TWI307222B - Digital-to-analog converter circuits including independently sized reference current source transistors and methods of operating same - Google Patents

Digital-to-analog converter circuits including independently sized reference current source transistors and methods of operating same Download PDF

Info

Publication number
TWI307222B
TWI307222B TW093109445A TW93109445A TWI307222B TW I307222 B TWI307222 B TW I307222B TW 093109445 A TW093109445 A TW 093109445A TW 93109445 A TW93109445 A TW 93109445A TW I307222 B TWI307222 B TW I307222B
Authority
TW
Taiwan
Prior art keywords
current
transistor
bit
transistors
circuit
Prior art date
Application number
TW093109445A
Other languages
English (en)
Other versions
TW200511734A (en
Inventor
Kyeong-Tae Moon
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200511734A publication Critical patent/TW200511734A/zh
Application granted granted Critical
Publication of TWI307222B publication Critical patent/TWI307222B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/76Simultaneous conversion using switching tree
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
    • H03M1/687Segmented, i.e. the more significant bit converter being of the unary decoded type and the less significant bit converter being of the binary weighted type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/742Simultaneous conversion using current sources as quantisation value generators
    • H03M1/745Simultaneous conversion using current sources as quantisation value generators with weighted currents
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/742Simultaneous conversion using current sources as quantisation value generators
    • H03M1/747Simultaneous conversion using current sources as quantisation value generators with equal currents which are switched by unary decoded digital signals

Description

1307222 巴年7月〆日修正替換頁丨 八、本案若有化學式時,請_最_示發明特徵 的化學式: -無 九、發明說明: 【發明所屬之技術領域】 本發明-般來說是有關於—種的電子電路,且制是有關於 一種數位至類比轉換電路和操作方法。 【先前技術】 在-個電流附加式(CUrrent Additi〇n Type)的數位至類比轉換 器(以下簡稱DAC)中’數位訊號中每—個位元都被提供至一個開 關,以控制電流流向DAC中不同的分支。#_個提供給開關的位 元為、w日夺,則μ關會被關閉(closed),因此致使電流流入對 應的分支内。DAC可,Χ由加總所有在每—個分支⑽電流,對被 用來提供給DAC之触城⑽财㈣之反絲運作(例如提 供-個類比輸出訊號)。以一個10位元電流附加式DAC來討論, 例如韓國專利公告第2000-0072961號。 圖1係繪示習知具有電流補償電路之1G位元電流附加式dac 結構方塊圖。請參照圖1,此1〇位元電流附加式DAC包括數個 PMOS 電晶體 MP1、MP2.....MP36。這些 PM〇s 電晶體 Μρι、 MP2、…、MP36係以電流鏡的結構_至電流源PMOS電晶體 ··、321,在此,電流21 MPREF,以提供對應的輸出電流I、21、. 係電流I的兩倍大小,而電流321則是電流!的32倍大.......等 等。數個開關SW1、SW2、…、SW36,係將PM〇s電晶體MP1、 2_ 1307222 打年夕月免日修正替換頁 MP2、··.、MP36的汲極端,連接至輸出端out。這些開關係依 據數位輸入訊號D1、D2、…、D3、6的反應來運作。在1〇位元的 、 輸入訊號中,較低的5個位元被用'在開關SW1、SW2、…、sw5 、 上,而10位元的輸入訊號中較高的5個位元,則被解碼成31個 不同的訊號。這31個不同的訊號,係個別用於開關SW6、SW7..... SW36 ° 此電流附加式DAC更包括電流補償電路1〇。當電流流經 、 PMOS電晶體MP卜MP2、…、MP36發生不正常的振幅時,電流 、 補償電路10可以校正流經PMOS電晶體MP1、MP2.....Mp36 ' 的電流。將PMOS電晶體MP卜MP2.....MP36所輸出的電流, 耦接來導通(Turn-on)開關,並且被加總以及施加於輸出電阻尺〇, 以形成橫跨在輸出電阻RO上的電壓。特別地,在輸出端〇υτ上 的電壓,係等於耦接在輸出電阻R〇之其中一個端點的參考電壓 VREF和在輸出電阻R0上之電壓的總合。DAC在輸出端〇υτ係 輸出個類比虎’以對應數位輸入訊號Dl、D2、...、D36。 流纽PMOS電晶體ΜΡ1、ΜΡ2、…、ΜΡ36的電流比例(例如 1 ' 21.....321),係依照對應的PMOS電晶體ΜΡ卜ΜΡ2..... ΜΡ36的大小來決定,以致於愈大尺寸的的電晶體,當電晶體導通 時所流過的電流就可能愈大。例如,電晶體MP36可能是電晶體 MP1的32倍大,以至於電晶體MP36所產生的電流(321)會是電晶 體MP1所產生之電流的32倍。因此,當電流附加式dac被製作 積體電路時,晶片的大小可能會增加。 請繼續參照圖1,當耦接最低位元D1的PMOS電晶體MP1 的大小假設為1時,則PMOS電晶體MP2、MP3、、MP4和MP5 1307222 ”年7月/哪正替 的大小個別為2、4 ' 8、16,並且PM〇s電晶體Mp6、...、Mp36 的大小為32。每-個PMOS電 MP卜Mp2、Mp3、Mp4和 MP5(對應到數位訊號中較低的5個位元)之大小與最近而較低次 序之電晶體的關係’係以2k的倍數來增加。更詳細地說,pM〇s 電晶體MP2是MP1的兩倍大,PM〇s t晶體Mp3是Mp2的兩倍 大’ PMOS f晶體MP4又是MP3的兩倍大,而PM〇s電晶體Mp5 則是MP4的兩倍大,以致於PM〇s電晶體Mp5是刪的i6倍 大。此外,每一個PMOS電晶體MP6、MM、…、MP36都是MP5 的兩倍大(也就是MP1的32倍大)。 另外’圖1中習知的DAC也很難增加其精確度(或是準確性), 當DAC的大小顯著地增加時,在數位輸入中之位元的數目也同樣 增加。要表達一個N位元DAC所需要的總面積,就是一個DAC 所需要之電晶體的總數,在此,每一個電晶體都佔用一個單位面 積(像是1單位面積)。例如要表達10位元DAC所需的面積係: (1+2+4+8+16)+(32χ31)=1〇23單位面積,在此,每一個面積係表示 PMOS電晶體刪、MP2.....刪6所佔據的面積。延伸到表示 較高解析度的12位元DAC,則PMOS電晶體所要佔據的總面積 係表示為:(1+2+4+8+16+32)+(64x63),或是4095單位面積。因此, ‘圖1所繚示的架構要增加到提供一個12位元DAC時,則DAC 晶片的大小會增加到4倍。 在圖1之習知的DAC中,電晶體MPl、MP2、…、MP36係 以電流鏡的結構連接到參考電晶體MPREI^因此,對應到數位輸 入訊號中之較高位元的PM0S電晶體MP6、…、MP36之大小, 應該要設計為對應到數位輸入訊號D5的PM〇s電晶體Mp5之大 Ϊ307222 月:: 】的兩倍大。對應到數位輸入訊號之較高位元的pM〇S電晶體 ^、...、MP36之數目係31,當這些PMOS電晶體的大小,被 没计為對應到最低位元m之pM〇s電晶體刪之大小的幻倍大 時,會造成DAC的晶片體積增加。 再討論另一種例如在日本專利公告第1997_191252號的電流 附加式DAC。在此日本公開專利的電流附加式DAC包括了兩個 電流提供裝置’並且—個作為電流源且具有—個尺寸大小的電晶 體係連接第-個電流提供裝置,還有―個大小不㈣電晶體,同 樣也是作為f流源而連接第二電流提供裝置。因此,此DM的晶 片大小可以降低。制地,在此日本公财利的電流附加式歐 中,電流提供裝置包括了-個M0S電晶體,其源極端連接一個電 阻’而其閘極端職接關,並且數位輸人訊號係從開關輸入。 此外’從m供裝置所提供的m勤連接於電流提供裝 置内之MOS電晶體的電阻之電阻值來決定。 、 【發明内容】 依照本發明的實施例’係提供一種數位至類比轉換電路,包 括了數個獨立大小之參考電麵電晶體。依 大小的第-電流源電晶體和第二電流源電晶體, 構個職接數個第-電流提供電晶體和第二電流提供電晶體。此 第-電流提供電晶體與第二電流提供電晶體的大小,健別與第 一電流源電晶體和第二電流源電晶體成比例。 依照本發明的-些實施例中,第一電流提供電路係依據第一 參考電流來提供數個第-電流訊號,以響應不同加_ N位元資 料字碼中之數個第-位元。而f二電流提供電路則依據不同於第 1307222 %年夕月々日修正替換頁 I '11111·' III! III· I «III I II "" ' ' ~~ _ 一參考電流之第二參者雷、、衣
j;a pn L ^ "tL,來提供數個第二電流訊號,以響;S 相,N位元字碼中之數個第二位元。 響應 小的數體第-電流_路包括7不同大 — , 電曰曰體的大小係依據第一參考電流來決 二撼心發明的一些實施例中,這些電晶體之不同的大小,更 '"固別麵接之N位几資料字石馬的資料位元的次序來決定。 本發明的_些貫施例中,第一電流訊號具有依據這些電晶 -之不、同大小所決定之相關的個別強度。依據本發明的一些實施 例中、些個別電晶體之源/没極端係搞接第一位元。而在依昭 發明的—些實施例中,這些電晶體包括了數個第—電晶體/而其 中第二電流提供電路包括了數個大約相同大小的第二電晶體,這 些第二電晶體之大小係依據第二參考電流決定。 在本發明的一些實施例中,本發明包括了第一電流源電晶 體,其係耦接這些第一電晶體,用來提供第一參考電流,其中第 一電流源電晶體具有與這些第一電晶體中最低次序的第一電晶體 大約相同的大小。另外本發明還包括第二電流源電晶體,係麵接 這些第二電晶體,用來提供第二參考電流,其中第二電流源電曰 體的大小具有與所有第二電晶體大約相同的大小。在本發明的: 些實施例中’第一電流源電晶體的大小與第二電流源電晶體的大 小,係彼此互相獨立。 依照本發明的一些實施例,第一電晶體和第二電晶體的源/及 極端並沒有耦接獨立的電阻元件。此外,在本發明的_此 二貫施例 中,這些第一電晶體和第二電晶體的源/汲極端,係個別對應、輪接 至數個開關,這些開關用來切換N位元資料字碼中對應的位元至 1307222 第一電晶體和第二電晶體其中之, 月,修正替换頁 在本發明的-些實施例中,數個第一位元包括 2的較錢耗元,並且這㈣二位元包括 仇元資料 :人序還高的n位元資料字竭的較高次序位元,4::仇元之 大約為第-參考電流的2,倍 /第-參考電流 -個。 專於间-人序饭元中最低次序的 電4本些實施例中’第-電流提供電路包括數個第一 包括數個第二電晶體,具有彼此相關之大約相同電路M: 雷曰獅" 第—電流源電晶體和-第二電汽诉 ^曰曰體’係個別祕第-電流提供電路和第二電流提供電路^ ,本發明更包括電流校正電路,餘接第—電流脖電路 之並且=電流_體和第二電流_ =電位差,來改變第一參考電流和第二== 電晶H明=些實施例中,電流校正電路_接第-電流源 “二1電流源€晶體’並且依據上述的電位差來改變第一 ^校正^和第二參考電流。另外,依照本發_—些實施例,電 和=1包括了類比至數位轉換電路,以將第—電流提供電路 以ΪΓΓ流提供電路所提供的電位轉換為解碼的數個數位訊號, 為第—參考糕和第二參考糕的校正值。 f本發明的—些實施财,更包括數個電流校正電晶體,係 ’、比至數位轉換電路’並且耗接第—電流源電晶體和第二電 1307222 流源電 ”年夕月々日修正替換頁 B4k · ' 體二者至少爱中之— 碼的數仅訊號以改變第這些電流校正電晶體係響應解 從另 包括 >考凉·和第二參者雷、;奋。 觀點來看,本發明提供一 器,包括H 々—κ,1六一種N位元數位至類比轉換 流提供電路路,係依據由第—電流提供電路和第二電 流二者至=的電=,來改變第一參考電流和第二參考電 與相關的第-電流紗電^:考電流和第二參考電流,係個別 之大小成比例。/、電路和第二電流提供電路中包含的電晶體 二電流源ί二:貫施例中’更包括第-電流源電晶體和-第 電路'、明_第—電流提供電路和第二電流提供 電流源電㈣和第二電流源電 在本發明的一些實二參考電流。 絲 ,、電路和弟一電流提供電路所提供的電 電隨她㈣號,以料第—參考電流和第二參考 在本發明的-些實施例中,更包括數個電流校正電晶體,係 耗接類比至數轉換電路,並域接第―錢職晶體和第 流源電晶體二者至少其中之—。此外,電流校正電晶體係響應解 碼的數位訊號以改變第一參考電流和第二參考電流。 依照本發明的-些方法實關巾,Ν位元數絲類比轉換哭 能夠以依據第-參考電流而提供數個第—電流訊號,以塑應不同 加權的Ν位元字碼之數個第—位元的方式,並且能夠以依據不同 於第-參考電流之第二參考電流’而提供數個第二電流訊號,以 1307222 0年/月/c日修正替換頁 ------- 響應相同加權的N位元字碼之數個第二位元的方式來操作。 在本發明的一些方法實施例中,第一電流訊號,係由依據第 ~參考電流之不同大小的數個電晶體所提供。而依照本發明的一 些方法實施例,這些電晶體之不同的大小,係依據所個別所耦接 的N位元資料字碼的資料位元的次序來決定。而在本發明的一此 方法實施例中,第一電流訊號具有依據電晶體之不同大小所決定 之相關個別強度。此外,在本發明的一些實施例中,電晶體之個 別源/汲極端,係耦接第一位元。 為讓本發明之上述和其他目的、特徵和優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 在下文中,會伴隨著以參照本發明而繪示之實施例的圖示來 說明,然而,本發明將會有許多不同形式的實施例,並且本發明 不應該被推論只有以下所提出之實施例的限制。更確切地說,以 下所提供的實施例,是希望更完整和更徹底的揭露本發明,並且 也傳達給熟習此技藝者本發明主要精神的所在。在圖中’層級和 區域的大小和相關尺寸都為了能更清楚而被誇示。而相似的構件 也會一直使用同樣的編號。 當一個構件例如一個層級、區域或是基板被說到在另一個構 件之 '、上〃時,熟習此技藝者當知道,這可以是直接在另一構件 之上,或者也可以表示成插入另一構件之間。此外,一些相關的 術語像疋以下會用到的較低夕或是、、較高”,如圖中所繪示, 係描述一個層級或區域對另一層級,或者是相關區域對基板或基 層的關係。熟習此技藝者當知,這些術語被預期包含裝置上之不 11 1307222 . θ年;?月/«曰修正替换頁 同的方向,除此之外,這些方向會被描述在圖中。最後,、、直接" 這個術語係指出中間沒有插入任何構件。而在此所用的術語、、和/ - 或〃,係包括相關連所列出的項目其中之一或更多之中,任何和 所有項目的組合。 % 熟習此技藝者也應該知道,雖然以下的術語,第一,、、、第 一等,在以下可以描述不同的構件、元件、區域、層級和/或區 奴,但是這些構件、7L件 '區域、層級和/或區段不應該被這些術 、 D°所限制。這些術語僅用於區別一個構件、元件、區域、層級或 區奴與另一區域、層級或區段。因此,以下所討論的第一區域、 層級或區段,可以被稱作第二區域、層級或區段,並且同樣地, 第二區域、層級或區段,也可以被稱作第一區域、層級或區段, 而並不違反本發明的精神。 清參照圖2,電流附加式DAC包括電流源210,第一電流提 供裝置220,第二電流提供裝置230,開關區段24〇和開關控制訊 旎產生器250。輸出端OUT係以輪出電阻R〇連接至參考電壓 VREF。當表示為數位值、〇〃的數位輸入訊號輸入至DAC時參 - 考電壓VREF係被參照作為DAC的輸出電壓。開關控制訊號產生 • 器250係接收經由Dim、DIN2、…、DIN10所輸入的包括個別位 兀之10位7L數位輸入訊號,以產生(5+(24))開關控制訊號〇卜 D2、…、D36 〇 電流源210包括了參考電流源212、第一 NM〇s電晶體 MNREF'第二NMOS電晶體MNOl、第三NM〇s電晶體_〇32、 第一 PMOS電晶體MP01和第二PMOS電晶體MP02。參考電流 源212的第一端係耦接直流電壓VDD ,並且產生參考電流訊號 12 1307222 ~-rni II III .III. -.--. ^年夕月/¾日修正替換頁 IREF。第一 PMOS電晶體MPOl係呈現二極體架構,並且產生第 一電流訊號I。第二PMOS電晶體MP02係呈現二極體架構,並 且產生第二電流訊號321。第一 NMOS電晶體MNREF具有沒極端 和閘極端,其同時連接參考電流源212的第二端。第二nmos電 • 晶體MN01的閘極端連接至第一 NMOS電晶體MNREF的閘極 端,第二NMOS電晶體MN01的源極端係連接至接地電位(例如 參考電壓)’而第二NMOS電晶體MNOl的汲極端則連接至第— PMOS電晶體MPOl的没極端。第三NMOS電晶體MN02的閘極 端連接至第一 NMOS電晶體MNREF的閘極端,第三NM〇s電晶 體MN02的源極端係連接至接地電位,而第三NM〇s電晶體 MN02的没極端則連接至第二PM〇s電晶體Mp〇2的汲極端。 第一電流提供裝置220包括了以電流鏡型式搞接的pM〇§電 晶體庸1.....MP5。PMOS電晶體MP1.....MP5係同時連接 電流源210的第一 PM0S電晶體Mp〇1。第一電流提供裝置22〇 經由耦接至開關區段240内之個別開關的PMOS電晶體Mp卜…、 ]\4卩5,產生具有不同放大率之不同的電流訊號(1、21、4][、81和161)。 第一電流k供裝置230包括了以電流鏡型式耗接的pM〇s電 晶體MP6.....MP36。PMOS電晶體MP6.....MP36係同時連 接電流源210的第二PMOS電晶體MP02。第二電流提供裝置 23 0係產生具有相同放大率之電流訊號(321)。開關區段係將第 一電流提供裝置220和第二電流提供裝置23〇的輸出端連接至 DAC的輸出端OUT。而開關區段24〇包括了數個開關swi..... SW36。開關SW1.....SW36係依據開關控制訊號產生器25〇所 提供的開關控制訊號來進行開關操作。
S 13 1307222 β年/月々日修正替換頁 依照圖2之DAC,第一電流提供裝置220具有5個PMOS電 晶體ΜΡ1、.··、ΜΡ5’而第二電流提供裝置230則具有31個PMOS 電晶體ΜΡ6、…、ΜΡ36,因此能將1〇位元數位輸入訊號轉換成 類比訊號。 圖3係繪示圖2中之開關控制訊號產生器方塊圖。請參照圖 3 ’開關控制訊號產生器250包括了解碼器251和栓鎖電路253。 在實際的操作中,解碼器251係解碼數位輸入訊號DINi..... DIN10中較高之位元DIN6.....DIN10,以產生(25-1)個數位訊號 DE〇1.....DE〇31。而栓鎖電路253則栓鎖住數位輸入訊號 DIN1.....DIN10中較低之位元Dim、…、DIN5,並且解碼(25-1) 個數位訊號。栓鎖電路253係由此輸出(5+(25-1))個開關控制訊號 Dl、D2.....D36至開關區段240。 第一 NMOS電晶體MNREF、第二NMOS電晶體mnch和第 三NMOS電晶體MN02係以電流鏡架構連接。例如第二NM〇s 電晶體MN01,具有與第一電晶體MNREF相同的電晶體大小, 而第三NMOS電晶體MN〇2的電晶體大小,則是第二NM〇s電 晶體MNOl之電晶體大小的32倍大。 當第一 NMOS電晶體MNREF、第二NMOS電晶體mnoj和 第三NMOS電晶體MN〇2具有相同的臨界電壓時,由第:NM〇s 電晶體MNOl之汲極端所輸出之電流I,就可以具有與第一 NM〇s 電晶體MNREF之汲極端所輸出之電流iref相同的放大率。此 外’由第三NMOS電晶體MN02之汲極端所輪出之電流的放大 率,就可以是第二NMOS電晶體MNOl之汲極端所輸出之電流工 之放大率的32倍大。 14 1307222 ^年夕月々日修正替換頁 由於第一 PMOS電晶體MPCM係為二極體架構,並且其汲極 端連接至第二NMOS電晶體MN01的汲極端,第一 PM〇s電晶體 MP01之汲極端輸出之電流,大體上會跟由第二NM〇s電晶體 MN01之汲極端所輸出的電流I相同。 由於第二PMOS電晶體MP〇2係呈現二極體架構,並且其汲 極端連接至第三NMOS電晶體MN〇2的汲極端,由第二PM〇s 電晶體MP02之汲極端輸出之電流,大體上也會跟由第sNM〇s 電晶體MN02之汲極端所輪出的電流321相同。 第一電流提供裝置220内之PMOS電晶體MP1.....MP5係 以電流鏡架構連接。PMOS電晶體MP1.....MP5的閘極端,係 連接至電流源210之第一 pMOS電晶體Mp〇1的閘極端。在本發 明的一些實施例中,PMOS電晶體MP1跟第一 PMOS電晶體MP01 具有相同的電晶體大小,pM〇s電晶體Mp2的電晶體大小會是 PMOS電晶體MP1之電晶體大小的兩倍大,pM〇s電晶體Mp3的 電晶體大小會是PMOS電晶體MP2之電晶體大小的兩倍大,pM〇s 電晶體MP4的電晶體大小會是PM〇s電晶體Mp3之電晶體大小 的兩倍大,而PMOS電晶體MP5的電晶體大小會是pM〇s電晶體 MP4之電晶體大小的兩倍大。因此,由pM〇s電晶體ΜΙ^、...、 和MP5所產生之電流’互相個別具有卜21、41、訂和161的關係。 也就是說,PMOS電晶體MP1.....* MP5會依據2k的關係來產 生輸出電流’其中k係表示為個別連接至pM〇s電晶體Μρι、...、 和MP5之位兀的次序。例如由pM〇s電晶體Mp2所產生之輸出 電流,當MP1經由開關控制訊號產生器25〇連接至1〇位元中的 第1位元時,會等於21倍其所產生之電流 IREF ° 15 1307222 ^年夕月广日修正替換頁 第二電流提供裝置230之PMOS電晶體MP6、…、MP36係 以電流鏡結構連接。PMOS電晶體MP6.....MP36的閘極端,係 連接至電流源210内之第二PMOS電晶體MP02。在本發明的一 些實施例中,PM0S電晶體MP6、…、MP36彼此會具有相同的大 小。因此,每一個由PMOS電晶體MP6.....MP36所輸出的電 抓,會如第二pmos電晶體MP2所輸出的電流,具有32】的放大 率。 開關控制訊號產生器250會將10位元數位輸入訊號 DIN1.....DIN10,轉換成(5+(25-1)=36)個開關控制訊號D1、 .......D36。36位元之開關控制訊號m、D2.....D36中較低 的5個位元D1.....D5,係個別輸入至開關區段240中的開關 SW1、…、SW5。開關控制訊號D1是最低位元(LSB)並且輸入至 開關SW1,開關控制訊號D2輸入至開關SW2,開關控制訊號D3 輸入至開關SW3,開關控制訊號D4輸入至開關SW4,開關控制 訊號D5輸入至開關SW5。 將10位元數位輸入訊號DIN1.....DIN10中較高的5個位 元D6、…、D10解碼(由圖3之解碼器251解碼),以提供31位元 資料DE01.....DE031,並個別輸入至開關SW6...、SW36。在 31位元的開關控制訊號D6、…、D36中,可能不會有優先權的問 題。換句話說,每一個31位元的開關控制訊號D6、…、D36具 有相等的加權。 當開關控制訊號D6.....D36全部為、、〇〃時(例如當所有數 位輸入訊號DIN1、…、DIN10為、'),則輸出端〇υτ田會提供 參考電壓VREF值。相對地,當開關控制訊號Dl為、、丨〃並且其 16 1307222 _____ 月/β日修替換頁_ 它開關控制訊號D2、D3.....D36全部為、、(T時,則開關SW1 為導通狀態(W ),並且其它開關SW2、SW3.....SW36為關 閉(off)。則電流訊號〗(由pM〇s電晶體Μρι所提供)會被施加於輸 出電阻R0,以在輸出端〇υτ產生電位差,其大約等於vREF+b< RO。 當開關控制訊號D2為、1〃並且其它開關控制訊號D1、 03 .....D36全部為時,則開關SW2為導通狀態,並且其 它開關SW卜SW3、…、SW36為關閉。則電流訊號21(由PM〇s 電曰曰體MP2所&供)會被施加於輸出電阻,以在輸出端out 產生電位差,其大約等於VREF+2xIxR〇。 當開關控制訊號D1和D2為、「並且其它開關控制訊號D3、 04 .....D36全部為、0夕時’則開關SW1和SW2為導通狀態, 並且其它開關SW3、SW4、...、SW36為關。則由PM0S電晶 體MP1和MP2所提供之電流訊號I和21會被施加於輸出電阻 R〇,以在輸出端out產生電位差,其大約等於vref+(1+2)xIx RO。 在DAC其他操作的例子中,當開關控制訊號D1、D2、…、 和D5為1並且其它開關控制訊號D6、D7、…、D36全部為 時,則開關SW卜SW2、…、和SW5為導通狀態,並且其它開關 SW6、SW7、…、SW36為關閉。則個別由pM〇s電晶體Μρι、 MP2、…' 和MP5所提供之電流訊號I、21、41、81和161會被施 加於輸出電阻RO,以在輸出端QUT產生電位差,其大約等於 VREF+(l+2+4+8+16)xIxRO。 第一電流提供裝置220可以提供不同的電流,以產生32個不
17 1307222 同的電壓’例如從(OxRO+VREF)至(31IXRO+VREF)。由於輸入至 開關區段240的31位元開關控制訊號〇6.....D36彼此不具有 優先順序,DAC會利用第一電流提供裝置220和開關區段24〇, 來輸出32個不同的電壓位準。因此,DAC可以利用第一電流提供 裝置220、第二電流提供裴置230和開關區段240,來輪出32x 32(=1024)個不同的電壓位準。換句話說’圖3之dAc可以將1〇 位元數位輸入訊號轉換為對應的類比訊號,其具有1024個不同電 壓位準的其中之一。 依照圖2之電流附加式DAC,第一電流提供裝置22〇係連接 至PMOS電晶體MP01,並且第二電流提供裝置23〇連接至pM〇s 電晶體MP02。雖然PMOS電晶體MP02的電晶體大小,不會比 PMOS電晶體MP01之電晶體大小的32倍更大,但是連接於 NMOS電晶體MN02的PMOS電晶體MP02輸出的電流,可以是 PMOS電晶體MP01所輸出之電流I的32倍大。 按照以上的觀點,力太恭B日从威a ,丄 ____
另外’雖然每一個連接至pM〇s電晶體Μρ〇2的電晶體 晶體MPOl大小的1/32倍,
PMOS電晶體MPOl ΜΡ6.....ΜΡ36的大小,是pM〇s電 但是電晶體MP6、. ·.、ΜΡΚ όΓ I、,路 18 1307222 汐年夕月/〇日修正替換頁 的大小為4/2 ’而PMOS電晶體MP02的大小則為7/3。因此,圖 2之DAC以半導體積體電路的方式來實現時,由DAC線路佈局 . 所佔據的區域可以降低。 • 請參照圖心電流補償電路260接收由第一電流提供裝置22〇 所輪出之訊號的其中之一(csi),和接收由第二電流提供裴置23〇 所輸出之訊號的其中之一(CS2),並且產生誤差補償訊號Εαρ和 ECIN至電流源210。 „ 電流補償電路260包括了誤差放大器262、NMOS電晶體 MNC1和MNC2。誤差放大器262係接收由第一電流提供裝置22〇 所輪出之訊號CS1,以及接收由第二電流提供裝置230輸出之訊 號CS2,並且放大每一個訊號CS1和CS2以提供第一放大訊號 VCOl和第二放大訊號VC02。NMOS電晶體_C2的汲極端, 係連接電流源210内之第二PMOS電晶體MP02的没極端,並且 響應第一放大訊號VC01。NMOS電晶體MNC1的汲極端,係連 接電流源210内之第一 PMOS電晶體MPOl的沒極端,並且響應 第二放大訊號VC01。 此外,按照圖4之DAC ’電流補償電路260可以偵測pM〇s 電晶體MP1的汲極電流CS1,以及PMOS電晶體MP6的沒極電 流CS2來降低誤差。例如,當CS1增加而CS2降低時,則vc〇l 就會增加而VC02就會減少。當VCOl增加時,在NM〇s電晶體 MNC2中的電流ECIP就會增加。當VC02降低時,流過NM〇s 電晶體MN1的電流ECIN就會降低。因此,第一電流提供裝置220 内的PMOS電晶體MP1、…、MP5所輪出之電流會降低,並且第 一電流挺供裝置230内的PMOS電晶體MP6、...、MP36所輸出 19 1307222 f^ M 〜,ΙΜ η_____
卜7月罐正替換頁丨 的電流就會增加。 — --:~I 例如,當CS1減少而CS2增加時,則Vc〇i就會降低而V⑽ 就會增加。當VC01降低時,在N刪電晶體_C2中的電产 觀就會減少。當VC02增加時,流過N細電晶體麵的電 流廳就會增加。因此,第-電流提供裝置220内的PM0S電 晶體MP1、、·5所輸出之電流會增加,散第二電流提歸 少請内的觸s電晶體MP6、...、_6所_電流就會; =:電流提供裝置220和第二電流提供裝置咖的輸出電 化異承增加時’圖4中的電流補償電路26〇會降
« 220和第二電流提供裝置23Q的輸出電流,並且當^電^ 挺供裝置220和第二電流提供裝置23() L 電流補償電路26G會增加第—電流提供 第== 裝置230的輸出電流。 ”弟一電^供 實施例中’當第—電流提供裝置細 電4供裝置230運作正常時,以⑶和 第― 會彼此相等。當電壓轉改變時(例如有 為基準的電壓位準 路260會以增加或減少個別由 ㊉運作)’電流補償電 考電流,來咖別之電晶體=Γ^ΓΡ02所產生的參 體卿和ΜΡ02(用來產生參考電流 二:作。因為電晶 220和第二電流提供裝置现内電電k供應提供裝置 接,所以當參考電流改變,就會造成由^體’以電流鏡的架構連 和第二電流提供裝置23G所產生供應提供裝置加 據⑶和CS2所產生的電壓位正/改變,因此會使得依 朝内正吊運作的方向改變。 20 1307222
β日修正替換頁丨 请參照圖5,電流補償電路謂係接收由第_電流提供 所輸出之訊義其巾之-(CS1),和接㈣第二電流提供裝置 =出之訊號的其中之一 (CS2)’並且產生誤差補償訊雖 王电源210。 、電流補償電路270包括了類比至數位轉換電路ADc 272和電 流校正電路274。継至触賴f路Μ接㈣—紐提供裝置 22〇的輪出訊號CS1,以及第二電流提供裝置23〇的輸出訊號 CS2 ’並且轉換CS1和CS2訊號為例如4位元的數位訊號。類比 至數位轉換電路ADC 272除了 4位元的數位訊號之外,還可以輸 出η位元的數位訊號。 扣 電流校正裝置274包括了開關電晶體MNC3、…、MNC6係 彼此並聯。NMOS電晶體MNC3、…、MNC6係用來響應類比至 數位轉換電路ADC 272所產生的誤差補償訊號EC2 ^此誤差補償 訊號EC2備用來提供至PMOS電晶體MP01的汲極端。 請參照圖5的DAC,在操作上,電流補償電路270會感測第 一電流提供裝置220之PMOS電晶體MP1中的没極電流CS1,以 及感測第二電流提供裝置230之PMOS電晶體MP6中的汲極電流 CS2,使其電流的變動能夠降低。更特別的是,電流補償電路27〇 係將CS1與CS2比較,並且依據比較的結果從類比至數位轉換電 路ADC 272產生數位訊號之值,以決定NMOS電晶體MNC3、...、 MNC6中導通之電晶體的數目。當電晶體導通的數目增加時,誤 差補償訊號EC2的放大率也會增加。相對地,當電晶體關閉 (turn-off)的數目減少,則誤差補償訊號EC2的放大率也會降低。 NMOS電晶體MNC3.....MNC6的汲極端,係共同耦接第 21 1307222 料夕月允日修正替換頁 - PMOS電晶體Mp〇1的没極端。因此電流補償電路別會改 變流經以電流鏡架構連接至第—PMOS電晶體MP〇1 tPM〇s電 晶體MP1、·..、MP5的電流。例如,當CS1增加比^增加的還 夕夺(也就是CS1增加到大於CS2),電流補償電路27〇會降低誤 差補仏訊號EC2的放大率,以降低流經刚⑽電晶體跑..... Γ=二者擇—地,當⑶降低比cs降低的還多時(也就 赛EC2㈣士⑥於CS2),電流猶電路27G财增加誤差補償訊 ; 、 率,以增加流經PMOS電晶體MP1.....MP5的電 之二二1第—電流提供裝置220的輸出電流異常增加時,圖5 之电》机補4員電路270可隊/择势 ^ ^ 流,並且當第-電、、,接=罢電裝置220的輸出電 、古,中 裝置220的輸出電流異常的減少時,電 流補償電路270可以増加第 電 以降低電流波動。 糾、裝置220的輸出電流,用 圖6係纷示依照本發明之—實施例之叫立 至類比轉換H的電路方塊圖。圖 ^加式數位 DAC的結構相同,除了由^^ DAC的結構大體上與圖5之 號EC2,可以改變流經電流:21:二:所輸出的誤差補償訊 ,第電流提_心=體·。2 且當第二電流提供裝置⑽的輸;;=23G的輸出電流,龙 路一增加第二電流提供裝減少時’電流補償電 流波動。 勺輪出電流,用以降低電
22 1307222 ’㈣月,修正替^ 雖然在圖6係繪示了誤差補償的極於 ^ 電流提供裝置220和第二電流提供裝置23() 收個别之第— 訊號來執行,但是DAC也可以接收個:電::::的輪出 電晶體_ 、…、職的榦出^所緣示,會感測所有 出端咖的電麼位準。因此,電、,補=’以便校正DAC之輪 ΛΛΜ I伙補債電路會很複雜,並且當目 的DAC也會消耗很多的功率。 見 不過’依照本發明之電流誤罢姑待+ ^ 圖“二 电机為差補㈣路的-些實施例令,如 i^rrir僅有第—電流提供裳置-的一個輸出訊號, :有第二電流提供裝置230的一個輸出訊號會被感測,並且 =感測的結果回授至電流源210,以校正第—電流提供裝置22〇 和弟二電流提供裝置23〇的輪 ⑽出電机。因此,圖4、5和6之電流 _電路的複雜度會下降,並且只會雜少許的功率。 圖7鱗示依照本發明之—實施例的一種削立元電流附加式 位至類比轉換器的電路方塊圖。在圖7的DAC中,電流提供裝 糸連接個接地電位。電流附加式dac包括了電流源训、第 外^提供裝置320'第二電流提供裝置33〇、第一開關區段34〇、 第-開關區& 350和開關控制訊號產生器(未繪示)。輸出端〇υτ 係連接電阻R〇至參老雷厭 、 ,号電壓VRHF。當數位輸入訊號等於、0〃而 被輸入至DAC日f ’參照參考電壓vref會被視為dac的輸出電 t開關控制訊號產生器接收1〇位元數位輸入訊號dini、 DIN2 疆1(),以產生(5+(25-1)=36)侧關控職號D1、 D2、···、D36。 (S ) 23 1307222 ―烈/。日修正替換頁 如圖7所繪不,電流源31〇包括了參考電流源312、第_pM〇s 電晶體MPREF、第二PM〇s電晶體Mp〇1、第三pM〇s電晶體 . MP〇2、第一 NM〇S電晶體MNOl和第二NMOS電晶體MN02。 參考電流源312的第一端係耦接接地電位,並且產生參考電流訊 號IREF。第一 NMOS電晶體MN01係具有二極體結構的架構, 並且產生第一電流訊號I。第二NMOS電晶體_〇2係具有二極 體結構的架構,並且產生第二電流訊號321。第一 pM〇s電晶體 • MPREF具有汲極端和閘極端,其共同連接參考電流源312的第二 端。第二PMOS電晶體MP01的閘極端連接至第一 PM〇s電晶體 MPREF的閘極端,第:PM〇s電晶體Mp〇1的源極端係連接直流 電壓VDD,而第二PMOS電晶體MP01的源極端則連接至第一 PMOS電晶體MPREF的源極端。第三pM〇s電晶體Mp〇2的閘 極端連接至第一 PMOS電晶體MPREF的閘極端,第三PM〇s電 晶體MP02的源極端係連接至直流電壓VDD,而第三pM〇s電晶 體MP02的汲極端則連接至第二電晶體MN〇2的汲極端。 請參照圖7,第一電流提供裝置32〇包括了 NM〇s電晶體 、…、MN5,係以電流鏡的架構連接。NMOS電晶體MN1、…、 MN5係共同連接至電流源31〇内的第一 nm〇S電晶體MNOl。第 電流知:供裝置320係產生具有不同放大率的數個電流訊號,例 如 I 、 21 、 41 、 81和 161 。 第一電流提供裝置330包括了 NMOS電晶體MN6、...、 _36,係以電流鏡的架構連接。NM〇s電晶體_6.....MN36 係共同連接至電流源310内的第二NMOS電晶體MN〇2。第二電 概提供裝置330係產生具有相同放大率的數個電流訊號,例如321。 24 1307222
第-開關區段340係將第-電流提供裝置32()之輸 DAC之輸出端OUT彼此連接。第一開關區段34〇包括了數個關 ^ -開關SW1、…、SW5的運作,係依據開 控制訊號D1.....D5來決定導通與否。 第二開關區段350係將第二電流提供裝置33〇之輸出端與 DAC之輸出端OUT彼此連接。第__開關區段姻包括了數關 SW6、…、則6。這些_SW6、·..、SW36的運作,係依據 關控制訊號D6、“.、咖來衫導通卿。《此技藝者應當^ 道’圖7中之DAC的運作’係與圖2之DAC的運作相類似。 圖8係繪示依照本發明之—實施例的一種1〇位元電流附 數位至類比轉換㈣電財_。熟f此技藝者應當知道, 中之DAC的運作,係與圖4之DAc的運作相類似。例如,圖4 中很夕的PMQS f晶體’都可以如圖8所示,以NM〇s電晶體來 替換。 圖9係緣示依照本發明之-實施例的-種10位元電流附加式 數位至類轉換器的電路方塊圖。熟習此技藝者應當知道,圖9 中之DAC的運作’係與圖5之DAC的運作相類似。例如,圖$ 中很多的PMOS電晶體’都可以如圖9所示,以NM〇s電晶體來 替換。 圖10係繪tf依照本發明之_實施例的一種1〇位元電流附加 式數位至類比轉換器的電路方塊圖。熟習此技藝者應#知道,圖 10中之DAC的運作’係與圖62DAC的運作相類似。例如,圖 6中很多的PMOS電晶體’都可以如圖1〇所示’以NM〇s電晶體 來替換。 25 1307222 科夕月間修正替換頁 係繪示依照本翻之—些實施觸的—種包含在數位至 類比轉換㈣之第—和第二電流提供電路的電晶體大小組合實例 r = k係自然數’又等於m+n,而一為小於k的自然 數。特別地,依照本發明-些實施例的k位元的罐係繪示在圖 11中,其中數字可以是表示在第一電流提供袭置内之電晶 體的數目,這些電晶體係對應於k位元DAC的較低位元。另外, 2 1之值可以用來表不在第二電流提供電路巾之電晶體的數目, 而這些電晶體係對應於k位元DAC的較高位元。 我們也可❹道,上柄數字也可關來表示第—電流提供 裝置和第二電紐供裝置所佔據的大小。例如,依照本發明之一 實施例的描述’如圖U中的迎。其中第一電流提供裝置佔據了 5個電晶體單位面積,而第二電流提供電路則佔據了 ^個電晶體 單㈣積。此外’在10位元DAC(k=1G)的例子中,對應於較低位 凡的弟一電流提供裝置,包括了 5個電晶體(m=5),並且對應於較 高位元的第二電流提供裝置,則包括了 個電晶 電流提供裝置中之電晶體的數目(或是說在第_電流提供裝置内之 電晶體所佔據的大小)’可以依照冲係自然數)的懸式來增加。 而在第二電流提供裝置内的電晶體可以具有相同的大小。當對應 於最低位元的電晶體之電晶體大小為!,則DAC内之電晶二^ 電晶體大小係(1+2+4+8+16+32x31),或是 1〇23。 “ 二者擇一地,當第—電流提供裝置所包括之電晶體,係與輸 入之較低的4個位元(m=4)有關聯時,則第二電流提供裝置會對應 於較高位元而有63個電晶體(n=6)。因此’ DAC内電晶“ 的總面積可以被寫成(1+2+4+8+16+16x63),或是1〇23。也就是古兒, 26 1307222 fW月,正麵1 ^然第-電流提供裝置和第二《提供裝置每—個所包括的電晶 體之數目會改變,但是第-電流提供裝置和第二電流提供裝置中 之電晶體所佔據的總面積卻維持相同。 圖2鱗示依照本發明之一些只則位元電流附加 ^ DAC之輪出訊號波形圖’在此’ 8位元輪錢號範圍值係從 〇〇〇〇 _0〃到'、inl 1U1 〃。如圖12麻,㈣訊號具有從 大約〇伏特到大約L33伏特之範圍的256個電壓位準。 雖然在此所描述的實施例,都包括了兩個電流提供裝置,但 是依照本發仅—些__DAC可吨衫於_電流提供裝 置。 、又 雖然本發明已以較佳實施例揭露如上,然其並非用以限定本 發明’任何熟習此技藝者’在不脫離本發明之精神和範圍内\者 可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申二 專利範圍所界定者為準。 Μ 【圖式簡單說明】 圖1係繪示習知具有電流補償電路之10位元電流附加式DAC 結構方塊圖。 圖2係繪示依照本發明的-些實施例之1G位元電流附加式數 位至類比轉換器的電路方塊圖。 圖3係繪示圖2中之開關控制訊號產生器方塊圖。
圖4到圖1()係繪示依照本發明的—些實施例之1()仇元電流 附加式數位至類比轉換器的電路方塊圖。 % L 圖11係繪示依照本發明之一些實施例的的一種包含在數位至 類比轉換㈣之第-和第二電流提供電路的電晶體大小組合實例 27 1307222 7月/咜修正替換頁 表。 圖12係繪示依照本發明之一些實施例的一種8位元電流附加 式數位至類比轉換器之輸出訊號圖。 【主要元件符號說明】 10、260、270 :電流補償電路 210、310 ··電流源 212 .爹考電流源 220、320 :第一電流提供裝置 230、330 :第二電流提供裝置 240 :開關區段 250 :開關控制訊號產生器 251 :解碼器 253:栓所電路 262 :誤差放大器 272 :類比至數位轉換電路 274 :電流校正裝置 340:第一開關區段 350 :第二開關區段 28

Claims (1)

1307222 夕年夕月/°日修正替換頁j 十、申請專利範圍: 1.一種N位元數位至類比轉換器,其包括了獨立大小的一第 一電流源電BB體和一弟二電流源電晶體’個別搞接一第一電流提 供電晶體和一弟一電流提供電晶體’而該第一電流提供電晶體和 該第二電流提供電晶體係以電流鏡結構配置,其中該第—電流提 供電晶體和第二電流提供電晶體的大小,係個別與該第—電流源 電晶體和該第二電流源電晶體的大小成比例。 2.—種N位元數位至類比轉換器,包括: 一第一電流提供電路,係依據一第一參考電流來提供多數個 第一電流訊號,以響應不同加權的一 N位元資料字碼中之多數個 第一位元;以及 一第二電流提供電路,係依據不同於該第一參考電流之一第 一參考電流’來提供多數個第二電流訊號,以響應相同加權的該N 位元字碼中之多數個第二位元。 3·如申請專利範圍第2項所述之n位元數位至類比轉換器, 其中該第一電流提供電路包括依據該第一參考電流之不同大小之 多數個電晶體。 4.如申清專利範圍第3項所述之N位元數位至類比轉換器, "中該些電B曰體之不同的大小,更依據個別耦接之N位元資料字 碼的資料位元的個別次序來決定。 5’如申凊專利範U第3項所述之N位元數位至獅轉換器, 其中該些第一電流訊號具有依據該些電晶體之不同大小所決定之 相關的個別強度。
29 1307222 ^年夕月/〇日修正替換頁 6. 如申請專利範圍第3項所述之N位元數位至類比轉換器, 其中個別該些電晶體之源/汲極端,係耦接該些第一位元。 7. 如申請專利範圍第3項所述之N位元數位至類比轉換器, 其中該些電晶體包括多數個第一電晶體,且其中該第二電流提供 電路包括大約相同大小之多數個第二電晶體,該些第二電晶體之 大小係依據該第二茶考電流決定。 8. 如申請專利範圍第7項所述之N位元數位至類比轉換器, 更包括: 一第一電流源電晶體,耦接該些第一電晶體,用以提供該第 一參考電流,其中該第一電流源電晶體具有與該些第一電晶體中 最低次序之第一電晶體實質上相同的大小;以及 一第二電流源電晶體,耦接該些第二電晶體,用以提供該第 二參考電流,其中該第二電流源電晶體的大小具有與所有該些第 二電晶體實質上相同的大小。 9. 如申請專利範圍第8項所述之N位元數位至類比轉換器, 其中該弟·一電流源電晶體的大小與該弟-—電流源電晶體的大小5 係彼此互相獨立。 10. 如申請專利範圍第7項所述之N位元數位至類比轉換器, 其中該些第一電晶體和該些第二電晶體的源/汲極端並沒有搞接獨 立的電阻元件。 11. 如申請專利範圍第7項所述之N位元數位至類比轉換器, 其中該些第一電晶體和該些第二電晶體的源/汲極端,係個別對應 耦接至多數個開關,該些開關用以切換該N位元資料字碼中對應 的位元至該些第一電晶體和該些第二電晶體其中之一。 30 1307222 卜Μ月曰修正替換頁 12·如申請專利範衛 、 其中該些第_位元3 I 2項所述元數位至類比轉換器, 些第二位元包括比^讀Μ元資料字瑪的較低次序位元,且該 的較高次序位元,^第—位元之次序還高的^元資料字瑪中 的2"倍,而m等於兮績第二參考電流實質上為該第一參考電流 n , ; 向次序位元中最低次序的一個。 其中該第-第2項所述之N位元數位至類比轉換器, 之不同個別大_,具有彼此相關 體,具有彼此侧之〜電錢供電路包括多數個第二電晶 〜只貝上相同的大小。 M.如申請專利範 更包括: 固弟2項所述之N位元數位至類比轉換器, W:電二體:_對_ 供電路,並浦1接該第—電流提供電路和該第二電流提 至少其中之__,/、電流源電晶體和該第二電流源電晶體二者 供電該第—電流提供電路和該第二電流提 電流二者至少其中之—來改變該第—參考電流和該第二參考 器,一 _轉換 流源電w,_ 魄科L、電晶體和該第二電 二參考電\。U依據該電位絲改變該第-參考電流和該第 31 1307222 W年7月/〇日修正替換頁 16.如申請專利範圍第14項所述 ^ ^ 7述之N位兀數位至類比轉換 1其中該糕校正電路包括—類比至數_換電路,以將該第 :電流提供電路和該第二電流提供電路所提供之該電位差轉換為 個數絲號’以作為該第—參考電流和該第二參考電 如巾料職圍第16項觀之Ν位錄減類 器’更包括: 押供 多數個電流校正電晶體,輪接該類比至數位轉換電路,並 輕接該第—電流源電晶體和該第二科源電晶體二者至少其中之 一、’且該些電流校正電晶體似變㈣—參考流和該第二參考電 流以響應解碼的該些數位訊號。 18.—種Ν位元數位至類比轉換器,包括: & t/Α正電路,係依據由_第〜電流提供電路和一第二電 '机提供電路所提供之-電位差,來叫—第—參考電流和一第二 ^考電流二者至少其中之…而該第1考電流和該第二參考電 ^係個別與相_該第-電流提供電路和該第二電流提供電路 中匕含的電晶體之大小成比例。 抑19·如申請專利範圍第18項所述之N位元數位至類比轉換 益’更包括: -第-電流源電晶體和一第二電流源電晶體,係個_接該 電流提供電路和該第二電流提供電路,其中該電流校正電路 雷仏η 电日日體抑弟—電流源電晶體,用以依據該 電位差來改變該第一參考電流和該第二參考電流。 32 1307222 :夕年/月网修正替換.貝 20. 如申請專利範圍第19項所述之N位元數位至類比轉換. 器,其中該電流校正電路包括一類比至數位轉換電路*以將該第 一電流提供電路和該第二電流提供電路所提供之該電位差轉換為 解碼的多數個數位訊號,以作為該第一參考電流和該第二參考電 流之校正值。 21. 如申請專利範圍第_20項所述之N位无數位至類比轉換 器,更包括: 多數個電流校正電晶兹,係耦接該類比至數位轉換電路,並 鵜接該第一電流源電晶兹和該第二電流源電晶體二者至少其中之 一,且該些電流校正電晶體係響應解磷的數位訊號以改變該第一 參考流和該第二參考電流。 22. —種N位元數位至類比轉換器之操作方法,包括: 依據一第一奏考電流而提供多數個第一電流訊號,以響應不 同加權的N位元字碼中之多數個第一位元;以及 依據不同於該第,一參考電流之一第二參考電流,而提供多數 個第二電流訊號,以蜜應相同加權的N位元字碼中之多數個第二 位元。 23. 如申請專利範圍第22項所述之N位元數位至類比轉換器 操作之方法,其中該些第一電流訊號,係由依據該第一參考電流 之不同大小的多數個電晶體所提供β 24. 如申請專利範圍第23項所述之Ν位元數位至類比轉換器 之操作方法,其中該些電晶體之不同的大小,係依據所個別輛接 之Ν位元資料字碼的資料位元的個別次序來決定。 33 1307222 *7月々日修正替換頁I 25. 如申請專利範圍第23項所述之N位元數位至類比轉換器 之操作方法,其中該些第一電流訊號具有依據該些電晶體之不同 大小所決定之相關的個別強度。 26. 如申請專利範圍第23項所述之N位元數位至類比轉換器 之操作方法,其中個別該些電晶體的源/汲極端,係耦接該些第一 位元。 34 1307222 ”年夕月/。日修正替換頁 五、中文發明摘要: -種數位至類比轉換電路’可以包括獨立大小的第—和第二 電流源電晶體,係以電流鏡的結構個別耦接數個第一和第二電流 提供電晶體。其中第-電流提供電晶體和第二電流提供電晶體的 大小’係個別與第-電流源電晶體和第二電流源電晶體的大小成 比例。 六、 英文發明摘要: Digital-to-analog converter circuits can include independently sized first and second current source transistors in current mirror configurations. The first and second current provider transistors can be sized proportionally to the first and second current source transistors respectively. 七、 指定代表圖: (一) 本案指定代表圖為:圖(2 )。 (二) 本代表圖之元件符號簡單說明: 210 : 電流源 212 : 參考電流源 220 : 第一電流提供裝置 230 : 第二電流提供裝置 240 : 開關區段 250 : 開關控制訊號產生器
TW093109445A 2003-09-09 2004-04-06 Digital-to-analog converter circuits including independently sized reference current source transistors and methods of operating same TWI307222B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0063150A KR100520299B1 (ko) 2003-09-09 2003-09-09 전류 가산형 디지털/아날로그 컨버터 및 전류 가산형디지털/아날로그 변환방법

Publications (2)

Publication Number Publication Date
TW200511734A TW200511734A (en) 2005-03-16
TWI307222B true TWI307222B (en) 2009-03-01

Family

ID=34225479

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093109445A TWI307222B (en) 2003-09-09 2004-04-06 Digital-to-analog converter circuits including independently sized reference current source transistors and methods of operating same

Country Status (4)

Country Link
US (1) US6958719B2 (zh)
KR (1) KR100520299B1 (zh)
CN (1) CN1595808B (zh)
TW (1) TWI307222B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800259B1 (en) 2017-01-20 2017-10-24 Winbond Electronics Corp. Digital to analog converter for performing digital to analog conversion with current source arrays

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7750695B2 (en) * 2004-12-13 2010-07-06 Mosaid Technologies Incorporated Phase-locked loop circuitry using charge pumps with current mirror circuitry
US7129878B1 (en) * 2005-06-16 2006-10-31 Beyond Innovation Technology Co., Ltd Digital to analog converter
TW200717423A (en) * 2005-09-27 2007-05-01 Rohm Co Ltd D/A converter circuit, organic EL device circuit and organic EL display device
KR100746563B1 (ko) * 2005-12-07 2007-08-08 한국전자통신연구원 동적 선형화 디지털-아날로그 변환기
TWI313963B (en) * 2006-04-12 2009-08-21 Silicon Touch Tech Inc Chain-chopping current mirror
US7425909B2 (en) * 2006-07-31 2008-09-16 Analog Devices, Inc. Low-noise programmable current source
US7679443B2 (en) * 2006-08-31 2010-03-16 Texas Instruments Incorporated System and method for common mode translation
US7633415B2 (en) * 2007-03-27 2009-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for calibrating digital-to-analog convertors
US7514989B1 (en) * 2007-11-28 2009-04-07 Dialog Semiconductor Gmbh Dynamic matching of current sources
KR100937401B1 (ko) 2008-02-14 2010-01-18 이타칩스 주식회사 저전압 cmos 디지털-아날로그 변환기 회로
US8179151B2 (en) * 2008-04-04 2012-05-15 Fairchild Semiconductor Corporation Method and system that determines the value of a resistor in linear and non-linear resistor sets
CN101741233B (zh) * 2009-11-16 2012-05-23 无锡芯朋微电子有限公司 一种数模转换控制的dc-dc开关电源软启动电路
US8094055B2 (en) * 2010-01-26 2012-01-10 Power Integrations, Inc. Compact digital-to-analog converter
US8102683B2 (en) * 2010-02-09 2012-01-24 Power Integrations, Inc. Phase angle measurement of a dimming circuit for a switching power supply
TWI501561B (zh) * 2014-01-06 2015-09-21 Univ Southern Taiwan Sci & Tec 數位類比轉換裝置及方法
US9203424B1 (en) * 2014-05-13 2015-12-01 Power Integrations, Inc. Digital-to-analog converter circuit for use in a power converter
US9602013B2 (en) 2014-05-13 2017-03-21 Power Integrations, Inc. Controller for a switch mode power converter
CN104181473A (zh) * 2014-08-25 2014-12-03 长沙瑞达星微电子有限公司 一种电流源校准电路
CN105375928B (zh) * 2014-08-29 2020-09-01 意法半导体研发(深圳)有限公司 被配置用于产生可变输出电流的电流导引型数模转换器电路
CN108092664A (zh) * 2016-11-23 2018-05-29 中芯国际集成电路制造(北京)有限公司 电流源和数字模拟转换器
CN106774617B (zh) * 2016-12-23 2019-07-19 长沙景美集成电路设计有限公司 一种电流可精准校正网络
CN106788432B (zh) * 2016-12-30 2020-09-22 华为技术有限公司 数模转换电路
US9871531B1 (en) * 2017-01-23 2018-01-16 Globalfoundries Inc. Non-geometric scaling current steering digital to analog converter
US10605855B2 (en) * 2017-08-29 2020-03-31 Taiwan Semiconductor Manufacturing Co., Ltd. Method, test line and system for detecting semiconductor wafer defects
GB2568108B (en) * 2017-11-07 2021-06-30 Analog Devices Global Current steering digital to analog converter
EP3987890A4 (en) * 2019-06-21 2022-07-06 Texas Instruments Incorporated DYNAMIC ADJUSTMENT OF DRIVER VOLTAGE POWER RESERVE
US11476859B1 (en) * 2021-03-18 2022-10-18 Texas Instruments Incorporated Compensated digital-to-analog converter (DAC)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631647A (en) * 1994-10-12 1997-05-20 United Microelectronics Corporation Analog multiplying type of digital/analog converter circuit
US5646619A (en) * 1995-04-26 1997-07-08 Lucent Technologies Inc. Self-calibrating high speed D/A converter
JP3460765B2 (ja) 1996-01-08 2003-10-27 三菱電機株式会社 電流加算型デジタルアナログ変換回路
US5798723A (en) * 1996-07-19 1998-08-25 National Semiconductor Corporation Accurate and precise current matching for low voltage CMOS digital to analog converters
US6337648B1 (en) * 1998-11-25 2002-01-08 Texas Instruments Inc. MOS transistor digital-to-analog converter
KR20000072961A (ko) 1999-05-03 2000-12-05 윤종용 전류 세그먼트형 디지털-아날로그 변환기
US6295012B1 (en) * 1999-08-25 2001-09-25 Broadcom Corporation CMOS DAC with high impedance differential current drivers
JP3499813B2 (ja) * 2000-08-29 2004-02-23 Necマイクロシステム株式会社 電流セル型デジタル・アナログ変換器
JP2002164788A (ja) 2000-11-28 2002-06-07 Kawasaki Microelectronics Kk 差動出力型da変換器
US6590516B2 (en) 2001-05-30 2003-07-08 Matsushita Electric Industrial Co., Ltd. Current steering type D/A converter
TW569545B (en) * 2002-10-24 2004-01-01 Endpoints Technology Corp Analog/digital converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9800259B1 (en) 2017-01-20 2017-10-24 Winbond Electronics Corp. Digital to analog converter for performing digital to analog conversion with current source arrays

Also Published As

Publication number Publication date
TW200511734A (en) 2005-03-16
KR100520299B1 (ko) 2005-10-13
CN1595808A (zh) 2005-03-16
CN1595808B (zh) 2010-06-16
US6958719B2 (en) 2005-10-25
US20050052298A1 (en) 2005-03-10
KR20050026172A (ko) 2005-03-15

Similar Documents

Publication Publication Date Title
TWI307222B (en) Digital-to-analog converter circuits including independently sized reference current source transistors and methods of operating same
TWI360954B (zh)
US7348912B2 (en) High resolution and low consumption digital-to-analog converter
US6617989B2 (en) Resistor string DAC with current source LSBs
US8941522B2 (en) Segmented digital-to-analog converter having weighted current sources
US7283079B2 (en) Digital to analog converter having a single cyclic resistor string and multiple current sources
JP5166375B2 (ja) スイッチ損失を改善するための回路アーキテクチャを有するデジタル/アナログ変換器
JP2005160034A5 (zh)
JPH0810832B2 (ja) デイジタル―アナログ変換器
TW200421239A (en) Current drive circuit and display
EP1813020B1 (en) Balanced dual resistor string digital to analog converter system and method
US8390264B2 (en) Differential reference voltage generator
KR20080012069A (ko) 디지털-아날로그 변환기 및 그것을 포함하는 소스 드라이버
TW200937868A (en) Current compensation for digital-to-analog converter
JP3199115B2 (ja) デジタル・アナログ変換回路
JP2976200B2 (ja) D/aコンバータのためのバイアス回路
US10379693B2 (en) Current output circuit
US7369076B1 (en) High precision DAC with thermometer coding
WO2006103673A2 (en) A low-power inverted ladder digital-to-analog converter
US20050219093A1 (en) Method and apparatus for combining outputs of multiple dacs for increased bit resolution
JP3958042B2 (ja) ディジタル・アナログ・コンバータ、電流源及び差動アンプ
TW200915734A (en) Digital to analog converter
Gupta et al. W-2w current steering dac for programming phase change memory
TWI364747B (en) Driving device of a liquid crystal display device
JP4596421B2 (ja) Da変換器