TWI307453B - Illumination apparatus, exposure apparatus and device manufacturing method - Google Patents

Illumination apparatus, exposure apparatus and device manufacturing method Download PDF

Info

Publication number
TWI307453B
TWI307453B TW094108085A TW94108085A TWI307453B TW I307453 B TWI307453 B TW I307453B TW 094108085 A TW094108085 A TW 094108085A TW 94108085 A TW94108085 A TW 94108085A TW I307453 B TWI307453 B TW I307453B
Authority
TW
Taiwan
Prior art keywords
light
phase
polarization
mask
light source
Prior art date
Application number
TW094108085A
Other languages
Chinese (zh)
Other versions
TW200537256A (en
Inventor
Toshihiko Tsuji
Original Assignee
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kk filed Critical Canon Kk
Publication of TW200537256A publication Critical patent/TW200537256A/en
Application granted granted Critical
Publication of TWI307453B publication Critical patent/TWI307453B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B13/00Irrigation ditches, i.e. gravity flow, open channel water distribution systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/701Off-axis setting using an aperture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

1307453 (1) 九、發明說明 【發明所屬之技術領域】 本發明大致關係於照明設備,更明確地說,有關用以 曝光一物件,例如用於半導體晶圓的單晶基材、及用於一 液晶顯示(LCD )器的玻璃板之照明設備,及使用該照明 設備的曝光設備與使用該曝光設備的裝置製造方法。 | 【先前技術】 更小及更低剖面電子設備的需求更需要對安裝在這些 電子裝置上的半導體裝置的更細微處理。光微影製程大致 被用以生產高積集裝置’例如半導體裝置' LCD裝置及薄 ' 膜磁頭。對於此製程一投影曝光設備係爲此製程的一重點 . 設備’其並將光罩(或光罩)的一部份曝光至一基材上, 例如一光阻施加矽晶圓及玻璃板。 以下等式給出投影曝光設備的解析度R,其中λ爲曝 φ 光的波長’ ΝΑ爲投影光學系統的數値孔徑,及I爲顯影 程序所決定的製程常數: R = ki X A. ( 1 ) ΝΑ κ ) 因此:’波長愈短及Ν Α愈高,則解析度愈佳。然而, 愈短的波長將降低穿過玻璃材料的穿透率,聚焦深度將成 反比於N A ’ Ν A愈大則愈難設計及製造一透鏡。 因此,近年已提出解析度加強技術(RET ),其降低 用於細微製程的製程常數k!。RET爲一修改照明,其也 被稱爲一偏斜入射照明或偏軸照明。修改的照明安排一具 -4- (2) 1307453 有一遮光板之孔徑光闌在接近光積分器的出口面附近在光 學系統的光軸上,該積分器形成一均勻光源,並偏斜地引 入曝光光至一遮罩。所修改的照明可以藉由控制孔徑光闌 的形狀’而形成一環形照明、一四極照明等。 另一方面’先前技術提出對於加強影像對比,在想要 方向中,只具有線性偏振光。見,例如日本特開平7_ 1 83 20 1及6-053 1 20。特開平7- 1 8320 1使用一濾光片,以 移除具有不想要偏振方向的光。特開平6-053 1 20則揭示 一種藉由使用λ /2相板的,在想要方向中,建立線性偏振 光’以及,爲線性偏光板所事前線性偏振的光。 【發明內容】 本發明有關於照明設備,其可以在想要方向中,設立 線性偏振光爲任意修改照明,而不必降低照明效率,並容 易校正線性偏振光的偏振程度劣化,具有該照明設備的曝 光設備、及使用曝光設備的裝置製造方法。 依據本發明一態樣的照明設備,使用來自光源的光以 照射具有圖案的遮罩,該設備包含:一產生段,用以產生 一有效光源分佈,以進行至遮罩的修改照明;一偏振設定 段,用以設定在多數區域中之預定偏振狀態呈有效光源分 佈:及一調整段,用以共同地控制每一區域的偏振狀態。 依據本發明另一態樣的照明方法,用以使用來自光源 的光,照射具有圖案的遮罩,該方法包含步驟:產生一有 效光源分佈,以修改照明至遮罩;對稱地對在有效光源分 -5- (3) 1307453 佈中之多數區域,設定預定偏振狀態;共同控制爲設定步 驟所設定的偏振的程度;及基於檢測步驟的結果,控制用 於產生步驟的光之偏振。 一曝光設備包含上述用以照射一遮罩的照明設備,及 一投影光學系統,用以投影一遮罩圖案至一予以曝光的物 件上。一依據本發明另一態樣的裝置製造方法包含步驟: 使用上述曝光設備,以曝光一物件;及顯影被曝光的物件 。一種執行類似於上述曝光設備的操作的裝置製造方法, 該裝置涵蓋裝置作爲中間產物及最後產物者。此等裝置包 含半導體晶片,例如LSI及VLSI、CCD、LCD、磁感應器 、薄膜磁頭等等。 本發明的其他目的及特性將可以由以下較佳實施例的 詳細說明配合上附圖加以迅速了解。 【實施方式】 現參考附圖,將說明安裝有依據本發明實施例的照明 設備100的曝光設備1。於此,第1圖爲曝光設備1的方 塊圖。曝光設備1係爲投影曝光設備,其將一遮罩200的 電路圖案例如以步進投影或步進掃描投影方式,來曝光至 一物件(板)400。此一曝光設備係適用於一次微米或四 分之一微米微影製程,以下本實施例將採步進掃描投影曝 光設備(也稱爲掃描機)加以說明。於此所用之步進掃描 方式爲一曝光方法,其藉由相對於遮罩連續掃描晶圓及藉 由在一曝光照射後,步階式移動晶圓至下一予以照射的曝 -6- (4) 1307453 光區’而將一遮罩圖案曝光至一晶圓。步進式爲另一曝光 方式’其將晶圓步階式移動至下一照射的曝光區,用以照 射格投影至晶圓上。 曝光設備1包含一照明設備100、—遮罩200、一投 影光學系統300、及一板400。 照明設備1 〇 〇將遮罩2 0 0照射,該遮罩具有—予以轉 印的電路圖案’該照明設備包含一光源丨〇 2、—照明光學 系統(1 〇 4至1 7 7 )、及—控制系統(丨〗8、! 7 6、丨7 8及 180 ) ° 光源1 0 2可以使用作爲一光源,—具有波長約1 9 3奈 米的ArF準分子雷射及具有波長約248奈米的KrF準分 子雷射可以使用。然而’電射類型並不限於準分子雷射, 雷射單元數也並不限定。可應用至光源單元丨〇2的光源並 不限定於雷射。也可以使用一或多數燈,例如水銀燈及氙 氣燈。 照明光學系統爲一光學系統,其維持光強度並以修改 之具有想要線性偏振光的照明,來照明遮罩1 5 2。照明光 學系統包含一反射光學系統104、一光束整形光學系統 106、一偏振控制機構108、一相位調整機構11〇、—射出 角保留光學元件120、一轉移光學系統124、一多光束產 生機構130、一繞射光學系統140、一轉移光學系統15〇 、一孔徑1 5 2、一變焦光學系統1 5 6、一相位轉換裝置 160、一多光束產生機構170、一孔徑光闌172及一照射 機構177。 (5) 1307453 反射光學系統104將來自光源102的光引入至光束整 形光學系統106。光束整形光學系統106可以例如使用一 具有多數圓柱透鏡等的光束擴充器並將來自雷射光源的準 直光束的剖面形狀的尺寸的縱橫比轉換爲想要値(例如, 藉由將剖面形狀由矩形改變爲一正方形),因而將光束形 狀再次整形爲想要形狀。光束整形系統1 0 6形成一照射複 眼透鏡所需的尺寸及分散角的光束,該複眼透鏡係如下述 作爲多光束產生機構130。 偏振控制機構1 〇 8包含一線性偏振光板等,更作用以 移除不想要的偏振光。當光源1 02使用ArF準分子雷射時 ,被激勵的光幾乎爲線性偏振光。即使偏振面係分佈於反 射光學系統1 04中,光線進入偏振控制機構1 08,同時, 線性偏振光主宰該光。偏振控制機構1 08作用以移除入射 光中之不必要的偏振光,使得可以發射的線性偏振方向依 據爲入射光所主宰的偏振方向傳送。因爲偏振控制機構 1 〇8最小化予以遮蔽的偏振光,即想要的線性偏振光可以 有效地取出。 相位調整機構1 1 〇將通過偏振控制機構1 的線性偏 振光轉換爲圓形偏振光。相位調整機構11 〇作爲一相位板 ’其將線性偏振光轉換爲完美或大致圓形偏振光,並包含 兩石英元件,即結晶塊1 1 2及楔形結晶板1 1 4,及一細微 動作機制Π 6,其將楔形結晶板1 1 4移動。結晶塊1 1 2及 楔形結晶板1 1 4係雙折射結晶,具有對準於同一方向的光 學軸。細微動作機制1 1 6包含一測微頭等。於此,第2圖 -8 - (6) (6)1307453 爲一方塊圖,顯示相位調整機構110及其附近的光學路徑 。於第2圖中,兩至偏振控制機構1 〇 8的左及右的線大致 表示光的偏振狀態。至偏振控制機構1 0 8的右的線表示偏 振方向係平行於紙面及在線左方的黑點表示偏振光垂直於 紙面射出,相當於上述“不必要偏振光”。當光通過偏振控 制機構1 08,只有平行於紙面的偏振光會進入相位調整機 構1 1 〇,如至偏振控制機構1 0 8右方的線所示,及圓形偏 振光係被形成如相位調整機構110的右方的圖形所表示。 在相位調整機構110右方的旋轉箭頭及射出角度維持光學 兀件120表不第2圖的圓形偏振光的出現。第2圖只顯示 一實施例,在相位調整機構110的左側之偏振方向平行於 紙面並不是必要的。 在接收來自控制系統的控制系統的細微動量的資訊之 驅動器1 1 8的控制下,細微動作機構1 1 6細微地移動楔形 結晶板114於縱向中,並改變光通過的結晶件之厚度。藉 此,相位調整機構1 1 〇提供具有想要相位差的傳送偏振光 並改變其偏振狀態。此實施例的相位調整機構1 1 0提供具 有A /4相差的入射光,並發射入射線性偏振光成爲圓形偏 振光。當由於光學系統所造成的相位偏移的影響,而不能 得到想要偏振狀態的有效光源分佈時,相位調整機構1 1 0 調整相位,以如下述取消相位差量。 射出角度維持光學元件1 20以某一發散角發射光,並 包含一微透鏡陣列。轉移光學系統1 24聚焦來自射出角維 持光學件120的光至多光束產生機構130。 (7) 1307453 轉移光學系統1 24維持在射出角維持光學元件1 20的 射出面與多光束產生機構1 3 0之入射面間之傅氏轉換關係 (或於物件面與光瞳面或光瞳面與影像面間之相關)。在 第2圖中之射出角1 22係爲在微透鏡陣列中之透鏡元件的 射出NA所固定,及入射在多光束產生機構130的入射面 上的光之分佈126 —直被固定在表面的定位上,即使入射 光的光學軸上下移動,藉由重疊在Koehler照明下的多數 光束,而形成均勻光強度分佈。均勻照射區126的形狀係 類似於在射出角維持光學元件1 20中之細微透鏡的外形。 於此實施例中,射出角維持光學元件1 20係爲蜂巢微透鏡 陣列及照射區1 26具有大致正六角形的形狀。 多光束產生機構〗30爲一光學積分器,例如具有多數 細微透鏡的複眼透,鏡及射出面形成具有多數點光源的一 光源面。每一細微透鏡可以由一繞射光學元件,或藉由在 基板上的蝕刻程序形成的一微透鏡陣列。在此實施例中之 多光束產生機構爲一光學元件,其具有多數光軸,以在每 一光軸旁形成有限區域,並特殊化在每一區域中之光束。 如第2圖所示,因爲透鏡元件的固定射出NA,所以 ,由多光數產生機構130所發射的圓形偏振光具有一定射 出角134。由每一透鏡元件以想要射出角發射的光被引入 作爲圓形偏振光進入繞射光學元件1 40。繞射光學元件 140被安排略微射出光的聚焦點132,並爲具有發散角 134的入射光所照射。參考第3A及3B圖,將說明此狀態 -10 - (8) 1307453 第3 A及3 B圖爲在繞射光學元件1 4 0上之入射光的 狀態示意圖。在第3 A及3B圖中,M2表示細微步階形狀 所形成的繞射光學元件面。該繞射光學元件面係爲一石英 基材等的表面。143及144表示一光點,並表示當多光束 產生機構130爲蜂巢微透鏡陣列時,來自一透鏡的光。換 句話說,入射至繞射光學元件1 0的光係爲一組光點1 43 及 1 4 4。 _ 光點M3及144的尺寸依據在第2圖中之光學元件 140與聚焦點132間之距離而上下變動。例如,當距離增 加時,光點144的尺寸變大,如第3B圖所示,使得個別 點彼此重疊在繞射光學元件面1 42上。在繞射光學元件面 • 1 40及聚焦點1 32間之距離的適當設定可以保護元件不受 . 由於能量集中在繞射光學元件面142上的損壞。 在此實施例中,繞射光學元件140爲一相位型電腦產 生全像圖(CGH),並在基材表面上,具有一步階狀凸凹 φ 形狀。該CGH爲一藉由計算在目標光與參考光間之千涉 條紋所產生,並直接由攝像機器所輸出。提供重製光的想 要光強度分佈的干涉條紋可以經由使用電腦的重覆計算容 易算出。 第4A圖爲如此所產生相位類型' CGH前視圖,及第 4B圖爲沿著第4A圖的箭頭所取之剖面圖。第4A圖表示 形成在一基材上成爲灰階分佈145的凸凹相分佈。半導體 裝置製造技術可以應用至如剖面1 4 6的步階剖面的產生, 及相當容易地實現細微間距。 -11 - 1307453 Ο) 取得成爲繞射光學元件1 40的重製影像之想要的光強 度分佈或有效光源分佈包含但並不限定於適用以予以曝光 的圖案的分佈,例如第5A圖的環形分佈、第5B圖所示 之四相分佈、及第5C圖所示之雙極分佈。這些光強度分 佈係被如第1圖所示之孔徑1 52所產生爲重製影像,並在 取得變焦光學系統1 5 6的想要放大倍率後,被投影至多光 束產生機構1 7 0的入射面。此架構提供修改的照明,並改 良解析效能。此實施例因爲繞射維持偏振面,所以,引入 圓形偏振光進入相位類繞射光學元件140,並完成圓形偏 振光的有效光源分佈。另外,照明條件係容易變爲開關機 構,例如第1圖所示之轉座141,切換形成如第5A至5C 圖所示之有效光強度分佈的多數繞射光學元件。若偏振控 制在正常照射時間爲不需要,則相位轉換裝置1 60可以由 光學路徑移除。 轉移光學系統150使用已經在繞射光學元件140上, 經歷一計算振幅修正或相位修正的繞射光,而在孔徑1 5 2 上,形成大致均勻強度的有效光源分佈154。繞射光學元 件1 40及孔徑1 52係被安排使得它們具有一傅氏轉換關係 。由於此關係,由繞射光學元件1 40的'任一點之發散光對 整個有效光源分佈154提出貢獻。換句話說,在第3A及 3B圖中,在光點143及144中之任意光在孔徑152上, 形成有效光源分佈154,該分佈係適用於如第5A、5B或 5 C圖所示之修改照明。 如第2圖所示,入射至CGH140上的光有一展開角 -12 - (10) 1307453 1 34,該有效光強度分佈1 54依據此角略微模糊。然而 此模糊係爲展開角1 3 4所定義,及繞射光學元件1 40係 設定,使得想要有效光源分佈1 54預期模糊量。有效光 分佈1 54係爲在想要倍率的變焦光學系統1 56所變焦, 經相位轉換裝置1 60被投影爲均勻光源影像至多光束產 機構170的入射面上。 以下將說明當有效光源分佈1 54係如第5A圖所示 _ 環形照明時,使用相位轉換裝置1 60,以有效地轉換形 均勻光源影像的光的偏振方向成爲正切方向(或如第8 的1 68所示之偏振方向)。正切偏振照明以正交至入射 的線性偏振光照射目標表面。 , 第6圖爲一安排在接近多光束產生機構170的入射 , 的相位轉換元件1 60的前視圖。本實施例的相位轉換裝 160包含具有中心角45度安排在徑向方向中的八個λ 的相位板,其中λ爲曝光波長。環形有效光源分佈161 φ 藉由在變焦光學系統156將有效光源分佈154轉換爲一 要倍率後,將發射自變焦光學系統156的光形成在相位 換裝置1 60的入射側所分佈。 該λ /4相位板1 56包含例如雙折射結晶,例如石英 並在振盪於ζ方向(異常光線)的元件與振盪於X方向 正常光線)間,產生一 λ /4的相位差波長(Π /2 ),其 ζ方向被指定爲其光軸,及圓形偏振光163以y方向進 λ /4相位板1 62,如第7圖所示。藉此,振盪於4 5度 位角或方面1 6 4的線性偏振光1 6 5於X ζ面被取得。λ 被 源 並 生 之 成 圖 面 面 置 /4 係 想 轉 中 入 方 -13- /4 (11) 1307453 相位板1 6 2具有對應於如第7圖所示之想要相位差的雙折 射結晶厚度,並被製造爲具有45度之垂直的角166之等 腰三角形。光軸Z被設定以使得當線性偏振光1 65位在底 部時,線性偏振光1 65具有水平方向分量。相位轉換裝置 160係藉由以一適當架將λ /4相位板162固定在徑向中之 垂直角166旁加以完成。 該環形有效光源分佈154係爲藉由將圓形偏振光引入 繞射光學元件140所形成的影像(或光強度分佈)或者圓 形偏振光,如第2圖所討論。因此,當形成在相位轉換裝 置1 60的入射側之環形影像被顯示如第8圖所示時,由變 焦光學系統1 5 6來之環形光強度分佈的光入射至每一 λ /4 相位板162的區域上並爲圓形偏振光167。當圓形偏振光 167通過相位轉換裝160時,入射至多光束產生機構170 的光變成線性偏振光168,其在(環的)正切方向具有偏 振分量如第8圖的箭頭所示。 用於修改照明的有效光源分佈包含如第5 Β及5 C圖 所示的雙極及四極分佈。第9Α及9Β圖顯示雙極有效光 源分佈,其中第9Α圖對應於第8圖的左下圖,及第9Β 圖對應於第8圖的右下圖。第9C及9D圖顯示四極有效 光源分佈,其中第9C圖相當於第8圖的左下圖,及第9D 圖對應於第8圖的右下圖。如上所述,當如此設計與製造 的CGH被安裝在轉座141上時,其係於需要時被切換。 多光束產生機構1 7〇係爲光學積分器,例如複眼透鏡 ,其具有多數細微透鏡,其射出面形成一光源面,具有多 -14- (12) 1307453 數點光源。每一細微透鏡可以由繞射光學元件所形成’或 者一微透鏡陣列可以藉由在基材上蝕刻製程加以形成。 參考第8圖,當想要的均句光源影像1 68被投射至多 光束產生機構170的入射面時’有效光源分佈被轉送至射 出面1 74。因爲對應於環形光源影像的孔徑光闌1 72被安 排在多光束產生機構1 7〇的射出側上,所以’只有二次光 源分佈可以通過在孔徑光闌172中之開口’及在正切方向 中之偏振分量分佈如同影像168。同時’孔徑光闌172遮 住不必要的光。 回到第1圖,控制系統包含驅動器Π 8、半鏡1 7 6、 一聚焦光學系統1 78、及偏振度監視系統1 80。驅動器 118移動相位調整機構110於第1圖及第2圖所示之縱長 方向中,並提供想要相位差給通過相位調整機構1 1 〇的光 ,並改變偏振狀態。 半鏡176反射來自多光束產生機構170的部份光。聚 焦光學系統178聚焦爲半鏡176所反射的光。偏振度監視 系統1 8 0基於來自聚焦光學系統1 7 8的光,而決定及控制 驅動器Π 8的移動量,系統1 80並且包含一針孔1 82、一 聚焦光學系統184及感應器單元186。針孔182係被安排 在聚焦光學系統178的聚焦面,並與作爲予以照射的目標 面的遮罩200共軛。聚焦光學系統184將通過針孔182的 光引入感應器單元186。感應器單元186包含多數線性偏 光板、光接收元件及一CPU。多數在感應器單元186及孔 徑光闌172中之入射面具有共軛關係。操作驅動器移動量 -15- (13) (13)1307453 的操作部份可以與驅動器1 1 8整合在一起。 遮罩200係例如由石英作成並具有予以轉印的電路圖 案(或一影像)。其係爲遮罩台所支持及驅動。來自遮罩 的繞射光通過投影光學系統300,然後’被投射至板400 。遮罩200及板400定位呈光學共軛關係。因爲此實施例 之曝光設備爲一掃描機’所以遮罩200及板400係以縮影 比例的速度比加以掃描。因此,遮罩1 52的圖案被轉印至 板172。若在步進重覆曝光設備(稱步進機)’則遮罩 200及板400將在曝光遮罩圖案時保持不動。 投影光學系統3 00可以只使用一(屈光)光學系統’ 其包含多數透鏡元件、一包含多數透鏡元件及至少一鏡的 (反折射)光學系統、一包含多數透鏡元件及例如基落形 式的至少一繞射光學元件、及由全鏡類型的(反射)光學 系統等等。色差的任何必須校正可以使用由不同色散値( 阿貝値)的玻璃材料作成的多數透鏡單元,或者,可以安 排射光學元件,使得其分散於相反於透鏡單元的方向中。 投影光學系統也可應用至所謂浸沒曝光中,其將流體塡入 在板400與投影光學系統3 00中影像側的最後透鏡間之空 間中,以完成大於1的NA,以在較高解析度曝光。 板4 00係爲予以曝光的例示物件,例如晶圓及LCD。 一光阻被施加至板400。機台(未示出)經由夾盤(未示 出)支持板400。遮罩200及板400係例如同步地掃描。 機台(未示出)及遮罩機台(未示出)的位置係例如藉由 干涉儀加以監視,使得兩者均以定速度比加以驅動。 -16- (14) 1307453 以下將說明曝光設備1的操作。發射自光源1 02的光 係爲反射光學系統1 04所反射至光束整形光學系統1 06。 進入光束整形光學系統1 06的光係被整形爲一預定形狀, 及偏振控制機構1 〇 8將不必要的線性偏振光移除。再者, 相位調整機構1 1 〇將線性偏振光轉換爲圓形偏振光,及射 出角維持光學元件120將光分隔爲多數點光源。再者,來 自射出角維持光學元件1 20的光係經由轉移光學系統1 24 而入射至多光束產生機構130上,成爲圓形偏振光。 來自多束產生機構130的圓形偏振光進入繞射光學元 1 40,同時維持該出口 NA,並被轉換爲想要的修改照明。 爲繞射光學元件1 40所振幅修改或相位修改的繞射光經由 轉移透鏡52在孔徑152上,形成有效光源分佈154。再 者,有效光源分佈154係爲變焦光學系統156所變焦,並 爲相位轉換裝置160所轉換爲線性偏振光,而入射至多光 束產生機構170上。 來自多光束產生機構170中之每一細微透鏡元件的光 係被照射機構177所重疊在作爲目標面的遮罩200上,例 如,Koehler照射目標面,用以整個均勻光強度分佈。遮 罩20 0被放置在遮罩機台,及在掃描曝光設備曝光中被驅 動。通過遮罩200並藉由投射光學系統300,以一投射倍 率(例如1 /4及1 /5 )反射遮罩圖案的光在經由晶圓夾盤 (未示出)所固定在機台上的板400上成像。晶圓夾盤係 設在晶圓機台上,並在曝光時被驅動。 相位轉換裝置1 60將相位轉換,但並不如濾光片地遮 -17- (15) 1307453 蔽光。因此,不會降低光強度或產出量。修改的照明提供 高解析度曝光。有效光源照射使用在正切方向的線性偏振 光,並改良影像對比。 由於照射光學系統中之光學元件的製造誤差及玻璃材 料與抗反射塗層的差雙折射效能的影響,可能對稱於中心 軸發生相位偏置,及正切線性偏振可以略微造成橢圓偏振 。於此時,相位調整機構1 1 0及控制系統調整偏振的相位 及程度。換句話說,半鏡176由多光束產生機構170的每 一細微透鏡元件中,抽出一部份的射出光(約百分之幾) ,及聚焦光學系統1 78將光聚焦至在偏振監視系統1 80中 之針孔182中。因爲針孔182及遮罩200具有共軛關係, 所以在針孔182中形成均勻照射區域。因爲感應器單元 1 86的入射面與孔徑光闌共軛,所以有效光源分佈係被形 成在感應器單元186的入射面上。結果,感應器單元186 量測在有效光源分佈中之多數位置中的偏振程度,並量測 在正切方向中,與想要線性偏振光的差分量的強度。 在感應器單元186中之CPU處理檢測信號成爲量測 的結果;計算細微移動量;並將該量送至驅動器118。反 應於此,驅動器1 1 8驅動相位調整機構1 1 0,使得相位調 整機構1 1 0取消相位偏移。結果,正切偏振被調整至大約 線性偏振光。 雖然偏振度監視系統180於曝光時,經由半鏡176及 聚焦光學系統178抽出部份之光,但半鏡176可以插入在 曝光之前及後的光學路徑中,以量測偏振程度,並在曝光 -18- (16) (16)1307453 (1) IX DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates generally to lighting devices, and more particularly to a single crystal substrate for exposing an object, such as for a semiconductor wafer, and for A lighting device for a glass plate of a liquid crystal display (LCD), and an exposure device using the same, and a device manufacturing method using the exposure device. [Prior Art] The need for smaller and lower profile electronic devices requires more granular processing of semiconductor devices mounted on these electronic devices. The photolithography process is generally used to produce high accumulation devices such as semiconductor devices and thin film electrodes. A projection exposure apparatus for this process is an important focus of this process. The device ' exposes a portion of the reticle (or reticle) to a substrate, such as a photoresist applied to the wafer and glass. The following equation gives the resolution R of the projection exposure apparatus, where λ is the wavelength of the exposure φ light ΝΑ is the number 値 aperture of the projection optical system, and I is the process constant determined by the development procedure: R = ki X A. ( 1) ΝΑ κ ) Therefore: 'The shorter the wavelength and the higher the Ν, the better the resolution. However, the shorter the wavelength will reduce the transmittance through the glass material, and the depth of focus will be inversely proportional to N A ' Ν A. The larger it is, the more difficult it is to design and fabricate a lens. Therefore, in recent years, resolution enhancement technology (RET) has been proposed which reduces the process constant k! for fine processes. RET is a modified illumination, which is also referred to as an oblique incident illumination or off-axis illumination. The modified illumination arrangement has a -4- (2) 1307453 aperture stop with a visor on the optical axis of the optical system near the exit face of the optical integrator, which forms a uniform source of light and is introduced obliquely Exposure light to a mask. The modified illumination can form a ring illumination, a quadrupole illumination, etc. by controlling the shape of the aperture stop. On the other hand, the prior art proposes to enhance the image contrast with only linearly polarized light in the desired direction. See, for example, Japanese Unexamined 7_ 1 83 20 1 and 6-053 1 20. JP-A-7- 1 8320 1 uses a filter to remove light having an unwanted polarization direction. JP-A-6-053 1 20 discloses a light which is linearly polarized in the desired direction by using a λ/2 phase plate and linearly polarized beforehand. SUMMARY OF THE INVENTION The present invention relates to an illumination device that can set linearly polarized light in an intended direction for arbitrarily modified illumination without having to reduce illumination efficiency, and easily corrects deterioration of polarization degree of linearly polarized light, having the illumination device An exposure apparatus, and a device manufacturing method using the exposure apparatus. In accordance with an aspect of the present invention, a light from a light source is used to illuminate a patterned mask, the apparatus comprising: a generation segment for generating an effective light source distribution for performing modified illumination to the mask; A set segment is used to set a predetermined polarization state in a plurality of regions to be an effective light source distribution: and an adjustment segment for collectively controlling the polarization state of each region. In accordance with another aspect of the present invention, an illumination method for illuminating a mask having a pattern using light from a light source, the method comprising the steps of: generating an effective light source distribution to modify illumination to the mask; symmetrically aligning the effective light source Sub--5- (3) 1307453 Most areas in the cloth, set a predetermined polarization state; jointly control the degree of polarization set by the setting step; and based on the result of the detecting step, control the polarization of the light used to generate the step. An exposure apparatus includes the above illumination device for illuminating a mask, and a projection optical system for projecting a mask pattern onto an exposed object. A device manufacturing method according to another aspect of the present invention comprises the steps of: exposing an object using the above exposure apparatus; and developing the exposed object. A device manufacturing method that performs an operation similar to that of the above-described exposure apparatus, the device covering the device as an intermediate product and a final product. Such devices include semiconductor wafers such as LSI and VLSI, CCD, LCD, magnetic inductors, thin film magnetic heads and the like. Other objects and features of the present invention will be apparent from the following detailed description of the preferred embodiments. [Embodiment] Referring now to the drawings, an exposure apparatus 1 to which a lighting apparatus 100 according to an embodiment of the present invention is mounted will be explained. Here, Fig. 1 is a block diagram of the exposure apparatus 1. The exposure apparatus 1 is a projection exposure apparatus that exposes a circuit pattern of a mask 200 to an object (board) 400, for example, in a step projection or step-scan projection manner. This exposure apparatus is suitable for a one-micron or quarter-micron lithography process. The following embodiment will be described with a step-scan projection exposure apparatus (also referred to as a scanner). The step-and-scan method used herein is an exposure method in which the wafer is continuously scanned relative to the mask and the wafer is moved stepwise to the next exposure after exposure exposure. 4) 1307453 Light Zone' exposes a mask pattern to a wafer. The stepping mode is another exposure mode, which moves the wafer stepwise to the exposure area of the next illumination for projecting the grid onto the wafer. The exposure apparatus 1 includes a lighting apparatus 100, a mask 200, a projection optical system 300, and a board 400. Illumination device 1 照射 irradiates a mask 200, the mask has a circuit pattern to be transferred. The illumination device comprises a light source 丨〇 2, an illumination optical system (1 〇 4 to 177), and - Control system (丨〗 8, 7 6 丨 7 8 and 180) ° Light source 1 0 2 can be used as a light source, with an ArF excimer laser with a wavelength of about 193 nm and a wavelength of about 248 奈The KrF excimer laser of meters can be used. However, the type of electric radiation is not limited to excimer lasers, and the number of laser units is not limited. The light source that can be applied to the light source unit 丨〇2 is not limited to the laser. It is also possible to use one or more lamps, such as mercury lamps and xenon lamps. The illumination optics is an optical system that maintains the light intensity and illuminates the mask 15 with modified illumination having the desired linearly polarized light. The illumination optical system includes a reflection optical system 104, a beam shaping optical system 106, a polarization control mechanism 108, a phase adjustment mechanism 11A, an exit angle retention optical element 120, a transfer optical system 124, and a multi-beam generation mechanism 130. a diffractive optical system 140, a transfer optical system 15A, an aperture 15 2, a zoom optical system 156, a phase shifting device 160, a multi-beam generating mechanism 170, an aperture stop 172, and an illumination Agency 177. (5) 1307453 The reflective optical system 104 introduces light from the source 102 to the beam shaping optics 106. The beam shaping optical system 106 can, for example, use a beam expander having a plurality of cylindrical lenses or the like and convert the aspect ratio of the size of the cross-sectional shape of the collimated beam from the laser source to desired (for example, by The rectangle is changed to a square), and the beam shape is again shaped into the desired shape. The beam shaping system 106 forms a light beam of a size and a dispersion angle required to illuminate the fly-eye lens, and the fly-eye lens is as follows as the multi-beam generating mechanism 130. The polarization control mechanism 1 〇 8 includes a linear polarizing plate or the like which acts to remove unwanted polarized light. When the source 102 uses an ArF excimer laser, the excited light is almost linearly polarized. Even if the plane of polarization is distributed in the retroreflective optical system 104, the light enters the polarization control mechanism 108, while the linearly polarized light dominates the light. The polarization control mechanism 108 acts to remove unwanted polarized light in the incident light such that the linear polarization direction that can be emitted is transmitted in the direction of polarization dominated by the incident light. Since the polarization control mechanism 1 最小 8 minimizes the polarized light to be shielded, the desired linearly polarized light can be efficiently taken out. The phase adjustment mechanism 1 1 转换 converts the linearly polarized light passing through the polarization control mechanism 1 into circularly polarized light. The phase adjustment mechanism 11 is a phase plate that converts linearly polarized light into perfect or substantially circularly polarized light and includes two quartz elements, namely a crystal block 1 1 2 and a wedge-shaped crystal plate 1 14 , and a fine action mechanism. Π 6, which moves the wedge-shaped crystal plate 1 1 4 . The crystal block 1 1 2 and the wedge-shaped crystal plate 1 1 4 are birefringent crystals having optical axes aligned in the same direction. The fine motion mechanism 1 16 includes a micrometer and the like. Here, Fig. 2-8 - (6) (6) 1307453 is a block diagram showing the optical path of the phase adjustment mechanism 110 and its vicinity. In Fig. 2, the left and right lines of the two polarization control mechanisms 1 大致 8 roughly indicate the polarization state of the light. The line to the right of the polarization control mechanism 108 indicates that the polarization direction is parallel to the paper surface and the black dot on the left side of the line indicates that the polarized light is emitted perpendicularly to the plane of the paper, and corresponds to the above-mentioned "unnecessary polarization". When the light passes through the polarization control mechanism 108, only the polarized light parallel to the paper surface enters the phase adjustment mechanism 1 1 〇 as shown by the line to the right of the polarization control mechanism 108, and the circularly polarized light system is formed as a phase. The figure on the right side of the adjustment mechanism 110 is represented. The rotation arrow and the emission angle maintaining optical element 120 on the right side of the phase adjustment mechanism 110 indicate the appearance of the circularly polarized light of the second drawing. Fig. 2 shows only one embodiment, and it is not necessary that the polarization direction on the left side of the phase adjustment mechanism 110 is parallel to the paper surface. Under the control of the driver 1 18 receiving the information of the fine momentum from the control system of the control system, the fine action mechanism 1 16 finely moves the wedge-shaped crystal plate 114 in the longitudinal direction and changes the thickness of the crystallized member through which the light passes. Thereby, the phase adjustment mechanism 1 1 〇 provides the transmitted polarized light having the desired phase difference and changes its polarization state. The phase adjustment mechanism 110 of this embodiment provides incident light having an A/4 phase difference and emits incident linearly polarized light into circularly polarized light. When an effective light source distribution of a desired polarization state cannot be obtained due to the influence of the phase shift caused by the optical system, the phase adjustment mechanism 1 10 adjusts the phase to cancel the phase difference amount as described below. The exit angle maintaining optical element 120 emits light at a divergence angle and includes a microlens array. The transfer optical system 1 24 focuses the light from the exit angle maintaining optics 120 to the multi-beam generating mechanism 130. (7) 1307453 The transfer optical system 1 24 maintains a Fourier transformation relationship between the exit surface of the exit angle maintaining optical element 120 and the incident surface of the multi-beam generating mechanism 130 (or the object surface and the pupil plane or pupil) The relationship between the surface and the image surface). The exit angle 1 22 in Fig. 2 is fixed by the emission NA of the lens element in the microlens array, and the light distribution 126 incident on the incident surface of the multi-beam generating mechanism 130 is fixed to the surface. Positioning, even if the optical axis of the incident light moves up and down, a uniform light intensity distribution is formed by overlapping most of the light beams under the Koehler illumination. The shape of the uniform illumination zone 126 is similar to the shape of the microlens in the optical element 120 at the exit angle. In this embodiment, the exit angle maintaining optical element 120 is a honeycomb microlens array and the irradiation area 126 has a substantially regular hexagonal shape. The multi-beam generating mechanism 30 is an optical integrator such as a complex eye having a plurality of fine lenses, and the mirror and the emitting surface form a light source surface having a plurality of point sources. Each of the microlenses may be formed by a diffractive optical element or by a microlens array formed by an etching process on the substrate. The multi-beam generating mechanism in this embodiment is an optical element having a plurality of optical axes to form a finite area beside each optical axis and to specialize the light beam in each area. As shown in Fig. 2, since the lens element is fixed to emit NA, the circularly polarized light emitted by the multi-light generating means 130 has a certain emission angle 134. Light emitted by each lens element at a desired exit angle is introduced as circularly polarized light into the diffractive optical element 140. The diffractive optical element 140 is arranged to focus slightly on the focus of the light 132 and to illuminate the incident light having a divergence angle 134. Referring to Figures 3A and 3B, this state will be explained. -10 - (8) 1307453 Figures 3A and 3B are schematic views of the state of incident light on the diffractive optical element 140. In the 3A and 3B drawings, M2 represents the surface of the diffractive optical element formed by the fine step shape. The surface of the diffractive optical element is a surface of a quartz substrate or the like. 143 and 144 denote a light spot and indicate light from a lens when the multi-beam generating mechanism 130 is a honeycomb microlens array. In other words, the light incident to the diffractive optical element 10 is a set of light spots 1 43 and 1 4 4 . The size of the light spots M3 and 144 varies up and down depending on the distance between the optical element 140 and the focus point 132 in Fig. 2 . For example, as the distance increases, the size of the spot 144 becomes larger, as shown in Fig. 3B, so that the individual dots overlap each other on the diffractive optical element face 142. Proper setting of the distance between the diffractive optical element face 1 40 and the focus point 1 32 protects the component from damage due to energy concentration on the diffractive optical element face 142. In this embodiment, the diffractive optical element 140 produces a hologram (CGH) for a phase type computer and has a stepped relief φ shape on the surface of the substrate. The CGH is generated by calculating the thousands of stripes between the target light and the reference light, and is directly output by the camera. Interference fringes that provide a light intensity distribution that provides re-lighting can be easily calculated by repeated calculations using a computer. Fig. 4A is a front view of the phase type 'CGH generated as such, and Fig. 4B is a cross-sectional view taken along the arrow of Fig. 4A. Fig. 4A shows the distribution of the convex and concave phases which form a gray scale distribution 145 on a substrate. Semiconductor device fabrication techniques can be applied to the generation of step profiles such as section 146, and to achieve fine pitches relatively easily. -11 - 1307453 Ο) The desired light intensity distribution or effective light source distribution for obtaining the reproduced image to be the diffractive optical element 140 includes, but is not limited to, a distribution of patterns suitable for exposure, such as the ring of Figure 5A. The distribution, the four-phase distribution shown in Fig. 5B, and the bipolar distribution shown in Fig. 5C. These light intensity distributions are generated as reproduced images by the apertures 152 shown in Fig. 1, and are incident on the multi-beam generating mechanism 170 when the desired magnification of the zoom optical system 156 is obtained. surface. This architecture provides modified lighting and improved resolution performance. This embodiment maintains the plane of polarization because of the diffraction, so that circularly polarized light is introduced into the phase-like diffractive optical element 140, and the effective light source distribution of the circularly polarized light is completed. Further, the lighting conditions are likely to become a switching mechanism, for example, the swivel 141 shown in Fig. 1, and a plurality of diffractive optical elements which form an effective light intensity distribution as shown in Figs. 5A to 5C are switched. If the polarization control is not required for normal illumination time, the phase conversion device 160 can be removed by the optical path. The transfer optics system 150 uses a diffracted light that has been subjected to a calculated amplitude correction or phase correction on the diffractive optical element 140 to form an effective source distribution 154 of substantially uniform intensity over the aperture 1 5 2 . The diffractive optical element 140 and the aperture 1 52 are arranged such that they have a Fourier transform relationship. Due to this relationship, the diverging light from any point of the diffractive optical element 140 contributes to the entire effective source distribution 154. In other words, in Figures 3A and 3B, any of the light spots 143 and 144 on the aperture 152 forms an effective light source distribution 154 that is suitable for use as shown in Figures 5A, 5B or 5C. Modify the lighting. As shown in Fig. 2, the light incident on the CGH 140 has an unfolded angle -12 - (10) 1307453 1 34, and the effective light intensity distribution 1 54 is slightly blurred according to this angle. However, this blur is defined by the unfolding angle 134 and the diffractive optical element 138 is set such that the desired illuminant distribution 1 54 is expected to be ambiguous. The effective light distribution 1 54 is zoomed by the zoom optical system 1 56 of the desired magnification, and is projected by the phase shifting device 160 as a uniform light source image onto the incident surface of the multi-beam generator 170. Hereinafter, when the effective light source distribution 154 is _ ring illumination as shown in FIG. 5A, the phase conversion device 160 is used to effectively convert the polarization direction of the light of the uniform light source image into a tangential direction (or as the eighth The polarization direction shown in 1 68). The tangentially polarized illumination illuminates the target surface with linearly polarized light that is orthogonal to the incident. Figure 6 is a front elevational view of the phase shifting element 160 disposed adjacent to the entrance of the multi-beam generating mechanism 170. The phase shifting device 160 of the present embodiment includes a phase plate having eight λ having a central angle of 45 degrees arranged in the radial direction, where λ is the exposure wavelength. The ring effective light source distribution 161 φ is distributed on the incident side of the phase shifting device 1 60 by converting the effective light source distribution 154 to a desired magnification after the zoom optical system 156. The λ /4 phase plate 1 56 contains, for example, a birefringent crystal such as quartz and generates a phase difference wavelength of λ / 4 between the element oscillating in the x-direction (abnormal light) and the normal light oscillating in the X direction (Π / 2), the ζ direction is designated as its optical axis, and the circularly polarized light 163 enters the λ /4 phase plate 1 62 in the y direction, as shown in FIG. Thereby, linearly polarized light 165 that oscillates at a 45 degree angle or aspect 146 is obtained on the X plane. λ is merged into the surface by the source /4 is intended to be converted into the square -13 - /4 (11) 1307453 Phase plate 1 6 2 has birefringence corresponding to the desired phase difference as shown in Fig. 7. The crystal thickness is made and is made into an isosceles triangle having a vertical angle 166 of 45 degrees. The optical axis Z is set such that when the linearly polarized light 1 65 is at the bottom, the linearly polarized light 165 has a horizontal direction component. Phase shifting device 160 is accomplished by affixing λ /4 phase plate 162 to a vertical angle 166 in the radial direction with a suitable frame. The annular effective source distribution 154 is an image (or light intensity distribution) or circularly polarized light formed by introducing circularly polarized light into the diffractive optical element 140, as discussed in Figure 2. Therefore, when the ring image formed on the incident side of the phase converting device 160 is displayed as shown in Fig. 8, the light of the ring light intensity distribution by the zoom optical system 156 is incident on each λ /4 phase plate. The area of 162 is circularly polarized light 167. When the circularly polarized light 167 passes through the phase shifting device 160, the light incident on the multi-beam generating mechanism 170 becomes linearly polarized light 168 having a polarization component in the (circular) tangential direction as indicated by the arrow in Fig. 8. The effective source distribution for modifying the illumination contains the bipolar and quadrupole distributions as shown in Figures 5 and 5C. Figures 9 and 9 show the bipolar effective light source distribution, where the 9th map corresponds to the lower left diagram of Fig. 8, and the 9th map corresponds to the lower right diagram of Fig. 8. The 9C and 9D diagrams show a four-pole effective light source distribution, wherein the 9Cth map corresponds to the lower left diagram of Fig. 8, and the 9Dth map corresponds to the lower right diagram of Fig. 8. As described above, when the CGH thus designed and manufactured is mounted on the rotary base 141, it is switched as needed. The multi-beam generating mechanism 17 is an optical integrator such as a fly-eye lens having a plurality of fine lenses whose exit faces form a light source face having a plurality of -14-(12) 1307453 point light sources. Each of the fine lenses may be formed by a diffractive optical element or a microlens array may be formed by an etching process on a substrate. Referring to Fig. 8, when the desired uniform sentence image 168 is projected onto the incident surface of the multi-beam generating mechanism 170, the effective light source distribution is transferred to the emitting surface 1 74. Since the aperture stop 127 corresponding to the image of the annular light source is arranged on the exit side of the multi-beam generating mechanism 17 ,, 'only the secondary light source distribution can pass through the opening ' in the aperture stop 172' and in the tangential direction The polarization component is distributed like image 168. At the same time, the aperture stop 172 blocks unnecessary light. Returning to Fig. 1, the control system includes a driver Π 8, a half mirror 176, a focusing optical system 1 78, and a polarization monitoring system 180. The driver 118 moves the phase adjustment mechanism 110 in the longitudinal direction shown in Figs. 1 and 2, and supplies a desired phase difference to the light passing through the phase adjustment mechanism 1 1 and changes the polarization state. The half mirror 176 reflects a portion of the light from the multi-beam generating mechanism 170. Focusing optics 178 focuses the light reflected by half mirror 176. The degree of polarization monitoring system 180 determines and controls the amount of movement of the driver Π 8 based on light from the focusing optical system 178, and includes a pinhole 182, a focusing optical system 184, and a sensor unit 186. . The pinhole 182 is arranged at the focal plane of the focusing optical system 178 and is conjugate with the mask 200 as the target surface to be illuminated. Focusing optics 184 introduces light through pinhole 182 into inductor unit 186. The sensor unit 186 includes a plurality of linear polarizers, a light receiving element, and a CPU. Most of the incident faces in the sensor unit 186 and the aperture stop 172 have a conjugate relationship. Operating the drive movement amount -15- (13) The operation part of (13)1307453 can be integrated with the drive 1 1 8 . The mask 200 is made, for example, of quartz and has a circuit pattern (or an image) to be transferred. It is supported and driven by the mask table. The diffracted light from the mask passes through the projection optical system 300 and is then projected onto the panel 400. The mask 200 and the plate 400 are positioned in an optically conjugate relationship. Since the exposure apparatus of this embodiment is a scanner', the mask 200 and the panel 400 are scanned at a speed ratio of a reduction ratio. Therefore, the pattern of the mask 152 is transferred to the board 172. If the stepping exposure apparatus (referred to as a stepper) is used, the mask 200 and the panel 400 will remain stationary when the mask pattern is exposed. The projection optical system 300 can use only one (refractive) optical system, which includes a plurality of lens elements, a (reflexive) optical system including a plurality of lens elements and at least one mirror, a plurality of lens elements, and, for example, a base form At least one diffractive optical element, and a (reflective) optical system of the full mirror type and the like. Any necessary correction of the chromatic aberration may use a plurality of lens units made of a glass material of different dispersion 阿 (Abbey), or the optical element may be arranged such that it is dispersed in a direction opposite to the lens unit. The projection optical system can also be applied to so-called immersion exposure, which traps fluid into the space between the plate 400 and the last lens on the image side of the projection optical system 300 to complete an NA greater than 1 for higher resolution. exposure. The board 400 is an exemplary object to be exposed, such as a wafer and an LCD. A photoresist is applied to the board 400. A machine (not shown) supports the board 400 via a chuck (not shown). The mask 200 and the panel 400 are, for example, scanned synchronously. The position of the machine (not shown) and the masking machine (not shown) is monitored, for example, by an interferometer such that both are driven at a constant speed ratio. -16- (14) 1307453 The operation of the exposure apparatus 1 will be described below. The light emitted from the light source 102 is reflected by the reflective optical system 104 to the beam shaping optical system 106. The light system entering the beam shaping optical system 106 is shaped into a predetermined shape, and the polarization control mechanism 1 移除 8 removes unnecessary linearly polarized light. Further, the phase adjustment mechanism 1 1 转换 converts the linearly polarized light into circularly polarized light, and the exit angle maintaining optical element 120 separates the light into a plurality of point light sources. Further, the light from the exit angle maintaining optical element 120 is incident on the multi-beam generating mechanism 130 via the transfer optical system 14 to become circularly polarized light. The circularly polarized light from the multibeam generating mechanism 130 enters the diffractive optical element 140 while maintaining the exit NA and is converted to the desired modified illumination. The diffracted light that is amplitude modified or phase modified for the diffractive optical element 140 is passed over the aperture 152 via the transfer lens 52 to form an effective source distribution 154. Further, the effective light source distribution 154 is zoomed by the zoom optical system 156, and converted into linearly polarized light by the phase converting means 160, and incident on the multi-beam generating mechanism 170. The light from each of the microlens elements in the multi-beam generating mechanism 170 is superimposed on the mask 200 as a target surface by the illumination mechanism 177, for example, Koehler illuminates the target surface for the entire uniform light intensity distribution. The hood 20 0 is placed on the masking machine and is driven during exposure of the scanning exposure apparatus. The light that reflects the mask pattern at a projection magnification (for example, 1/4 and 1 /5) through the mask 200 and by the projection optical system 300 is fixed on the machine table via a wafer chuck (not shown). Imaging is performed on the board 400. The wafer chuck is mounted on the wafer table and driven during exposure. The phase shifting device 1 60 converts the phase, but does not cover the light as a filter -17-(15) 1307453. Therefore, the light intensity or the amount of output is not reduced. The modified illumination provides a high resolution exposure. The effective source illuminates the linearly polarized light in the tangential direction and improves image contrast. Due to the manufacturing error of the optical components in the illumination optical system and the poor birefringence performance of the glass material and the anti-reflective coating, phase offset may occur symmetrically to the central axis, and the tangential linear polarization may slightly cause elliptically polarized. At this time, the phase adjustment mechanism 110 and the control system adjust the phase and degree of polarization. In other words, the half mirror 176 extracts a portion of the emitted light (about a few percent) from each of the fine lens elements of the multi-beam generating mechanism 170, and the focusing optical system 1 78 focuses the light to the polarization monitoring system. In the pinhole 182 of 1 80. Since the pinhole 182 and the mask 200 have a conjugate relationship, a uniform illumination area is formed in the pinhole 182. Since the incident surface of the inductor unit 186 is conjugate with the aperture stop, an effective light source distribution is formed on the incident surface of the inductor unit 186. As a result, the sensor unit 186 measures the degree of polarization in a plurality of positions in the effective light source distribution, and measures the intensity of the difference amount in the tangential direction from the desired linearly polarized light. The CPU in the sensor unit 186 processes the detection signal as a result of the measurement; calculates the amount of fine movement; and sends the amount to the driver 118. In response to this, the driver 1 1 8 drives the phase adjustment mechanism 1 10 such that the phase adjustment mechanism 1 10 cancels the phase shift. As a result, the tangent polarization is adjusted to approximately linearly polarized light. While the degree of polarization monitoring system 180 draws a portion of the light through the half mirror 176 and the focusing optics 178 during exposure, the half mirror 176 can be inserted into the optical path before and after exposure to measure the degree of polarization and exposure. -18- (16) (16)

1307453 時由光學路徑移除’以不遮蔽光的部份。另外, 以在曝光前及後由光學路徑移除,及偏振度監視 也可以安排以替代遮罩,以量測偏振程度。 雖然照明設備1 00以整個均句光強度照射遮 但由多光束產生機構1 70的射出面上的每一細微 光在兩方向中’可以具有不同角度,及板400可 露至狹縫型曝光區而加以曝光。 即使當來自光源1 02的光由於干擾而輕微上 來自射出角維持光學元件1 2 0的光維持射出角, 所示’並且入射光位置在多光束產生機構130上 。換句話說,光強度分佈的位置爲固定。另外, 速產生機構130的光固定射出角134,及入射在 元件140上之光並不實質上下變動。結果,照明妻 相對於來自光源的光的上下變動係相當穩定的系統 即使來自光源的光上下變動,照明設備100¾ 照射區域,並且CGH形成用於任意修改照明的光 佈。另外,照明設備1 〇〇可以在正切方向中提供黯 光,而不必相對於任意修改照明狀況,而降低照明 再者,照明設備1 〇〇可以加強線性偏振光的偏振程 由改良爲照射光學系統中的光學元件所造成的偏振 偏移的影響,而改良影像對比。 參考第10及11圖,將說明使用曝光設備1製 置的方法之實施例。第1 〇圖爲一流程圖’用以解 (即例如1C及LSI之半導體晶片、LCD、CCD等 罩也可 統 180 200 - 射出的 藉由曝 變動, 第2圖 未改變 自多光 射光學 備100 〇 未影響 強度分 性偏振 效率。 度並藉 的相位 造一裝 釋裝置 )。於 -19- (17) 1307453 此’將說明半導體晶片的製造。步驟1 (電路設計)設計 半導體裝置電路。步驟2(遮罩製造)形成具有設計電路 圖案的遮罩。步驟3 (晶圓備製)使用如矽的材料,製造 一晶圓。被稱爲預處理的步驟4(晶圓處理)經由使用遮 罩及晶圓的微影術,而在晶圓上形成實質電路。也稱爲後 處理的步驟5 (組裝)將在步驟4中形成的晶圓,形成爲 半導體晶片,並包含一組裝步驟(例如,切片、黏結)、 一封裝步驟(晶片密封)等等。歩驟6 (檢視)執行在步 驟5中所完成的半導體裝置的各種測試,例如有效性測試 及耐用性測試。經由這些步驟,半導體裝置完成並裝運( 步驟7)。第11圖爲示於第1〇圖之步驟4中之晶圓製程 ' 的詳細流程圖。步驟U (氧化)氧化晶圓表面。步驟12 , (CVD)在晶圓表面上,形成絕緣膜。步驟13 (電極形 成)藉由氣相沉積等,在晶圓上形成電極。步驟14(離 子佈植)將離子佈植入晶圓。步驟15 (光阻程序)將一 φ 光敏材料施加至晶圓。步驟16(曝光)使用曝光設備1 以將遮罩圖案曝光至晶圓上。步驟17 (顯影)顯影已曝 光晶圓。步驟1 8 (蝕刻)將已顯影光阻影像外的部份蝕 刻。步驟1 9 (光阻剝離)移除在蝕刻後的不用的光阻。 這些步驟被重覆’使多層電路圖案形成在晶圓上。具有良 好生產力及符經濟效益的高解析度裝置(例如半導體裝置 ’ LCD裝置、影像拾取裝置(例如ccD)、及薄膜磁頭 )的製造係很難製造。因此,使用曝光設備i及其所得( 中間及最後)產物的裝置製造方法同時也構成了本發明的 -20- (18) 1307453 一態樣。 因此,本發明可以提供一照明設備,其可以將在線性 偏振光設定至一想要方向爲一任意修改照明,而不會降低 照明效率,並且,容易校正線性偏振光的偏振程度的劣化 ,及具有該照明設備的曝光設備、及使用該曝光設備的裝 置製造方法。 本案主張於2004年三月18日所申請的日本特開願 2004-078065案的國際優先權。 本發明的很多明顯不同的實施例已經在不脫離本發明 的精神及範圍下加以完成,可以了解的是,本發明並不限 定於該等特定實施例,而是如下之申請專利範圍所界定者 0 【圖式簡單說明】 第1圖爲曝光設備的示意方塊圖。 第2圖爲示於第1圖之照明設備的相調整機構旁的光 學路徑。 第3A及3B圖爲示於第1圖之繞射光學元件的示意 前視圖。 第4A及4B圖爲示於第1圖之繞射光學元件的相位 分佈及示意剖面圖。 第5 A至5 C圖爲示於第1圖中之繞射光學元件的例 示光強度分佈。 第6圖爲一相位轉換裝置的平面圖。 -21 - (19) (19)1307453 第7圖爲不於第6圖中之相位轉換裝置的元件的放大 透視圖。 第8圖爲一示意圖’解釋示於第1圖之相位轉換裝置 的射出面及入射面的偏振狀態。 第9A至9D圖爲示意圖,解釋示於第8圖之相位轉 換裝置的射出面與入射面的偏振狀態的變化。 第1〇圖爲一流程圖,解釋製造裝置(半導體晶片例 如1C、LSI等及LCD、CCD等)的方法。 第11圖爲示於第10圖的晶圓製程的步驟4的流程圖 【主要元件符號說明】 1 曝 光 設 備 loo 昭 / \\\ 明 設 備 102 光 源 104 反 射 光 學 系 統 106 光 束 整 形 光 學 系 統 108 偏 振 控 制 抛 微 構 110 相 位 調 整 機 構 118 驅 動 器 120 射 出 角 維 持 光 學 元件 124 轉 移 光 學 系 統 13 0 多 光 束 產 生 機 構 112 結 晶 塊 -22- 1307453At 1307453, the portion of the light is removed by the optical path. In addition, removal by the optical path before and after exposure, and polarization monitoring can also be arranged to replace the mask to measure the degree of polarization. Although the illumination device 100 is illuminated by the entire uniform light intensity, each of the fine lights on the exit surface of the multi-beam generating mechanism 170 may have different angles in both directions, and the plate 400 may be exposed to the slit type exposure. District and exposed. Even when the light from the light source 102 slightly absorbs the light from the exit angle maintaining optical element 1 2 0 due to the disturbance, the incident angle is shown and the incident light position is on the multi-beam generating mechanism 130. In other words, the position of the light intensity distribution is fixed. Further, the light-fixing exit angle 134 of the speed generating mechanism 130 and the light incident on the element 140 do not substantially vary. As a result, the illumination of the wife is relatively stable with respect to the up and down variation of the light from the light source. Even if the light from the light source fluctuates up and down, the illumination device 1003⁄4 illuminates the area, and the CGH forms a light cloth for arbitrarily modifying the illumination. In addition, the illumination device 1 can provide illumination in the tangential direction without having to modify the illumination condition to reduce the illumination. The illumination device 1 can enhance the polarization of the linearly polarized light from being improved to the illumination optical system. The effect of polarization shift caused by the optical components in the image improves the image contrast. Referring to Figures 10 and 11, an embodiment of a method of using the exposure apparatus 1 will be explained. The first diagram is a flow chart 'for solving (ie, for example, 1C and LSI semiconductor wafers, LCD, CCD, etc. can also be 180 200 - emitted by exposure changes, Figure 2 has not changed from multi-optic optics The preparation of 100 〇 does not affect the intensity of the polarization polarization efficiency. Degree and borrowed phase to make a release device). -19-(17) 1307453 This will explain the manufacture of semiconductor wafers. Step 1 (Circuit Design) Design Semiconductor device circuit. Step 2 (mask manufacturing) forms a mask with a design circuit pattern. Step 3 (Wafer preparation) A wafer is fabricated using a material such as tantalum. Step 4 (wafer processing), referred to as pre-processing, forms a substantial circuit on the wafer via lithography using masks and wafers. Also referred to as post-processing step 5 (assembly) the wafer formed in step 4 is formed as a semiconductor wafer and includes an assembly step (e.g., slicing, bonding), a packaging step (wafer sealing), and the like. Step 6 (View) performs various tests of the semiconductor device completed in step 5, such as validity test and durability test. Through these steps, the semiconductor device is completed and shipped (step 7). Figure 11 is a detailed flow chart of the wafer process shown in step 4 of Figure 1. Step U (oxidation) oxidizes the surface of the wafer. Step 12, (CVD) forming an insulating film on the surface of the wafer. Step 13 (electrode formation) An electrode is formed on the wafer by vapor deposition or the like. Step 14 (Ion Implantation) implants the ion cloth into the wafer. Step 15 (Photoresist) applies a φ photosensitive material to the wafer. Step 16 (exposure) uses exposure apparatus 1 to expose the mask pattern onto the wafer. Step 17 (developing) develops the exposed wafer. Step 1 8 (etching) etches portions of the developed photoresist image. Step 1 9 (Photoresist Stripping) removes unused photoresist after etching. These steps are repeated 'forming a multilayer circuit pattern on the wafer. Manufacturing of high-resolution devices (e.g., semiconductor devices 'LCD devices, image pickup devices (such as ccD), and thin film magnetic heads) that are highly productive and economical are difficult to manufacture. Therefore, the apparatus manufacturing method using the exposure apparatus i and its obtained (intermediate and final) products also constitutes an aspect of the invention -20-(18) 1307453. Therefore, the present invention can provide an illumination device which can set the linearly polarized light to a desired direction as an arbitrary modified illumination without reducing the illumination efficiency, and easily correct the deterioration of the degree of polarization of the linearly polarized light, and An exposure apparatus having the illumination device, and a device manufacturing method using the exposure apparatus. This case claims the international priority of the Japanese Patent Application No. 2004-078065 filed on March 18, 2004. The many different embodiments of the present invention have been made without departing from the spirit and scope of the invention, and it is understood that the invention is not limited to the specific embodiments, but as defined by the following claims. 0 [Simple description of the diagram] Figure 1 is a schematic block diagram of the exposure equipment. Fig. 2 is an optical path of the phase adjustment mechanism of the lighting apparatus shown in Fig. 1. 3A and 3B are schematic front views of the diffractive optical element shown in Fig. 1. 4A and 4B are a phase distribution and a schematic cross-sectional view of the diffractive optical element shown in Fig. 1. Figs. 5A to 5C are diagrams showing an exemplary light intensity distribution of the diffractive optical element shown in Fig. 1. Figure 6 is a plan view of a phase shifting device. -21 - (19) (19) 1307453 Fig. 7 is an enlarged perspective view showing the components of the phase conversion device not shown in Fig. 6. Fig. 8 is a schematic view' explaining the polarization states of the exit surface and the incident surface of the phase shifting device shown in Fig. 1. Figs. 9A to 9D are diagrams for explaining changes in the polarization states of the exit surface and the incident surface of the phase conversion device shown in Fig. 8. The first drawing is a flowchart for explaining a method of manufacturing a device (a semiconductor wafer such as 1C, LSI, or the like, an LCD, a CCD, etc.). 11 is a flow chart of the step 4 of the wafer process shown in FIG. 10 [Explanation of main component symbols] 1 Exposure apparatus loo / \ \ Ming device 102 Light source 104 Reflecting optical system 106 Beam shaping optical system 108 Polarization control Projection 110 phase adjustment mechanism 118 driver 120 exit angle maintaining optical element 124 transfer optical system 13 0 multi-beam generating mechanism 112 crystal block-22- 1307453

(20) 114 楔 形 結 晶 板 116 細 微 動 作 機 制 126 均 勻 昭 明 丨品 122 射 出 角 132 聚 焦 點 134 定 射 出 角 140 繞 射 光 學 元 件 142 繞 射 光 學 元 件 面 143 光 點 144 光 點 145 灰 階 分 佈 146 剖 面 150 轉 移 光 學 系 統 152 孔 徑 154 有 效 光 源 分 佈 156 變 隹 /\\\ 光 學 系 統 14 1 轉 座 160 相 位 轉 換 裝 置 16 1 環 形 有 效 光 源 分佈 162 λ /4 相 板 163 圓 形 偏 振 光 164 方 向 165 線 性 偏 振 光 166 垂 直 角 -23- 1307453 (21) 167 圓 形 偏 振 光 168 線 性 偏 振 光 170 多 光 束 產 生 機 構 172 孔 徑 光 闌 174 射 出 面 176 半 Ϊ兒 178 聚 焦 光 學 系 統 180 偏 振 度 監 視 系 統 182 針 孔 1 84 聚 隹 > V \\ 光 學 系 統 186 感 厶匕、 器 單 元 200 遮 罩 300 投 影 光 學 系 統 400 板 -24(20) 114 Wedge crystal plate 116 Fine action mechanism 126 Uniform illumination product 122 Exit angle 132 Focus point 134 Fixed exit angle 140 Diffractive optical element 142 Diffractive optical element surface 143 Spot 144 Spot 145 Gray scale distribution 146 Section 150 Transfer Optical System 152 Aperture 154 Effective Light Source Distribution 156 Change /\\\ Optical System 14 1 Rotary 160 Phase Conversion Device 16 1 Ring Effective Light Source Distribution 162 λ /4 Phase Plate 163 Circularly Polarized Light 164 Direction 165 Linearly Polarized Light 166 Vertical angle -23- 1307453 (21) 167 Circularly polarized light 168 Linearly polarized light 170 Multi-beam generating mechanism 172 Aperture stop 174 Exit surface 176 Half-turn 178 Focusing optical system 180 Polarization monitoring system 182 Pinhole 1 84 Concentration > V \\ optical system 186 sensor, unit 200 mask 300 projection optical system 400 Board -24

Claims (1)

.1307453 ^年k月)日修正本 十、申請專利範圍--- 第941 08085號專利申請案 中文申請專利範圍修正本 民國97年12月3日修正 1. 一種照明設備’用以使用來自一光源的光照射具有 一圖案的遮罩,該照明設備包含:.1307453 ^Yearly month) Amendment of this tenth, the scope of application for patents---The patent application scope of the patent application No. 941 08085 was amended on December 3, 1997. 1. A lighting device used to use The light of the light source illuminates a mask having a pattern, the lighting device comprising: 一相位轉換裝置,架構以對透射過該相位轉換裝置的 入射面的多數區塊的光,設定偏振狀態; 一繞射光學元件’架構以在該相位轉換裝置的該入射 面上’形成光強度分佈,使得光被偏斜地入射在該遮罩上 一雙折射件’設於該光源與該相位轉換裝置之間;及 一動作機構,架構以移動該雙折射件,以調整入射至 該相位轉換裝置的該光的該偏振狀態,並經由該偏振的調 φ 整,同時控制該多數區域的偏振狀態。 2 .如申請專利範圍第1項所述之照明設備,其中該相 位轉換器包含四個或更多同軸λ Μ相位板,該等相位板被 安排在徑向方向中。 3 ·如申請專利範圍第1項所述之照明設備,更包含: 一感應器單元,架構以檢測爲該相位轉換裝置所設定 的偏振度;及 一驅動器’架構以取決於該感應器單元的檢測結果, 驅動該動作機構。 1307453 4 .如申請專利範圍第1項所述之照明設備,其中該雙 折射件接收來自該光源的光,並將該光引入至該繞射光學 元件。 5 .如申請專利範圍第1項所述之照明設備,其中該相 位轉換器包含多數相位板。 6.如申請專利範圍第5項所述之照明設備,其中該相 位轉換裝置包含八個具有4 5度的中心角度的相位板。a phase shifting device configured to set a polarization state for light transmitted through a plurality of blocks of an incident surface of the phase shifting device; a diffractive optical element 'architecting to form a light intensity on the incident surface of the phase shifting device Distributing such that light is obliquely incident on the mask, a birefringent member is disposed between the light source and the phase conversion device; and an action mechanism is configured to move the birefringent member to adjust incident to the phase The polarization state of the light of the conversion device is adjusted by the polarization of the polarization while controlling the polarization state of the plurality of regions. 2. The illumination device of claim 1, wherein the phase converter comprises four or more coaxial λ Μ phase plates, the phase plates being arranged in a radial direction. 3. The lighting device of claim 1, further comprising: a sensor unit configured to detect a degree of polarization set by the phase conversion device; and a driver's architecture to depend on the sensor unit The detection result drives the action mechanism. The illuminating device of claim 1, wherein the birefringent member receives light from the light source and introduces the light to the diffractive optical element. 5. The illumination device of claim 1, wherein the phase converter comprises a plurality of phase plates. 6. The illumination device of claim 5, wherein the phase conversion device comprises eight phase plates having a central angle of 45 degrees. 7 .如申請專利範圍第1項所述之照明設備,其中該雙 折射件包含雙折射結晶板。 8 . —種照明設備,用以使用來自一光源的光照射具有 一圖案的遮罩,該照明設備包含: 一繞射光學元件,架構以產生一有效光源分佈,以進 行對該遮罩的修改照明; 一偏振設定段,架構以設定在多數區域中之預定偏振 狀態呈該有效光源分佈; 一調整段,架構以共同地控制每一區域的偏振狀態; 及 一射出角維持段,用以以預定發散角,發射來自該光 源的光,其中該繞射光學元件係被安排接近該射出角維持 段的聚焦點。 9. 一種照明設備,用以使用來自一光源的光照射具有 一圖案的遮罩,該照明設備包含: 一繞射光學元件,用以產生一有效光源分佈,以進行 對該遮罩的修改照明; -2 - 1307453 一偏振設定段,用以設定在多數區域中之預定偏振狀 態呈該有效光源分佈; 一調整段,用以共同地控制每一區域的偏振狀態; 一射出角維持段,用以以預定角度,由該光源發射光 一光學積分器,7. The illumination device of claim 1, wherein the birefringent member comprises a birefringent crystal plate. 8. A lighting device for illuminating a mask having a pattern using light from a light source, the lighting device comprising: a diffractive optical element configured to generate an effective light source distribution for modifying the mask Illumination; a polarization setting segment, the architecture is configured to set the effective polarization in a predetermined polarization state in a plurality of regions; an adjustment segment configured to collectively control a polarization state of each region; and an emission angle maintaining segment for A predetermined divergence angle is emitted to emit light from the source, wherein the diffractive optical element is arranged to approximate a focus point of the exit angle sustaining segment. 9. A lighting device for illuminating a mask having a pattern using light from a light source, the illumination device comprising: a diffractive optical element for generating an effective light source distribution for modifying illumination of the mask - 2 - 1307453 a polarization setting segment for setting a predetermined polarization state in a plurality of regions to be the effective light source distribution; an adjustment segment for collectively controlling the polarization state of each region; and an emission angle maintaining segment for An optical integrator is emitted by the light source at a predetermined angle, 其中在該射出角維持段的射出面與該光學積分器的入 射面間有光學傅氏轉換的關係,及 其中該繞射光學元件係被安排接近該光學積分器的聚 焦點。 10.—種曝光設備,包含: 一如申請專利範圍第1、8或9項所述之照明設備, 用以照射一遮罩;及 一投影光學系統,用以將一遮罩的圖案投影至予以曝 光的物件。 11. 一種裝置製造方法,包含步驟: 使用如申請專利範圍第1 〇項所述之曝光設備,曝光 一物件;及 顯影被曝光的物件 -3-There is an optical Fourier transform relationship between the exit face of the exit angle sustaining segment and the incident face of the optical integrator, and wherein the diffractive optical element is arranged to approximate the focus of the optical integrator. 10. An exposure apparatus comprising: an illumination device as described in claim 1, 8 or 9 for illuminating a mask; and a projection optical system for projecting a mask pattern to The object to be exposed. A device manufacturing method comprising the steps of: exposing an object using an exposure apparatus as described in claim 1; and developing an exposed object -3-
TW094108085A 2004-03-18 2005-03-16 Illumination apparatus, exposure apparatus and device manufacturing method TWI307453B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078065A JP4497968B2 (en) 2004-03-18 2004-03-18 Illumination apparatus, exposure apparatus, and device manufacturing method

Publications (2)

Publication Number Publication Date
TW200537256A TW200537256A (en) 2005-11-16
TWI307453B true TWI307453B (en) 2009-03-11

Family

ID=34836571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094108085A TWI307453B (en) 2004-03-18 2005-03-16 Illumination apparatus, exposure apparatus and device manufacturing method

Country Status (5)

Country Link
US (2) US7130025B2 (en)
EP (1) EP1577709A3 (en)
JP (1) JP4497968B2 (en)
KR (1) KR100674045B1 (en)
TW (1) TWI307453B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157480B1 (en) 2003-04-09 2015-05-27 Nikon Corporation Exposure method and apparatus, and device manufacturing method
TWI474132B (en) 2003-10-28 2015-02-21 尼康股份有限公司 Optical illumination device, projection exposure device, exposure method and device manufacturing method
TWI519819B (en) 2003-11-20 2016-02-01 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
US8270077B2 (en) * 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US20070019179A1 (en) * 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
KR101295439B1 (en) * 2004-01-16 2013-08-09 칼 짜이스 에스엠티 게엠베하 Polarization-modulating optical element
TWI395068B (en) 2004-01-27 2013-05-01 尼康股份有限公司 Optical system, exposure device and method of exposure
TWI505329B (en) 2004-02-06 2015-10-21 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
US7324280B2 (en) 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
EP1621930A3 (en) * 2004-07-29 2011-07-06 Carl Zeiss SMT GmbH Illumination system for a microlithographic projection exposure apparatus
KR100614651B1 (en) * 2004-10-11 2006-08-22 삼성전자주식회사 Apparatus And Method For Pattern Exposure, Photomask Used Therefor, Design Method For The Photomask, Illuminating System Therefor and Implementing Method For The Illuminating System
US20140043594A1 (en) * 2005-01-21 2014-02-13 Nikon Corporation Method of adjusting lighting optical device, lighting optical device, exposure system, and exposure method
US7403267B2 (en) * 2005-03-31 2008-07-22 Asml Netherlands B.V. System and method for providing modified illumination intensity
WO2007055120A1 (en) * 2005-11-10 2007-05-18 Nikon Corporation Lighting optical system, exposure system, and exposure method
JP2007188927A (en) * 2006-01-11 2007-07-26 Canon Inc Aligner, exposure method and method of manufacturing device
JP2007220767A (en) * 2006-02-15 2007-08-30 Canon Inc Exposure apparatus and method of manufacturing device
DE102006012034A1 (en) * 2006-03-14 2007-09-20 Carl Zeiss Smt Ag Optical system e.g. lighting device, for use in microlithographic projection lighting system, has light-conductance-increasing unit with set of diffractive or refractive beam deflecting structures extending in common direction
JP4957058B2 (en) * 2006-04-12 2012-06-20 大日本印刷株式会社 Diffraction optical element and exposure apparatus provided with the element
DE102006032878A1 (en) * 2006-07-15 2008-01-17 Carl Zeiss Smt Ag Illumination system of a microlithographic projection exposure apparatus
JP5023589B2 (en) * 2006-07-21 2012-09-12 大日本印刷株式会社 Photomask and method for designing the photomask
JP2008047673A (en) * 2006-08-14 2008-02-28 Canon Inc Exposure equipment and device manufacturing method
JP2008091881A (en) 2006-09-07 2008-04-17 Canon Inc Diffractive optical element, exposure apparatus, and method of manufacturing device
JP2008108851A (en) * 2006-10-24 2008-05-08 Canon Inc Illuminating means, exposure apparatus having the illuminating means, and manufacturing method of device
US7872731B2 (en) * 2007-04-20 2011-01-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4971932B2 (en) * 2007-10-01 2012-07-11 キヤノン株式会社 Illumination optical system, exposure apparatus, device manufacturing method, and polarization control unit
JP5339721B2 (en) * 2007-12-28 2013-11-13 キヤノン株式会社 Computer generated hologram and exposure apparatus
US8325417B1 (en) * 2008-09-23 2012-12-04 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for producing an annular far-field patterned beam(s)
DE102008042463B3 (en) * 2008-09-30 2010-04-22 Carl Zeiss Smt Ag Optical measuring device for a projection exposure apparatus
JP2010109242A (en) * 2008-10-31 2010-05-13 Canon Inc Lighting optical system and exposure device
EP2202580B1 (en) * 2008-12-23 2011-06-22 Carl Zeiss SMT GmbH Illumination system of a microlithographic projection exposure apparatus
US8531747B2 (en) * 2009-06-24 2013-09-10 Canon Kabushiki Kaisha Hologram, hologram data generation method, and exposure apparatus
KR101970091B1 (en) * 2010-02-03 2019-08-13 가부시키가이샤 니콘 Illumination optical device, illumination method, and exposure method and device
JP2012004465A (en) 2010-06-19 2012-01-05 Nikon Corp Illumination optical system, exposure equipment, and device manufacturing method
EP2622411B1 (en) * 2010-09-28 2015-11-04 Carl Zeiss SMT GmbH Optical system of a microlithographic projection exposure apparatus and method of reducing image placement errors
JP2012073415A (en) * 2010-09-29 2012-04-12 Kyocera Kinseki Corp Polarization conversion element and method for manufacturing polarization conversion element
JP2012073416A (en) * 2010-09-29 2012-04-12 Kyocera Kinseki Corp Polarization conversion element and method for manufacturing polarization conversion element
JP6166977B2 (en) * 2013-06-21 2017-07-19 富士フイルム株式会社 Circular polarizing filter and its application
JP7005183B2 (en) * 2017-06-19 2022-01-21 キヤノン株式会社 Exposure method, exposure equipment, and article manufacturing method
CN109188677A (en) * 2017-06-29 2019-01-11 上海微电子装备(集团)股份有限公司 A kind of optical path compensation device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523641C1 (en) * 1985-07-02 1986-12-18 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Device for selecting rotationally symmetrical polarization components of a light bundle and use of such a device
US5489986A (en) * 1989-02-28 1996-02-06 Nikon Corporation Position detecting apparatus
JP3246615B2 (en) * 1992-07-27 2002-01-15 株式会社ニコン Illumination optical device, exposure apparatus, and exposure method
US5459000A (en) * 1992-10-14 1995-10-17 Canon Kabushiki Kaisha Image projection method and device manufacturing method using the image projection method
JPH06124872A (en) 1992-10-14 1994-05-06 Canon Inc Image forming method and manufacture of semiconductor device using the method
KR0153796B1 (en) * 1993-09-24 1998-11-16 사토 후미오 Exposure apparatus and method
JPH07183201A (en) * 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
US5559583A (en) * 1994-02-24 1996-09-24 Nec Corporation Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer
US5815247A (en) * 1995-09-21 1998-09-29 Siemens Aktiengesellschaft Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures
DE19535392A1 (en) * 1995-09-23 1997-03-27 Zeiss Carl Fa Radial polarization-rotating optical arrangement and microlithography projection exposure system with it
JPH09167735A (en) * 1995-12-15 1997-06-24 Canon Inc Projection aligner and manufacture of semiconductor device using the projection aligner
JP3985346B2 (en) * 1998-06-12 2007-10-03 株式会社ニコン Projection exposure apparatus, projection exposure apparatus adjustment method, and projection exposure method
JP4065923B2 (en) * 1998-09-29 2008-03-26 株式会社ニコン Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus
JP2001174615A (en) * 1999-04-15 2001-06-29 Nikon Corp Diffraction optical element, method of producing the element, illumination device equipped with the element, projection exposure device, exposure method, light homogenizer, and method of producing the light homogenizer
DE10010131A1 (en) * 2000-03-03 2001-09-06 Zeiss Carl Microlithography projection exposure with tangential polarization involves using light with preferred direction of polarization oriented perpendicularly with respect to plane of incidence
JP3919419B2 (en) 2000-03-30 2007-05-23 キヤノン株式会社 Illumination apparatus and exposure apparatus having the same
JP2002025896A (en) * 2000-07-10 2002-01-25 Nikon Corp Illuminating optical device and aligner provided with the illuminating optical device
US7217503B2 (en) * 2001-04-24 2007-05-15 Canon Kabushiki Kaisha Exposure method and apparatus
JP3937903B2 (en) 2001-04-24 2007-06-27 キヤノン株式会社 Exposure method and apparatus
JP2003321419A (en) 2002-05-07 2003-11-11 Mitsubishi Chemicals Corp Method for producing high-purity (meth)acrylic acid
JP2004063988A (en) * 2002-07-31 2004-02-26 Canon Inc Illumination optical system, aligner having the system, and method of manufacturing device
JP4189724B2 (en) * 2002-09-09 2008-12-03 株式会社ニコン Exposure apparatus and exposure method
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
JP4323903B2 (en) 2003-09-12 2009-09-02 キヤノン株式会社 Illumination optical system and exposure apparatus using the same
TWI395068B (en) * 2004-01-27 2013-05-01 尼康股份有限公司 Optical system, exposure device and method of exposure

Also Published As

Publication number Publication date
JP2005268489A (en) 2005-09-29
US7130025B2 (en) 2006-10-31
US7239375B2 (en) 2007-07-03
EP1577709A2 (en) 2005-09-21
EP1577709A3 (en) 2007-01-17
KR100674045B1 (en) 2007-01-25
TW200537256A (en) 2005-11-16
US20050206871A1 (en) 2005-09-22
US20060250600A1 (en) 2006-11-09
JP4497968B2 (en) 2010-07-07
KR20060044393A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
TWI307453B (en) Illumination apparatus, exposure apparatus and device manufacturing method
KR100681852B1 (en) Illumination optical system, exposure apparatus, and device manufacturing method
US6894764B2 (en) Illumination optical system, exposure apparatus having the same, and device fabricating method
EP1602981B1 (en) Illumination optical system and exposure apparatus
US7619748B2 (en) Exposure apparatus mounted with measuring apparatus
US20050280796A1 (en) Illumination optical system and method, and exposure apparatus
JP2007220767A (en) Exposure apparatus and method of manufacturing device
US8013980B2 (en) Exposure apparatus equipped with interferometer and exposure apparatus using the same
JPWO2007100081A1 (en) Exposure method and apparatus, and device manufacturing method
US20040248043A1 (en) Exposure method, exposure apparatus and device manufacturing method
TWI307115B (en) Exposure method and apparatus
US20070211231A1 (en) Exposure apparatus and device manufacturing method
TW200809919A (en) Exposure apparatus
US6897944B2 (en) Illumination optical system, exposure method and apparatus using the same
JP2006253327A (en) Illumination optical device, exposure device, adjustment method thereof, and manufacturing method of micro device
JP2007189079A (en) Illuminating optical system, exposure device having it, and manufacturing method of device
JP5225433B2 (en) Illumination optical system and exposure apparatus
JP3298585B2 (en) Projection exposure apparatus and method
JPH05217853A (en) Projection aligner
JP2002100565A (en) Scanning projection aligner and method for fabricating device using it
JPH11317362A (en) Scanning aligner and manufacture of device using the same
JP2002289516A (en) Scan type aligner, and method for manufacturing device using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees