TWI306678B - High-resolution patterning - Google Patents

High-resolution patterning Download PDF

Info

Publication number
TWI306678B
TWI306678B TW093115703A TW93115703A TWI306678B TW I306678 B TWI306678 B TW I306678B TW 093115703 A TW093115703 A TW 093115703A TW 93115703 A TW93115703 A TW 93115703A TW I306678 B TWI306678 B TW I306678B
Authority
TW
Taiwan
Prior art keywords
composition
conversion material
phase change
organic
mixture
Prior art date
Application number
TW093115703A
Other languages
Chinese (zh)
Other versions
TW200511622A (en
Inventor
Heike E Riel
Walter Riess
Siegfried F Karg
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of TW200511622A publication Critical patent/TW200511622A/en
Application granted granted Critical
Publication of TWI306678B publication Critical patent/TWI306678B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

1306678 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種藉由沈積包含應用材料及相變轉換材 料之混合物與用於圖案化一表面之組合物而在一表面上形 成圖案的方法。另外,本發明係關於製造一有機發光裝置 (OLED)之方法,且特定言之係關於用於尺(}]3顯示器之高解 析度圖案化。 【先前技術】 有機發光裝置(OLED)通常是將多個層按順序沈積於彼 此頂部製造而成的,該等層諸如在一支撐基板上之第一電 ★右干有機及無機層及第二電極。迄今為止,技術 缺乏針對小分子RGB顯示器之高解析度圖案化方法。目前 為小分子開發之沈積技術在大尺寸顯示ϋ之大規模生產上 也存在限制。 Ϊ也將真工蒸發法用作形成有機層之物理氣相沈積方 法。圖案化有機層而(例如)形成在彩色顯示器中發紅、綠及 藍光之子像素之普通方法是遮蔽罩技術。然而,此技術受 ::尺寸、解析度及各個像素填充因子限制。舉例而言, 此。,…广 其在特徵尺寸方面更是如 此在此方法中之材料沈積需要規則&说w_ 此等步驟會延遲製造時間遮罩清潔步驟,而 了精度及孔徑比n =之遮罩熱膨脹限制 低了良率。 稷'必需之遮罩對準既費時又降 一種用於圖案化 聚合物發光裝置之方法是如第6,087,196 93481.doc 1306678 號美國專利描述之溶解聚合物之噴墨印刷。由於先前、'尤積 之層將重新溶解並且混有來自不同溶液之多個層之順序沈 積’所以此分配液體溶液之方法並不適用於基於小分子之 多層OLED。 綜上所述,在此項技術中仍然需要改良用於製造使用有 機及/或無機活性或生物層之半導體裝置、感應器、生物晶 片及顯示器之結構的圖案化。 【發明内容】 本發明允許製造使用有機及/或無機活性或生物層之半 導體裝置、電路、感應器、生物圖案、生物晶片及顯;器。 該方^涉及:藉由相變印刷技術沈積添加至轉換材料之分 子、寡聚物及奈米粒子;及製造有機發光裝置、彩色顯示 器及其他半導體裝置。 ^ 根據本發明,提供一種藉由沈積包含應用材料及相變轉 換材料之混合物而在-表面上形成圖案之方法。該方法包 括以下步驟:將混合物加熱至溶融體,·利用相變印刷技術 將熔融混合物沈積在表面上,進而當該炫融混合物抵達表 面時即刻凝固;以及移除轉換材料。 根據本發明之另-態樣,提供一種製造有機發光裝置 (OLED)之方法。該方法包括以下步驟:將組合物加熱至溶 融體,此組合物包含有機材料及相變轉換材料;藉由相變 印刷技術將溶融·组合物沈并太主 物沈積在表面上,進而當該熔融組合 物抵達表面時即刻凝固; 以及移除轉換材料,藉此將有機 材料保留在表面上。 93481.doc 1306678 本發明大體係㈣心在半導體裝置、感應器或彩色顯 不益中藉由相變印刷技術(亦稱為壤印刷技術)高解析度圖 案化方料如具有有機分子之層的方法。將—❹種有機 分子、寡聚物或奈米粒子或其混合物(也可稱為應用材料) 添加至轉換材料中’該轉換材料在正常狀態下是"蠟”。該 轉換材料在約(TC及周圍溫度下較佳為固體,且在低於 200。。於周圍壓力下熔化。該轉換材料較佳在減小之壓力下 =低於2G(TC之溫度自固態昇華氣態。轉換材料之實例可為 環十二院及其衍生物。轉換材料環十二烧在室溫下為固 體、在約60。。時熔化且在真空條件下無需變化為液相而消 失。此外,它是疏水性的,因此是與〇LED材料混合之理想 材料。當可摻入有機主系統及客主系統時,此材料可用^ 在沈積之前,將轉換材料(其為蠟)與應用材料之混合物 或其一部分加熱至轉換材料之熔融溫度,並且將其沈積至 一基板或表面(例如用於全彩色顯示器之薄膜電晶體陣列) 上。可藉由熱相變印刷技術來執行熔融混合物之沈積。當 ”蠟”與應用材料之混合物撞擊基板時,其立即凝固。可藉 由昇華作用將作為相變材料之轉換材料移除,而活性材料 之圖案化層將保留在基板上。若對基板進行加熱及/或抽 空,則昇華速度會加快。可重複沈積以將多個層澆鑄於彼 此頂部上。低壓與低溫的組合看起來最為有效。轉換材料 直接自固悲幵華為氣態而不形成液體是有利的,因為由此 方法形成之沈積結構正如吾人所想要的且圖案不會受到汗 93481.doc 1306678 損。 可重複該方法及處理之步驟以沈積多個層,意即可容易 形成三個以上層。另外,有利於首纽積所有所要之應用 材料層或其中—些,接著—次性分別移除各層之轉換材料。 根據本發明之又-悲樣,提供__種用於圖案化—表面之 組合物。該組合物(也稱為混合物或相變墨水)包含用於形成 圖案之應用材料及在圖案化後將藉由—作用昇華之相變轉 換材料°該作料以是加熱、施加低壓及其兩者之組合。 ^ 步及物理效應之作用也可涉及用以移除轉換材料之:界 定波長的光之應用。此可能有助於簡化移除轉換材料之處 與習知相變或料料轉換㈣並㈣至表面之壤印表 機相比,轉換材料(意即壤)在此處用作其中包含有例如具有、 有機分子之應用材料的轉換媒體。 此組合物可為混合粉末。此有利於使組合物容易地與其 他成分混合,或者可修改或改變應用材料與轉換材料之間 t濃度比。在—較佳實财,應崎料與轉換材料之間的 派度比是1:1〇〇。在其他實例中,該比率可為ι:ι或甚至 或更大。該比率視應用及應用領域而I例如使用 生物材料與使用奈米粒子所要求之比率可能是不同的。 可由應特料與轉㈣料之間㈣度比界定藉由相變印 刷產生之各層的厚度。 :利用混和粉末將應用材料與轉換材料混和成混合物或 、、且°勿。在另一實施例中,將轉換材料加熱至熔點,且接 93481.doc 1306678 著加入應用材料。若應用材料與轉換材料直至沈積至表面 上才混合在一起,則此可能是有利的。意即,剛好在混合 物心生沈積之w,為此應用而混合並加熱該等材料。藉由 上述步驟’可以分別使用及填充兩個或兩個以上單獨容器。 轉換材料可包括增強轉換處理之-或多種成分。例如°, 可將由蠟形成之材料與其中分子具有極強溶解性之材料混 合。 此應用材料可包括有機材料、〇LED材料、生物分子、奈 米粒子或其組合中之一種。 ,可藉由包括以下步驟之方法來製得場效電晶體(也稱為 薄膜場效電晶體):在—基板上形成源極及没極接點;將組 物加熱至熔融體,該組合物包括有機材料及相變轉換材 料’藉由相變印刷技術將溶融組合物沈積至具有源極及没 極接點之基板上,進而#熔融組合物抵達基板時即刻凝 固;移除轉換材料藉此使有機材料保留在表面上以作為有 機半導體層;在該有機半導體層上形成—絕緣層;並且在 該絕緣層上形成一閘極接點。 亦可能藉由相變印刷技術形成源極、汲極及閘極接點以 及絕緣層。此具有可藉由所揭示之相變印刷技術製造整個 裝置的優勢。 【實施方式】 雖然本發明可廣泛應用於各種應用領域,其集中於一有 機昜致發光衮置(意即一有機發光裝置(0LED)及一場效電 晶體)之應用,但是首先在此介紹通用的製程。相同參考數 93481.do. -10· 1306678 字用來指示相同部分或類似部分。 圖la至e說明藉由沈積包括應用材料及相變轉換材料 24之此口物20以在一表面1〇上形成圖案之步驟。為簡潔之1306678 IX. Description of the Invention: [Technical Field] The present invention relates to a method for forming a pattern on a surface by depositing a mixture comprising a material of application and a phase change conversion material and a composition for patterning a surface . Further, the present invention relates to a method of fabricating an organic light-emitting device (OLED), and in particular to high-resolution patterning for a scale display. [Prior Art] An organic light-emitting device (OLED) is usually A plurality of layers are sequentially deposited on top of each other, such as a first electric ★ right dry organic and inorganic layer and a second electrode on a support substrate. To date, the technology lacks for small molecule RGB displays The high-resolution patterning method. The deposition technology currently developed for small molecules also has limitations in the large-scale production of large-sized displays. The german metal evaporation method is also used as a physical vapor deposition method for forming an organic layer. A common method of forming an organic layer and, for example, forming sub-pixels of red, green, and blue light in a color display is the mask technique. However, this technique is limited by: size, resolution, and individual pixel fill factor. For example, This is more so in terms of feature size, the material deposition in this method requires the rule & say w_ these steps will delay the manufacturing time mask cleaning step However, the precision and aperture ratio n = the mask thermal expansion limit is lower than the yield. 稷 'Required mask alignment is time consuming and a method for patterning the polymer illuminating device is as in 6,087,196 93481. Doc 1306678, the inkjet printing of dissolved polymers as described in US Pat. No. 1,306,678. This method of dispensing a liquid solution is not applicable because the previous layer of 'the eutectic layer will be redissolved and mixed with the order of multiple layers from different solutions'. Multilayer OLEDs based on small molecules. In summary, there remains a need in the art for improved patterning of structures used in the fabrication of semiconductor devices, inductors, biochips, and displays using organic and/or inorganic active or biolayers. SUMMARY OF THE INVENTION The present invention allows the fabrication of semiconductor devices, circuits, inductors, biopatterns, biochips, and displays using organic and/or inorganic active or biological layers. The method involves: deposition by phase change printing techniques. Addition of molecules, oligomers and nanoparticles to the conversion material; and fabrication of organic light-emitting devices, color displays and other semiconductor devices. The present invention provides a method of forming a pattern on a surface by depositing a mixture comprising an application material and a phase change conversion material. The method comprises the steps of: heating the mixture to a molten body, and using a phase change printing technique to melt the mixture. Deposited on the surface to solidify as soon as the fragrant mixture reaches the surface; and remove the conversion material. According to another aspect of the invention, a method of fabricating an organic light-emitting device (OLED) is provided. The method comprises the steps of: Heating the composition to a lysate comprising an organic material and a phase change conversion material; depositing the molten composition and depositing the host onto the surface by phase change printing techniques, thereby coagulating as soon as the molten composition reaches the surface And removing the conversion material to retain the organic material on the surface. 93481.doc 1306678 The large system of the present invention (4) is a high-resolution patterned material such as a layer having organic molecules by a phase change printing technique (also referred to as a soil printing technique) in a semiconductor device, an inductor, or a color display. method. Adding an organic molecule, oligomer or nanoparticle or a mixture thereof (also referred to as an application material) to the conversion material 'The conversion material is a "wax" under normal conditions. The conversion material is about TC and ambient temperature are preferably solid, and below 200. Melt under ambient pressure. The conversion material is preferably under reduced pressure = less than 2G (TC temperature from solid sublimation gas state. Conversion material An example may be a ring body and its derivatives. The conversion material ring twelve is solid at room temperature, melts at about 60. and disappears under vacuum without changing to a liquid phase. In addition, it is hydrophobic. Sexual, and therefore ideal for mixing with bismuth LED materials. When incorporated into organic host systems and guest host systems, this material can be used to convert a conversion material (which is a wax) to a mixture of applied materials or A portion is heated to the melting temperature of the conversion material and deposited onto a substrate or surface (eg, a thin film transistor array for a full color display). The deposition of the molten mixture can be performed by thermal phase change printing techniques. When the mixture of "wax" and the applied material strikes the substrate, it immediately solidifies. The conversion material as the phase change material can be removed by sublimation, and the patterned layer of the active material will remain on the substrate. When the substrate is heated and/or evacuated, the sublimation speed is increased. The deposition can be repeated to cast a plurality of layers on top of each other. The combination of low pressure and low temperature seems to be most effective. The conversion material is directly self-solidified and does not form a gaseous state. The liquid is advantageous because the deposition structure formed by this method is as desired and the pattern is not damaged by the sweat 93481.doc 1306678. The method and the processing steps can be repeated to deposit multiple layers, meaning that it can be easily formed More than three layers. In addition, it is advantageous for all the desired application material layers of the first product or some of them to remove the conversion materials of each layer separately. According to the invention, the __ is used for a patterned-surface composition. The composition (also known as a mixture or phase change ink) contains the application material used to form the pattern and will be used after patterning. Sublimation phase change conversion material ° The material is heated, applied low pressure, and a combination of the two. ^ The effect of the step and the physical effect may also involve the application of the wavelength-dependent light to remove the conversion material. Simplifies the removal of the conversion material from the conventional phase change or material conversion (4) and (4) to the surface of the surface printer, the conversion material (meaning that the soil) is used here to include, for example, organic The conversion medium of the applied material of the molecule. The composition may be a mixed powder. This is advantageous for the composition to be easily mixed with other ingredients, or the t concentration ratio between the applied material and the conversion material can be modified or changed. For the money, the ratio of the ratio between the raw material and the conversion material is 1:1. In other examples, the ratio can be ι:ι or even greater. The ratio depends on the application and application area, for example, The ratio of biomaterials required to use nanoparticles may be different. The thickness of each layer produced by the phase change printing can be defined by the (four) degree ratio between the specific material and the rotating (four) material. : Mixing the applied material and the conversion material into a mixture or a mixture using a mixed powder. In another embodiment, the conversion material is heated to the melting point and the application material is added to 93481.doc 1306678. This may be advantageous if the material is applied and the conversion material is mixed until deposited onto the surface. That is, just in the mixture of the core deposits, the materials are mixed and heated for this application. Two or more separate containers can be used and filled separately by the above steps. The conversion material can include - or a plurality of components that enhance the conversion process. For example, a material formed of a wax can be mixed with a material in which a molecule has extremely high solubility. The application material may include one of an organic material, a ruthenium LED material, a biomolecule, a nanoparticle, or a combination thereof. A field effect transistor (also referred to as a thin film field effect transistor) can be obtained by a method comprising the steps of: forming a source and a gate contact on the substrate; heating the composition to the melt, the combination The material comprises an organic material and a phase change conversion material. The molten composition is deposited on the substrate having the source and the non-polar contact by a phase change printing technique, and then the molten composition is solidified upon reaching the substrate; the conversion material is removed. This causes the organic material to remain on the surface as an organic semiconductor layer; an insulating layer is formed on the organic semiconductor layer; and a gate contact is formed on the insulating layer. It is also possible to form source, drain and gate contacts and insulating layers by phase change printing techniques. This has the advantage that the entire device can be fabricated by the disclosed phase change printing technique. [Embodiment] Although the present invention can be widely applied to various application fields, it is concentrated on the application of an organic electroluminescence device (that is, an organic light-emitting device (OLED) and a field-effect transistor), but the general introduction is first introduced here. Process. The same reference number 93481.do. -10· 1306678 Word is used to indicate the same part or similar parts. Figures la to e illustrate the steps of forming a pattern on a surface 1 by depositing the mouthpiece 20 including the applied material and the phase change converting material 24. For the sake of simplicity

目的’將圖簡化為-小液滴。兩種或兩種以上材料可形成 圖案亚成倍增加為—層。圖&說明應用材料Μ與轉換材 料24扣口為扣合物2〇。如圖ib所示,將混合物別加熱至熔 W體21接著,如圖lc所示,將溶融混合物η藉由相變印 刷沈積至表面1G上。當溶融混合物2丨抵達表面1叫即刻凝 固。由加熱7G件熔化混合物2〇或相變墨水並(例如)經由壓電 一牛(未圖示)將其沈積。最後,如圖1 d所示,施加低麼至經 旋固或沈積至混合物2〇藉由昇華作用移除轉換材料Μ。如 圖le所不’應用材料22保留在表面⑺上。為了沈積多層或 各個層應㈣料’可重複以上處理步驟。在混合物沈積至 該表面上之前,也可將應用材料22及轉換材料24混合在一 起思即,剛好在混合物發生沈積之前,為此應用混合及 力”、、該等材料。此允許使用兩個或兩個以上單獨容器,可 早獨使用、改變及填充該等容器。在圖la至e中,符號,,x" 。兒月應用材料22之成分,符號"〇"表示固態轉換材料Μ之成 刀符號表示熔融態轉換材料24之成分。 圖2&至2(:展示一有機發光裝置(〇LED)之構成的示意圖。 至少在一些情況下,該OLED包括夾置在一陰極與一陽極之 間之一合適有機材料薄層或多個層。在圖2a說明OLED之一 合適實例。藉由例如pVD(物理氣相沈積)、cvd(化學氣相 、積)旋塗或濺鍍之習知方法或藉由相變印刷技術在基板 9348i.doc -11- 1306678 100之合適表面上配置一第一電極(陽極)102(金屬、IT〇(氧 化銦錫)、傳導聚合物)。基板100可由玻璃、石夕、聚合物或 其組合製成,甚至可能是預圖案化之薄膜電晶體陣列。該 OLED進一步包括一電洞傳遞層1〇6及一電子傳遞/發射層 110’及一第二電極(陰極)Π2(金屬)^其他〇LED多層裝置可 能包括如圖2b所示之其他多個層。除了電洞傳遞層i 〇6之 外,可此還包括一電洞注入層1 〇4。可將經組合之電子傳遞 /重新組合層分離成一電子傳遞層11〇與一發射層1〇8。所有 此等層均可為若干種材料之摻和物,特定言之發射層可為 一或多種主材料及染色材料之摻和物。因此,此等多層 OLED可藉由利用參照圖^至e及圖4之相變印刷方法連續 澆鑄各個層而形成於合適表面上。 可如圖2c所示形成一顯示器。紅色3〇2、綠色3〇4及藍色 3 06 OLED像素可藉由相冑印刷巾印刷於一受體基板⑽ 上。或者,紅、綠及藍0LED可互相重疊印刷以產生多色堆 疊之OLED裝置。 在圖3中5兒明一場效電晶體之構成的實例。兩個分別稱為 源極與汲極之電性接點4〇2在絕緣基板4〇〇之表面上形成‘, 該基板可由玻璃、彳、聚合物或其組合製成。源極與沒極 402可藉由例如PVD、CVD、濺鍵等之習知技術形成,但是 源極與没極402也可藉由相變印刷形成。對於後者而言,例 =,金奈米粒子可作為㈣適合於與相變轉換材料混和成 施加至絕緣基板_表面之混合物的應用材料。此外,藉由 相^ p刷將-有機半導體層4G4施加於源極與汲極接點之 93481.doc -12· 1306678 間並覆蓋該等接點402。並五苯或α六噻吩可用作應用材料 之有機分子。接著一絕緣層406形成於半導體層404之上, 絕緣層406可包括用作形成混合物或組合物之應用材料中 之奈米粒子的Si〇2或Ah〇3。最後,第三電極408(閘電極) 在絕緣層406頂部上形成。該第三電極408可以類似於源極 與没極402之方式形成,且亦可能包括金奈米粒子。相變印 刷可應用於場效電晶體之所有或若干層。Purpose 'Simplify the graph to - small droplets. Two or more materials can form a pattern that is multiplied to a layer. Fig. & illustrates the application of the material Μ and the conversion material 24 buckle as a snap compound 2 〇. As shown in Figure ib, the mixture is heated to the melt 21. Next, as shown in Figure lc, the molten mixture η is deposited onto the surface 1G by phase change printing. When the molten mixture 2 reaches the surface 1 it is immediately solidified. The mixture is melted or heated by a heated 7G piece and deposited, for example, via a piezoelectric one (not shown). Finally, as shown in Fig. 1d, the application is low until it is fused or deposited to the mixture 2, and the conversion material 移除 is removed by sublimation. The application material 22 remains on the surface (7) as shown in Figure 1. The above processing steps may be repeated in order to deposit a plurality of layers or layers. The application material 22 and the conversion material 24 may also be mixed together before the deposition of the mixture onto the surface, just before the deposition of the mixture, the mixing and force are applied for this purpose. This allows the use of two materials. Or more than two separate containers, which can be used, changed and filled in the same way. In Figures la to e, the symbol, x". The composition of the material 22, the symbol "〇" indicates solid-state conversion material The knives represent the composition of the molten state conversion material 24. Figures 2 & to 2 (: shows a schematic diagram of the composition of an organic light-emitting device (〇LED). In at least some cases, the OLED includes a sandwich and a cathode A thin layer or layers of suitable organic material between one anode. A suitable example of one of the OLEDs is illustrated in Figure 2a by, for example, pVD (physical vapor deposition), cvd (chemical vapor phase, product) spin coating or sputtering A conventional electrode (anode) 102 (metal, IT(indium tin oxide), conductive polymer) is disposed on a suitable surface of the substrate 9348i.doc -11-1306678 100 by a conventional method. The substrate 100 can be The glass, the stone, the polymer or a combination thereof may even be a pre-patterned thin film transistor array. The OLED further includes a hole transfer layer 1〇6 and an electron transport/emissive layer 110' and a second Electrode (cathode) Π 2 (metal) ^ other 〇 LED multilayer device may include other layers as shown in Figure 2b. In addition to the hole transfer layer i 〇 6, this may also include a hole injection layer 1 〇 4 The combined electron transport/recombination layer can be separated into an electron transport layer 11〇 and an emissive layer 1〇8. All of these layers can be a blend of several materials, in particular, the emissive layer can be a Or a plurality of blends of the main material and the dye material. Therefore, the multi-layer OLEDs can be formed on a suitable surface by continuously casting the layers by using the phase change printing methods of FIGS. 4 to 4 and FIG. 4. A display is formed as shown. Red 3〇2, green 3〇4, and blue 3 06 OLED pixels can be printed on a receiver substrate (10) by phase printing paper. Alternatively, red, green, and blue 0 LEDs can be printed on each other. To produce a multi-color stacked OLED device. In Figure 3, 5 An example of the composition of an effect transistor. Two electrical contacts 4 〇 2, respectively referred to as source and drain, are formed on the surface of the insulating substrate 4, and the substrate may be glass, germanium, polymer or The source and the dipole 402 can be formed by a conventional technique such as PVD, CVD, sputtering, etc., but the source and the dipole 402 can also be formed by phase change printing. For the latter, for example = The gold nanoparticles can be used as (4) an application material suitable for mixing with a phase change conversion material to be applied to a mixture of the insulating substrate. Further, the organic semiconductor layer 4G4 is applied to the source and the drain by a phase brush. The contacts are located between 93481.doc -12· 1306678 and cover the contacts 402. Pentacene or α-hexathiophene can be used as an organic molecule for the application material. An insulating layer 406 is then formed over the semiconductor layer 404, and the insulating layer 406 may comprise Si?2 or Ah?3 used as the nanoparticles in the application material forming the mixture or composition. Finally, a third electrode 408 (gate electrode) is formed on top of the insulating layer 406. The third electrode 408 can be formed in a manner similar to the source and the dipole 402, and may also include gold nanoparticles. Phase change printing can be applied to all or several layers of field effect transistors.

實際上,一個擁有分別填充有不同應用材料及轉換材料 之各種容器的印表機可用來生產一完整裝置,如上文描述 之OLED或薄膜電晶體。In fact, a printer having various containers filled with different application materials and conversion materials can be used to produce a complete device, such as the OLED or thin film transistor described above.

圖4說明具有其單元之相變印刷原理。一可作為容器或矣 存器之材料裝载器40與印刷頭44緊密配置。直接連接也^ 可能的,例如,藉由毛細管作用來連接。材料裝载器4^ 括一加熱元件41且含有混合物或組合物2〇。印刷頭料可去 一裝置或基板11之表面1〇靠近。此外,印刷頭料包 喷射器46,其與(例如)壓電元件(未圖示)一起工作以噴射充 融材料21將。為了將應用材料2()施加至表面上,在表面工 上方移動將印刷頭44 ’或者將印刷頭44固定,並且相應扣 以一方式移動具有表面1G之基板1丨關案化表面1()。妇 =中’加熱元件41在材㈣載器狀—末❹化混合彩 _。該溶融混合物21排人或滴人較佳亦受熱之印刷頭44。 經由材料噴射器46將熔融材料21f ^ 4竹以贺射至表面上,熔融相 二在該表面上即刻凝固。在另—實施例中 4〇與印刷頭44也可一起形 卄灰載⑽ 乂攻早早兀。在又一實施例中, 93481.doc -13 - 1306678 T使用多個均填充有包括不同應用材料22之混合物或組合 物之材料裝載器40來支撐印刷頭44。 任何揭示之實施例可與一個或若干其他展示及/或描述 之只知例相組合。此等實施例亦可擁有一或多個特徵。 【圖式簡單說明】 圖la-e說明藉由沈積包括應特料及相變轉換材料之混 合物來在一表面上形成圖案之步驟, 此 圓h,b展示有機發光裝置之構成的示意圖, 圖2議示一 RGB顯示器之構成的示意圖, 圖3展示場效電晶體之構成的示意圖, 圖4說明相變印刷原理。 該等圖式僅以說明為目的 實例。 按比例表示本發明之實踐 【主要元件符號說明】 10 表面 11 基板 20 混合物 21 溶融混合物 22 應用材料 24 相變轉換材料 40 材料裝载器 41 加熱元件 44 印刷頭 46 材料噴射器 93481.doc •14- 1306678 100 基板 102 第一電極(陽極) 104 電洞注入層 106 電洞傳遞層 108 發射層 110 電子傳遞層 110' 電子傳遞/發射A 112 第二電極(陰極) 300 受體基板 302 紅色OLED像素 304 綠色OLED像素 306 藍色OLED像素 400 基板 402 源極/汲極接點 404 有機半導體層 406 絕緣層 408 閘極接點 93481.doc - 15-Figure 4 illustrates the phase change printing principle with its elements. A material loader 40, which can serve as a container or buffer, is closely spaced from the printhead 44. Direct connections are also possible, for example, by capillary action. The material loader 4 includes a heating element 41 and contains a mixture or composition. The print headstock can be placed close to the surface of a device or substrate 11. In addition, the printhead pack ejector 46, which operates, for example, with a piezoelectric element (not shown) to eject the fill material 21. In order to apply the application material 2() to the surface, the print head 44' is moved over the surface tool or the print head 44 is fixed, and the corresponding button is moved in a manner to the substrate 1 having the surface 1G. . The female = medium heating element 41 is in the form of a material (four) carrier-end-mixing color _. The molten mixture 21 is in the form of a print head 44 which is preferably a person or a person who is heated. The molten material 21f^4 is irradiated onto the surface via the material ejector 46, and the molten phase is immediately solidified on the surface. In another embodiment, the 〇4 and the print head 44 may also be shaped together with a gray load (10). In yet another embodiment, 93481.doc -13 - 1306678 T supports a printhead 44 using a plurality of material loaders 40 each filled with a mixture or composition comprising different application materials 22. Any disclosed embodiment may be combined with one or several other examples of presentations and/or descriptions. These embodiments may also possess one or more features. BRIEF DESCRIPTION OF THE DRAWINGS Figure la-e illustrates the steps of forming a pattern on a surface by depositing a mixture comprising a specific material and a phase change conversion material, the circle h, b showing a schematic view of the composition of the organic light-emitting device, Figure 2 A schematic diagram of the construction of an RGB display is shown, FIG. 3 shows a schematic diagram of the composition of the field effect transistor, and FIG. 4 illustrates the principle of phase change printing. These figures are for illustrative purposes only. PROCEDURE OF THE PRESENT INVENTION The main component symbol description 10 Surface 11 Substrate 20 Mixture 21 Melt mixture 22 Application material 24 Phase change conversion material 40 Material loader 41 Heating element 44 Print head 46 Material injector 93481.doc • 14 - 1306678 100 Substrate 102 First electrode (anode) 104 Hole injection layer 106 Hole transfer layer 108 Emissive layer 110 Electron transfer layer 110' Electron transfer/emitter A 112 Second electrode (cathode) 300 Receptor substrate 302 Red OLED pixel 304 green OLED pixel 306 blue OLED pixel 400 substrate 402 source/drain contact 404 organic semiconductor layer 406 insulating layer 408 gate contact 93481.doc - 15-

Claims (1)

1306^7^15%3號專利申請案 中文申睛專利範圍替換本(97年1月) 十、申請專利範圍: ι_ -種藉由沈積-混合物⑽來在—表面(⑼上形成一圖 案的方法,該混合物包括一應用材料(22)及一相變轉換材 料(24),該方法包括以下步驟: b) 將該混合物(20)加熱成一熔融體; c) 藉由一相變印刷技術將該熔融混合物(21)沈積至該 表面(10)上,當該熔融混合物(21)抵達該表面(10)時即刻 凝固;以及 d) 移除該轉換材料(24)。 2.如凊求項1之方法,進一步包括步驟a):將該應用材料(22) 與該轉換材料(24)混合形成該混合物(20)。 3_如請求項丨或2之方法’其中移除該轉換材料(24)之步驟包 括藉由昇華作用移除該轉換材料(24)。 4.如請求項1或2之方法,其中該藉由昇華作用移除該轉換 材料(24)之步驟包括對該沈積之混合物(20)施加一低壓 及/或將其加熱。 5·如請求項1或2之方法,包括重複步驟b)至d)以沈積多個 層。 6· 一種製造有機發光裝置(OLED)之方法,其包括以下步驟: 將一組合物(20)加熱成一熔融體(21) ’該組合物(2〇)包 括一有機材料(22)及一相變轉換材料(24); 藉由一相變印刷技術將該熔融組合物(2 1)沈積至一表 面(10)上,當該嫁融組合物(21)抵達該表面(1〇)時即刻凝 固’以及 93481-970118.doc 1306678 移除該換材料(24),藉此將該有機材料(22)保留在該表 面(10)上。 7. —種用於圖案化一表面(1〇)之組合物(2〇),其包括: 用於形成一圖案之一應用材料(22),及 在圖案化後藉由一作用昇華之一相變轉換材料(24),其 中δ亥應用材料(22)包括一有機材料、一 OLED材料、生物 分子、奈米粒子及其組合中之一種。 8·如請求項7之組合物,其係一混合粉末。 9.如上述睛求項7及8中任一項之組合物,其中該轉換材料 (24)在約〇°c下係一固體,且在低於2〇〇。〇於周圍壓力下熔 化。 10·如上述睛求項7及8中任一項之組合物,其中該轉換材料 (24)包括環十二烷或其衍生物。 11·如上述晴求項7及8中任一項之組合物,其中該轉換材料 (24)包括一或多種成分。 12.如吻求項1至5之方法,該方法用於製造一有機電子元 件 單色及/或彩色顯示器、一生物圖案、一生物晶片、 一感應器、一半導體裝置及—電路中之一種。 13_種製U场效電晶體之方法,其包括以下步驟: 在一基板(400)上形成源極與汲極接點(4〇2); 將一組合物(20)加熱成一熔融體(21),該組合物包 括一有機材料(22)及一相變轉換材料(24); 將該溶融組合物⑼藉由—相變印刷技術沈積至具有 該等源極纽極接點(術)之基板(伽)上,#麵融組合 93481-970118.doc -2- 1306678 物(21)抵達該基板(400)時即刻凝固; 移除該轉換材料(24),藉此將該有機材料(22)保留在表 面(10)上以作為一有機半導體層(404); 在該有機半導體層(404)上形成一絕緣層(406);以及 在該絕緣層(406)上形成一閘極接點(408)。 14.如請求項13之方法,其中根據請求項1至5之方法藉由該 相變印刷技術製造該等源極/汲極接點(402)、該絕緣層 (406)及該閘極接點(408)中之至少一個。 93481-970118.doc1306^7^15% Patent Application No. 3 Replacement of Chinese Patent Application Range (January 97) X. Application Patent Range: ι_ - by Forming - Mixture (10) to form a pattern on the surface ((9) The method comprises an application material (22) and a phase change conversion material (24), the method comprising the steps of: b) heating the mixture (20) into a melt; c) using a phase change printing technique The molten mixture (21) is deposited onto the surface (10), solidified as soon as the molten mixture (21) reaches the surface (10); and d) the conversion material (24) is removed. 2. The method of claim 1, further comprising the step a) mixing the application material (22) with the conversion material (24) to form the mixture (20). 3_ The method of claim 丨 or 2 wherein the step of removing the conversion material (24) comprises removing the conversion material (24) by sublimation. 4. The method of claim 1 or 2, wherein the step of removing the conversion material (24) by sublimation comprises applying a low pressure to the deposited mixture (20) and/or heating it. 5. The method of claim 1 or 2, comprising repeating steps b) through d) to deposit a plurality of layers. 6. A method of fabricating an organic light-emitting device (OLED), comprising the steps of: heating a composition (20) into a melt (21) 'The composition (2) comprises an organic material (22) and a phase Varying conversion material (24); depositing the molten composition (21) onto a surface (10) by a phase change printing technique, when the graft composition (21) reaches the surface (1 〇) Coagulating' and 93481-970118.doc 1306678 remove the replacement material (24) whereby the organic material (22) remains on the surface (10). 7. A composition (2〇) for patterning a surface (1〇), comprising: an application material (22) for forming a pattern, and one of sublimation after patterning The phase change conversion material (24), wherein the δ ray application material (22) comprises one of an organic material, an OLED material, a biomolecule, a nanoparticle, and a combination thereof. 8. The composition of claim 7, which is a mixed powder. The composition of any one of the above items 7 and 8, wherein the conversion material (24) is a solid at about 〇 °c and is less than 2 〇〇. It melts under ambient pressure. The composition of any one of the above items 7 and 8, wherein the conversion material (24) comprises cyclododecane or a derivative thereof. The composition of any of the above items 7 and 8, wherein the conversion material (24) comprises one or more components. 12. The method of claim 1, wherein the method is used to fabricate an organic electronic component monochrome and/or color display, a biopattern, a biochip, an inductor, a semiconductor device, and a circuit . A method for seeding a U field effect transistor, comprising the steps of: forming a source and drain contact (4〇2) on a substrate (400); heating the composition (20) into a melt ( 21), the composition comprises an organic material (22) and a phase change conversion material (24); the molten composition (9) is deposited by using a phase change printing technique to have the source contact points (surgical) On the substrate (gamma), #面融组合93481-970118.doc -2- 1306678 The object (21) is solidified upon reaching the substrate (400); the conversion material (24) is removed, thereby the organic material ( 22) remaining on the surface (10) as an organic semiconductor layer (404); forming an insulating layer (406) on the organic semiconductor layer (404); and forming a gate on the insulating layer (406) Point (408). 14. The method of claim 13, wherein the source/drain contacts (402), the insulating layer (406), and the gate are fabricated by the phase change printing technique according to the methods of claims 1 to 5. At least one of the points (408). 93481-970118.doc
TW093115703A 2003-06-03 2004-06-01 High-resolution patterning TWI306678B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03405403 2003-06-03

Publications (2)

Publication Number Publication Date
TW200511622A TW200511622A (en) 2005-03-16
TWI306678B true TWI306678B (en) 2009-02-21

Family

ID=33484078

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093115703A TWI306678B (en) 2003-06-03 2004-06-01 High-resolution patterning

Country Status (4)

Country Link
KR (1) KR100773014B1 (en)
CN (1) CN100559624C (en)
TW (1) TWI306678B (en)
WO (1) WO2004107472A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709307B2 (en) 2006-08-24 2010-05-04 Kovio, Inc. Printed non-volatile memory
WO2017096561A1 (en) * 2015-12-09 2017-06-15 杨华卫 Method for printing biochips and application thereof
US11211569B2 (en) 2016-01-29 2021-12-28 Wake Forest University Laser printable organic semiconductor compositions and applications thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071333A (en) 1999-04-27 2000-06-06 Xerox Corporation Ink compositions
AU6317001A (en) * 2000-05-15 2001-11-26 Univ Pennsylvania Spontaneous pattern formation of functional materials
EP1223201A3 (en) * 2001-01-16 2004-01-21 Carey Brothers Limited A phase change ink composition

Also Published As

Publication number Publication date
CN1771614A (en) 2006-05-10
TW200511622A (en) 2005-03-16
KR100773014B1 (en) 2007-11-05
CN100559624C (en) 2009-11-11
KR20060018830A (en) 2006-03-02
WO2004107472A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4092126B2 (en) Method for forming a matrix array of organic conductive materials
US20080220561A1 (en) Melt-based patterning for electronic devices
US8277902B2 (en) Method for forming film and method for manufacturing light emitting device
US9543548B2 (en) Deposition donor substrate and method for manufacturing light-emitting device
Zou et al. Recent Progress on Patterning Strategies for Perovskite Light‐Emitting Diodes toward a Full‐Color Display Prototype
TW200832775A (en) Molecular electronic device fabrication methods and structures
TW200417273A (en) Methods for producing full-color organic electroluminescent devices
US8409672B2 (en) Method of manufacturing evaporation donor substrate and method of manufacturing light-emitting device
US9093647B2 (en) OLED display and method of fabricating the same
JP2009212083A (en) Deposition method and manufacturing method of light-emitting device
TW200910456A (en) Thin film forming method, methods of manufacturing organic electroluminescence element, semiconductor device and optical element
US20060046342A1 (en) Organic optoelectronic device
CN102842686A (en) Materials and methods for controlling properties of organic light-emitting device
US8486736B2 (en) Method for manufacturing light-emitting device
TW201033302A (en) Ink-jet ink for organic electroluminescence element and method for manufacturing organic electroluminescence element
JP2006114480A (en) Organic electroluminescence display device and its manufacturing method
Xia et al. Nonlithographic patterning through inkjet printing via holes
TWI306678B (en) High-resolution patterning
Chen et al. High definition digital fabrication of active organic devices by molecular jet printing
CN1998098A (en) Method of patterning a functional material on to a substrate
US20130280836A1 (en) Method and system for producing high resolution patterns in registration on the surface of a substrate
JP2019087503A (en) Organic electroluminescence device, method for manufacturing the same and image display
JP4837227B2 (en) Deposition equipment
KR101992656B1 (en) Donor substrate having groove patterns, method of forming light emitting patterns by heating the same, light emitting pattern, and light emitting diode
CN100566487C (en) Organic EL and method for manufacturing organic EL

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees