grounding 塾 area from left to right are - edge grounding 塾 area, a central grounding pad area, - central grounding pad area and - edge grounding 塾a region, the top metal layer has a total of three insulation openings σ, and the insulation openings are respectively wound around the t-ground pad regions, and another insulation opening surrounds the signal pad regions and the f-center grounded pure domain Around, and: The central ground pad area is simple. Β Han, as claimed in claim 15 of the patent scope ___^ The insulating opening is such that the top metal layer is adjacent to the device under test [presenting from the edge to the element to be tested being tapered. ,. Knife 32
TW95137087A 2006-10-05 2006-10-05 Radio frequency test key structure TWI313905B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95137087A TWI313905B (en) 2006-10-05 2006-10-05 Radio frequency test key structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95137087A TWI313905B (en) 2006-10-05 2006-10-05 Radio frequency test key structure

Publications (2)

Publication Number Publication Date
TW200818362A TW200818362A (en) 2008-04-16
TWI313905B true TWI313905B (en) 2009-08-21

Family

ID=44769533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95137087A TWI313905B (en) 2006-10-05 2006-10-05 Radio frequency test key structure

Country Status (1)

Country Link
TW (1) TWI313905B (en)

Also Published As

Publication number Publication date
TW200818362A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
US8853693B2 (en) Test structure for determination of TSV depth
US7825679B2 (en) Dielectric film and layer testing
US7439538B2 (en) Multi-purpose poly edge test structure
CN106024757B (en) Detection to environmental aspect in a semiconductor chip
CN103050479A (en) Method and apparatus for de-embedding
TW425648B (en) Method and apparatus for probing an integrated circuit through the back side of an integrated circuit die
JP3931153B2 (en) Semiconductor device
US8610451B2 (en) Post silicide testing for replacement high-k metal gate technologies
CN110335861B (en) Semiconductor device and manufacturing method thereof
US10381339B1 (en) Integrated circuits with memory cell test circuits and methods for producing the same
CN103308095B (en) To the detection of the environmental aspect in semi-conductor chip
TWI286215B (en) Ground-single-ground pad layout for device tester structure
US7808248B2 (en) Radio frequency test key structure
CN106653732A (en) Test line structure and method for performing wafer acceptance test
TWI313905B (en) Radio frequency test key structure
US7344899B2 (en) Die assembly and method for forming a die on a wafer
CN100514628C (en) Radio-frequency test key structure
KR102179035B1 (en) Semiconductor device
TW200931429A (en) Method of searching fault locations
KR100676612B1 (en) Pad of Semiconductor Device
US20080122446A1 (en) Test pattern
CN109273374B (en) Method and structure for process limited yield test
JPH0766263A (en) Contact resistance measuring method of multilayered metal wiring, semiconductor device and wafer
KR100529453B1 (en) Needle for probe card and method for fabricating the same
CN117607540A (en) Resistance testing method of superconducting quantum interference device and quantum chip