TWI312092B - Reflective display device and retro-reflector used therefor - Google Patents

Reflective display device and retro-reflector used therefor Download PDF

Info

Publication number
TWI312092B
TWI312092B TW096117621A TW96117621A TWI312092B TW I312092 B TWI312092 B TW I312092B TW 096117621 A TW096117621 A TW 096117621A TW 96117621 A TW96117621 A TW 96117621A TW I312092 B TWI312092 B TW I312092B
Authority
TW
Taiwan
Prior art keywords
display device
light
liquid crystal
reflective display
reflector
Prior art date
Application number
TW096117621A
Other languages
Chinese (zh)
Other versions
TW200732770A (en
Inventor
Minoura Kiyoshi
Ueki Shun
Tomikawa Masahiko
Sako Teiyu
Okamoto Masayuki
Mitsui Seiichi
Original Assignee
Sharp Kabushiki Kaish
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaish filed Critical Sharp Kabushiki Kaish
Publication of TW200732770A publication Critical patent/TW200732770A/en
Application granted granted Critical
Publication of TWI312092B publication Critical patent/TWI312092B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

1312092 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種不要偏光板、白顯示的亮度高且對比 率咼、顯眼、可多色顯示的反射型顯示裝置及用於其之復 現性反射板。 【先前技術】 以往作為具有薄型、輕量等特徵的彩色顯示器,使用多 鲁 數液晶顯示裝置。作為彩色液晶顯示裝置,特別被廣泛使 用的是在背部側使用光源的透過型液晶顯示裝置。這種透 過型液晶顯示裝置在各種領域擴大用途被使用。 對於上述透過型液晶顯示裝置,為其他顯示方式的反射 - 型液晶顯示裝置係反射來自光源(自然光或周圍光)的光而 : 利用於顯示。因此,上述反射型液晶顯示裝置因以上述光 源為背面光的代替而有以下特徵:不要背面光、可削減背 面光用電力及可節省背面光的空間或重量等。 • 即,作為顯示裝置全體,可實現耗電減少,可使用小型 電池適於以輕量薄型為目的的機器。此外,若製作成使 機器大小或重量㈣,則可使用λ型電、池,可期待動作時 間飛躍的擴大。 此外,上述反射型液晶顯示裝置從顯示面的對比特性方 面來看,對於其他顯示裝置也具備優勢性。即,crt等發 光51顯示裝置在白天的室外顯出大幅對比率降低。此外, 施以低反射處理的透過型液晶顯示裝置在直射陽光下等周 圍光比顯示光非常強時’也同樣不能避免大幅對比率降 121061.doc 1312092</ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> < Desc/Clms Page number> Sexual reflector. [Prior Art] Conventionally, as a color display having characteristics such as thinness and light weight, a multi-lumen liquid crystal display device has been used. As a color liquid crystal display device, a transmissive liquid crystal display device using a light source on the back side is particularly widely used. Such a transmissive liquid crystal display device is used in various fields to expand its use. In the transmissive liquid crystal display device described above, a reflective-type liquid crystal display device of another display type reflects light from a light source (natural light or ambient light) for use in display. Therefore, in the above-described reflective liquid crystal display device, the light source is replaced by the back light, and the backlight is not required, the power for back light can be reduced, and the space or weight for back light can be saved. • In other words, as a whole display device, power consumption can be reduced, and a compact battery can be used for a device that is lightweight and thin. In addition, if the size or weight (4) of the machine is made, the λ type electric and the pool can be used, and the expansion of the operating time can be expected. Further, the above-described reflective liquid crystal display device is advantageous also for other display devices in view of the contrast characteristics of the display surface. That is, the light-emitting 51 display device such as crt exhibits a large contrast ratio reduction in the outdoor daytime. In addition, the transmissive liquid crystal display device with low reflection treatment can not avoid a large contrast ratio when the ambient light is very strong under direct sunlight. 121061.doc 1312092

低。對此’反射型液晶顯示I 不褒置因可得到與周圍光量成比 例的顯示光而可避免上述理由的 二 k段田的對比率降低,所以攜帶資 訊終端機器或數位照相機、攜帶 娜躅帑攝影機等在室外使用時特 別適合。 如上述雖然具有非常有希望的應用領域,但到現在具有 充分實用性的反射型彩色液晶顯示裝置卻未得到。這是因 為在以往的反射型彩色液晶顯*裝置,與充分對比率或反 射率、全彩色化、高精細顯示或動畫對應等性能不足。 、下就I知反射型液晶顯示裝置再加以說明。現在使 用兩片或一片偏光板的反射型液晶顯示裝置被廣泛使用。 在上述液晶顯示裝置主要使用扭轉向列模式(以下稱為 「TN模式」):利用電場控制液晶層的旋光性而進行顯 示;雙折射模式(以下稱為「ECB模式」):利用電場控制 液晶層的雙折射而進行顯示;或,混合模式:組合tn模 式和ECB模式等。 對此,已知省略偏光板方式的反射型液晶顯示裝置。在 上述方式雖然已開發將染料添加於液晶的賓主型(guest host type)液晶元件,但因添加了雙色性染料而缺乏可靠 性’此外因染料的雙色性比低而有得不到高對比率的問 題。特別是對比度不足在使用濾色器的彩色顯示會使色純 度大幅降低。因此’對比度不足的反射型液晶顯示裝置需 要和色純度高的濾色器組合^反射型液晶顯示裝置使用色 純度高的濾色器時,因此而亮度降低,有下述問題:損及 省略偏光板的上述方式的高亮度這種優點。 121061.doc 1312092 九為了避免這些各問題,進行了下述開發:不用偏光板或 染料而可期待高亮度、高對比度顯示的利用高分子分散型 液晶或膽固醇型液晶方式的液晶顯示元件。這些方式係利 用下述特性:藉由控制施加於液晶層的電壓,光學上在透 過狀態和!文射狀態之間或在透過狀態和反射狀態之間切換 液晶層。上述方式因不用偏光板而可提高光的利用效率。 再者,上述方式在從顏色的觀點進行評價時,和上述 ^ ™模式或ECB模式相比’波長相關性小,而且擺脫下述問 題點:偏光板本身的吸收縱斷面,即偏光板吸收藍色光, 通過上述偏光板的光帶有黃色,所以也可以期待實現良好 的白顯示。 - 上述方式的一例揭示於特開平3-186816號公報(公開曰 ' 1991年8月14日)。上述公報所載的液晶顯示裝置係在黑色 基板上配置高分子分散型液晶,無施加電壓時,高分子分 散型液晶成為散射狀態,給與白濁的白顯示,施加電壓 φ 時’尚分子分散型液晶成為透過狀態,藉由可看免配置於 下側的黑色基板而給與黑顯示,進行黑白顯示。 在USP 3,905,682號公報(發行日1975年9月16日)揭示由 使用光散射型液晶的光調變層及復現性反射板所構成的液 晶裝置。在特開昭54-105998號公報(公開日1979年8月20 日)揭示由使用光散射型液晶或賓主型液晶的光調變層、 隔柵(louver)及復現性反射體所構成的反射型液晶顯示裝 置。此外,在113?5,182,663號公報(發行日1993年1月26 曰)揭示由使用光散射型液晶的光調變層及直角稜鏡 121061.doc 1312092 Μ (corner cube)陣列所構成的液晶裝置。 然而’在前述特開平3-1868 16號公報所揭示的液晶顯示 裝置’當白顯示時’從高分子分散型液晶散射到後方的光 只參與白顯示,散射到前方的光全部被黑色基板吸收,所 以實際上光的利用效率顯著降低。 在UPS 3,905,682號公報所揭示的液晶顯示裝置,黑顯示 時係液晶層在透過狀態時被實現。由復現性反射所進行的 _ 黑顯示的顯示品質取決於復現性,復現性反射板最小單位 構造的尺寸強烈影響,但在此專利中卻對於為了實現黑顯 示的機構或復現性反射板最小單位構造的尺寸亦無記載。 此外’在該專利所揭示的復現性反射板的實施形態係使 ' 用直角棱鏡陣列及微少球陣列的復現性反射板,但都說不 、 上復現性足夠,不能得到充分的黑顯示。此外,關於具有 足夠復現性的復現性反射板構造的詳細未揭示。再者,對 於顯示面法線方向’從斜方向觀察時,產生黑顯示品質惡 φ 化的問題。 特開昭54-105998號公報所揭示的反射形式液晶顯示裝 置係下述結構:在復現性反射板前面、觀察者側配置設有 吸收部位的隔栅,從觀察者位置入射到該液晶顯示裝置的 光線利用隔柵掩蓋復現性反射板,所以入射光全部為隔柵 的吸收部位所吸收’實現良好的黑顯示,從光源位置入射 到該液晶顯示裝置的光線穿過隔柵直接到達復現性反射 板。 然而’在該公報亦未記載為了實現復現性反射板最小單 121061.doc 1312092 位構造的尺寸或黑顯示的機構,而關於黑顯示雖然解決了 刖述USP 3,905,682號公報的問題,但因設於隔栅的吸收部 位佔的面積過大而有損白顯示的亮度。 再者,在上述習知各結構都未就復現性反射板最小單位 構造的間距和濾色器的間距之關係加以考慮。因此,具備 濾色器的結構時,在上述習知結構,入射光和出射光通過 互相不同的濾色器的結果,產生下述問題:因混色而招致 亮度及色度降低。 此外’上述各問題對於液晶顯示裝置以外的反射型顯示 裝置亦可能發生。 【發明内容】 本發明係鑑於上述問題點所完成的’其目的在於提供一 種白顯示7G度而且對比率高、顯眼、可多色顯示及可防止 因混色而亮度及色度降低之反射型顯示裝置及使用於於其 之復現性反射板。 為了達成上述目的,關於本發明之反射型顯示裝置,其 特徵在於:具有開關層:切換使入射光透過的第一狀態和 入射光進行狀態改變的第二狀態;及,反射機構:反射來 自開關層的入射光’開關層在第一狀態時,反射機構被設 定成反射觀測者黑眼珠的影像,觀測者認識上述黑眼珠的 影像,實現黑顯示者。 本發明之其他反射型顯示裝置為了達成上述目的,其特 徵在於:具備開關層:切換成使入射光透過的透過狀態和 使入射光散射的散射狀態;及,復現性反射板··作為反射 121061.doc -10- J312092 機構’前述復現性反射板最小單位構造的間距為觀察者的 黑眼珠(角膜)直徑一半以下者。 根據上述結構,藉由如上述分別設定復現性反射板最小 單位構造的間距’可防止因復現性反射板最小單位構造的 影響而黑顯示惡化。此結果’上述結構可提高白顯示的亮 度且可提高對比度。 本發明之另外其他反射型顯示裝置為了逹成前述目的, 其特徵在於:具備開關層:切換成使入射光透過的透過狀 態和使入射光散射的散射狀態;各濾色器部:與各像素對 應所形成;及,復現性反射板:作為反射機構,該復現性 反射板最小单位構造的間距為該渡色器部的間距以下者。 根據上述結構,藉由復現性反射板最小單位構造的間距 設定在該濾色器部的間距以下,通過任意濾色器部入射到 復現性反射板的光藉由復現性反射板的反射,再通過相同 濾色器部出射。 因此,上述結構沒有入射光和出射光通過互相不同的濾 色器部這種缺陷,可防止因混色而亮度及色度降低,可提 高彩色顯示品質。 本發明之復現性反射板為了達成前述目的,其特徵在 於.互相鄰接設置多數如和入射光成為平行般地反射出射 光的復現性反射部,在各復現性反射部的境界部設置吸收 光的光吸收面部者。 根據上述結構,藉由設置光吸收面部,將上述結構適用 於反射型顯示裝置時,可防止上述反射型顯示裝置的黑顯 121061.doc -11 - '1312092 示惡化。此結果’上述結構可增大上述反射型顯示裝置的 白顯示亮度且可提高對比度。 又,所謂復現性反射板「最小單位構造的間距」,例如 直角稜鏡陣列型的復現性反射板時,係指鄰接直角棱鏡 (最小單位構造)對應的位置間(例如直角稜鏡陣列頂點和頂 點間)的最短距離,小珠(微小球)陣列型的復現性反射板 時’係指鄰接小珠對應的位置間(例如小珠中心和中心間) &gt; 的最短距離。 此外’所謂「滤色器部的間距」’例如以任意排列圖案 配置R(紅)、G(綠)、B(藍)的各遽色器部時,係指各鄰接遽 色器部對應的位置間(例如各瀘、色器部中心和中心間)的最 短距離。 本發明之另外其他目的、特徵及優點根據以下所示之記 載當可充分了解。此外,本發明之利益根據參照附圖的下 面說明當可明白。 | 【實施方式】 以下’就圖面說明本發明實施各形態。圖1為關於本發 明實施各形態的反射型液晶顯示裝置(反射型顯示裝置)的 結構截面圖。 在上述反射型液晶顯示裝置,利用入射側基板6和與其 對向側的反射側基板7夾持設置液晶層(開關層)1。上述入 射侧基板6分別由透明(具有光透過性)玻璃板或高分子薄膜 等材料所構成。上述反射側基板7雖然由玻璃板或高分子 薄膜專材料所構成,但未必需要透明。 121061.doc -12· 1312092 在上述反射側基板7上將復現性反射板(反射機構)8形成 如下:將其反射光向入射側基板6出射。上述復現性反射 板8被設定成反射觀測者黑眼珠的影像,觀測者認識上述 黑眼珠的影像而實現黑顯示。 就這種復現性反射板8而言,可舉下述者:反射從入射 側基板6側對於上述復現性反射板8入射的入射光而出射作 為反射光時,如和上述入射光成為略平行(略反平行)般地 反射反射光。low. In this case, the reflective liquid crystal display I does not have a display light that is proportional to the amount of ambient light, and the contrast ratio of the two-segment field can be avoided. Therefore, the information terminal device or the digital camera is carried, and the camera is carried. It is especially suitable when used outdoors. Although it has a very promising application field as described above, a reflective color liquid crystal display device which is now sufficiently practical has not been obtained. This is because the conventional reflective type color liquid crystal display device has insufficient performance in terms of sufficient contrast ratio, reflectance, full color, high definition display, or animation. Next, a known reflective liquid crystal display device will be described. A reflective liquid crystal display device using two or one polarizing plate is now widely used. In the above liquid crystal display device, a twisted nematic mode (hereinafter referred to as "TN mode") is mainly used: display is performed by controlling the optical rotation of the liquid crystal layer by an electric field; and birefringence mode (hereinafter referred to as "ECB mode"): controlling the liquid crystal by an electric field The birefringence of the layer is displayed; or, the mixed mode: combining the tn mode and the ECB mode. On the other hand, it is known to omit a reflective liquid crystal display device of a polarizing plate type. In the above-described method, a guest host type liquid crystal element in which a dye is added to a liquid crystal has been developed, but lacks reliability due to the addition of a dichroic dye. Further, since the dichroic ratio of the dye is low, a high contrast ratio is not obtained. The problem. In particular, the contrast is insufficient, and the color display using the color filter greatly reduces the color purity. Therefore, in the case of a reflective liquid crystal display device having insufficient contrast and a color filter having a high color purity, when a reflective liquid crystal display device uses a color filter having a high color purity, the luminance is lowered, and there is a problem that the polarization is omitted. The advantage of the high brightness of the board in the above manner. In order to avoid these problems, the following developments have been made: a liquid crystal display element using a polymer dispersed liquid crystal or a cholesteric liquid crystal type which can be expected to have high brightness and high contrast display without using a polarizing plate or a dye. These methods utilize the following characteristics: by controlling the voltage applied to the liquid crystal layer, optically in a transparent state and! The liquid crystal layer is switched between the lithographic states or between the transmissive state and the reflective state. The above method can improve the utilization efficiency of light by not using a polarizing plate. Further, in the above-described manner, when evaluating from the viewpoint of color, the wavelength dependence is small compared with the above-described TM mode or ECB mode, and the following problem is solved: the absorption longitudinal section of the polarizing plate itself, that is, the absorption of the polarizing plate In the blue light, the light passing through the polarizing plate has a yellow color, so that a good white display can be expected. - An example of the above-described method is disclosed in Japanese Laid-Open Patent Publication No. Hei No. 3-168816 (published 曰 'Aug. 14, 1991). In the liquid crystal display device of the above publication, the polymer-dispersed liquid crystal is disposed on the black substrate, and when the voltage is not applied, the polymer-dispersed liquid crystal is in a scattering state, and white turbidity is displayed, and when the voltage φ is applied, the polymer is dispersed. The liquid crystal is in a transmissive state, and black display is performed by observing the black substrate disposed on the lower side, and black and white display is performed. A liquid crystal device comprising a light modulation layer using a light-scattering type liquid crystal and a reproducible reflecting plate is disclosed in Japanese Patent No. 3,905,682 (issued on September 16, 1975). Japanese Patent Publication No. Sho 54-105998 (published on Aug. 20, 1979) discloses a light-modulating layer, a louver, and a reproducible reflector using a light-scattering liquid crystal or a guest-host liquid crystal. Reflective liquid crystal display device. Further, a liquid crystal layer composed of a light modulation layer using a light scattering type liquid crystal and a rectangular angle array of 121061.doc 1312092 corne cubes is disclosed in Japanese Patent Publication No. Hei. No. Hei. No. Hei. Device. However, in the liquid crystal display device disclosed in Japanese Laid-Open Patent Publication No. Hei No. 3-186816, when the white display is displayed, the light scattered from the polymer dispersed liquid crystal to the rear only participates in the white display, and the light scattered to the front is absorbed by the black substrate. Therefore, the efficiency of light utilization is actually significantly reduced. In the liquid crystal display device disclosed in the UPS No. 3,905,682, when the black display is performed, the liquid crystal layer is realized in a transparent state. The display quality of the _ black display by reproducible reflection depends on the reproducibility, and the size of the minimum unit structure of the reflex reflector is strongly influenced, but in this patent it is for the mechanism or reproducibility of achieving black display. The dimensions of the minimum unit structure of the reflector are also not described. In addition, the embodiment of the retroreflective sheet disclosed in the patent is a retroreflective sheet using a right-angle prism array and a microsphere array, but it is said that the reproducibility is sufficient, and sufficient black cannot be obtained. display. Further, the details regarding the construction of the reproducible reflector having sufficient reproducibility are not disclosed. Further, when the direction normal direction of the display surface is viewed from the oblique direction, there is a problem that the black display quality is deteriorated. The reflective liquid crystal display device disclosed in Japanese Laid-Open Patent Publication No. H54-105998 is configured such that a barrier having an absorbing portion is disposed on the front side of the retroreflective sheeting and on the observer side, and the liquid crystal display is incident from the observer position. The light of the device uses the barrier to cover the repetitive reflector, so the incident light is absorbed by the absorption portion of the barrier. A good black display is achieved, and the light incident from the position of the light source to the liquid crystal display device directly passes through the barrier to reach the complex Current reflector. However, the mechanism for realizing the size or black display of the minimum single 121061.doc 1312092 position of the reflex reflector is not described in this publication, and the problem with the black display is described in the USP No. 3,905,682. The area occupied by the absorption portion of the barrier is too large to impair the brightness of the white display. Furthermore, in the above-mentioned conventional structures, the relationship between the pitch of the minimum unit structure of the reflex reflector and the pitch of the color filter is not considered. Therefore, in the case of the configuration in which the color filter is provided, in the above-described conventional configuration, as a result of the incident light and the emitted light passing through mutually different color filters, there arises a problem that luminance and chromaticity are lowered due to color mixture. Further, the above problems may occur in a reflective display device other than the liquid crystal display device. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a reflective display having a white display of 7 G degrees and a high contrast ratio, conspicuous display, multi-color display, and prevention of reduction in brightness and chromaticity due to color mixing. The device and the retroreflective sheeting therefor. In order to achieve the above object, a reflective display device according to the present invention is characterized by comprising a switching layer: a first state in which incident light is transmitted and a second state in which incident light is changed in state; and a reflecting mechanism: reflection from the switch When the incident light of the layer is in the first state, the reflection mechanism is set to reflect the image of the black eye of the observer, and the observer recognizes the image of the black eye to realize the black display. In order to achieve the above object, another reflective display device of the present invention includes a switching layer that switches between a transmission state in which incident light is transmitted and a scattering state in which incident light is scattered, and a reflex reflector as a reflection. 121061.doc -10- J312092 Mechanism 'The minimum unit structure of the aforementioned reproducible reflector is at least half the diameter of the observer's black eye (corneal). According to the above configuration, by setting the pitch ' of the minimum unit structure of the retroreflective sheeting as described above, it is possible to prevent the black display from being deteriorated by the influence of the minimum unit structure of the reflexive reflecting plate. This result 'the above structure can improve the brightness of the white display and can improve the contrast. Another reflective display device of the present invention is characterized in that it has a switching layer that switches between a transmission state in which incident light is transmitted and a scattering state in which incident light is scattered; each color filter portion: each pixel Correspondingly formed; and, a reflex reflector: as a reflection mechanism, the pitch of the minimum unit structure of the reproducible reflector is equal to or less than the pitch of the color former portion. According to the above configuration, the pitch of the minimum unit structure of the reproducible reflecting plate is set below the pitch of the color filter portion, and the light incident on the reproducible reflecting plate through the arbitrary color filter portion is reflected by the reflexive reflecting plate The reflection is then emitted through the same color filter portion. Therefore, in the above configuration, there is no such defect that the incident light and the outgoing light pass through mutually different color filter portions, and it is possible to prevent deterioration in luminance and chromaticity due to color mixture, and to improve color display quality. In order to achieve the above object, the retroreflective sheeting of the present invention is characterized in that a plurality of reproducible reflecting portions that reflect light and emit light in parallel with the incident light are provided adjacent to each other, and are disposed at the boundary portion of each of the reproducible reflecting portions. Light that absorbs light absorbs the face. According to the above configuration, by providing the light absorbing surface portion and applying the above configuration to the reflective display device, it is possible to prevent the black display 121061.doc -11 - '1312092 of the reflective display device from being deteriorated. As a result of the above configuration, the white display luminance of the above-described reflective display device can be increased and the contrast can be improved. In addition, the "respective pitch of the minimum unit structure" of the reflex reflector, for example, a reciprocal reflector of a right-angled 稜鏡 array type means a position between adjacent corner prisms (minimum unit structure) (for example, a right-angle 稜鏡 array) The shortest distance between the vertices and the vertices, the bead (microsphere) array type of repetitive reflectors' refers to the shortest distance between the positions corresponding to the adjacent beads (for example, between the center of the beads and the center) &gt;. In addition, when the "color spacing of the color filter portions" is arranged in an arbitrary arrangement pattern, for example, when each of the color portions of R (red), G (green), and B (blue) is disposed, it means that each of the adjacent color formers corresponds to The shortest distance between positions (for example, between the center of each 泸, 色, and center). Still other objects, features, and advantages of the present invention will be apparent from the appended claims. Further, the benefits of the present invention will become apparent from the following description with reference to the accompanying drawings. [Embodiment] Hereinafter, various embodiments of the present invention will be described with reference to the drawings. Fig. 1 is a cross-sectional view showing the structure of a reflective liquid crystal display device (reflective display device) according to each embodiment of the present invention. In the above-described reflective liquid crystal display device, the liquid crystal layer (switching layer) 1 is sandwiched between the incident side substrate 6 and the reflective side substrate 7 on the opposite side. Each of the incident side substrates 6 is made of a transparent (light transmissive) glass plate or a polymer film. The reflection-side substrate 7 is made of a glass plate or a polymer film material, but it is not necessarily required to be transparent. 121061.doc -12· 1312092 The retroreflective sheeting (reflecting mechanism) 8 is formed on the reflecting side substrate 7 as follows: the reflected light is emitted toward the incident side substrate 6. The retroreflective sheeting 8 is set to reflect an image of the black eye of the observer, and the observer recognizes the image of the black eyeball to realize black display. In the case of the reflexive reflector 8 , when the incident light that is incident on the reproducive reflector 8 from the side of the incident side substrate 6 is reflected as reflected light, the incident light is Reflected light is reflected slightly parallel (slightly anti-parallel).

在本實施各形態使用的復現性反射板8使 ,η又例 脂以金屬模沖壓而成型,在反射面利用蒸鍍附加2〇〇〇埃銀 者。上述丙烯酸樹脂例如藉由添加碳黑而成為黑色。 在上述入射側基板6和反射側基板7分別形成為了施加電 壓給液晶層!的各電極4、5。上述各電極4、5被形成與各 像素對應。即,上述各電極4、5為了對於液晶層i的各像 素分別施加與顯示圖像相應的各電“以預定圖案被形 成。也可以使用活性元件等作為對各電極4、5的㈣施加 :構。關於電壓施加機構,不特別限定。當然使用什麼樣 的電壓施加機構都不影響本發明。 鋪,在各電極4、5的與液晶層1對向面上如和液晶層1 觸接般地塗佈各水平定向膜 a , 利用上述各水平定向媒 成液日日層1在無施加電遲 熊。太f电靨狀態實現水平定向狀 限定定向膜的種類。 ’,、、吏用水平疋向膜,但無需 在本實施各形慇,在液晶以 作為忐散射型液晶一例, 12106l.doc •13· J312092In the retroreflective sheeting 8 used in each of the embodiments, η is further molded by stamping a metal mold, and 2 Å of silver is added to the reflecting surface by vapor deposition. The acrylic resin is black, for example, by adding carbon black. In order to apply a voltage to the liquid crystal layer, the incident side substrate 6 and the reflection side substrate 7 are respectively formed! Each of the electrodes 4, 5. Each of the electrodes 4 and 5 described above is formed to correspond to each pixel. In other words, each of the electrodes 4 and 5 is formed by applying a predetermined pattern to each of the pixels of the liquid crystal layer i in accordance with the display image. Alternatively, an active element or the like may be used as the (four) applied to each of the electrodes 4 and 5: The voltage applying mechanism is not particularly limited. Of course, what kind of voltage applying mechanism is used does not affect the present invention. The bonding is performed on the opposite faces of the liquid crystal layers 1 as the liquid crystal layer 1 on each of the electrodes 4 and 5. Each of the horizontal alignment films a is applied to the ground, and the horizontal layer 1 is used to form a type of the alignment film in a horizontally oriented state.疋 film, but do not need to be in this embodiment, in the liquid crystal as an example of 忐 scattering type liquid crystal, 12106l.doc •13· J312092

使用高分子分散型液晶。該高分子分散型液晶係在基板間 使低分子液晶組成物和未聚合的預聚合物均勻溶解的 s物(預聚合物液晶混合物)’使預聚合物聚人而得到。 詳巧係在使以紫外線硬化的液晶性預聚合物和液晶組成 物(曰梅爾克公司製造一商品名TL 213 ’ △㈣238)按2〇:8〇的 重1比混合的混合物再添加少量聚合開始劑(蒂巴蓋吉公 司製造一商品名Irgacure Hi),在常溫顯示向列液晶相的 狀態照射t外線可製造。這種製造彳㈣需施以加熱處 理’所以可減少損傷到其他構件。 再者,不限於上述,將以下說明的哪個開關層用於液晶 層1亦可得到同樣的效果。 就上述開關層而言,若是下述者即可:在使入射光維持 其進行方向通過(亦含入射光折射通過的情況)的透過狀態 (第狀態)和改變入射光進行方向,即具有至少散射作用 的狀態(第二狀態)之間開關。 例如作為光散射型液晶,可舉向列一膽固醇相轉變型液 晶、具有立體照相(holographic)功能或繞射功能的高分子 分散型液晶、液晶凝膠(gel)等。 若詳細說明’則使用膽固醇結構液晶的模式藉由控制液 晶的區域尺寸或螺旋軸的方向,可在透過狀態和給與散射 性的反射狀態開關。具有立體照相功能的高分子分散型液 晶的情況,例如照射散射光到預聚合物液晶混合物,可使 高分子聚合而製造。具有這種立體照相功能的高分子分散 型液晶的模式可在透過狀態和給與散射性的反射狀態開 121061.doc •14· J312092 ♦ 關。 此處,說明本反射型液晶顯示裝置的顯示原理。首先就 白顯示的動作加以說明。施加電壓時,液晶層1的各液晶 分子la向電場方向’高分子的液晶基lb不改變方向,所以 在兩者間折射率引起不匹配,液晶層i成為散射狀態。入 射光入射到散射狀態的液晶層1,透過液晶層1的直線前進 光及被前方散射的光為復現性反射板8所反射後,藉由再 通過散射狀態的液晶層1而受到散射作用,所以不僅被後 &gt; 方散射的光,而且許多光回到觀察方向。 此處’藉由不僅效率差的後方散射’而且利用透過液晶 層1的直線前進光及被前方散射的光,可得到亮度非常高 : 的顯示。又’各液晶分子1 a為高分子的液晶基丨以預定 .間隔保持。 其次’就黑顯示動作加以說明。無施加電壓時,液晶層 1的各液晶分子la向和高分子的液晶基lb相同的方向,所 • 以液晶層1成為透過狀態。追尋入射到觀察顯示的觀察者 眼睛的光源,則因基板6或液晶層1等而受到折射作用,為 復現性反射板8所復現,同樣地因基板6或液晶層丨等而受 到折射作用,最後達到觀察者眼睛附近。 即,僅來自觀察者眼睛附近的入射光成為被觀察者觀 察的出射光11。此處,若前述觀察者眼睛附近為光源不存 在程度十分狹窄的區域,則臉頰或白眼珠等亦可看作間接 光源’所以例如若是比眼睛的黑眼珠狹窄的區域,則可實 現黑顯示。 12106I.doc -15- 1312092 [實施第一形態] 作為本發明實施第一形態’製作多數復現性反射板8最 小單位構造的間距不同的反射型液晶顯示裝置,以目視觀 察黑顯示。具體而言’分別製作由直角稜鏡陣列、微小球 陣列或微型透鏡陣列構成的復現性反射板且其最小單位構 造的間距0.5 mm、5 mm、10 mm、25 mm的十二種反射型 液晶顯示裝置。 結果,由直角稜鏡陣列構成的復現性反射板、由微小球 陣列構成的復現性反射板、由微型透鏡陣列構成的復現性 反射板都是間距0.5 mm、5 mm者實現良好的黑狀態。間 距10 mm、25 mm者成為下述結果:白眼珠(強膜部分)映入 復現性反射板,黑顯示的亮度浮現。 關於此結果’根據圖2進行研究。觀察者觀察復現性反 射板最小單位構造的中心附近時,被觀察的光的光源位置 成為觀察者眼睛的非常近傍。即’這種情況如圖2(a)所 示’從觀察者眼睛的非常近傍入射到本反射型液晶顯示裝 置的光10為復現性反射板所反射,觀察者觀察出射光11β 此外’如圖2(b)所示’觀察者觀察復現性反射板最小單 位構造的上端附近時’被觀察的光的光源位置成為觀察者 眼睛的下側。即,這種情況,從觀察者眼睛的下側入射到 本反射型液晶顯示裝置的光12為復現性反射板所反射,觀 察者觀察為其反射光的出射光13。此時,若復現性反射板 最小單位構造的間距大,則按照其大小觀察下側的白眼 珠0 121061.doc 16· J312092 此外’觀察者觀察復現性反射板最小單位構造的下端附 近時,被觀察的光的光源位置成為觀察者眼睛的上側。 即’這種情況,從觀察者眼睛的上側入射到本反射型液晶 顯示裝置的光14為復現性反射板所反射,觀察者觀察為其 反射光的出射光15。此時’若復現性反射板最小單位構造 的間距大,則按照其大小觀察上側的白眼珠。 由以上’映入復現性反射板最小單位構造的影像可以說 是由復現性反射板最小單位構造的間距16兩倍長度丨7構成 的區域的影像。即,要實現良好的黑顯示,需要比黑眼珠 縮小由復現性反射板最小單位構造的間距16兩倍長度17構 成的面内的影像。這是§忍為若將黑眼珠的大小(直徑)看作 10 mm程度(奥澤康正著、眼睛百科詞典、東山書房),則 復現性反射板8最小單位構造的間距16必需是$ mm以下。 此研究和本實施形態的結果一致。由以上得知,復現性反 射板最小單位構造的間距16必需是5 mm以下。 又,圖2(c)顯示將小珠(微小球)使用於復現性反射板8最 小單位構造的結構,如同圖所示,在此結構也是觀察者和 來自復現性反射板8的反射光之關係與使用圖2(b)所示的直 角稜鏡陣列形狀的復現性反射板8的結構同樣。關於將小 珠(微小球)使用於復現性反射板8最小單位構造的結構,之 後詳述之。 由上述結果,本案發明者們新開發了如圖6及圖9所示的 測量系統。在上述測量系統設有受光器23、測量台34及投 光部3 6。 121061.doc -17- J312092 上述測里台34將為其上面的測量面34a設置成水平。上 述投光部36將上述測量面34a覆蓋成半球狀,來自投光部 36的投光從半球全部方向以相等的亮度照射在上述半球的 中心位置。上述半球的半徑為8 cm。 上述受光器23可改變其受光極角。所謂受光極角係從 上述半球的中心位置,測量面34a的法線方向和受光器Μ 所設置的方向形成的角度,在圖6中以θ表示。在受光器23 受光的範圍的直徑為1 cm。 在這種測量面34a的半球中心位置將復現性反射板8的最 小單位構造3 1配置成使最小單位構造3丨的法線方向和測量 面34a的法線方向一致。所謂上述法線方向,係對於連結 最小單位構造31各頂點的假想平面垂直的方向。 而且,上述夂光器23被設置成受光的光路方向成為來自 上述半球中心位置的測量面3“的法線方向。受光器23的 視角30係將為被測量物的復現性反射板8的最小單位構造 3 1Μ調成正好對準而測量者。此時,以在相同位置配置完 全擴散反射板時的完全擴散反射板的反射率為 100%。 如此一來’使使用的最小單位構造3丨的間距種種變化而 分別進行測量。圖10顯示其結果。由圖10所示的結果得 知’要實現良好的黑顯示,最小單位構造3丨的間距必需是 5 mm以下。 此外’此處就黑眼珠再加以詳細說明。根據圖丨丨,曈孔 每^存在於黑眼珠的範圍内。虹彩的顏色(反射光)因人 種而異’東洋人等呈黑色,西洋人等彩色。因瞳孔為透明 121061.doc J312092 :瞳孔的帛色(反射光)呈網膜等内部器官的顏色(反射 t而,瞳孔實質上可以看作呈黑色。即,瞳孔具有 ’、、斷不要的光的光圈功能,所以只要觀察者觀察顯示器 (只要不觀察光源),網膜等内部器官的反射就小,因此瞳 孔可以看作呈黑色。A polymer dispersed liquid crystal is used. This polymer-dispersed liquid crystal is obtained by concentrating a prepolymer with a s material (prepolymer liquid crystal mixture) in which a low molecular liquid crystal composition and an unpolymerized prepolymer are uniformly dissolved between substrates. Specifically, a liquid crystal prepolymer which is hardened by ultraviolet rays and a liquid crystal composition (manufactured by 曰 Melk, TL 213 ' △ (4) 238) are added in a small amount of 2 〇:8 混合物. A polymerization initiator (manufactured by the company, Irgacure Hi, a product name) can be produced by irradiating a t-outer line in a state where a nematic liquid crystal phase is displayed at a normal temperature. This manufacturing process (4) requires a heat treatment so that damage to other components can be reduced. Further, the present invention is not limited to the above, and the same effect can be obtained by using which of the switching layers described below is applied to the liquid crystal layer 1. The switching layer may have a transmission state (first state) in which the incident light is maintained in the direction in which the incident light passes (including the case where the incident light is refracted) and a direction in which the incident light is changed, that is, at least Switching between the states of the scattering action (the second state). For example, as the light-scattering type liquid crystal, a nematic-cholesterol phase-change liquid crystal, a polymer-dispersed liquid crystal having a holographic function or a diffraction function, a liquid crystal gel, or the like can be given. If it is described in detail, the mode of using the cholesterol-structured liquid crystal can be switched in the transmission state and the reflective state of the scattering property by controlling the size of the liquid crystal region or the direction of the spiral axis. In the case of a polymer-dispersed liquid crystal having a stereoscopic photographing function, for example, by irradiating scattered light to a prepolymer liquid crystal mixture, a polymer can be produced by polymerization. The mode of the polymer-dispersed liquid crystal having such a stereoscopic function can be turned on in a transmission state and a reflective state in which scattering is imparted. Here, the display principle of the present reflective liquid crystal display device will be described. First, the action of the white display will be explained. When a voltage is applied, the liquid crystal molecules la of the liquid crystal layer 1 do not change direction toward the electric field direction. The liquid crystal layer lb of the polymer does not change direction. Therefore, the refractive index causes a mismatch between the two, and the liquid crystal layer i becomes a scattering state. When the incident light is incident on the liquid crystal layer 1 in a scattering state, the straight forward light transmitted through the liquid crystal layer 1 and the light scattered forward are reflected by the reproducible reflecting plate 8, and then subjected to scattering by passing through the liquid crystal layer 1 in a scattering state. So, not only is the light scattered by the back &gt; square, but also a lot of light returns to the viewing direction. Here, the display having a very high brightness can be obtained by using not only the poor backscattering but also the straight forward light transmitted through the liquid crystal layer 1 and the light scattered forward. Further, the liquid crystal groups in which the liquid crystal molecules 1 a are polymers are held at predetermined intervals. Next, the black display action is explained. When no voltage is applied, the liquid crystal molecules la of the liquid crystal layer 1 are in the same direction as the liquid crystal group lb of the polymer, and the liquid crystal layer 1 is in a transparent state. When the light source incident on the observer's eyes is observed, it is refracted by the substrate 6, the liquid crystal layer 1, or the like, and is reproduced by the reproducible reflector 8, and is similarly refracted by the substrate 6, the liquid crystal layer, or the like. The effect finally reaches the observer's eyes. That is, only the incident light from the vicinity of the observer's eyes becomes the outgoing light 11 observed by the observer. Here, if the vicinity of the observer's eyes is a region where the light source does not exist to a very narrow extent, the cheeks or white eyes or the like may be regarded as an indirect light source. Therefore, for example, if it is a region narrower than the black eye of the eye, black display can be realized. 12106I.doc -15- 1312092 [First Embodiment] As a first embodiment of the present invention, a reflective liquid crystal display device having a different pitch structure of a plurality of reproducible reflectors 8 having different pitches is formed, and black display is visually observed. Specifically, 'a reflexive reflector consisting of a right-angled iridium array, a microsphere array, or a microlens array, and twelve reflection types with a minimum unit structure pitch of 0.5 mm, 5 mm, 10 mm, and 25 mm, respectively. Liquid crystal display device. As a result, a reflexive reflecting plate composed of a right-angled iridium array, a recursive reflecting plate composed of a microsphere array, and a recursive reflecting plate composed of a microlens array are all achieved with a pitch of 0.5 mm and 5 mm. Black state. The distance between 10 mm and 25 mm was as follows: the white eye (strong film portion) was reflected on the reproducible reflector, and the brightness of the black display appeared. Regarding this result, research was conducted based on Fig. 2 . When the observer observes the vicinity of the center of the minimum unit structure of the repetitive reflecting plate, the position of the light source of the observed light becomes very close to the observer's eye. That is, 'this case is as shown in Fig. 2(a)'. The light 10 incident on the reflective liquid crystal display device from the very close pupil of the observer's eye is reflected by the reflexive reflecting plate, and the observer observes the emitted light 11β. As shown in Fig. 2(b), when the observer observes the vicinity of the upper end of the minimum unit structure of the reflexive reflecting plate, the position of the light source of the observed light becomes the lower side of the observer's eye. That is, in this case, the light 12 incident on the reflective liquid crystal display device from the lower side of the observer's eyes is reflected by the reproducible reflecting plate, and the observer observes the outgoing light 13 which is the reflected light. At this time, if the pitch of the minimum unit structure of the reflexive reflector is large, the white eyeball on the lower side is observed according to the size thereof. 0 121061.doc 16· J312092 In addition, when the observer observes the vicinity of the lower end of the minimum unit structure of the reflexive reflector The position of the light source of the observed light becomes the upper side of the observer's eye. That is, in this case, the light 14 incident on the reflective liquid crystal display device from the upper side of the observer's eyes is reflected by the reproducible reflecting plate, and the observer observes the outgoing light 15 which is the reflected light. At this time, if the pitch of the minimum unit structure of the retroreflective sheeting is large, the white eyeball on the upper side is observed according to the size. The image constructed by the above-mentioned minimum unit structure reflected in the retroreflective sheeting can be said to be an image of a region composed of a pitch 16 of twice the length 丨7 of the minimum unit structure of the retroreflective sheeting. That is, in order to achieve a good black display, it is necessary to reduce the in-plane image composed of the double length 17 of the pitch 16 of the minimum unit structure of the reflex reflector, which is smaller than the black eyeball. This is § If you want to consider the size (diameter) of the black eyeball to be 10 mm (Ozekang, Eye Encyclopedia, Dongshan Study), the spacing 16 of the minimum unit structure of the reflex reflector 8 must be less than $ mm. . This study is consistent with the results of this embodiment. From the above, it is known that the pitch 16 of the minimum unit structure of the reflexive reflector must be 5 mm or less. Further, Fig. 2(c) shows a structure in which beads (microballs) are used for the minimum unit structure of the reproducible reflecting plate 8, as shown in the figure, where the structure is also the observer and the reflection from the recursive reflecting plate 8. The relationship of light is the same as that of the retroreflective sheeting 8 having the right-angled 稜鏡 array shape shown in Fig. 2(b). The structure in which the beads (microballs) are used for the minimum unit structure of the recursive reflector 8 will be described in detail later. From the above results, the inventors of the present invention newly developed the measuring system shown in Figs. 6 and 9. The above measuring system is provided with a light receiver 23, a measuring stage 34, and a light projecting unit 36. 121061.doc -17- J312092 The above-mentioned dynamometer 34 will be placed horizontally for its upper measuring surface 34a. The light projecting unit 36 covers the measuring surface 34a in a hemispherical shape, and the light projecting from the light projecting unit 36 is irradiated to the center position of the hemisphere with equal brightness from all directions of the hemisphere. The radius of the above hemisphere is 8 cm. The above-mentioned light receiver 23 can change its light receiving polar angle. The angle of the light receiving polar angle from the center position of the hemisphere, the normal direction of the measuring surface 34a and the direction in which the light receiver 设置 is provided is indicated by θ in Fig. 6 . The diameter of the range in which the light receiver 23 receives light is 1 cm. The minimum unit structure 3 1 of the reflexive reflecting plate 8 is disposed at the hemispherical center position of the measuring surface 34a such that the normal direction of the minimum unit structure 3丨 coincides with the normal direction of the measuring surface 34a. The normal direction is a direction perpendicular to a virtual plane connecting the vertices of the minimum unit structure 31. Further, the chopper 23 is provided such that the optical path direction of the received light becomes the normal direction of the measurement surface 3" from the center position of the hemisphere. The viewing angle 30 of the photoreceptor 23 is a reflexive reflecting plate 8 of the object to be measured. The minimum unit structure 3 1Μ is adjusted to be just aligned and measured. At this time, the reflectance of the fully diffused reflector when the fully diffused reflector is disposed at the same position is 100%. Thus, the minimum unit structure used is 3 The measurement of the pitch of the crucible is carried out separately, and the results are shown in Fig. 10. From the results shown in Fig. 10, it is found that 'to achieve a good black display, the minimum unit structure of 3 turns must be less than 5 mm. The black eyeballs are further described in detail. According to the figure, the pupils are present in the range of the black eyeballs. The color of the iridescent color (reflected light) varies from person to person, and the Toyo people are black, and the Westerners are colored. The pupil is transparent 121061.doc J312092: The pupil of the pupil (reflected light) is the color of the internal organs such as the omentum (reflecting t, the pupil can be regarded as black in color. That is, the pupil has ', and the light is not broken The aperture function is so that as long as the observer observes the display (as long as the light source is not observed), the reflection of the internal organs such as the omentum is small, so the pupil can be regarded as black.

由以上’也包含虹彩的顏色進行和上述同樣的討論,得 知復現性反射板8最小單位構造的間距為瞳孔大小(直徑) _程度(奥澤康正著、眼晴百科詞典上、疑問、提問 棚、東山書房)的一半以下,即1 mm以下更佳。 [實施第二形態] 作為本發明第二實施形態,進行使用由直肖稜鏡所構成 的復現性反射板8或省略上述復現性反射板8而製作的各反 射型液晶顯示裝置的反射率及對比度測量。作為上述各反 射型液晶顯示裝置,分別製作以下五種不同的反射型液晶 顯示裝置而測量。 第一裝置係對於構成復現性反射板8的直角棱鏡陣列, 如圖3所載’在構成直角稜鏡陣列最小單位構造之面的一 部分(例如為各最小單位構造境界線的稜線以上)製作板狀 光吸收面部18的反射型液晶顯示裝置9(圖1所示的構造)。 稱此為樣品A。具體製作方法後述之。具有上述光吸收面 部18的反射型液晶顯示裝置9如後述,成為使黑顯示品質 提高、對比度高者。 第二裝置如圖4所載,係在樣品A表面配置聚集入射光 (凸透鏡功能)的透鏡片20所製作的反射型液晶顯示裝置 121061.doc -19- J312092 21。在本實施形態雖然在入射側基板6前面配置透鏡片 20 ’但已被確認即使配置於復現性反射板8正上方亦有和 本實施形態同樣的效果。稱此為樣品B。 第三裝置係對於構成復現性反射板8的直角稜鏡陣列, 如圖3所載,在構成直角棱鏡陣列最小單位構造之面的一 部分設置板狀光吸收面部18,並且使用為了吸收到頂點或 邊的入射光的光吸收部位設於頂點或邊的直角稜鏡陣列所 製作的反射型液晶顯示装置9。稱此為樣品C。具體製作方 法後述之。 藉由上述光吸收面部1 8或為了吸收到頂點或邊等邊緣部 的入射光的光吸收部位,如後述,可成為更進一步使黑顯 示品質提高、對比度高者。又,上述雖然舉設置光吸收部 位之例,但如後述,設置遮光部也取得同樣的效果。 第四裝置係在構成復現性反射板8的直角稜鏡陣列未施 以特別處理’即構成直角稜鏡陣列最小單位構造(直角稜 鏡)之面内、圖3所載的反射面19以外之面(在為鏡界線的稜 線8c上假想地形成於前述法線方向之面)全部作為光透過 面所製作的反射型液晶顯示裝置9。此雖然是本發明範圍 内’但稱為樣品R1作為比較例1。 第五裝置係取代圖1所示的復現性反射板8而使吸收層32 配置者,圖5顯示其結構。將此作為比較例2,稱為樣品 R2。 此處’作為使用於樣品A及樣品C的反射型液晶顯示裝 置的復現性反射板8的製程一例,將剝離(lift 〇均法概略顯 121061.doc •20- J312092 示於圖7。首先,將黑色樹脂用金屬模沖壓成型,將呈直 角稜鏡形狀的凹部25製作成成型樹脂板35a[參照圖7(a)]。 所謂直角棱鏡形狀,係下述形狀:從成型樹脂板25a表 面向内部嵌入立方體一角所形成。此時,連結上述立方體 中心和一角的假想線沿著成型樹脂板25a表面的法線方 向,即成為平行。 在這種成型樹脂板25a如多數、互相鄰接且緊密並設般 地形成呈直角稜鏡形狀的凹部25。互相鄰接的各凹部25在 這些凹部之間具備成為境界線的稜線8c,並且具有各頂 點。如此’凹部25如成為假想平面25b上般地並設多數凹 部25的各頂點,形成反射面19前的直角稜鏡陣列被形成。 此外,在上述成型樹脂板2 5 a如將互相鄰接的凹部2 5間 遮光般地板形成立設於上述稜線8C上的前述光吸收面部 18。再者’光吸收面部18形成如下:其前端對於連結前述 各頂點的假想平面25b成為齊平面。 其次’用絲網印刷法將抗蝕劑26塗佈於成型樹脂板25a 的成型面上。抗蝕劑材料例如將〇FPR_8〇〇(東京應化公司 製造)形成厚度4 μιη薄膜[參照圖7(b)]。 其次,將抗蝕劑26以1〇〇度預烘3〇分鐘,在抗蝕劑26上 配置光罩27而進行曝光。在樣品a及樣品C的曝光製程分 別使用如圖8(a)及圖8(b)所示的各光罩27a、27b[參照圖 7(c)]。 各光罩27a、27b的形狀係為了在各稜線8c上形成光吸收 面部1 8的形狀’該各稜線8〇成為呈並設直角稜鏡形狀的凹 121061.doc •21 - 1312092 部25的境界線。而且,光罩27b的形狀也形成對於成為各 凹部25頂點或邊(谷底線)的邊緣部的光吸收部位。 即,將在圖8(a)的圖案所示的光罩27a使用於光罩27時, 在構成直角稜鏡形狀最小單位構造之面的一部分可形成於 光吸收面部18。再者,將在圖8(b)的圖案所示的光罩27匕使 用於光罩27時,可更進-步實現配置對於直角稜鏡形狀最 小單位構造的頂點和邊的光吸收部位的構造。藉由這種結 構防止來自頂點或邊的不規則反射(反射且散射的現象), 可得到對比度高的反射型液晶顯示裝置9、2 1。 其次,使抗蝕劑26顯影,在上述成型樹脂板25a的成型 面上從上述成型樹脂板25 a的法線方向將銀利用蒸鍍形成 2000埃的薄膜作為反射面19〇就顯影液而言,例如使用 NMD 32.38%(東京應化公司製造)[參照圖7(句]。 其次,除去殘留抗蝕劑26[參照圖7(e)],最後使上述成 型樹脂板25a的凹部25利用透明樹脂29平坦化[參照圖 7(f)]。此時,透明樹脂29形成如下:其表面和連結各光吸 收面部18前端或各頂點的假想平面25b —致。 在本實施形態雖然就剝離法加以揭示,但本發明者們確 認用下述通常方法亦可製作:全面蒸鍍銀或鋁等金屬,將 銀或銘等金屬形成圖案。此外,復現性反射板8也可以利 用上述製造方法和反射側基板7—體形成。 茲用圖6說明以上五種樣品測量方法。首先,將由半球 全體所照射的光利用設於從測量面34a的法線方向傾斜8度 的方向的受光器23受光。此時,設置遮光板24,以免受光 121061.doc -22· ,1312092 器23感受正反射成分。 反射率及對比度的測量結果如下: 樣品A :反射率_ 3 5 %、對比度-18 樣品B :反射率_40°/。、對比度-40 樣品C :反射率-32%、對比度-21 樣品Rl(比較例1):反射率-45%、對比度-3 樣品R2(比較例2):反射率-5%、對比度· 17 根據上表所示樣品A、B及C結果與樣品Rl(比較例1)結 果的比較得知,藉由在構成復現性反射板8最小單位構造 之面的一部分設置光吸收面部18的方法、比復現性反射板 8在觀察者側配置透鏡片2〇的方法及為了吸收到復現性反 射板8最小單位構造(直角棱鏡)的頂點或邊的入射光的吸收 部位或遮斷在頂點或邊不規則反射之光的遮光部這種方 法’對比度分別大幅提高。此外,顯然上述各方法怎麼組 合都可更加發揮效果。 此外,比較樣品A、B及C結果與樣品R2(比較例2)結果 的結果得知,使用樣品A、B、C的復現性反射板8的反射 型液晶顯示裝置9、21比使用樣品R2的吸收層32的反射型 液晶顯示裝置22在反射率顯出大幅提高。 在本發明之反射型液晶顯示裝置附加觸摸面板時也不會 損及顯示品質’可實現輸入裝置一體型液晶顯示裝置。 其次’就設置遮光部取代前述光吸收部位之例加以說 明。如圖12(a)所示,省略吸收或遮斷來自復現性反射板8 最小單位構造(直角稜鏡)的頂點8b或邊8&amp;等邊緣的光的機 121061.doc -23- 1312092 構時,如圖12(b)所示,看得見白色來自復現性反射板8最 小單位構造(直角稜鏡)的頂點8b或邊8a等邊緣的不規則反 射光8d及上述不規則反射光8d以和其對向的反射面19反射 的反射光8e,就能使黑顯示惡化。 於是,如圖13(a)所示,在復現性反射板8正上方設置遮 斷來自復現性反射板8最小單位構造(直角稜鏡)的頂點8 b或 邊8a的不規則反射光的遮光部28。上述遮光部“如將頂點 8b或邊8a從上方覆蓋順沿般地形成帶狀,最好由和後述黑 矩陣(black matrix)48 BM相同素材所形成。 藉由這種遮光部28,如圖13(b)所示,可遮斷來自頂點 8 b或邊8 a的不規則反射光8 d ’並且也可減少到頂點8 b或邊 8a的入射光而也可抑制上述反射光8e,所以可改善黑顯 示。From the above discussion, which also includes the color of the iridescent color, it is known that the minimum unit structure of the reflex reflector 8 is the pupil size (diameter) _ degree (Ao Ze Kang is in the eyes, the eyes are in the dictionary, questions, questions) Less than half of the shed and Dongshan study, that is, less than 1 mm. [Second Embodiment] As a second embodiment of the present invention, reflection of each of the reflective liquid crystal display devices produced by using the retroreflective sheeting 8 composed of a straight mirror or the omitting of the reproducible reflecting plate 8 is performed. Rate and contrast measurements. As each of the above-described reflective liquid crystal display devices, the following five different reflective liquid crystal display devices were produced and measured. The first device is made up of a rectangular prism array constituting the retroreflective sheeting 8, as shown in Fig. 3, which is formed in a part of the surface constituting the smallest unit structure of the right-angled array (for example, above the ridgeline of each minimum unit structural boundary line). The reflective liquid crystal display device 9 (structure shown in Fig. 1) of the plate-shaped light absorbing surface portion 18. This is called sample A. The specific production method will be described later. As will be described later, the reflective liquid crystal display device 9 having the above-described light absorbing surface portion 18 has improved black display quality and high contrast. As shown in Fig. 4, the second device is a reflection type liquid crystal display device 121061.doc -19- J312092 21 which is formed by concentrating the lens sheet 20 which collects incident light (convex lens function) on the surface of the sample A. In the present embodiment, the lens sheet 20' is disposed in front of the incident side substrate 6. However, it has been confirmed that the same effect as in the present embodiment can be obtained even if it is disposed directly above the reproducible reflector 8. This is called sample B. The third device is a rectangular yoke array constituting the retroreflective sheeting 8, as shown in Fig. 3, a plate-like light absorbing surface portion 18 is provided at a portion of the face constituting the smallest unit configuration of the right-angle prism array, and is used for absorbing the apex. The light-absorbing portion of the incident light on the side is provided on the reflective liquid crystal display device 9 made of a right-angled array of vertices or sides. This is called sample C. The specific production method will be described later. The light absorbing surface portion 18 or the light absorbing portion of the incident light for absorbing the edge portion such as the vertex or the side can further improve the black display quality and the contrast ratio as will be described later. Further, although the above is an example in which the light absorbing portion is provided, the same effect can be obtained by providing the light shielding portion as will be described later. The fourth device is outside the reflecting surface 19 of FIG. 3 in the plane in which the rectangular yoke array constituting the retroreflective sheeting 8 is not subjected to special treatment, that is, the configuration of the right-angle 稜鏡 array minimum unit structure (right angle 稜鏡). The reflective liquid crystal display device 9 which is formed as a light transmitting surface is formed on the surface (the surface which is imaginarily formed in the normal direction on the ridge line 8c of the mirror boundary line). This is within the scope of the present invention, but is referred to as sample R1 as Comparative Example 1. The fifth device is configured to replace the reflexive reflecting plate 8 shown in Fig. 1 so that the absorbing layer 32 is disposed, and Fig. 5 shows the structure thereof. This was referred to as Comparative Example 2 and referred to as Sample R2. Here, as an example of the process of the reflexive reflecting plate 8 of the reflective liquid crystal display device used for the sample A and the sample C, the peeling is performed (the lifting method is shown in Fig. 7 first. 121061.doc • 20- J312092 is shown in Fig. 7. First, The black resin is press-molded by a metal mold, and the concave portion 25 having a right-angled shape is formed into a molded resin sheet 35a (see Fig. 7(a)). The right-angle prism shape is a shape from the surface of the molded resin sheet 25a. The inside of the cube is formed by inserting a corner of the cube. At this time, the imaginary line connecting the center and the corner of the cube is parallel along the normal direction of the surface of the molded resin sheet 25a. The molded resin sheet 25a is mostly adjacent to each other and close to each other. A concave portion 25 having a rectangular shape is formed in a normal manner. Each of the concave portions 25 adjacent to each other has a ridge line 8c as a boundary line between the concave portions, and has apexes. Thus, the concave portion 25 is formed on the imaginary plane 25b. A plurality of apexes of the plurality of concave portions 25 are formed, and a right-angled 稜鏡 array formed before the reflecting surface 19 is formed. Further, the molded resin sheets 25 5 a are covered by the concave portions 25 adjacent to each other. The light absorbing surface portion 18 is formed on the ridge line 8C. The light absorbing surface portion 18 is formed such that the front end thereof is flush with the imaginary plane 25b connecting the vertices. The resist 26 is applied to the molding surface of the molded resin sheet 25a. For example, 抗蚀FPR_8〇〇 (manufactured by Tokyo Ohka Co., Ltd.) is formed into a film having a thickness of 4 μm [see Fig. 7(b)]. The resist 26 is prebaked for 3 minutes at 1 degree, and the mask 27 is placed on the resist 26 to be exposed. The exposure processes of the sample a and the sample C are as shown in Figs. 8(a) and 8( b) each of the photomasks 27a and 27b (see Fig. 7(c)) shown in Fig. 7. The masks 27a and 27b are shaped such that the shape of the light absorbing surface portion 18 is formed on each ridgeline 8c. The boundary line of the concave portion 121061.doc •21 - 1312092 portion 25 is formed in a right angle 。 shape. Moreover, the shape of the photomask 27b also forms a light absorbing portion for the edge portion which becomes the apex or side (bottom line) of each concave portion 25. That is, when the photomask 27a shown in the pattern of Fig. 8(a) is used for the photomask 27, A part of the surface of the corner unit having the smallest unit structure can be formed on the light absorbing surface portion 18. Further, when the mask 27 shown in the pattern of Fig. 8(b) is used for the mask 27, it can be further advanced. The configuration of the light absorbing portion of the apex and the side of the minimum unit structure of the right angle 稜鏡 shape is realized. By this structure, irregular reflection (reflection and scattering phenomenon) from the vertices or edges is prevented, and a reflection type with high contrast can be obtained. Liquid crystal display devices 9 and 21. Next, the resist 26 is developed, and a film of 2000 angstroms is formed by vapor deposition on the molding surface of the molded resin sheet 25a from the normal direction of the molded resin sheet 25a. In the case of the developer, for example, NDI 32.38% (manufactured by Tokyo Ohka Co., Ltd.) is used [see Fig. 7 (sentence). Then, the residual resist 26 is removed (see Fig. 7(e)), and finally, the concave portion 25 of the molded resin sheet 25a is flattened by the transparent resin 29 (see Fig. 7(f)). At this time, the transparent resin 29 is formed such that its surface coincides with the imaginary plane 25b which connects the front end or each vertex of each light absorbing surface portion 18. In the present embodiment, the peeling method is disclosed. However, the inventors of the present invention have confirmed that the following conventional methods can be used: a metal such as silver or aluminum is vapor-deposited in total, and a metal such as silver or a metal is patterned. Further, the retroreflective sheeting 8 can also be formed by the above-described manufacturing method and the reflecting side substrate 7. The above five sample measurement methods are illustrated using FIG. First, the light irradiated by the entire hemisphere is received by the photodetector 23 provided in a direction inclined by 8 degrees from the normal direction of the measuring surface 34a. At this time, the visor 24 is provided to protect the specular reflection component from the light 121061.doc -22·1312092. The reflectance and contrast measurements are as follows: Sample A: reflectance _ 3 5 %, contrast -18 sample B: reflectance _40°/. , Contrast - 40 Sample C: Reflectance - 32%, Contrast - 21 Sample Rl (Comparative Example 1): Reflectance - 45%, Contrast - -3 Sample R2 (Comparative Example 2): Reflectance - 5%, Contrast · 17 According to the results of the samples A, B and C shown in the above table and the results of the sample R1 (Comparative Example 1), the method of providing the light absorbing surface portion 18 by a part of the surface constituting the minimum unit structure of the retroreflective sheeting 8 is known. a method of arranging the lens sheet 2〇 on the observer side than the retroreflective sheeting 8 and absorbing the incident light of the incident light for absorbing the apex or side of the minimum unit structure (right-angle prism) of the retroreflective sheeting 8 The method of the opacity or the side of the light that is irregularly reflected is greatly improved in contrast. In addition, it is clear that the combination of the above methods can be more effective. Further, as a result of comparing the results of the samples A, B, and C with the results of the sample R2 (Comparative Example 2), it was found that the reflective liquid crystal display devices 9, 21 using the reproducible reflecting plates 8 of the samples A, B, and C were more than the samples used. The reflective liquid crystal display device 22 of the absorbing layer 32 of R2 exhibits a large increase in reflectance. When the touch panel of the present invention is attached to a touch panel, the display quality is not impaired. An input device-integrated liquid crystal display device can be realized. Next, an example in which a light shielding portion is provided instead of the light absorbing portion will be described. As shown in Fig. 12 (a), the machine 121061.doc -23-1312092 which absorbs or blocks light from the apex 8b of the minimum unit structure (right angle 稜鏡) of the retroreflective sheeting 8 or the edge of the edge 8 &amp; When, as shown in FIG. 12(b), white irregular reflection light 8d from the apex 8b of the minimum unit structure (right angle 稜鏡) of the retroreflective sheeting 8 or the edge of the edge 8a and the above irregularly reflected light can be seen. 8d, the reflected light 8e reflected by the reflecting surface 19 opposed thereto can deteriorate the black display. Then, as shown in Fig. 13 (a), irregularly reflected light which occludes the vertex 8 b or the side 8a from the minimum unit structure (right angle 稜鏡) of the reproducible reflecting plate 8 is disposed directly above the recursive reflecting plate 8. The light shielding portion 28. The light-shielding portion "is formed in a strip shape such that the vertex 8b or the side 8a is covered from the upper side, and is preferably formed of the same material as the black matrix 48 BM described later. With the light-shielding portion 28, as shown in the figure As shown in FIG. 13(b), the irregular reflected light 8 d ' from the vertex 8 b or the side 8 a can be blocked and the incident light to the vertex 8 b or the side 8 a can be reduced, and the reflected light 8 e can also be suppressed. Can improve the black display.

此外’將上述遮光部28如圖14及圖15所示,設於對於復 現性反射板8離間的後述滤色器層4 8上亦可 因此,這種 遮光部28雖然是復現性反射板8上方,但形成於不是正上 方的位置。此時’上述遮光部28最好和後述黑矩陣48BM 同時且由相同素材所形成。這種情況也同樣可改善黑顯 示0 [實施第三形態] 兹就本發明實施第三狀態根據圖16至圖20說明如下。 又’為了說明方便起見,關於具有如前述實施第一及第二 形態的圖面所示的構件同一功能的構件,附上同一符號, 省略其說明。 121061.doc •24- 1312092 作為關於本實施第三形態的反射型顯示裝置的反射型液 晶顯示裝置41的液晶面板如圖16所示,係從圖4所示的反 射型液晶顯示裝置21省略透鏡片20,在電極4和入射側基 板6之間形成濾色器層48。 濾色器層48係為了可多色顯示所設。在濾色器層48以任 意排列圖案配置R(紅)、G(綠)、B(藍)三色的各遽色器 48R、48G、48B。在上述反射型液晶顯示裝置41,與各遽 色器48R、48G、48B對應而形成各像素。 此外’在各濾色器48R、48G、48B的互相鄰接之間設有 黑矩陣((black matrix)48 BM。各濾色器 48R、48G、48B及 黑底4 8 B Μ如在後述實施第四形態說明,起作為光吸收部 的作用’該光吸收部係吸收通過不同多數像素的光。 為上述復現性反射板8的直角稜鏡陣列雖然有將入射光 復現反射、反射到入射光方向的特性,但也有將光線對於 中心軸並進移動到對稱位置的特性。即,如圖丨6所示,對 於入射光10的出射光(反射光)11成為中心轴43的大致對稱 位置。 在本實施第三形態的反射型液晶顯示裝置41將復現性反 射板8最小單位構造(即凹部25)的間距設定在濾色器48R、 48G、48B的間距以下。 此處所謂凹部2 5的間矩’係指互相郭接的各凹部2 5對應 的位置(例如呈直角稜鏡形狀的凹部25頂點和頂點之)間的 最短距離(在圖2(b)、圖7(f)及圖8(a)顯示成為間距ι6)。此 外’所謂遽色器48R、48G、48B的間距,係指各鄰接渡色 121061.doc -25- 1312092 器48R、48G、48B對應的位置(例如濾色器中心和中心之) 間的最短距離(在圖16顯示作為間距58)。 反射型液晶顯示裝置41因呈復現性反射板8的直角稜鏡 形狀的凹部25的間距16和濾色器48R、48G、48B的間距58 具有上述關係而如後述,通過任意濾色器48R、48G、48B 入射到復現性反射板8的光藉由復現性反射板8的反射,再 通過相同濾色器48R、48G、48B出射。因此,避免入射光 和出射光通過互相不同的濾色器48R、48G、48B的缺陷, 可防止因混色而亮度及色度降低。 關於這種反射型液晶顯示裝置41的顯示動作,和前述實 施第一及第二形態同樣。 本實施第三形態的反射型液晶顯示裝置41如前述,呈復 現性反射板8的直角稜鏡形狀的凹部25的間距16成為濾色 器48R、48G、48B的間距58以下。具體而言,凹部25的間 距16為25 μηι間距,另一方面濾色器48R、48G、48B的間 距58成為100 μηι間距。 因此,如圖16所示,對於透過濾色器48Β的入射光10的 出射光(反射光)11再透過相同濾色器48Β。即,在反射型 液晶顯示裝置41,通過任意濾色器48R、48G、48Β入射到 復現性反射板8的光藉由復現性反射板8的反射,再通過相 同濾色器48R、48G、48Β出射。 為了和上述反射型液晶顯示裝置41的比較,如圖17所 示,製作了復現性反射板38的直角稜鏡陣列的間距比濾色 器48R、48G、48Β的間距大的反射型液晶顯示裝置42。具 121061.doc -26- 1312092 體而言,復現性反射板38的直角稜鏡陣列的間距為12〇 μηι 間距’另一方面濾色器48R、48G、48Β的間距成為100 μηι 間距。 在上述反射型液晶顯示裝置42,對於透過濾色器48(}的 入射光39的出射光(反射光)4〇透過濾色器48R,入射光39 和出射光40就通過互相不同的各濾色器48G、48R。因 此,產生了因混色而亮度及色度降低。 另一方面’在本實施第三形態的反射型液晶顯示裝置 41 ’如圖16所示,因復現性反射板8的凹部25的間距16成 為濾色器48R、48G、48B的間距58以下而無入射光和出射 光通過互相不同的滤色器48R、48G、48B這種缺陷,可防 止因混色而亮度及色度降低。 运種間距16和間距5 8之比若為1以下即可,但1 /2以下較 佳,1/4以下更佳。此外,上述比希望設定在ι/(2η)(η為自 然數)。這種情況,與各像素對應的各最小單位構造多數 正好容納於一個濾色器,很理想。 本實施第三形態的反射型液晶顯示裝置41雖然將直角稜 鏡陣列使用於復現性反射板8,但不限於此,也可以如圖 18所示,係如使多數小珠(微小球)44互相鄰接且緊密並設 成一層狀般地設置的結構(陣列)的反射型液晶顯示裝置 45。使用小珠(微小球)44的復現性反射板8時,將各鄰接小 珠44對應的位置(例如各小珠44中心和中心之)間的最短距 離稱為最小單位構造的間距5 1。 在上述反射型液晶顯示裝置45,各小珠44成為復現性反 121061.doc •27- J312092 射板8的最小單位構造,復現性反射板8的小珠44的間距51 成為濾色器48R、48G、48B的間距58以下。具體而言,小 珠44的間距51為25 μιη間距,另一方面濾色器48R、48G、 48B的間距58成為1〇〇 μιη間距。 因此’例如對於透過濾色器48Β的入射光10的出射光(反 射光)11再透過相同濾色器48Β。即,在反射型液晶顯示裝 置45 ’通過相同濾色器4811、48(}、48Β入射到復現性反射 板8的光藉由復現性反射板8的反射,再通過相同濾色器 48R、48G、48Β 出射。 為了和上述反射型液晶顯示裝置45的比較,如圖19所 示’製作了復現性反射板的小珠53的間距比濾色器48R、 48G、48B的間距大的反射型液晶顯示裝置47。具體而 言’復現性反射板的小珠53的間距為120 μηι間距,另一方 面濾色器48R、48G、48Β的間距成為1〇〇 間距。 在上述反射型液晶顯示裴置47 ’例如對於透過濾色器 48G的入射光54的出射光(反射光)55透過濾色器48R,入射 光54和出射光55就通過互相不同的濾色器4 8G、48R。因 此,產生了因混色而亮度及色度降低。 另一方面,在本實施第三形態的反射型液晶顯示裝置 45 ’如圖18所示,因復現性反射板8的小珠44的間距5 1成 為濾色器48R、48G、48Β的間距58以下而無入射光1〇和出 射光11通過互相不同的濾色器48R、48G、48Β這種缺陷, 可防止因混色而亮度及色度降低。 此外,復現性反射板8除了上述直角稜鏡陣列、小珠陣 121061.doc -28- J312092 列之外’也可以是使用由多數微型透鏡構成的微型透鏡睁 列的結構。復現性反射板8的反射材料若具有將入射光復 現反射、反射到入射光方向的特性,具有將光線對於中心 軸並進移動到對稱位置的特性,則使用哪種構件都可以。 此外,如圖20所示’比復現性反射板8在入射側配置和 刖述透鏡片2 0同樣的透鏡5 2的結構亦可。藉此,可使復現 性反射板8的復現性能提高,可得到白顯示亮度高且對比 度间的反射型液晶顯不裝置。又’圖20所示的結構雖然在 入射側基板6表面(刖面)设置透鏡片52,但也可以是在復現 性反射板8正上方配置透鏡片52的結構。 [實施第四形態] 茲就本發明實施第四形態根據圖21至圖25說明如下。 又’為了說明方便起見’關於具有和前述實施第一至第三 形態的圖面所示的構件同一功能的構件,附上同一符號, 省略其說明。 如圖21所示,本實施第四形態的反射型液晶顯示裝置61 在下述之點和上述實施第三形態的反射液晶顯示裝置41不 同:多數隔柵(louver)(光吸收部)60設於入射侧基板6。其 以外的結構和上述反射型液晶顯示裝置41的結構相同。在 本實施第四形態使用光控薄膜(住友3撾公司製造)作為隔栅 60 ° 上述各隔柵60雖然對於入射側基板6厚度方向(即對於入 射側基板6表面方向的垂直方向),使取決於反射型液晶顯 示裝置61顯示面大小和使用用途的視野角範圍内的光通 121061.doc -29- 1312092 過,但係吸收通過不同多數像素的光的光吸收部,係遮斷 上述視野角内以外的預定範圍的光的遮光構件。此外,如 圖22所示,也可以是將濾色器部48的黑矩·48βμ形成隔 柵狀的反射型液晶顯示裝置41a。 如圖23所示,在未具備隔柵的反射型液晶顯示裝置69, 入射到白顯示即在散射狀態的像素的光的一部分或入射到 黑顯示即在透過狀態的像素的光的一部分有時會入射到其 籲 他像素作為雜光68。由其他像素所導光的雜光68入射到黑 顯示即在透過狀態的像素,就被該像素位置的復現性反射 板8反射而出射到液晶面板外。此提高了黑狀態的反射 率’成為使黑顯示惡化的原因。 * 另一方面’如圖21所示’在反射型液晶顯示裝置61,因 : 設有上述隔柵6〇而可利用隔柵60吸收由這種其他像素所導 光的雜光59。在圖21中,以兩點鏈線顯示雜光59被吸收, 不侵入其他像素。 # 在這種本實施第四形態的反射型液晶顯示裝置61,因可 利用隔栅60吸收由其他像素所導光的雜光59而可抑制從顯 不面法線傾倒的觀察方向的泛黑,實現良好的黑顯示。此 效果特別是將直角稜鏡陣列使用於復現性反射板8時顯 著。 上述效果利用如圖24所示,濾色器層48起作為光吸收部 的作用的實施第三形態的反射型液晶顯示裝置41的結構亦 可得到。即’由其他像素所導光的雜光62被黑矩陣48BM 吸收’並且藉由透過多數濾色器48R、48G、48B,實質上 121061.doc -30- 1312092 亦被充分衰減,可保持良好的黑顯示。 其次,進行了如下的實驗:確認配置也起作用作為光吸 收。卩的濾色器48R、48G、48B時的效果。具體而言,將從 反射型液晶顯示裝置41省略濾色器48R、48G、48B以外全 邛同樣製作的反射型液晶顯示裝置在如圖9所示的測量系 ''先/則i /哭射光入射時的黑顯示的反射率。又,和前述實 施第开^態同樣’以完全漫反射板的反射率為1 〇〇%。結 果如圖25所示。 猎由如此配置濾色器48R、48G、48B,和不配置時相 比’即使在從顯示面法線傾倒的(傾斜的視野角)觀察方 向’黑顯示的反射率也被減低,得知黑顯示的品質提高。 如以上’藉由形成配置隔柵6〇或濾色器層48等光吸收部 的結構’可抑制上述觀察方向的黑顯示的反射率增加,實 現良好的黑顯示。 [實施第五形態] 兹就本發明實施第五形態根據圖26說明如下。又,為了 說明方便起見’關於具有和前述實施第一至第四形態的圖 面所示的構件同一功能的構件,附上同一符號’省略其說 明。 本實施第五形態的反射型液晶顯示裝置67在下述之點和 上述實施第三形態的反射型液晶顯示裝置41不同:如圖26 所示’以光吸收構件64覆蓋為顯示面板的液晶面板側面 (反射型液晶顯示裝置67側面)。其以外的結構和上述反射 型液晶顯示裝置4 1的結構相同。 121061.doc -31- 1312092 上述反射型液晶顯示裝置67具備光吸收構件64,所以防 止外部光65入射到液晶面板内。此外,可防止在裝置内部 導光而到達液晶面板側面的雜光66散射等影響所造成的黑 顯不惡化’實現良好的黑顯示。 又最好光吸收構件64設於液晶面板四邊(即在各基板 6、7所形成的面板狀部側面)全部。此外,上述光吸收構 件64的材料並不特別限定,但可使用遮光屏、和隔柵⑼或 參 黑矩陣48BM相同的材料。此外’較佳是最好如空氣等低 折射率層不存在於反射型液晶顯示裝置和光吸收構件之 間般地形成光吸收構件64。 [實施第六形態] 茲就本發明實施第六形態根據圖27說明如下。又,為了 - 說明方便起見,關於具有和前述實施第一至第五形態的圖 面所示的構件同一功能的構件,附上同一符號,省略其說 明。 φ 在本實施第六形態的反射型液晶顯示裝置,如圖27(e)所 示’取代復現性反射板8而使用復現性反射板§ 8 :具備具 有和前述光吸收面部18同樣功能的光吸收面部78。上述光 吸收面部78係由隨著光照射而著色的感光材料所構成。關 於其他結構’也可以是前述實施第一至第五形態的任—結 構。 且說在由模壓所成型的板狀光吸收面部18,其高度和厚 度之比(aspect ratio)最大也是10。這是因為即使使用將高 厚比超過10的金屬模成型’因樹脂不存在於周圍而也會成 121061.doc -32- 1312092 為成型不良。即,製造高厚比超過1〇的光吸收面部困難。 面在由如上述的感光材料構成的光吸收面部78 部,因利用感光可細微化可形成膜狀,並且成型時樹脂存 在於成為光吸收面部7 8部分的周圍(厚度方向的兩端側)加 以支持而高厚比超過1G,即使超過為更佳值的Μ亦可製 造。換言之,可使光吸收面部78的厚度變薄。因此,使用 具備上述光吸收面部78的復現性反射板88的反射型液晶顯 .不裝置可提高復現性反射板88的數值孔徑,所以白顯示的 顯示品質亦可更加改善。 兹就這種復現性反射板88的製造方法說明於下。首先, 將黑色樹脂用金屬模沖壓成型,製作為型樹脂板75 :互相 鄰接具有多數具備直角稜鏡形狀的凹部72 [參照圖27(a)]。 其次’從成型樹脂板75的基板法線方向在凹部72表面以厚 度2000埃蒸鍍銀而形成金屬薄膜73作為反射面[參照圖 27(b)]。接著,用含有感光材料的透明樹脂74平坦化[參照 _ 圖 27(c)]。 作為含有上述感光材料的透明樹脂74,例如可使用包含 聚乙二醇(黏合劑)、2,2,-雙(〇-氯苯基)-4,4,,5,5,-四苯基· 3,3'-二咪唾(感光性鹵素)、白結晶紫(leuc〇 crystal violet)(發色劑)、i,b-芘醌(光還原劑)的材料。 其後,使用例如如圖8(a)所示的光罩27a,以可見光(4〇〇 nm-500 nm)進行曝光[參照圖27(d)]。其次,除去上述光罩 27a後,以紫外線全面曝光而使其發色固定,得到具備光 吸收面部78的復現性反射板88[參照圖27(d)]。上述光吸收 121061.doc -33- 1312092 凹部72境界線(稜線8c)的金屬薄 面部78立設於互相鄰接各 膜73上。 圖27所示的a現性反射板肫的製程和圖7所示的 示的復現性Further, the light-shielding portion 28 may be provided on the color filter layer 48 which will be described later on the reflexive reflector 8 as shown in Figs. 14 and 15, and the light-shielding portion 28 may be reproducible. Above the plate 8, but formed at a position that is not directly above. At this time, the light-shielding portion 28 is preferably formed of the same material at the same time as the black matrix 48BM described later. Also in this case, the black display 0 can be improved. [Embodiment of the third aspect] The third state in which the present invention is implemented will be described below with reference to Figs. 16 to 20 . For the sake of convenience of the description, members having the same functions as those of the members shown in the drawings of the first and second aspects are denoted by the same reference numerals, and their description will be omitted. In the liquid crystal panel of the reflective liquid crystal display device 41 of the reflective display device according to the third embodiment of the present invention, as shown in FIG. 16, the lens is omitted from the reflective liquid crystal display device 21 shown in FIG. The sheet 20 forms a color filter layer 48 between the electrode 4 and the incident side substrate 6. The color filter layer 48 is provided for multicolor display. Color filters 48R, 48G, and 48B of three colors of R (red), G (green), and B (blue) are arranged in the color filter layer 48 in an arbitrary arrangement pattern. In the reflective liquid crystal display device 41, each pixel is formed corresponding to each of the color filters 48R, 48G, and 48B. Further, a black matrix 48 BM is provided between each of the color filters 48R, 48G, and 48B. Each of the color filters 48R, 48G, and 48B and the black matrix 4 8 B are implemented as described later. In the fourth embodiment, the light absorbing portion functions as a light absorbing portion that absorbs light passing through a plurality of different pixels. The right-angled 稜鏡 array of the above-mentioned reproducible reflecting plate 8 reflects and reflects incident light to the incident light. The characteristic of the direction, but also the characteristic that the light is moved to the symmetrical position with respect to the central axis. That is, as shown in Fig. 6, the outgoing light (reflected light) 11 of the incident light 10 becomes a substantially symmetrical position of the central axis 43. The reflective liquid crystal display device 41 according to the third embodiment of the present invention sets the pitch of the minimum unit structure (i.e., the concave portion 25) of the retroreflective sheeting 8 to be equal to or smaller than the pitch of the color filters 48R, 48G, and 48B. The inter-moment ' is the shortest distance between the positions of the respective recesses 25 corresponding to each other (for example, the apex and the apex of the concave portion 25 having a right-angled shape) (in Fig. 2(b), Fig. 7(f) and 8(a) shows the pitch as ι6). The spacing of the color pickers 48R, 48G, 48B refers to the shortest distance between the positions of the adjacent color crossings 121061.doc -25-1312092 48R, 48G, 48B (for example, the center of the color filter and the center) (in the figure) The display is shown as a pitch 58. The reflective liquid crystal display device 41 has the above-described relationship between the pitch 16 of the concave portion 25 in the right-angled shape of the retroreflective sheeting 8 and the pitch 58 of the color filters 48R, 48G, and 48B, as will be described later. The light incident on the reproducible reflecting plate 8 through the arbitrary color filters 48R, 48G, 48B is reflected by the reproducible reflecting plate 8, and is then emitted through the same color filters 48R, 48G, 48B. Therefore, the incident light is avoided. The emitted light passes through the defects of the color filters 48R, 48G, and 48B which are different from each other, and the brightness and the chromaticity are prevented from being lowered by the color mixture. The display operation of the reflective liquid crystal display device 41 and the first and second embodiments are performed. In the reflective liquid crystal display device 41 of the third embodiment, as described above, the pitch 16 of the rectangular portion-shaped concave portion 25 of the retroreflective sheeting 8 is equal to or smaller than the pitch 58 of the color filters 48R, 48G, and 48B. Specifically, the pitch of the recesses 25 is 1 6 is a 25 μηι pitch, and on the other hand, the pitch 58 of the color filters 48R, 48G, and 48B becomes a pitch of 100 μm. Therefore, as shown in FIG. 16, the emitted light (reflected light) of the incident light 10 that passes through the color filter 48Β is shown. 11 is further transmitted through the same color filter 48. That is, in the reflective liquid crystal display device 41, the light incident on the reproducible reflection plate 8 through the arbitrary color filters 48R, 48G, 48Β is reflected by the reproducible reflection plate 8, Then, the same color filters 48R, 48G, and 48 are emitted. For comparison with the above-described reflective liquid crystal display device 41, as shown in FIG. 17, a reflective liquid crystal display having a pitch of the right-angled array of the retroreflective sheeting 38 larger than the pitch of the color filters 48R, 48G, and 48 turns is produced. Device 42. In the case of the 121061.doc -26-1312092 body, the pitch of the right-angled iridium array of the retroreflective sheeting 38 is 12 〇 μηι spacing. On the other hand, the pitch of the color filters 48R, 48G, and 48 成为 becomes 100 μηι. In the reflective liquid crystal display device 42, the emitted light (reflected light) 4 of the incident light 39 transmitted through the color filter 48 is passed through the color filter 48R, and the incident light 39 and the outgoing light 40 pass through mutually different filters. The color filters 48G and 48R are thus reduced in brightness and chromaticity due to color mixing. On the other hand, the reflective liquid crystal display device 41' according to the third embodiment of the present invention is shown in Fig. 16, because of the reflexive reflecting plate 8 The pitch 16 of the recesses 25 is equal to or smaller than the pitch 58 of the color filters 48R, 48G, and 48B, and the incident light and the emitted light pass through the mutually different color filters 48R, 48G, and 48B, thereby preventing brightness and color due to color mixture. The ratio of the spacing 16 to the spacing of 5 8 may be 1 or less, but preferably 1 /2 or less, more preferably 1/4 or less. Further, the ratio is desirably set at ι/(2η) (η is In this case, it is preferable that most of the minimum unit structures corresponding to the respective pixels are accommodated in one color filter. The reflective liquid crystal display device 41 of the third embodiment of the present invention uses a right angle 稜鏡 array for the complex The reflective plate 8 is, but not limited to, as shown in FIG. 18 A reflective liquid crystal display device 45 is a structure (array) in which a plurality of beads (microballs) 44 are adjacent to each other and arranged in a layered manner. The reproduction using beads (microballs) 44 is used. In the case of the reflective plate 8, the shortest distance between the positions corresponding to the adjacent beads 44 (for example, the center and the center of each of the beads 44) is referred to as the pitch 51 of the minimum unit structure. In the reflective liquid crystal display device 45, each The bead 44 becomes the minimum unit structure of the reproducibility counter 121061.doc • 27- J312092, and the pitch 51 of the beads 44 of the reflexive reflector 8 becomes equal to or less than the pitch 58 of the color filters 48R, 48G, and 48B. Specifically, the pitch 51 of the beads 44 is 25 μm pitch, and on the other hand, the pitch 58 of the color filters 48R, 48G, 48B becomes a pitch of 1 μm. Therefore, for example, for the incident light 10 that passes through the color filter 48Β The emitted light (reflected light) 11 is transmitted through the same color filter 48. That is, the light incident on the recursive reflecting plate 8 through the same color filters 4811, 48, and 48' is reflected by the reflective liquid crystal display device 45'. The reflection of the current reflector 8 passes through the same color filter 48R 48G, 48Β are emitted. For comparison with the above-described reflective liquid crystal display device 45, as shown in Fig. 19, the pitch of the beads 53 on which the reflexive reflector is formed is larger than the pitch of the color filters 48R, 48G, and 48B. The liquid crystal display device 47. Specifically, the pitch of the beads 53 of the reproducible reflecting plate is 120 μm, and the pitch of the color filters 48R, 48G, and 48 turns is 1 〇〇 pitch. The display device 47', for example, the outgoing light (reflected light) 55 of the incident light 54 transmitted through the color filter 48G passes through the color filter 48R, and the incident light 54 and the outgoing light 55 pass through the color filters 48G, 48R which are different from each other. Therefore, brightness and chromaticity are lowered due to color mixing. On the other hand, in the reflective liquid crystal display device 45' of the third embodiment of the present invention, as shown in Fig. 18, the pitch 5 1 of the beads 44 of the reflexive reflecting plate 8 becomes the pitch of the color filters 48R, 48G, and 48 Β. 58 or less, since the incident light 1〇 and the outgoing light 11 pass through the defects of the color filters 48R, 48G, and 48 which are different from each other, it is possible to prevent the luminance and the chromaticity from being lowered due to the color mixture. Further, the reflexive reflecting plate 8 may be a structure in which a microlens array composed of a plurality of microlenses is used in addition to the above-described right-angled iridium array and bead array 121061.doc -28-J312092. The reflective material of the reflexive reflecting plate 8 has a characteristic of reflecting and reflecting the incident light to the direction of the incident light, and has a characteristic of moving the light to the central axis and moving it to a symmetrical position. Further, as shown in Fig. 20, the configuration of the lens 52 which is the same as that of the lens sheet 20 may be disposed on the incident side than the retroreflective sheeting 8. Thereby, the reproducibility of the retroreflective sheeting 8 can be improved, and a reflective liquid crystal display device having a high white display luminance and a contrast can be obtained. Further, in the configuration shown in Fig. 20, the lens sheet 52 is provided on the surface (the side surface) of the incident side substrate 6, but the lens sheet 52 may be disposed directly above the reproducible reflection plate 8. [Fourth embodiment] A fourth embodiment of the present invention will be described below with reference to Figs. 21 to 25 . The members having the same functions as those of the members shown in the drawings of the first to third embodiments are denoted by the same reference numerals, and the description thereof will be omitted. As shown in FIG. 21, the reflective liquid crystal display device 61 of the fourth embodiment differs from the reflective liquid crystal display device 41 of the third embodiment described above in that a plurality of louver (light absorbing portions) 60 are provided. The incident side substrate 6 is incident. The configuration other than the above is the same as that of the above-described reflective liquid crystal display device 41. In the fourth embodiment of the present invention, a light control film (manufactured by Sumitomo Corporation) is used as the barrier 60°. The respective barriers 60 are made to face the thickness direction of the incident side substrate 6 (that is, the vertical direction with respect to the surface direction of the incident side substrate 6). Depending on the size of the display surface of the reflective liquid crystal display device 61 and the light transmittance in the range of the viewing angle of the application, 121061.doc -29-1312092, but absorbs the light absorbing portion of light passing through a different majority of pixels, the above view is blocked. A light blocking member of a predetermined range of light outside the corner. Further, as shown in Fig. 22, the reflection type liquid crystal display device 41a in which the black moment 48β of the color filter portion 48 is formed in a grid shape may be formed. As shown in FIG. 23, in the reflection type liquid crystal display device 69 which is not provided with the barrier, a part of the light which is incident on the white display, that is, a part of the light in the scattering state, or a part of the light which is incident on the black display, that is, the pixel in the transmission state, may be sometimes It will be incident on its pixel as stray light 68. The stray light 68 guided by the other pixels is incident on the black display, that is, the pixel in the transmissive state, and is reflected by the reflexive reflective plate 8 at the pixel position and emitted to the outside of the liquid crystal panel. This increases the reflectance of the black state, which is a cause of deterioration of the black display. * On the other hand, as shown in Fig. 21, in the reflective liquid crystal display device 61, the barrier yoke 60 is provided to absorb the stray light 59 guided by such other pixels by the barrier ribs 60. In Fig. 21, the stray light 59 is absorbed by the two-dot chain line, and does not invade other pixels. In the reflection type liquid crystal display device 61 of the fourth embodiment of the present invention, the stray light 60 guided by the other pixels can be absorbed by the barrier 60, and the blackening of the viewing direction from the normal to the normal surface can be suppressed. , to achieve a good black display. This effect is particularly remarkable when the right angle 稜鏡 array is used for the recursive reflector 8. As shown in Fig. 24, the color filter layer 48 can also be obtained as a configuration of the reflective liquid crystal display device 41 of the third embodiment which functions as a light absorbing portion. That is, 'the stray light 62 guided by other pixels is absorbed by the black matrix 48BM' and by the majority of the color filters 48R, 48G, 48B, substantially 121061.doc -30-1312092 is also sufficiently attenuated, and can be well maintained. Black display. Next, the following experiment was conducted: it was confirmed that the configuration also functions as light absorption. The effect of the 滤 color filters 48R, 48G, 48B. Specifically, the reflective liquid crystal display device produced in the same manner as the color filters 48R, 48G, and 48B is omitted from the reflective liquid crystal display device 41 in the measurement system shown in FIG. 9 first / then i / crying light The reflectance of the black display at the time of incidence. Further, the reflectance of the completely diffuse reflection plate was the same as the above-described implementation of the first open state. The result is shown in Figure 25. By setting the color filters 48R, 48G, and 48B in this way, the reflectance of the black display is reduced even when it is not disposed (in the direction of the tilted viewing angle from the normal to the display surface), and the black is known. The quality of the display is improved. As described above, by forming the structure of the light absorbing portion such as the spacer 6 or the color filter layer 48, the reflectance of the black display in the above-described observation direction can be suppressed from increasing, and a good black display can be realized. [Fifth Embodiment] A fifth embodiment of the present invention will be described below with reference to Fig. 26 . Further, for the sake of convenience of description, members having the same functions as those of the members shown in the drawings of the first to fourth aspects described above are denoted by the same reference numerals, and the description thereof will be omitted. The reflective liquid crystal display device 67 of the fifth embodiment differs from the reflective liquid crystal display device 41 of the third embodiment described above in that the side of the liquid crystal panel covered with the light absorbing member 64 as the display panel is as shown in FIG. (Side side of reflective liquid crystal display device 67). The other configuration is the same as that of the above-described reflective liquid crystal display device 4 1. 121061.doc -31- 1312092 The reflection type liquid crystal display device 67 is provided with the light absorbing member 64, so that the external light 65 is prevented from entering the liquid crystal panel. Further, it is possible to prevent the black light caused by the influence of the stray light 66 which is guided by the light guide inside the device and reach the side of the liquid crystal panel from being scattered, and a good black display is realized. Further, it is preferable that the light absorbing member 64 is provided on all four sides of the liquid crystal panel (i.e., on the side faces of the panel-like portions formed by the respective substrates 6 and 7). Further, the material of the above-described light absorbing member 64 is not particularly limited, but a light shielding screen, the same material as the barrier (9) or the black matrix 48BM may be used. Further, it is preferable that the light absorbing member 64 is formed such that a low refractive index layer such as air does not exist between the reflective liquid crystal display device and the light absorbing member. [Embodiment of the sixth aspect] A sixth embodiment of the present invention will be described below with reference to Fig. 27 . It is to be noted that the same reference numerals will be given to members having the same functions as those of the members of the first to fifth embodiments described above, and the description thereof will be omitted. φ In the reflective liquid crystal display device of the sixth embodiment, as shown in Fig. 27(e), the reproducible reflecting plate 8 is used instead of the recursive reflecting plate 8 to have the same function as the light absorbing surface portion 18. The light absorbs the face 78. The light absorbing surface portion 78 is composed of a photosensitive material colored by light irradiation. Regarding the other structure', it is also possible to carry out the configuration of the first to fifth aspects described above. Further, in the plate-like light absorbing surface portion 18 formed by molding, the aspect ratio of the height and the thickness is also at most 10. This is because even if a metal mold having a high thickness ratio of more than 10 is used, it is formed by 121061.doc -32 - 1312092 because the resin is not present in the periphery. That is, it is difficult to produce a light absorbing face having a high thickness ratio of more than 1 。. The surface of the light absorbing surface portion 78 made of the photosensitive material as described above can be formed into a film shape by being made fine by light sensation, and the resin is present around the portion of the light absorbing surface portion 78 (both end sides in the thickness direction) at the time of molding. Supported and the aspect ratio is more than 1G, even if it is more than a better value, it can be manufactured. In other words, the thickness of the light absorbing surface portion 78 can be made thin. Therefore, the reflective liquid crystal display using the reproducible reflecting plate 88 having the light absorbing surface portion 78 can improve the numerical aperture of the reflexive reflecting plate 88, so that the display quality of the white display can be further improved. A method of manufacturing such a retroreflective sheeting 88 will be described below. First, the black resin is press-molded by a metal mold to form a resin plate 75: a plurality of concave portions 72 each having a right-angled shape are provided adjacent to each other [see Fig. 27 (a)]. Then, silver is vapor-deposited from the surface of the concave portion 72 at a thickness of 2000 Å from the normal direction of the substrate of the molded resin sheet 75 to form a metal thin film 73 as a reflecting surface (see Fig. 27(b)). Next, it is planarized with a transparent resin 74 containing a photosensitive material [refer to Fig. 27 (c)]. As the transparent resin 74 containing the above-mentioned photosensitive material, for example, polyethylene glycol (adhesive), 2,2,-bis(〇-chlorophenyl)-4,4,5,5,-tetraphenyl may be used. · 3,3'-dimethicone (photosensitive halogen), white crystal violet (chromogen), i, b-芘醌 (photoreducing agent) material. Thereafter, exposure is performed in visible light (4 〇〇 nm - 500 nm) using, for example, a photomask 27a as shown in Fig. 8 (a) [see Fig. 27 (d)]. Then, after the photomask 27a is removed, the ultraviolet ray is fully exposed to light and fixed, and a reproducible reflecting plate 88 having a light absorbing surface portion 78 is obtained (see Fig. 27(d)). The above-mentioned light absorption 121061.doc - 33 - 1312092 is formed by arranging the metal thin portions 78 of the concave portion 72 boundary line (ridge line 8c) adjacent to each other. The process of the a-reflective sheet 所示 shown in Fig. 27 and the reproducibility shown in Fig. 7

即’在圖7(a)壁狀構造(光吸收面部18)存在,但在圖27⑷ I; 壁狀構造不存在。 一般壁厚度比壁高度薄的細微構造(厚高比高的構造)樹 脂成型困並且其金屬模的製作也困難。因此,實際上 壁厚度變厚了,在本反射型液晶顯示裝置導致數值孔徑降 低的缺點。 在本實施第六形態,藉由從隨著光照射而著色的感光材 料製作取代光吸收面部18的光吸收面部78,可避免上述缺 點。 又,在本實施第一至第六形態雖然例示反射型液晶顯示 裝置作為反射型顯示裝置,但本發明對於液晶顯示裝置以 外的反射型顯示裝置(例如在透過狀態和散射狀態之間開 關的平面型顯示裝置)亦可適用。 在發明之詳細說明項中所作的具體實施形態或實施例始 終是要闡明本發明之技術内容的,不應只限於這種具體例 而被狹義解釋,在本發明之精神和下面所載之申請專利事 項範圍内可種種變更而實施。 【圖式簡單說明】 圖1為在本發明實施第一及第二形態使用的反射型液晶 121061.doc -34- 1312092 顯示裝置的構造截面圖。 圖2為顯示入射到在本發明實施各形態使用的復現性反 射板的光的光線路徑的說明圖,圖2(a)為顯示來自觀察者 眼睛附近的入射光以構成復現性反射板的直角稜鏡反射的 方向的說明圖’圖2(b)為顯示在圖2(a)到上述直角稜鏡的 入射光範圍的說明圖’圖2(c)為顯示使用微小球作為復現 性反射板時到上述微小球的入射光範圍的說明圖。 圖3為顯示在本發明實施各形態使用的直角稜鏡陣列最 小單位構造(直角稜鏡)的說明圖,圖3(a)為透視圖,圖3(b) 為來自圖3(a)所示的法線方向本的平面圖,圖3(c)為來自圖 3(a)所示的侧面方向睾的側面圖,圖3(d)為來自圖3(a)所示 的正面方向#的正面圖。 圖4為在上述實施第二形態使用的反射型液晶顯示裝置 的構造截面圖。 圖5為作為在上述實施第二形態使用的比較例2的反射型 液晶顯示裝置的構造截面圖。 圖6為關於有關本發明實施各形態的反射型液晶顯示裝 置反射率的測量系統結構圖。 圖7(a)至圖7(f)為分別顯示具備呈在上述實施第二形態 使用的直角稜鏡形狀的凹部的復現性反射板各製程的各概 略截面圖。 圖8(a)為顯示製作具備上述實施第二形態的直角稜鏡形 狀的樣品A時使用的光罩的說明圖。 圖8(b)為顯示製作具備上述實施第二形態的直角稜鏡形 121061.doc •35- 1312092 狀的樣品c時使用的光罩的說明圖。 圖9為測量關於本發明實施各形態的反射型液晶顯示裝 置反射率的測量系統概略結構圖。 圖10為顯示上述實施第一形態的復現性反射板最小單位 構造的間距和黑顯示時的反射率之關係的圖表。 圖11為顯示前述觀察者眼睛構造的說明圖。 圖12為為了比較而省略與復現性反射板頂點或邊對應的 遮光部時的復現性反射板說明圖,圖12(a)為透視圖,圖 12(b)為平面圖。 圖13為與上述復現性反射板頂點或邊對應而設置遮光部 時的說明圖,圖13(a)為透視圖,圖13(b)為平面圖。 圖14為為了比較而省略與復現性反射板頂點或邊對應的 遮光部時的復現性反射板說明圖,圖14(a)為透視圖,圖 14(b)為平面圖。 圖15為與復現性反射板頂點或邊對應而設置遮光部時的 上述復現性反射板說明圖,圖15(a)為透視圖,圖15(b)為 平面圖。 圖16為關於本發明實施第三形態的反射型液晶顯示裝置 的構造截面圖。 圖17為為了比較的習知反射型液晶顯示裝置的構造戴面 圖。 圖18為關於上述實施第三形態的反射型液晶顯示裝置變 形例,係將小珠使用於復現性反射板最小單位構造的結構 的構造截面圖。 121061.doc 36· 1312092 圖19為為了比較的其他習知反射型液晶顯示裝置的構造 截面圖。 圖20為關於上述實施第三形態的反射型液晶顯示裝置其 他變形例,係比復現性反射板在入射側設置透鏡片的結構 的構造截面圖。 圖21為關於本發明實施第四形態的反射型液晶顯示裝置 的構造結構圖。 圖22為顯示上述反射型液晶顯示裝置一變形例的構造結 構圖。 圖23為為了比較的另外其他習知反射型顯示裝置的構造 截面圖。 圖24為關於上述第三形態的反射型液晶顯示裝置的使用 濾色器層作為光吸收層的結構的構造截面圖。 圖25為在上述反射型液晶顯示裝置顯示黑顯示反射率的 極角相關性的圖表。 圖26為關於本發明實施第五實施形態的反射型顯示裝置 的構造截面圖。 圖27(a)至圖27(e)為分別顯示關於本發明實施第六形態 的復現性反射板各製程的各概略截面圖。 【主要元件符號說明】 1 液晶層 1 a 液晶分子 lb 高分子液晶基 2、3 液晶定向膜 I2I06I.doc -37- J312092 4、5 電極 6 入射側基板 7 反射側基板 8 復現性反射板 9、 21、41、45、61、67 本發明之反射型液晶顯示裝置 10、 12、14 入射光 11 、 13 、 15 出 16 復 間That is, the wall structure (light absorbing surface portion 18) of Fig. 7(a) exists, but Fig. 27(4)I; the wall structure does not exist. A fine structure (thickness with a high aspect ratio) in which the wall thickness is thinner than the wall height is difficult to form and the metal mold is difficult to fabricate. Therefore, in actuality, the wall thickness becomes thick, which causes a disadvantage that the numerical aperture is lowered in the present reflective liquid crystal display device. In the sixth embodiment of the present invention, the above-mentioned disadvantages can be avoided by forming the light absorbing surface portion 78 instead of the light absorbing surface portion 18 from the photosensitive material colored with the light irradiation. Further, in the first to sixth embodiments of the present invention, a reflective liquid crystal display device is exemplified as a reflective display device. However, the present invention is directed to a reflective display device other than the liquid crystal display device (for example, a plane that switches between a transmissive state and a scattering state). Type display device) is also applicable. The specific embodiments or examples made in the detailed description of the invention are intended to clarify the technical contents of the present invention, and should not be construed as being limited to the specific examples. Various changes can be made within the scope of patent matters. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the structure of a reflective liquid crystal 121061.doc -34-1312092 display device used in the first and second aspects of the present invention. 2 is an explanatory view showing a light path of light incident on a reproducible reflecting plate used in each embodiment of the present invention, and FIG. 2(a) is a view showing incident light from the vicinity of an observer's eyes to constitute a reproducible reflecting plate. An illustration of the direction of the right angle 稜鏡 reflection is shown in Fig. 2(b) as an explanatory diagram showing the range of incident light in Fig. 2(a) to the above right angle '. Fig. 2(c) shows the use of microspheres for reproduction. An explanatory diagram of the incident light range of the above-mentioned microspheres in the case of the reflective plate. Fig. 3 is an explanatory view showing a minimum unit structure (right angle 稜鏡) of a right angle 稜鏡 array used in each embodiment of the present invention, Fig. 3(a) is a perspective view, and Fig. 3(b) is a view from Fig. 3(a) Fig. 3(c) is a side view of the test piece from the lateral direction shown in Fig. 3(a), and Fig. 3(d) is a front view from the front direction # shown in Fig. 3(a). Front view. Fig. 4 is a cross-sectional view showing the structure of a reflection type liquid crystal display device used in the second embodiment. Fig. 5 is a cross-sectional view showing the structure of a reflection type liquid crystal display device of Comparative Example 2 used in the second embodiment. Fig. 6 is a view showing the configuration of a measuring system for reflectance of a reflective liquid crystal display device according to each embodiment of the present invention. Fig. 7 (a) to Fig. 7 (f) are each a schematic cross-sectional view showing the respective processes of the reproducible reflecting plate provided with the concave portions in the right-angled shape used in the second embodiment. Fig. 8 (a) is an explanatory view showing a reticle used when the sample A having the right-angled shape of the second embodiment described above is produced. Fig. 8 (b) is an explanatory view showing a reticle used when the sample c having the rectangular angle 121061.doc • 35-1312092 of the second embodiment described above is produced. Fig. 9 is a schematic block diagram showing a measurement system for measuring the reflectance of a reflective liquid crystal display device according to each embodiment of the present invention. Fig. 10 is a graph showing the relationship between the pitch of the minimum unit structure of the reproducible reflecting plate of the first embodiment and the reflectance at the time of black display. Fig. 11 is an explanatory view showing the structure of the aforementioned observer's eye. Fig. 12 is an explanatory view of a reproducible reflecting plate when a light blocking portion corresponding to a vertex or a side of a reproducible reflecting plate is omitted for comparison, and Fig. 12(a) is a perspective view, and Fig. 12(b) is a plan view. Fig. 13 is an explanatory view showing a case where a light shielding portion is provided corresponding to the vertex or side of the above-mentioned reproducible reflecting plate, Fig. 13 (a) is a perspective view, and Fig. 13 (b) is a plan view. Fig. 14 is an explanatory view of a reproducible reflecting plate when a light blocking portion corresponding to a vertex or a side of a recursive reflecting plate is omitted for comparison. Fig. 14(a) is a perspective view, and Fig. 14(b) is a plan view. Fig. 15 is an explanatory view of the above-mentioned reproducible reflecting plate when a light shielding portion is provided corresponding to a vertex or a side of a reproducible reflecting plate, Fig. 15(a) is a perspective view, and Fig. 15(b) is a plan view. Figure 16 is a cross-sectional view showing the structure of a reflection type liquid crystal display device according to a third embodiment of the present invention. Fig. 17 is a perspective view showing the construction of a conventional reflective liquid crystal display device for comparison. Fig. 18 is a structural cross-sectional view showing a modification of the reflection type liquid crystal display device of the third embodiment, which is a structure in which beads are used in a minimum unit structure of a reproducible reflector. 121061.doc 36· 1312092 Fig. 19 is a cross-sectional view showing the structure of another conventional reflective liquid crystal display device for comparison. Fig. 20 is a structural cross-sectional view showing a modification of the reflective liquid crystal display device of the third embodiment, which is a configuration in which a lens sheet is provided on the incident side of the retroreflective sheeting. Figure 21 is a structural view showing a structure of a reflection type liquid crystal display device according to a fourth embodiment of the present invention. Fig. 22 is a structural diagram showing a modification of the above-described reflective liquid crystal display device. Fig. 23 is a cross-sectional view showing the construction of another conventional reflective display device for comparison. Fig. 24 is a structural cross-sectional view showing a structure in which a color filter layer is used as a light absorbing layer in the reflective liquid crystal display device of the third embodiment. Fig. 25 is a graph showing the polar angle correlation of the black display reflectance in the above-described reflective liquid crystal display device. Fig. 26 is a cross-sectional view showing the structure of a reflection type display device according to a fifth embodiment of the present invention. Fig. 27 (a) to Fig. 27 (e) are each a schematic cross-sectional view showing each process of the reproducible reflector of the sixth embodiment of the present invention. [Main component symbol description] 1 Liquid crystal layer 1 a Liquid crystal molecule lb Polymer liquid crystal substrate 2, 3 Liquid crystal alignment film I2I06I.doc -37- J312092 4, 5 Electrode 6 Incident side substrate 7 Reflecting side substrate 8 Recurring reflector 9 21, 41, 45, 61, 67 reflective liquid crystal display devices 10, 12, 14 of the present invention, incident light 11, 13, 15

射光 現性反射板最小單位構造的 距The distance of the minimum unit structure of the current reflector

17 18 19 20 22 ' 42 ' 47 ' 69 23 24 25 25a 26 27 28 29 30 31 出射光線擴散的間矩 光吸收面部 反射面(金屬薄膜) 透鏡片 比較用的反射型液晶顯示裝置 受光器 遮光板 呈直角稜鏡形狀的凹部 成型樹脂板 抗姓劑 光罩 遮光部 透明樹脂 受光器的視角 復現性反射板的最小單位構造 121061.doc -38- 光吸收層 小珠(微小球) 濾色器層(光吸收部) 透鏡片 間距 隔柵(光吸收部) 光吸收構件 呈直角稜鏡形狀的凹部 成型樹脂板 光吸收面部 39-17 18 19 20 22 ' 42 ' 47 ' 69 23 24 25 25a 26 27 28 29 30 31 Intermittent light absorption of the light diffused surface reflection surface (metal film) Reflective liquid crystal display device for the lens sheet comparison Rectangular molded resin sheet in the shape of a right angle 抗 anti-surname agent reticle shading transparent resin receiver perspective reproducible reflector minimum unit structure 121061.doc -38- light absorbing layer beads (microspheres) color filter Layer (light absorbing portion) Lens sheet spacer (light absorbing portion) The light absorbing member has a right angle 稜鏡 shape concave molded resin sheet light absorbing surface 39-

Claims (1)

I312^S2h7621 h 打―— 中文申請專利範圍替換本(97年7月) I ♦ /1 Ei U. 十、申請專利範圍: L &quot;補充丨 1. 一種反射型顯示裝置,其特徵在於:具備 開關層:切換使入射光透過的第一狀態和入射光進行 狀態改變的第二狀態;及 反射機構:反射來自開關層的入射光;且 開關層在第一狀態時,反射機構被設定成反射觀測者 黑眼珠的影像,觀測者認識上述黑眼珠的影像,實現黑 顯示者; 月J it反射機構係配置排列了直角棱鏡(c〇rner cUbe)形 狀之多數凹部而形成’前述各凹部係於構成立方體之6 個正方形的面中,由構成一角的3個面所形成,其中上 述各凹部的間距為比〇 mm大、且為5 mm以下。 2. 如申請專利範圍第1項之反射型顯示裝置,其中前述開 關層係為光散射型液晶層。 3. 如申請專利範圍第1項之反射型顯示裝置,其中前述各 .凹部的間距為比〇 、且為1 mm以下。 4. 如申請專利範圍第1項之反射型顯示裝置,其中前述各 凹部充填有光透過性樹脂。 5. 一種反射型顯示裝置,其特徵在於:具備 開關層:切換成使入射光透過的透過狀態和使入射光 散射的散射狀態;及 復現性反射板:作為反射構構;且 前述復現性反射板最小單位構造的間距為比〇 mm大、 且為5 mm以下; 121061-970721.doc 1312092 則述復現性反射板最小單位構造係為直角棱鏡形狀之 凹部,前述各凹部係於構成立方體之6個正方形的面 中,由構成一角的3個面所形成。 6·如申請專利範圍第5項之反射型顯示裝置,其中前述開 關層在第肖大態時’成為黑顯示;前述開關層在第二狀 態時,成為白顯示。 7. 如申晴專利範圍第5項之反射型顯示裝置,其中前述開 關層係為光散射型液晶層。 8. 如申請專利範圍第5項之反射型顯示裝置,其中前述復 現性反射板的最小單位構造的間距為比〇職大、且為i mm以下。 9. 如申凊專利範圍第5項之反射型顯示裝置,其中前述復 現性反射板的各凹部充填有光透過性樹脂。 10· —種反射型顯示裝置,其特徵在於:具備 開關層.切換成使入射光透過的透過狀態和使入射光 散射的散射狀態;及 復現性反射板:作為反射機構;且 該復現性反射板最小單位構造的間距為觀察者的黑眼 珠直徑一半以下; 則述復現性反射板最小單位構造係為直角稜鏡形狀之 凹部,前述各凹部係於構成立方體之6個正方形的面 中’由構成一角的3個面所形成。 11.如申清專利範圍第1〇項之反射型顯示裝置,其中前述開 關層在第一狀態時,成為黑顯示;前述開關層在第二狀 121061-970721.doc 2- 1312092 ’癌日^ ’成為白顯示。 如申請專利範圍第1〇項之反射型顯示裝置,其中前述開 關層係為光散射型液晶層。 13·如申請專利範圍第10項之反射型顯示裝置,其中前述復 現性反射板的最小單位構造的間距為觀察者的黑眼珠直 徑一半以下。 14. 如申請專利範圍第1〇項之反射型顯示裝置,其中前述復 現性反射板的最小單位構造的間距為比〇 mm大、且為i mm以下。 15. 如申請專利範圍第1〇項之反射型顯示裝置,其中前述復 現性反射板的各凹部充填有光透過性樹脂。 16. —種反射型顯示裝置,其特徵在於:具備 開關層··切換成使入射光透過的透過狀態和使入射光 散射的散射狀態; 各濾色器部:與各像素對應所形成;及 復現性反射板:作為反射機構;且 該復現性反射板最小單位構造的間距為該濾色器部的 間矩以下; 前述復現性反射板最小單位構造係為直角稜鏡形狀之 凹部,前述各凹部係於構成立方體之6個正方形的面 中’由構成一角的3個面所形成。 1 7.如申請專利範圍第16項之反射型顯示装置,其中前述開 關層在第一狀態時,成為黑顯示;前述開關層在第二狀 態時,成為白顯示。 121061-970721.doc 1312092 如申請專利範圍第16項之反射型顯示裝置,其 關層係為光散射型液晶層。 1 9·如申請專利範圍第1 6項之反射型顯示裝置,其 現性反射板的最小單位構造的間距為前述遽色 距的1 /2以下。 20·如申請專利範圍第16項之反射型顯示裝置,其中 現性反射板的最小單位構造的間距為比〇 mm以下。 21.如申請專利範圍第16項之反射型顯示裝置,其 現性反射板的各凹部充填有光透過性樹脂。 則述開 前述復 部的間 前述復 、且為1 前述復I312^S2h7621 h - "Chinese patent application scope replacement (July 1997) I ♦ /1 Ei U. X. Patent application scope: L &quot;Supplement 丨1. A reflective display device characterized by: a switching layer: switching a first state in which incident light is transmitted and a second state in which incident light is changed; and a reflecting mechanism: reflecting incident light from the switching layer; and when the switching layer is in the first state, the reflecting mechanism is set to reflect The observer's black eyeball image, the observer knows the image of the black eyeball, and realizes the black display; the moon J it reflection mechanism is arranged with a plurality of concave portions in the shape of a right-angle prism (c〇rner cUbe) to form 'the aforementioned concave portions are attached to The six square faces constituting the cube are formed by three faces constituting one corner, and the pitch of each of the recesses is larger than 〇mm and 5 mm or less. 2. The reflective display device of claim 1, wherein the switching layer is a light scattering type liquid crystal layer. 3. The reflective display device of claim 1, wherein the pitch of each of the recesses is 〇 and is 1 mm or less. 4. The reflective display device of claim 1, wherein each of the recesses is filled with a light transmissive resin. A reflective display device comprising: a switching layer: a transmission state that transmits incident light and a scattering state that scatters incident light; and a reproducible reflector: as a reflective configuration; and the aforementioned reproducibility The minimum unit structure of the reflector has a pitch greater than 〇mm and is less than 5 mm; 121061-970721.doc 1312092 The minimum unit structure of the reflex reflector is a rectangular prism-shaped recess, and each of the recesses is formed into a cube. The six square faces are formed by three faces that form a corner. 6. The reflective display device of claim 5, wherein the switching layer is black when in the first large state; and the white color is displayed when the switching layer is in the second state. 7. The reflective display device of claim 5, wherein the switching layer is a light scattering type liquid crystal layer. 8. The reflective display device of claim 5, wherein the pitch of the minimum unit structure of the reproducible reflector is larger than the job size and equal to or less than i mm. 9. The reflective display device of claim 5, wherein each of the concave portions of the retroreflective sheeting is filled with a light transmissive resin. 10. A reflective display device comprising: a switching layer; a transmission state for transmitting incident light and a scattering state for scattering incident light; and a reproducible reflector: as a reflection mechanism; and the reproduction The minimum unit structure of the reflective plate has a pitch of less than half of the observer's black eye diameter; the minimum unit structure of the reflexive reflector is a right-angled-shaped concave portion, and the aforementioned concave portions are attached to the six square faces constituting the cube. The middle 'is formed by the three faces that make up a corner. 11. The reflective display device of claim 1, wherein the switch layer is black when in the first state; and the switch layer is in the second shape 121061-970721.doc 2- 1312092 'cancer day ^ 'Become white display. The reflective display device of claim 1, wherein the switching layer is a light scattering type liquid crystal layer. 13. The reflective display device of claim 10, wherein the minimum unit structure of the reproducible reflector has a pitch which is less than or less than a half of a black eye diameter of the observer. 14. The reflective display device of claim 1, wherein the pitch of the minimum unit structure of the reproducible reflector is greater than 〇 mm and less than or equal to i mm. 15. The reflective display device of claim 1, wherein each of the concave portions of the retroreflective sheeting is filled with a light transmissive resin. 16. A reflective display device comprising: a switching layer, a transmission state for transmitting incident light, and a scattering state for scattering incident light; each of the color filter portions being formed corresponding to each pixel; Reproducible reflector: as a reflection mechanism; and the minimum unit structure of the reproducible reflector is spaced below the inter-moment of the color filter portion; the minimum unit structure of the reflex reflector is a rectangular-shaped recess Each of the aforementioned concave portions is formed by three faces constituting one corner in the faces of the six squares constituting the cube. The reflective display device of claim 16, wherein the switching layer is black when in the first state, and the white is displayed when the switching layer is in the second state. 121061-970721.doc 1312092 The reflective display device of claim 16, wherein the layer is a light-scattering liquid crystal layer. In the reflection type display device of the fifteenth aspect of the patent application, the pitch of the minimum unit structure of the conventional reflecting plate is 1 /2 or less of the aforementioned chromatic distance. 20. The reflective display device of claim 16, wherein the minimum unit structure of the reflective sheet has a pitch of less than 〇 mm. 21. The reflective display device of claim 16, wherein each of the concave portions of the current reflecting plate is filled with a light transmissive resin. Then recite the foregoing complex part, and the above complex 121061-970721.doc 4-121061-970721.doc 4-
TW096117621A 2000-03-31 2001-03-29 Reflective display device and retro-reflector used therefor TWI312092B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000096075 2000-03-31
JP2000227760 2000-07-27
JP2001090908A JP3957986B2 (en) 2000-03-31 2001-03-27 Reflective display device

Publications (2)

Publication Number Publication Date
TW200732770A TW200732770A (en) 2007-09-01
TWI312092B true TWI312092B (en) 2009-07-11

Family

ID=27342906

Family Applications (2)

Application Number Title Priority Date Filing Date
TW096117621A TWI312092B (en) 2000-03-31 2001-03-29 Reflective display device and retro-reflector used therefor
TW090107508A TWI294977B (en) 2000-03-31 2001-03-29

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW090107508A TWI294977B (en) 2000-03-31 2001-03-29

Country Status (4)

Country Link
US (2) US6657766B2 (en)
JP (1) JP3957986B2 (en)
KR (2) KR100404060B1 (en)
TW (2) TWI312092B (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3957986B2 (en) * 2000-03-31 2007-08-15 シャープ株式会社 Reflective display device
JP4053260B2 (en) * 2000-10-18 2008-02-27 シャープ株式会社 Organic electroluminescence display element
JP3847593B2 (en) * 2001-02-20 2006-11-22 シャープ株式会社 Optical element such as corner cube array and reflective display device including the same
KR100490816B1 (en) * 2001-06-15 2005-05-24 샤프 가부시키가이샤 Micro corner cube array, method of making the micro corner cube array and reflective type display device
JP3818906B2 (en) * 2001-12-13 2006-09-06 シャープ株式会社 Micro corner cube array, manufacturing method thereof, and display device
JP3776039B2 (en) 2001-12-26 2006-05-17 シャープ株式会社 Display device having corner cube array
JP3933497B2 (en) * 2002-03-01 2007-06-20 シャープ株式会社 Manufacturing method of display device
JP2004086164A (en) * 2002-06-27 2004-03-18 Sharp Corp Corner cube array and its fabricating method
US7301587B2 (en) * 2003-02-28 2007-11-27 Nec Corporation Image display device and portable terminal device using the same
JP4494110B2 (en) * 2003-07-29 2010-06-30 シャープ株式会社 Color display device
JP4152861B2 (en) * 2003-10-27 2008-09-17 シャープ株式会社 Corner cube reflector, manufacturing method thereof, and reflective display device using the same
JP4229805B2 (en) * 2003-10-27 2009-02-25 シャープ株式会社 Reflective display device
US7551247B2 (en) * 2004-06-09 2009-06-23 Sharp Kabushiki Kaisha Reflection type display device and method with pixel electrodes having predetermined dimensions and relationships to each other as to gap width therebetween on both short and long sides and pitch of cubic corner cubes
JP4205063B2 (en) * 2005-01-14 2009-01-07 シャープ株式会社 Retroreflector, display device, and method of manufacturing retroreflector
JP4139393B2 (en) * 2005-02-01 2008-08-27 シャープ株式会社 Reflective display device
JP4139395B2 (en) * 2005-02-17 2008-08-27 シャープ株式会社 Reflective display device
JP4020919B2 (en) * 2005-03-04 2007-12-12 シャープ株式会社 Reflective display device and manufacturing method thereof
WO2006131917A2 (en) * 2005-06-06 2006-12-14 Iralink Ltd. Device, system and method of retro-modulating safety signs
US20070146590A1 (en) * 2005-12-28 2007-06-28 Toppoly Optoelectronics Corp. Systems for displaying images involving transflective liquid crystal displays
US7486854B2 (en) 2006-01-24 2009-02-03 Uni-Pixel Displays, Inc. Optical microstructures for light extraction and control
US7450799B2 (en) * 2006-01-24 2008-11-11 Uni-Pixel Displays, Inc. Corner-cube retroreflectors for displays
US7440052B2 (en) * 2006-02-13 2008-10-21 Hewlett-Packard Development Company, L.P. Optical device with light attenuation and gain
US7999889B2 (en) * 2006-03-29 2011-08-16 Sharp Kabushiki Kaisha Scattering-type display including diffraction reducing layer
WO2008026368A1 (en) * 2006-08-31 2008-03-06 Sharp Kabushiki Kaisha Reflection type display device and its manufacturing method
JP4735575B2 (en) * 2007-03-16 2011-07-27 ソニー株式会社 Display device
CN101681044B (en) * 2007-05-18 2011-10-26 夏普株式会社 Liquid display
KR101352906B1 (en) * 2007-07-13 2014-01-20 엘지디스플레이 주식회사 Liquide crystal display device and method for fabricating the same
JP2009080214A (en) * 2007-09-25 2009-04-16 Toshiba Corp Liquid crystal display device
DE102007054037A1 (en) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Lighting device, luminaire and display device
DE102007063382B4 (en) * 2007-12-20 2013-12-24 Seereal Technologies S.A. Controllable light modulator
KR101432236B1 (en) * 2008-08-26 2014-08-27 삼성디스플레이 주식회사 Organic light emitting diode display
JP5495445B2 (en) 2010-05-12 2014-05-21 矢崎総業株式会社 Centerless pointer type display device
JP5961060B2 (en) * 2012-07-18 2016-08-02 株式会社ジャパンディスプレイ Liquid crystal display
JP6049388B2 (en) * 2012-10-16 2016-12-21 スタンレー電気株式会社 Manufacturing method of liquid crystal optical element
FR3005158B1 (en) * 2013-04-26 2015-11-20 Thales Sa OPTICAL OPTICAL SOURCE ORIENTATION AND POSITION MEASUREMENT SYSTEM AND CUBE CORNERS WITH POLYCHROME ENTRY FACILITY
CN103226269B (en) * 2013-04-28 2015-07-15 京东方科技集团股份有限公司 Liquid crystal display panel, display device and electronic device
GB2530725A (en) * 2014-09-24 2016-04-06 Folium Optics Ltd Active Retroreflector
JP6795154B2 (en) * 2016-07-20 2020-12-02 学校法人東京電機大学 Interferometer
US11640019B2 (en) 2016-11-22 2023-05-02 3M Innovative Properties Company Spectrally selective retroreflective system
KR102489033B1 (en) 2017-09-21 2023-01-17 삼성디스플레이 주식회사 Display apparatus
US11314074B2 (en) 2018-03-12 2022-04-26 The University Of North Carolina At Chapel Hill Light disc microscopy for fluorescence microscopes
WO2019178093A1 (en) * 2018-03-12 2019-09-19 The University Of North Carolina At Chapel Hill Mirror image microscopy for increased collection
US20210311381A1 (en) * 2018-09-13 2021-10-07 Mirraviz, Inc. Brightness and uniformity-enhanced projector screen
CN109597155B (en) * 2018-10-23 2020-10-02 同济大学 Square concave-down stepped retro-reflector and array thereof
US11402719B2 (en) 2018-12-11 2022-08-02 E Ink Corporation Retroreflective electro-optic displays
TWI721635B (en) * 2019-11-07 2021-03-11 凌巨科技股份有限公司 Structure of a display device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3918795A (en) * 1973-04-16 1975-11-11 Beatrice Foods Co Elgin Molded Retro-reflector construction
US3905682A (en) 1974-06-14 1975-09-16 Rca Corp Liquid crystal devices of improved contrast
JPS54105998A (en) 1978-02-07 1979-08-20 Nec Corp Reflective type liquid crystal display unit
DE3344478A1 (en) * 1983-12-08 1985-06-20 Erwin Sick Gmbh Optik-Elektronik, 7808 Waldkirch RETRORE REFLECTOR
US4930870A (en) * 1987-07-27 1990-06-05 Itw New Zealand Limited Retro-reflectors
JPH03186816A (en) 1989-12-18 1991-08-14 Seiko Epson Corp Liquid crystal display element
US5182663A (en) 1991-08-30 1993-01-26 Raychem Corporation Liquid crystal display having improved retroreflector
JP3186816B2 (en) 1992-01-28 2001-07-11 帝国ピストンリング株式会社 Sintered alloy for valve seat
US5200851A (en) * 1992-02-13 1993-04-06 Minnesota Mining And Manufacturing Company Infrared reflecting cube-cornered sheeting
JPH0836179A (en) * 1994-07-26 1996-02-06 Hitachi Ltd Liquid crystal display device
JPH08129170A (en) * 1994-11-01 1996-05-21 Toyobo Co Ltd Liquid crystal display device
JPH0949803A (en) * 1995-05-31 1997-02-18 Omron Corp Device and method for observing object
JP2000504438A (en) * 1996-11-28 2000-04-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Reflective flat panel display
JPH117008A (en) * 1997-06-16 1999-01-12 Seiko Epson Corp Reflection type liquid crystal display device
JPH1124049A (en) * 1997-06-30 1999-01-29 Seiko Instr Inc Reflection type liquid crystal display device, and its manufacturing method
JP3216584B2 (en) * 1997-08-25 2001-10-09 松下電器産業株式会社 Liquid crystal display device and method of manufacturing the same
JPH1195687A (en) * 1997-09-20 1999-04-09 Semiconductor Energy Lab Co Ltd Display device
JP2000019490A (en) * 1998-06-29 2000-01-21 Dainippon Printing Co Ltd Reflection type polymer-dispersed liquid crystal display device
JP3957986B2 (en) * 2000-03-31 2007-08-15 シャープ株式会社 Reflective display device
TW594218B (en) * 2000-07-03 2004-06-21 Alps Electric Co Ltd Reflector and reflective liquid crystal display device
JP4053260B2 (en) * 2000-10-18 2008-02-27 シャープ株式会社 Organic electroluminescence display element
US6353489B1 (en) * 2000-11-23 2002-03-05 Digilens, Inc. Optical retro-reflection device

Also Published As

Publication number Publication date
KR20010095214A (en) 2001-11-03
US20010040717A1 (en) 2001-11-15
US6657766B2 (en) 2003-12-02
TWI294977B (en) 2008-03-21
JP2002107519A (en) 2002-04-10
TW200732770A (en) 2007-09-01
KR100404060B1 (en) 2003-11-03
JP3957986B2 (en) 2007-08-15
KR20030045707A (en) 2003-06-11
US20040085611A1 (en) 2004-05-06
KR100402668B1 (en) 2003-10-22
US6844956B2 (en) 2005-01-18

Similar Documents

Publication Publication Date Title
TWI312092B (en) Reflective display device and retro-reflector used therefor
JP3549176B2 (en) Liquid crystal display device and method for manufacturing color filter substrate
JP3250853B2 (en) Liquid crystal display device and projection display device using the same
US5715022A (en) Image display apparatus
TWI309738B (en)
US20020113921A1 (en) High-brightnesss color liquid crystal display panel employing light recycling therein
JP2849492B2 (en) Projection type liquid crystal display
JP2002250914A (en) Transmission type display device
JP3310569B2 (en) Reflective liquid crystal display
WO2022227120A1 (en) Display panel and display apparatus
JPH0990310A (en) Reflection type liquid crystal display element and its application device
CN215642156U (en) Display panel and display device
JPH06313890A (en) Back plate for liquid crystal display device and manufacture thereof
JP2000193969A (en) Reflective liquid crystal display device
JP2000241809A (en) Reflection type liquid crystal display device
WO2005012987A1 (en) Reflective display device
JPH049922A (en) Projection type color liquid crystal display device
JP3261853B2 (en) Reflective liquid crystal display
JP2002341331A (en) Translucent color liquid crystal display device and back electrode substrate
JPH09211496A (en) Reflection type guest-host liquid crystal display device
JP3465695B2 (en) Transflective color liquid crystal display
JP2002072195A (en) Reflective liquid crystal display device
JP2005043923A (en) Reflective display device
JPH06110076A (en) Liquid crystal display device
CN113267927A (en) Display panel and display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees