TWI305372B - - Google Patents

Download PDF

Info

Publication number
TWI305372B
TWI305372B TW093121383A TW93121383A TWI305372B TW I305372 B TWI305372 B TW I305372B TW 093121383 A TW093121383 A TW 093121383A TW 93121383 A TW93121383 A TW 93121383A TW I305372 B TWI305372 B TW I305372B
Authority
TW
Taiwan
Prior art keywords
fluid
flow rate
voltage
unit
mass flow
Prior art date
Application number
TW093121383A
Other languages
Chinese (zh)
Other versions
TW200504822A (en
Inventor
Tsuneyuki Okabe
Kengo Kaneko
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW200504822A publication Critical patent/TW200504822A/en
Application granted granted Critical
Publication of TWI305372B publication Critical patent/TWI305372B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • G01F15/024Compensating or correcting for variations in pressure, density or temperature using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

1305372 ⑴ 九、發明說明 【發明所屬之技術領域】 本發明係關於使用藉由質量流量控制器而被調整流量 的流體,對於基板例如半導體晶圓進行處理之半導體製造 裝置。 [先前技術】 以往,在半導體製造過程中,有使用規定的氣體或液 體等,對基板進行處理的製程。作爲使用氣體的製程,有 使用成膜氣體的成膜製程、使用氧化氣體的氧化製程、使 用蝕刻氣體的蝕刻製程等。又,作爲使用液體的製程,有 將抗蝕劑供給至基板上的製程、塗佈含有絕緣膜的先驅物 之藥液的製程等。 另一方面,最近,半導體裝置的圖案被微細化,各膜 的膜厚也開始變薄。因此,氣體或液體的流量,也需要以 高精度控制,所以作爲此種控制的機器,使用質量流量控 制器。 在質量流量控制器中,流過細管內的流體,隨著其流 量,從發熱電阻線奪去熱量。亦即,利用發熱電阻線的電 阻値隨著流體的流量而變化的特性,來檢測流量。質量流 量控制器,具備:如此的流量檢測部、比較從流量檢測部 輸出的輸出電壓(對應流量的檢測電壓)和對應設定流量 而設定的設定電壓之比較部、及根據從比較部傳來的比較 輸出而被操作的流量調整閥。 -5 - (2) 1305372 然而,在使用質量流量控制器的情況中’實際流量會 有偏離設定流量的情況。例如’即使實際流量爲0的情 況,從流量檢測部輸出的電壓値不是0 ’而會有誤差存在 的情況。 進而,作爲實際流量偏離設定流量的現象’除了零點 移位以外,尙有對應流量的輸出電壓的變化比例(斜率) 亦即跨距變動的情況。如此的跨距偏離’關於被包含在電 橋電路中的感測器亦即上游側的發熱電阻線和下游側的發 熱電阻線,成爲對於流量變化之溫度變化量也就是輸出電 壓的變化量與初期校正時不同的原因之一。作爲這些原 因,例如有製造者出貨時的環境溫度和使用者側的環境溫 度相異、線圈狀的發熱電阻線(感測器)的包覆材的長期 劣化或剝離、發熱電阻線的線圏鬆弛 '電路部份的情況不 良、電源電壓的變動' 捲繞著感測器的管路的髒污(由於 腐蝕或生成附著物等)等。在質量流量控制器可以設定的 流量之中,流體流量多的情況之流量誤差比例和流量少的 情況的流量誤差比例,於相同漂移量的情況,流量少的情 況之誤差的影響大,例如對於在半導體晶圓表面所生成的 膜厚,其影響也大。 近年來,伴隨著半導體裝置的高集積化及薄膜化,製 造時的半導體晶圓表面上的膜厚的容許範圍也越來越嚴 格。爲了使膜厚保持在容許範圍內,來進行製造,在質量 流量控制器可以設定的流量之中’藉由使用最大流量附近 的流量,使得能夠將流量誤差的程度變小。例如,在進行 -6- (3) 1305372 複數的製程的情況,當各製程之間的流體的設定流量差異 大的情況’將2台以上流量容量大的質量流量控制器和流 量容量小的質量流量控制器,並聯地連接,對應流體的設 定流量,進行質量流量控制器的切換。 但是,準備複數台質量流量控制器,在成本的考量方 面是不利的。又,當輸出漂移時,亦即在流體流量爲0時 的輸出電壓不是0的情況,該漂移量有可能對處理產生影 響。 另一方面’在日本特開平7-263 3 5 0號公報(特別是 段落0014和第1圖)中,記載著:將測定器獨立於質量 流量控制器而另外地介設在氣體流路中,根據此測定器的 測量結果,藉由校正器來調整質量流量控制器。 又’在日本特開平5 -2 8 975 1號公報(特別是第9欄 第3行至第9行)中’記載著:預先在製造者側,在初期 校正時’於沒有氣體流過的狀態下,使通過質量流量控制 器的感測器線圏之電流値,階段地變化,將由於通過兩線 圈的電流差所產生的溫度差,作爲電橋電路的不平衡電壓 而取出,再將此不平衡電壓和使用中的不平衡電壓比較, 求出零點補正量和跨距補正量。 在日本特開平7 - 2 6 3 3 5 0號公報中之使用測定器的手 段’由於必須準備另外的測定器,在成本的考量方面是不 利的。又,也無法對應測定器本身發生不良的情況。又, 使用校正器來進行的校正’由於實際上是操作者以手動來 調整可變電阻値’所以若要頻繁地進行調整,則會有作業 -7- (4) 1305372 繁雜的問題。 又,在日本特開平5 - 2 8 9 7 5 ]號公報中之經由不平衡 電壓來進行調整的手段,會有以下的問題。亦即,質量流 量控制器係由各製造商製造販賣,當應用某一特定的製造 商的質量流量控制器來構成生產線的情況,在將質量流量 控制器與其他公司製造的質量流量控制器交換時,無法進 行該調整。又,需要將電流値一邊階段地改變一邊供應至 電橋電路之機構,所以也有裝置構成複雜的不利益。 【發明內容】 本發明係鑒於上述問題點而開發出來,其目的在於提 供一種半導體製造裝置及半導體製造方法,不需要將質量 流量控制器從配管卸下,便能夠高精度地設定流量。 本發明的半導體製造裝置,其特徵爲: 具備:處理部,此處理部係用來處理基板而在基板上 製造半導體裝置; 流體供給管路,此管路係用來將前述基板的處理、所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 第1關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的上游側;及 (5) 1305372 第2關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的下游側; 前述質量流量控制器,具有: 檢測出前述流體的實際流量而輸出對應的檢測電壓之 檢測部、比較前述設定電壓和前述檢測電壓而輸出操作訊 號之比較部、及根據前述操作訊號來調整流體的流量之流 量調整部; 而且,設置記憶部,此記憶部記憶在前述第1關斷閥 和第2關斷閥被關閉時之從前述質量流量控制器的前述檢 測部輸出的檢測電壓; 且設置設定電壓補正部,此設定電壓補正部根據被記 憶在前述記憶部中的檢測電壓,補正前述設定電壓,使得 可以補償前述流體的實際流量爲〇時的檢測電壓的變化。 若根據本發明,當要補償流量爲〇時的檢測電壓的變 化時,由於不是質量流量控制器本身被調整而是設定電壓 被補正,結果能夠簡單地進行質量流量控制器的流量控制 特性的微調整。 本發明的半導體製造裝置,理想爲更具備時序設定手 段,此時序設定手段係用來設定:前述第1關斷閥和第2 關斷閥被關閉,前述記憶部記憶從前述質量流量控制器的 前述檢測部輸出的檢測電壓的時序。 又,本發明的半導體製造裝置,理想爲更具備警報產 生手段,此警報產生手段在前述檢測電壓偏離預先設定的 臨界値的時候,發出警報。 -9 - (6) 1305372 又,本發明的半導體製造裝置,其特徵爲具備: 處理部,此處理部係用來在規定的真空環境下,處理 基板而在基板上製造半導體裝置; 被連接至前述處理部之真空排氣管路; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 旁通管路,此旁通管路使前述處理部旁通,而從前述 流體供給管路到達前述真空排氣管路; 在前述旁通管路中,由上游側依序地設置之壓力檢測 部和第3關斷閥;及 設定電壓補正部,此設定電壓補正部,根據: 於規定的時序,在將前述旁通管路真空排氣之後,關 閉前述第3關斷閥,將前述質量流量控制器設定成規定的 流量,再經由前述流體供給管路將流體供給前述旁通管路 時之藉由前述壓力檢測部所檢測出來的壓力檢測値之規定 時間帶的上升率;及 將前述旁通管路真空排氣之後,關閉前述第3關斷 閥,將被校正成基準狀態的前述質量流量控制器設定成規 定的流量,再經由前述流體供給管路將流體供給前述旁通 管路時之藉由前述壓力檢測部所檢測出來的壓力檢測値之 -10 - (7) 1305372 規定時間帶的基準上升率之比較結果,來補正設定電 若根據本發明,當要補償設定電壓和流量之間的 關係的變化時,由於不是質量流量控制器本身被調整 設定電壓被補正,結果能夠簡單地進行質量流量控制 流量控制特性的微調整。 前述質量流量控制器,爲具有:檢測出前述流體 際流量而輸出對應的檢測電壓之檢測部、比較前述設 壓和前述檢測電壓而輸出操作訊號之比較部、及根據 操作訊號來調整流體的流量之流量調整部的情況;前 定電壓補正部,理想爲:可以補正前述設定電壓,而 償檢測電壓的跨距的變化。 又,前述設定電壓補正部,理想爲根據將前述質 量控制器設定成複數個規定的流量所得到的複數個 率、及將被校正成基準狀態之前述質量流量控制器設 複數個規定的流量所得到的複數個上升率之比較結果 補正設定電壓。 又,本發明的半導體製造裝置,其特徵爲具備: 處理部,此處理部係用來在規定的真空環境下, 基板而在基板上製造半導體裝置; 被連接至前述處理部之真空排氣管路; 流體供給管路,此管路係用來將前述基板的處理 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前 體的設定流量之設定電壓; 壓。 對應 而是 器的 的實 定電 前述 述設 能補 量流 上升 定成 ’來 處理 所必 述流 -11 - (8) 1305372 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 旁通管路,此旁通管路使前述處理部旁通,而從前述 流體供給管路到達前述真空排氣管路; 第1關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的上游側; 被設置在前述旁通管路中的壓力檢測部;及 設定電壓補正部,此設定電壓補正部,根據: 於規定的時序,在一邊將前述旁通管路真空排氣一邊 將前述質量流量控制器設定成規定的流量,再經由前述流 體供給管路將流體供給前述旁通管路之狀態下,前述第1 關斷閥關閉時之藉由前述壓力檢測部所檢測出來的壓力檢 測値之規定時間帶的下降率;及 在一邊將前述旁通管路真空排氣一邊將被校正成基準 狀態的前述質量流量控制器設定成規定的流量,再經由前 述流體供給管路將流體供給前述旁通管路之狀態下,前述 第1關斷閥關閉時之藉由前述壓力檢測部所檢測出來的壓 力檢測値之規定時間帶的基準下降率之比較結果,來補正 設定電壓。 若根據本發明,同樣地當要補償設定電壓和流量之間 的對應關係的變化時,由於不是質量流量控制器本身被調 整而是設定電壓被補正,結果能夠簡單地進行質量流量控 制器的流量控制特性的微調整。 前述質量流量控制器,爲具有:檢測出前述流體的實 -12 - (9) 1305372 際流量而輸出對應的檢測電壓之檢測部、比較前述設定電 壓和前述檢測電壓而輸出操作訊號之比較部、及根據前述 操作訊號來調整流體的流量之流量調整部的情況;前述設 定電壓補正部,理想爲可以補正前述設定電壓,而能補償 檢測電壓的跨距的變化。 又,前述設定電壓補正部,理想爲根據將前述質量流 量控制器設定成複數個規定的流量所得到的複數個下降 率、及將被校正成基準狀態之前述質量流量控制器設定成 複數個規定的流量所得到的複數個下降率之比較結果,來 補正設定電壓。 又,本發明也能夠以方法來成立。 亦即,本發明的半導體製造方法,係針對使用半導體 製造裝置的半導體製造方法,而該半導體製造裝置的特徵 爲具備: 處理部,此處理部係用來處理基板而在基板上製造半 導體裝置; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 第1關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的上游側;及 -13 - (10) 1305372 第2關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的下游側; 前述質量流量控制器,具有: 檢測出前述流體的實際流量而輸出對應的檢測電壓之 檢測部、比較前述設定電壓和前述檢測電壓而輸出操作訊 號之比較部、及根據前述操作訊號來調整流體的流量之流 量調整部; 而且,設置記憶部,此記憶部記憶在前述第1關斷閥 和第2關斷閥被關閉時之從前述質量流量控制器的前述檢 測部輸出的檢測電壓; 且設置設定電壓補正部,此設定電壓補正部根據被記 憶在前述記憶部中的檢測電壓,補正前述設定電壓,使得 可以補償前述流體的實際流量爲〇時的檢測電壓的變化; 而此半導體製造方法的特徵係具備: 關閉前述第1關斷閥和前述關第2關斷閥的工程; 藉由前述記憶部,在前述第]關斷閥和前述第2關斷 閥被關閉時,記憶從前述質量流量控制器的前述檢測部輸 出的檢測電壓之工程;及 藉由前述設定電壓補正部,根據被記憶在前述記憶部 中的檢測電壓,補正前述設定電壓,使得可以補償前述流 體的實際流量爲〇時的檢測電壓的變化之工程。 或者,本發明的半導·體製造方法,係針對使用半導體 製造裝置的半導體製造方法,而該半導體製造裝置的特徵 爲具備: -14 - (11) 1305372 處理部,此處理部係用來在規定的真空環境下,處理 基板而在基板上製造半導體裝置; 被連接至前述處理部之真空排氣管路; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 旁通管路,此旁通管路使前述處理部旁通,而從前述 流體供給管路到達前述真空排氣管路; 在前述旁通管路中,由上游側依序地設置之壓力檢測 部和第3關斷閥;及 設定電壓補正部,此設定電壓補正部,根據: 於規定的時序,在將前述旁通管路真空排氣之後,關 閉前述第3關斷閥,將前述質量流量控制器設定成規定的 流量,再經由前述流體供給管路將流體供給前述旁通管路 時之藉由前述壓力檢測部所檢測出來的壓力檢測値之規定 時間帶的上升率;及 將前述旁通管路真空排氣之後,關閉前述第3關斷 閥,將被校正成基準狀態的前述質量流量控制器設定成規 定的流量,再經由前述流體供給管路將流體供給前述旁通 管路時之藉由前述壓力檢測部所檢測出來的壓力檢測値之 規定時間帶的基準上升率之比較結果,來補正設定電壓; -15- (12) 1305372 而此半導體製造方法的特徵係具備: 求出在將前述旁通管路真空排氣之後,關閉前述第3 關斷閥,將被校正成基準狀態的前述質量流量控制器設定 成規定的流量,再經由前述流體供給管路將流體供給前述 旁通管路時之藉由前述壓力檢測部所檢測出來的壓力檢測 値之規定時間帶的基準上升率之工程; 求出於規定的時序,在將前述旁通管路真空排氣之 後,關閉前述第3關斷閥,將前述質量流量控制器設定成 規定的流量,再經由前述流體供給管路將流體供給前述.旁 通管路時之藉由前述壓力檢測部所檢測出來的壓力檢測値 之規定時間帶的上升率之工程;及 根據前述基準上升率和前述上升率的比較結果,補正 設定電壓的工程。 或者,本發明的半導體製造方法,係針對使用半導體 製造裝置的半導體製造方法,而該半導體製造裝置的特徵 爲具備: 處理部,此處理部係用來在規定的真空環境下,處理 基板而在基板上製造半導體裝置; 被連接至前述處理部之真空排氣管路; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 -16 - (13) 1305372 路中,根據前述設定電壓,調整前述流體的流量; 旁通管路,此旁通管路使前述處理部旁通,而從前 流體供給管路到達前述真空排氣管路; 第1關斷閥,此關斷閥被設置在前述流體供給管路 的前述質量流量控制器的上游側; 被設置在前述旁通管路中的壓力檢測部;及 設定電壓補正部,此設定電壓補正部,根據: 於規定的時序,在一邊將前述旁通管路真空排氣一 將前述質量流量控制器設定成規定的流量,再經由前述 體供給管路將流體供給前述旁通管路之狀態下,前述第 關斷閥關閉時之藉由前述壓力檢測部所檢測出來的壓力 測値之規定時間帶的下降率;及 在一邊將前述旁通管路真空排氣一邊將被校正成基 狀態的前述質量流量控制器設定成規定的流量,再經由 述流體供給管路將流體供給前述旁通管路之狀態下,前 第1關斷閥關閉時之藉由前述壓力檢測部所檢測出來的 力檢測値之規定時間帶的基準下降率之比較結果,來補 設定電壓; 而此半導體製造方法的特徵係具備: 求出在一邊將前述旁通管路真空排氣一邊將被校正 基準狀態的前述質量流量控制器設定成規定的流量,再 由前述流體供給管路將流體供給前述旁通管路之狀態下 前述第]關斷閥關閉時之藉由前述壓力檢測部所檢測出 的壓力檢測値之規定時間帶的基準下降率之工程; 述 中. 邊 流 1 檢 準 刖 述 壓 正 成 經 來 -17 - (14) 1305372 求出於規疋的時序,在一邊將前述旁通管路真空排氣 一邊將前述質量流量控制器設定成規定的流量,再經由前 述流體供給管路將流體供給前述旁通管路之狀態下,前述 第〗關斷閥關閉時之藉由前述壓力檢測部所檢測出來的壓 力檢測値之規定時間帶的下降率之工程;及 根據前述基準下降率和前述下降率的比較結果,補正 設定電壓之工程。 【實施方式】 (實施發明的最佳形態) 以下’參照圖面來說明本發明的實施形態。 首先,第1圖係表示在本發明的一實施形態中的半導 體製造裝置的主要構成之方塊圖。本裝置,作爲用來進行 在基板上製造半導體積體電路之處理的處理部,具備熱處 理部1。在熱處理部1的反應容器(處理容器)亦即縱型 的反應管1 1內’承載多數枚基板亦即晶圓W的保持工具 1 2被搬入。在此狀態下,晶圓W,藉由被設置在反應管 1 1外側之未圖示的加熱手段而被加熱。另一方面,規定 的氣體,從例如由氣體供給管所構成的氣體供給管路2, 被導入反應管1 1內。藉此,對基板進行規定的熱處理。 在第]圖中’符號I 3爲排氣管、符號1 4爲真空排氣手段 亦即真空泵、符號1 5係繞道反應管Π而連接氣體供給管 路2和排氣管1 3之間的旁通管路、符號2 1 ' 2 2、2 3分別 爲各個閥,例如爲關斷閥。 -18- (15) 1305372 調整來自氣體供給源4 0的氣體流量之質量流量控制 器3,被設置在氣體供給管路2中。各個關斷閥4 1 ' 4 2, 被設置在質量流量控制器3的上游側和下游側。利用關閉 關斷閥4 1、4 2兩者,能夠關斷通過質量流量控制器3的 流體的流動,在此例中爲關斷氣體的流動(亦即能夠使氣 體流量爲0 )。 質量流量控制器3,如第2圖所示’具備:流量檢出 部3 1、比較部(調節部)3 2、及作爲流量調整部的控制 閥(流量調整閥)3 3。 關於質量流量控制器3的更詳細的構成,根據第3圖 來加以說明。被導入質量流量控制器3內部的前述氣體供 給管路2,被分支成本流部3 a和側流部3 b。爲了測量在 氣體供給管路2內的流量,在側流部3 b,設置具有二個 發熱電阻線3 4、3 5之流量感測器。而在本流部3 a,設置 使側流部3 b和本流部3 a之流量等的各種條件調整成相同 的旁通部3 0。亦即,旁通部3 0,可以將在本流部3 a中的 流量、溫度、壓力等的特性,調整成與在側流部3 b中的 前述各條件相同。藉此,在利用感測器3 4、3 5所進行的 測定中,能夠防止發生誤差。 說明關於流量的檢測原理。上游側感測器34 ’若流 體流過則會被吸收熱量而使得溫度下降;相反的,下游側 感測器3 5,被給予熱量使得溫度上升。結果,在上游側 感測器3 4和下游側感測器3 5之間產生溫度差,根據此溫 度差而可以檢測出流量。 -19- (16) 1305372 質量流量控制器3,進而具備:以發熱電阻線3 4 ' 3 5 的電阻値的差異爲電壓訊號而加以檢測的電橋電路3 6 ; 及放大該電壓訊號的放大電路3 7。發熱電阻線3 4、3 5、 電橋電路3 6及放大電路3 7,構成前述流量檢出部3 1。前 述比較部3 2,將對應後述的設定流量之設定訊號(設定 電壓)和從放大電路3 7來的電壓加以比較,根據該比較 結果(偏差),輸出用來調整控制閥3 3的開度之操作訊 號。 又,控制部6,經由訊號變換部5,被連接至質量流 量控制器3。訊號變換部5,將從質量流量控制器3來的 類比訊號變換成數位訊號,且將從控制部6來的數位訊號 變換成類比訊號。 接著,根據第2圖來說明關於控制部6的詳細構成。 控制部6,連接例如由液晶面板所構成的顯示部5 1。此顯 示部51,也兼作爲觸壓面板式的輸出裝置。符號6a爲數 據總線、符號60爲實施裝置的控制之CPU。符號6 1爲設 定電壓輸出部,用來輸出對應質量流量控制器3的設定流 量之設定電壓。設定電壓輸出部6 1,例如藉由0〜5 V的 設定電壓,而可以將質量流量控制器3的流量設定成0% 〜1 0 0 %。符號6 2爲第1記憶部。在關斷閥4 1、4 2關閉 時,從質量流量控制器3輸出的輸出電壓(從流量檢出部 3】傳來的電壓檢測値),作爲漂移電壓而被記憶在第1 記憶部62。符號63爲第1設定電壓補正部。第1設定電 壓補正部63,在關斷閥4 1、42被關閉時,當從質量流量 -20- (17) 1305372 控制器3輸出的輸出電壓與基準電壓(此例爲0V )相異 的情況,也就是發生漂移電壓爲± E 0 ( V )的情況,可以 補正設定電壓。符號64爲第1時序設定部。第1時序設 定部64,能夠設定將關斷閥4 1、42關閉之對於質量流量 控制器3的設定電壓加以再檢討(補正)的時序。符號 65係警報用比較電路部。警報用比較電路部65,判斷前 述漂移電壓是否超過預先設定的臨界値,若超過臨界値則 使警報產生部66發出警報(例如警報聲音或警告顯示 等)。再者,在本實施形態中,〇.3V ( 3 0 0mV )爲臨界 値,當從質量流量控制器3測量到偏離此臨界値以上的値 的情況,質量流量控制器3判斷爲不良,例如藉由從警報 產生部66發出的警報輸出或是顯示在操作面板5 1上的警 報顯示,對作業人員進行通報。 接著,參照第4圖的流程圖和第5圖的圖表,來說明 關於上述實施形態的作用。在本實施形態中所使用的質量 流量控制器3,其流量和輸出電壓爲線性控制,最大流量 爲5 OOcc/分,此時的輸出電壓係被設定爲5 V。 首先,當質量流量控制器3被組裝在裝置內的時候, 在流量〇的狀態下,輸出電壓被設定爲〇。在此狀態下, 於熱處理部1,對基板例如晶圓W進行規定的熱處理。亦 即,對應於所要實行的製程的設定流量之設定電壓,從控 制部6經由訊號變換部5,輸入質量流量控制器3中。在 質量流量控制器3,控制閥3 3 (參照第2圖)被調整,使 得被供給至反應管 Π內的處理氣體的流量等於設定流 -21 - (18) 1305372 量。例如,若使設定流量爲400CC/分,則將4V的· 入至質量流量控制器3中。若是剛對質量流量控制器 期校正之後(基準狀態)’由於流量0時的輸出電 〇,處理氣體係以如4 0 0 c c /分的設定値般的流量’被 至反應管1 1中。 接著,根據利用第1時序設定部64所設定的時 例如在進行熱處理前後的待機時間,以下述的方式調 量流量控制器3的狀態。首先,關閉前述關斷閥41 兩者,作出氣體沒有流入質量流量控制器3內的狀態 時,例如根據從控制部6來的指示,使質量流量控制 的控制閥3 3 (參照第3圖)成爲「開」狀態例.如全 態’使感測器3 4、3 5前後的氣體流成爲平衡狀態( S1)。此時’從質量流量控制器3輸出的輸出電壓( 亦即流量〇時之從質量流量控制器3輸出的輸出電壓 記憶在第1記憶部6 2內(步驟s 2 )。再者,在此例 使 E0 = + 0.1V〇 接著’判斷從質量流量控制器3輸出的輸出 (E0 )是否在預先被設定的前述臨界値以內( S3 )。例如臨界値若爲3 00mV ,則E0 ( + (]00mV))位於臨界値內,前進至步驟S4。另 面’從前述顯示部5 ]’設定質量流量控制器3的流 4〇〇cc分。此時,藉由第1設定電壓補正部63,補正 此設定流量的設定電壓。亦即,對於從設定電壓輸 6 1輸出的設定電壓4 V ’加上(補正)被記憶在前述 ί壓輸 ;3初 :壓爲 供給 序, 查質 、42 。此 器3 開狀 步驟 Ε0 ) ,被 中, 電壓 步驟 0. 1 V —方 量爲 對應 出部 記憶 -22- (19) 1305372 部 62 中的輸出電壓(E0) 0.1V’ 《4V+(+0.1V) =4.IV》而將該値(4.1V)作爲正確的設定電壓(電壓指 示値),而被給予至質量流量控制器3中(步驟S 5 )。 在此,第5圖係表示質量流量控制器3的設定電壓和 流量之間的關係之圖表。在初期校正時的電壓-流量特 性,以實線來表示。設定點爲A點。而且’質量流量控 制器3的零點發生漂移(變化)之〇. 1 V的漂移電壓(輸 出電壓的變化量)發生時的電壓-流量特性’係以虛線來 表示。此時,設定點移動至B點。亦即’在此狀態下,流 量變成3 90cc/分。因此,設定電壓如前述般地被補正。藉 此,電壓-流量特性雖然沒有改變,設定點由B點移動至 C點。藉此,藉由質量流量控制器3所設定的流量,成爲 如設定流量般的4 0 0 c c。 在上述質量流量控制器3的設定電壓的調整結束時, 關斷閥4 1 ' 4 2被打開(步驟S 6 )。而且’晶圓W被搬入 反應管1 1內,閥2 1被打開而將如設定流量般的氣體供給 至反應管1 1內,來對於前述晶圓 W實施規定的熱處王里 (步驟S 7 )。 在以上的例子中,係說明關於零點往+側偏移的j ,丨青 況。但是即使是零點往-側偏移的情況,例如對於從設^ $ 電壓輸出部61輸出的設定電壓4V,加上(補正)_〇 lv 《4V+ ( -〇_1V ) =3.9V》,而將該補正後的値(3.9v )作 爲正確的設定電壓(電壓指示値),而被給予至質量^胃 控制器3中。 -23- (20) 1305372 再者,,在步驟S 3中,當從質量流量控制器3輸出 的輸出電壓(E 0 )被判斷出比臨界値大時,藉由警報產生 部6 6發生警報;又,在顯示面板6,對作業人員通報質 量流量控制器3發生異常(步驟S 8 )。在此情況,作業 人員檢查質量流量控制器3或是請製造商修理。 若根據上述實施形態,在被設置於質量流量控制器3 的上游側和下游側的關斷閥4 1、42處於關閉的狀態下, 根據從質量流量控制器3輸出的輸出電壓,可以補償流量 〇時的輸出電壓的變化量(漂移電壓),從控制部6輸出 的設定電壓被補正。也就是說,由於不是調整質量流量控 制器3而是補正設定訊號,所以作業人員不需要進入設置 著質量流量控制器3的維修室中來進行調整的作業,也不 需要停止作業線。 在此,說明關於操作人員進行質量流量控制器3的零 點調整之習知的情況。以往,操作人員,係關閉裝置的電 源,將測試器測試用的冶具安裝在質量流量控制器3上, 再連上電源後,藉由操作畫面來進行設定流量零點的輸 出,維持此狀態數分鐘之後,利用測試器來測量零點電 壓,再將該電壓調整成規定電壓範圍內的値。然後,關閉 電源,卸下前述冶具之後,再連上電源,利用操作畫面來 確認實際情況。 若根據上述實施形態,能夠省略使裝置停止之麻煩的 上述調整作業,能夠謀求裝置運用的效率化。又,由於被 使用於半導體製造裝置中的氣體,大多含有毒性,所以若 -24- (21) 1305372 能夠避免打開收容著氣體供給設備的氣體收容箱,則能夠 降低對人的危險性。又,進而對於裝置的停機時間有所影 響的質量流量控制器3的定期檢查等,也能夠省力化。 在上述例子中’校正後的質量流量控制器3,當沒有 氣體流動時的輸出電壓爲0。然而,即使校正後的質量流 量控制器3,當沒有氣體流動時的輸出電壓不是〇的情況 (例如爲〇.IV’而相當於流量500cc/分的設定電壓係被 設定爲5 . 1 V的情況),本發明也是有效的。此情況,設 定電壓補正部,判斷出質量流量控制器3僅漂移從質量流 量控制器3輸出的輸出電壓扣除該基準電壓(例如 0.IV)的電壓差,而利用該電壓差來補正設定電壓。 接著’根據第6圖來說明本發明的其他實施形態。在 此例中’在旁通管路1 5,設置壓力檢測部7 1。進而,設 置流量基準計72,此基準計可以根據從壓力檢測部7 1來 的壓力檢測値中的規定時間帶的上升率,求得流過氣體供 給管路2的流量。又,爲了節省處理氣體,排放氣體供給 源45,經由分支管路43和閥例如爲關斷閥44,連接至質 量流量控制器3和其上游側的關斷閥4 1之間,而能夠供 給排放氣體例如氮氣等的非活性氣體。 在此,所謂的壓力上升率,係指:關閉關斷閥44 ' 2 1,將關斷閥44下游側的氣體供給管路2和旁通管路1 5 真空排氣,然後關閉旁通管路1 5的關斷閥23,打開關斷 閥4 4,氣體以規定的流量通過質量流量控制器3時的壓 力上升率。再者,此情況,關斷閥41係關閉。 -25- 1305372 (22) 在流量基準計 72內,設置壓力上升率運算手段 7 2 a。壓力上升率運算手段7 2 a,係構成可以將檢測得到 的壓力値的時間序列資料,寫入未圖示的工作記憶體中’ 根據該資料來運算壓力上升率,再將該値送至控制部6 cjn 〇 又,控制部6,具備:記憶壓力上升率之第2記憶部 6 7 ;第2設定電壓補正部6 8,此補正部根據質量流量控 制器3校正時的基準壓力上升率(初期値)和使用質量流 量控制器3之後所測量的壓力上升率,來補正質量流量控 制器3的設定電壓;及第2時序設定部6 9 ’此設定部在 檢查質量流量控制器3的狀態之時序亦即校正時.以外,設 定進行壓力上升率之測量的時序。此控制部6,也具有第 1圖所示的構成;也能夠如前述般地進行零點的漂移的調 整,但是在第6圖中,僅權宜地圖示出用來補償跨距的偏 移之部位。 再者,雖然沒有圖示出來,理想爲:設置檢測出氣體 供給管路2和旁通管路1 5的溫度之溫度檢測部’當要求 出壓力上升率時,考慮其溫度而補償由於溫度變化所造成 的影響。 接著,說明關於補償質量流量控制器3的跨距的偏移 之動作。在此例中,質量流量控制器3的最大設定流量爲 5 00 cc/分。又,此時的輸出電壓爲5V,質量流量控制器3 的檢測流量和輸出電壓之間呈比例關係,且沒有零點的漂 移。安裝剛校正之後的質量流量控制器3 (例如新的質量 -26- (23) 1305372 流量控制器3 )之後,關閉其上游側的關斷閥44和閥 2 1,關斷閥44的下游側的氣體供給管路2和旁通管路1 5 則藉由真空泵1 4而被真空排氣。然後,關閉旁通管路]5 的關斷閥2 3。然後,從設定電壓輸出部6 1出設定電壓, 使得流量被設定成在質量流量控制器3處有規定的流量 (例如最大流量的80%的流量亦即400cc),打開關斷閥 44使排放氣體流過質量流量控制器3。 流量基準計72,記億藉由此時的壓力檢測部7 ]所得 到的壓力檢測値之規定時間帶的時間序列資料,根據這些 資料來求出壓力上升率,再將該壓力上升率送至控制部 6 °在控制部6中,此壓力上升率作爲初期値(基準値) 而被記憶在第2記憶部6 7中。第7圖係表示此時的壓力 變化的圖。TO爲打開關斷閥41的時點、T3爲旁通管路 1 5的關斷閥2 3打開的時點。測量壓力檢測値的時間帶, 理想爲壓力上升已經安定的時間帶,例如τ 1〜T2的時間 帶。 而且’在利用控制部6內的第2時序設定部69所設 定的規定的時序,例如與前述實施形態相同,在每次熱處 理結束後,與求出前述的壓力上升率的初期値相同,藉由 相同的設定流量檢測在壓力檢測部7 1處的壓力,再藉由 流量基準計72求出壓力上升率,然後將該壓力上升率送 至控制部6的第2記憶部67。控制部6,比較此壓力上升 率和先前已經求出的初期値,根據比較結果來補正設定電 壓c -27 - (24) 1305372 此手段,係利用旁通管路1 5的上游側的管路容積, 根據所對應的在使氣體流入該管路內時的流入流量和壓力 上升’以壓力變化直接測量實際流量。壓力上升率,與初 期値相比,例如快2.5 % (變大)時,流量也快了 2.5%。 換言之’對於對應4 00cc/分的設定流量之設定電壓4V而 言’流量比預定的流量快2.5 %。因此,控制部6內的第2 設定電壓補正部6 8 ’將前述質量流量控制器3的設定流 量亦即40 Occ/分,乘上壓力上升率的增加量(變快的量) 亦即 2.5% >而算出偏移量《 400ccx 2.5% ( 0.025) = 10cc》。此運算的結果,算出偏移量爲10cc。若將此偏 移値(1 Occ )除以設定流量(4〇〇cc )所得到的値,再乘 上對應該設疋流量之設定電壓(4 V ),,則求得對應該 偏移量之部分的輸出電壓値△£《10cc/400c.cx 4V = 0.1V》。 第8圖係表示偏移變化的狀態圖。實線(!)係表示 校正時的跨距(相對於流量的輸出變化)的圖;虛線 (2 )係表示校正時之從跨距偏移的跨距之圖。根據以上 的運算所算出的輸出電壓値△ E = 0.1 V,從對應質量流量控 制器3的設定流量4 0 0 c c之設定電壓4.0 V被扣除(4 V -0.1V = 3.9V) ’而在下回的設定流量爲400cc時,輸出電 壓爲3 · 9 V。藉此’相對於最大流量之8 0 %位置的流量偏 移可以被補正。因此,流量沒有發生偏移,如設定流量般 的流量的處理氣體,能夠被供給至反應管1 1內,來進行 對於基板的處理。 -28- (25) 1305372 再者,在此例中,雖然氣體流量爲0時的輸出電壓値 爲0V,但是在氣體流量爲〇時的輸出電壓値不是0V的情 況(也就是發生〇點的漂移的情況)’對應設定流量 4 0 0 c c的設定電壓,係成爲藉由先前的實施形態而被補正 的電壓。例如,在0點的輸出電壓的變化爲+0 . 1 V ’若爲 了補償此漂移量而藉由先前的實施形態之對應設定流量 4 0 0 c c的設定電壓則爲3 · 9 V。此時’由於跨距變化所造成 之對應偏移量的輸出電壓値△ E係成爲10cc/400cc X 3.9V = 0.09 7 5V。 若根據本實施形態,由於不是調整質量流量控制器3 而是補正設定訊號,所以作業人員不需要進入設置質量流 量控制器3的維修室內進行作業,也不需要停止作業線。 又,前述質量流量控制器3,其設定流量和輸出電壓 値係呈比例關係。但是,對於數個設定流量(例如設定流 量爲1 5 0 c c的時候、3 0 0 c c的時候、最大流量5 0 0 c c的時 候等的三個點),藉由前述方法掌握壓力上升率,而在各 設定流量時的壓力上升率係隨著各個基準値的不同而相異 的情況’理想爲:藉由控制部6內的程式,將流量和輸出 電壓的關係’補正成爲例如以第9圖的虛線所示的曲線》 此情況,根據該曲線’從設定電壓輸出部61輸出對應設 定流量的設定電壓。 再者’如上所述,即使是在使用流量基準計7 2的情 況’當初期時和監控時的壓力上升率的差異,變成一定量 以上時(例如根據壓力上升率的差異所換算出來的輸出電 -29- (26) 1305372 壓的偏移量,超過臨界値以上時),也可以作成能夠發出 警報來通知作業人員。 又’使用壓力上升率而如上述般地補正設定電壓之後 (例如將4 V補正成3.9V之後),也可以重複地進行同 樣的過程(求出壓力上升率來補正設定電壓的過程),再 度藉由該設定電壓,設定質量流量控制器3的流量,求出 對於壓力上升率的基準値之變化量,直到該變化量收斂至 規定値(例如1 % )以內。 在以上的說明中,係根據壓力上升率,補償跨距的變 化。但是,也可以取代壓力上升率而使用壓力下降率。此 情況’質量流量控制器3的上游側的關斷閥44被打開, 關斷閥21被關閉,而關斷閥42、22、23被打開。也就是 說’排放氣體係被設定成可以經由質量流量控制器3而從 旁通管路15排氣。而且,質量流量控制器3被設定成規 定的流量。在此狀態下,關斷閥44被關閉,排放氣體的 供給被停止,然後根據藉由壓力檢測部7 1所得到的壓力 値的時間序列資料,求出規定時間帶的壓力下降率。此値 可以與前述壓力上升率同樣地加以活用。 再者,也可以取代排放氣體,而打開關斷閥4 1使處 理氣體流動。又,本發明並不被限定於氣體流過質量流量 控制器3的情況,例如也可以應用於有機液體源等的液體 流過質量流量控制器3內,而在其下游側藉由氣化器被氣 化,在供給至反應容器內的情況。進而,也可以應用於: 針對將抗蝕劑等的塗佈液塗佈在基板上的情況等,藉由質 -30 - (27) 1305372 量流量控制器來調整塗部液等的液體的流量的情況。 【圖式簡單說明】 第圖係表示在本發明的一實施形態中的半導體製造 裝置的構成之方塊圖。 第2圖係表示處理部的構成、及處理部和質量流羹控 制器之間的關係之方塊圖。 第3圖係表示質量流量控制器的構成之方塊圖。 第4圖係表示在本發明的一實施形態中的質量流量控 制器的設定電壓之補正方法的流程圖。 第5圖係表示質量流量控制器的設定電壓和流量之間 的關係之圖表。 第6圖係表示在本發明的其他實施形態中的半導體製 造裝置的構成之方塊圖。 第7圖係表示被設置在旁通管路中的壓力檢測部的壓 力値的上升之狀態的特性圖。 第8圖係表示將質量流量控制器的實際流量和輸出電 壓之間的關係加以表示的圖表之傾斜的變化情況之特性 圖。 第9圖係表示質量流量控制器的實際流量和輸出電壓 之間的關係變化的情況之特性圖。 【主要元件符號說明〕 从:晶圓 -31 - (28) 1305372 1 :熱處理部 2 :氣體供給管路 3 :質量流量控制器 3 a :本流部 3b :側流部 5 :訊號變換部 6 :控制部 6a :數據總線 U :反應管 1 2 :保持工具 1 3 :排氣管 14 :真空泵 15 :旁通管路 44 :閥(關斷閥) 閥) 熱電阻線) 熱電阻線) 21 、 22 、 23 、 41 ' 42 ' 3 0 :旁通部 3 1 :流量檢出部 3 2 :比較部(調節部) 3 3 :控制閥(流量調塞 34 :上游側感測器(i 3 5 :下游側感測器(春 36 :電橋電路 3 7 :放大電路 40 :氣體供給源 4 5 :排放氣體供給源 -32- (29) (29)13053721305372 (1) Description of the Invention [Technical Field] The present invention relates to a semiconductor manufacturing apparatus that processes a substrate such as a semiconductor wafer using a fluid whose flow rate is adjusted by a mass flow controller. [Prior Art] Conventionally, in the semiconductor manufacturing process, there is a process of processing a substrate using a predetermined gas or liquid. As a process for using a gas, there are a film forming process using a film forming gas, an oxidation process using an oxidizing gas, an etching process using an etching gas, and the like. Further, as a process for using a liquid, there are a process of supplying a resist onto a substrate, a process of applying a chemical solution of a precursor containing an insulating film, and the like. On the other hand, recently, the pattern of the semiconductor device has been miniaturized, and the film thickness of each film has also begun to become thin. Therefore, the flow rate of the gas or liquid also needs to be controlled with high precision, so a mass flow controller is used as a machine for such control. In the mass flow controller, the fluid flowing through the capillary tube takes heat away from the heating resistor wire as it flows. That is, the flow rate is detected by utilizing the characteristic that the resistance 发热 of the heating resistor wire changes with the flow rate of the fluid. The mass flow controller includes: such a flow rate detecting unit, a comparison unit that compares an output voltage (a detection voltage corresponding to the flow rate) output from the flow rate detecting unit, and a set voltage that is set corresponding to the set flow rate, and a comparison unit that is transmitted from the comparison unit. The flow regulating valve that is operated while comparing the outputs. -5 - (2) 1305372 However, in the case of using a mass flow controller, the actual flow rate may deviate from the set flow rate. For example, even if the actual flow rate is 0, the voltage 输出 output from the flow rate detecting unit is not 0 ′ and there is a case where an error exists. Further, as a phenomenon in which the actual flow rate deviates from the set flow rate, in addition to the zero shift, the ratio (slope) of the change in the output voltage corresponding to the flow rate is also the case where the span varies. Such a span deviation is a change in the amount of temperature change with respect to the flow rate change, that is, the amount of change in the output voltage, with respect to the sensor included in the bridge circuit, that is, the heat generating resistor line on the upstream side and the heat generating resistor line on the downstream side. One of the different reasons for initial calibration. For these reasons, for example, the ambient temperature at the time of shipment of the manufacturer and the ambient temperature on the user side are different, and the long-term deterioration or peeling of the cladding material of the coil-shaped heating resistor wire (sensor) and the line of the heating resistor wire圏 Relaxation 'The condition of the circuit is poor, and the fluctuation of the power supply voltage' is dirty (due to corrosion or build-up, etc.) of the pipe around the sensor. Among the flow rates that can be set by the mass flow controller, the flow error ratio in the case where the fluid flow rate is large and the flow error ratio in the case where the flow rate is small are large, and in the case of the same drift amount, the influence of the error in the case where the flow rate is small is large, for example, The film thickness generated on the surface of the semiconductor wafer has a large influence. In recent years, with the increase in the concentration and thinning of semiconductor devices, the allowable range of the film thickness on the surface of semiconductor wafers at the time of manufacture has become stricter. In order to keep the film thickness within the allowable range, it is manufactured, and the flow rate in the vicinity of the maximum flow rate can be made small by the flow rate which can be set by the mass flow controller. For example, in the case of a process of -6-(3) 1305372 plural, when the difference in the set flow rate of the fluid between the various processes is large, the mass flow controller having a large flow capacity of two or more and the mass of the flow capacity are small. The flow controllers are connected in parallel to switch the mass flow controller according to the set flow rate of the fluid. However, preparing a plurality of mass flow controllers is disadvantageous in terms of cost considerations. Also, when the output drifts, that is, when the output voltage of the fluid flow rate is 0, the drift amount may have an effect on the processing. On the other hand, in Japanese Patent Laid-Open No. Hei 7-263350 (specifically, paragraphs 0014 and 1), it is described that the measuring device is additionally disposed in the gas flow path independently of the mass flow controller. According to the measurement result of the measuring device, the mass flow controller is adjusted by the corrector. Further, in Japanese Patent Laid-Open Publication No. Hei. No. 5-2 975 No. 1 (particularly, column 9, line 3 to line 9), it is described that: in the case of the manufacturer side, in the initial correction, there is no gas flowing. In the state, the current flowing through the sensor line of the mass flow controller is changed stepwise, and the temperature difference generated by the current difference between the two coils is taken out as the unbalanced voltage of the bridge circuit, and then This unbalanced voltage is compared with the unbalanced voltage in use to obtain the zero point correction amount and the span correction amount. The means for using the measuring instrument in the Japanese Patent Laid-Open Publication No. Hei 7- 2 3 3 3 0 0 is disadvantageous in terms of cost since it is necessary to prepare another measuring device. Moreover, it is not possible to cope with a malfunction of the measuring device itself. Further, the correction by the corrector 'because the operator actually adjusts the variable resistor 値' manually, so if the adjustment is to be performed frequently, there is a problem that the operation -7-(4) 1305372 is complicated. Further, the means for adjusting via the unbalanced voltage in the Japanese Patent Laid-Open Publication No. Hei No. Hei. That is, the mass flow controller is manufactured and sold by various manufacturers, and when a mass flow controller of a particular manufacturer is applied to form a production line, the mass flow controller is exchanged with a mass flow controller manufactured by another company. This adjustment cannot be made. Further, since it is necessary to change the current to the mechanism of the bridge circuit while changing the phase, the device configuration is complicated and unfavorable. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a semiconductor manufacturing apparatus and a semiconductor manufacturing method capable of accurately setting a flow rate without removing a mass flow controller from a pipe. A semiconductor manufacturing apparatus according to the present invention is characterized by comprising: a processing unit for processing a substrate to fabricate a semiconductor device on a substrate; and a fluid supply line for processing and processing the substrate a required fluid is supplied to the processing unit; a set voltage output unit that outputs a set voltage corresponding to a set flow rate of the fluid; a mass flow controller that is disposed in the fluid supply line, according to the foregoing Setting a voltage to adjust a flow rate of the fluid; a first shut-off valve disposed on an upstream side of the mass flow controller in the fluid supply line; and (5) 1305372 a second shut-off valve, a shutdown valve is disposed on a downstream side of the mass flow controller in the fluid supply line; the mass flow controller has: a detection unit that detects an actual flow rate of the fluid and outputs a corresponding detection voltage, and compares the settings a comparison portion for outputting an operation signal with a voltage and the detection voltage, and adjusting a flow of the fluid according to the operation signal a flow rate adjustment unit; further comprising: a storage unit that stores a detection voltage output from the detection unit of the mass flow controller when the first shutoff valve and the second shutoff valve are closed; and setting setting In the voltage correction unit, the set voltage correction unit corrects the set voltage based on the detection voltage stored in the memory unit so that the change in the detection voltage when the actual flow rate of the fluid is 〇 can be compensated. According to the present invention, when the change of the detection voltage when the flow rate is 〇 is to be compensated, since the mass flow controller itself is not adjusted but the set voltage is corrected, the result is that the flow control characteristic of the mass flow controller can be simply performed. Adjustment. Preferably, the semiconductor manufacturing apparatus of the present invention further includes timing setting means for setting the first shutoff valve and the second shutoff valve to be closed, and the memory portion is stored from the mass flow controller. The timing of the detection voltage outputted by the detection unit. Further, the semiconductor manufacturing apparatus of the present invention preferably further includes an alarm generating means for issuing an alarm when the detected voltage deviates from a predetermined threshold. -9 - (6) 1305372 Further, the semiconductor manufacturing apparatus of the present invention is characterized by comprising: a processing unit for processing a substrate in a predetermined vacuum environment to manufacture a semiconductor device on the substrate; a vacuum exhaust line of the processing unit; a fluid supply line for supplying a fluid necessary for processing the substrate to the processing unit; and a set voltage output unit for outputting the fluid corresponding to the fluid Setting a set voltage of the flow rate; a mass flow controller, the controller being disposed in the fluid supply line, adjusting a flow rate of the fluid according to the set voltage; a bypass line, the bypass line making the processing unit Bypassing from the fluid supply line to the vacuum exhaust line; in the bypass line, a pressure detecting unit and a third shut-off valve that are sequentially disposed from the upstream side; and a set voltage correcting unit, The set voltage correcting unit is configured to: close the third shut-off valve after the vacuum is exhausted in the bypass line at a predetermined timing, and the mass flow rate The controller is set to a predetermined flow rate, and the rate of rise of the predetermined time zone of the pressure detected by the pressure detecting unit when the fluid is supplied to the bypass line via the fluid supply line; After the vacuum is exhausted through the line, the third shut-off valve is closed, the mass flow controller corrected to the reference state is set to a predetermined flow rate, and when the fluid is supplied to the bypass line via the fluid supply line By comparing the result of the comparison of the reference rise rate of the time zone defined by the pressure detecting unit _10-(7) 1305372 detected by the pressure detecting unit, the set power is corrected according to the present invention, and the set voltage and the flow rate are compensated according to the present invention. When the relationship between the two is changed, the mass flow controller itself is not adjusted by the adjusted set voltage, and as a result, the fine adjustment of the mass flow control flow control characteristic can be easily performed. The mass flow controller includes a detecting unit that outputs a corresponding detection voltage by detecting the inter-fluid flow rate, a comparison unit that outputs an operation signal by comparing the set voltage and the detection voltage, and adjusts a flow rate of the fluid according to the operation signal. In the case of the flow rate adjustment unit, it is preferable that the predetermined voltage correction unit corrects the set voltage and compensates for a change in the span of the detection voltage. Further, the set voltage correction unit preferably sets a plurality of predetermined flow rates based on a plurality of rates obtained by setting the mass controller to a plurality of predetermined flow rates, and a plurality of predetermined flow rates of the mass flow controller to be corrected to a reference state. The comparison result of the obtained plurality of ascending rates corrects the set voltage. Further, a semiconductor manufacturing apparatus according to the present invention includes: a processing unit for manufacturing a semiconductor device on a substrate in a predetermined vacuum environment; and a vacuum exhaust pipe connected to the processing unit a fluid supply line for supplying a fluid for processing the substrate to the processing unit, and a set voltage output unit for outputting a set voltage corresponding to a set flow rate of the precursor; Corresponding to the actual power of the device, the above-mentioned energy replenishment flow rise is determined as 'to process the required flow -11 - (8) 1305372 mass flow controller, which is disposed in the aforementioned fluid supply line Adjusting the flow rate of the fluid according to the set voltage; the bypass line bypasses the processing unit, and reaches the vacuum exhaust line from the fluid supply line; the first shut-off valve, The shutoff valve is disposed on an upstream side of the mass flow controller in the fluid supply line; a pressure detecting portion provided in the bypass line; and a set voltage correcting portion, the set voltage correcting portion, At a predetermined timing, the mass flow controller is set to a predetermined flow rate while the bypass line is evacuated, and the fluid is supplied to the bypass line via the fluid supply line. When the first shut-off valve is closed, the pressure detected by the pressure detecting portion detects a falling rate of the predetermined time zone of the crucible; and the vacuum of the bypass line is exhausted at one side. The mass flow controller corrected to the reference state is set to a predetermined flow rate, and the fluid is supplied to the bypass line via the fluid supply line, and the pressure is reversed when the first shutoff valve is closed. The comparison result of the reference reduction rate of the predetermined time zone of the pressure detection 检测 detected by the detecting unit corrects the set voltage. According to the present invention, similarly, when the change in the correspondence relationship between the set voltage and the flow rate is to be compensated, since the mass flow controller itself is not adjusted but the set voltage is corrected, the flow rate of the mass flow controller can be simply performed. Fine adjustment of control characteristics. The mass flow controller includes a detection unit that outputs a corresponding detection voltage by detecting a flow rate of -12 - (9) 1305372 of the fluid, a comparison unit that outputs the operation signal by comparing the set voltage and the detection voltage, And a case where the flow rate adjustment unit adjusts the flow rate of the fluid based on the operation signal; and the set voltage correction unit preferably compensates for the change in the span of the detection voltage by correcting the set voltage. Further, it is preferable that the set voltage correction unit sets a plurality of reduction rates obtained by setting the mass flow controller to a plurality of predetermined flow rates, and setting the mass flow controller to be corrected to a reference state to a plurality of regulations. The comparison result of the multiple decreasing rates obtained by the flow rate is used to correct the set voltage. Moreover, the present invention can also be established by a method. That is, the semiconductor manufacturing method of the present invention is directed to a semiconductor manufacturing method using a semiconductor manufacturing apparatus, characterized in that the semiconductor manufacturing apparatus includes a processing unit for processing a substrate to fabricate a semiconductor device on the substrate; a fluid supply line for supplying a fluid necessary for processing the substrate to the processing unit; a set voltage output unit that outputs a set voltage corresponding to a set flow rate of the fluid; mass flow control The controller is disposed in the fluid supply line, and adjusts a flow rate of the fluid according to the set voltage; a first shut-off valve, the mass flow control of the shut-off valve disposed in the fluid supply line The upstream side of the device; and -13 - (10) 1305372 a second shut-off valve, the shut-off valve being disposed on a downstream side of the aforementioned mass flow controller in the fluid supply line; the mass flow controller having: Detecting the actual flow rate of the fluid and outputting a detection portion corresponding to the detected voltage, comparing the set voltage and a comparison unit that outputs a detection signal and outputs a flow signal, and a flow rate adjustment unit that adjusts a flow rate of the fluid based on the operation signal; and a memory unit that is stored in the first shutoff valve and the second shutoff valve a detection voltage outputted from the detection unit of the mass flow controller when closed; and a set voltage correction unit that corrects the set voltage based on a detection voltage stored in the memory unit so that compensation can be performed The actual flow rate of the fluid is a change in the detection voltage when the enthalpy is ;; and the semiconductor manufacturing method is characterized by: a process of closing the first shut-off valve and the closing of the second shut-off valve; When the first shut-off valve and the second shut-off valve are closed, the detection of the detection voltage outputted from the detecting unit of the mass flow controller; and the setting of the voltage correcting unit are stored in the memory unit. The detection voltage in the medium corrects the aforementioned set voltage so that the detection voltage when the actual flow rate of the fluid is 〇 can be compensated Engineering change it. Alternatively, the semiconductor manufacturing method of the present invention is directed to a semiconductor manufacturing method using a semiconductor manufacturing apparatus, and the semiconductor manufacturing apparatus is characterized by comprising: -14 - (11) 1305372 processing unit for processing a semiconductor device is manufactured on a substrate in a predetermined vacuum environment; a vacuum exhaust line connected to the processing unit; a fluid supply line for supplying a fluid necessary for processing the substrate a processing unit; a set voltage output unit that outputs a set voltage corresponding to a set flow rate of the fluid; a mass flow controller configured to be disposed in the fluid supply line and adjusted according to the set voltage a flow rate of the fluid; a bypass line that bypasses the processing unit and reaches the vacuum exhaust line from the fluid supply line; in the bypass line, sequentially from the upstream side a pressure detecting unit and a third shut-off valve provided in the ground; and a set voltage correcting unit, wherein the set voltage correcting unit is based on: a predetermined timing After evacuating the bypass line, the third shut-off valve is closed, the mass flow controller is set to a predetermined flow rate, and the fluid is supplied to the bypass line via the fluid supply line. a rate of increase of a predetermined time zone of the pressure detection enthalpy detected by the pressure detecting unit; and after the vacuum is exhausted from the bypass line, closing the third shutoff valve to correct the mass flow rate corrected to a reference state The controller sets a predetermined flow rate, and compares the reference rise rate of the predetermined time zone of the pressure detection detected by the pressure detecting unit when the fluid is supplied to the bypass line via the fluid supply line, To correct the set voltage; -15- (12) 1305372 The semiconductor manufacturing method is characterized in that: after the vacuum is exhausted from the bypass line, the third shut-off valve is closed, and the reference state is corrected. The mass flow controller is set to a predetermined flow rate, and the fluid is supplied to the bypass line via the fluid supply line by the aforementioned pressure check a process of detecting a reference rise rate of a predetermined time zone of the pressure detected by the measuring unit; obtaining a predetermined timing, vacuum-venting the bypass line, and closing the third shut-off valve to obtain the mass The flow controller is set to a predetermined flow rate, and the fluid is supplied to the aforementioned via the fluid supply line. The process of detecting the rate of increase of the predetermined time zone by the pressure detected by the pressure detecting unit in the bypass line; and correcting the set voltage based on the comparison result of the reference rising rate and the rising rate. Alternatively, the semiconductor manufacturing method of the present invention is directed to a semiconductor manufacturing method using a semiconductor manufacturing apparatus, characterized in that the semiconductor manufacturing apparatus includes a processing unit for processing a substrate in a predetermined vacuum environment. a semiconductor device is fabricated on the substrate; a vacuum exhaust line connected to the processing unit; a fluid supply line for supplying a fluid necessary for processing the substrate to the processing unit; and a voltage output unit; The set voltage output unit outputs a set voltage corresponding to the set flow rate of the fluid; a mass flow controller, the controller is disposed in the fluid supply pipe-16 - (13) 1305372, and adjusts the fluid according to the set voltage a bypass line, the bypass line bypasses the processing portion, and the former fluid supply line reaches the vacuum exhaust line; a first shut-off valve, the shut-off valve is disposed in the fluid supply tube An upstream side of the aforementioned mass flow controller of the road; a pressure detecting portion provided in the bypass line; and a set voltage In the correction unit, the set voltage correction unit is configured to: at a predetermined timing, vacuum-exhaust the bypass line, set the mass flow controller to a predetermined flow rate, and supply the fluid through the body supply line. In the state of the bypass line, the rate of decrease of the predetermined time zone by the pressure detected by the pressure detecting portion when the first shutoff valve is closed; and vacuum evacuation of the bypass line on one side The mass flow controller that has been corrected to the base state is set to a predetermined flow rate, and the fluid is supplied to the bypass line via the fluid supply line, and the first first shutoff valve is closed by the aforementioned The comparison result of the reference reduction rate of the predetermined time zone of the force detection 检测 detected by the pressure detecting unit complements the set voltage; and the semiconductor manufacturing method has the following features: obtaining a vacuum exhaust of the bypass line on one side The mass flow controller in the corrected reference state is set to a predetermined flow rate, and the fluid is supplied to the bypass line by the fluid supply line. In the state in which the first shutoff valve is closed, the pressure drop detected by the pressure detecting unit detects the reference descent rate of the predetermined time zone of the crucible;  Sidestream 1 Detects the pressure of the positive pressure -17 - (14) 1305372 Find the timing of the gauge, and set the mass flow controller to a predetermined flow rate while evacuating the bypass line. Further, in the state in which the fluid is supplied to the bypass line via the fluid supply line, the lowering rate of the predetermined time zone of the pressure detected by the pressure detecting unit when the first shutoff valve is closed is And correcting the set voltage according to the comparison result of the aforementioned reference descent rate and the aforementioned descent rate. [Embodiment] BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, Fig. 1 is a block diagram showing a main configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention. This apparatus is provided with a heat treatment unit 1 as a processing unit for performing a process of manufacturing a semiconductor integrated circuit on a substrate. In the reaction vessel (process vessel) of the heat treatment unit 1, that is, the vertical reaction tube 1 is carried, the holding tool 12 that carries a plurality of substrates, that is, the wafer W, is carried in. In this state, the wafer W is heated by a heating means (not shown) provided outside the reaction tube 1 1. On the other hand, the predetermined gas is introduced into the reaction tube 1 1 from, for example, the gas supply line 2 composed of the gas supply pipe. Thereby, the substrate is subjected to a predetermined heat treatment. In the figure, the symbol I 3 is an exhaust pipe, the symbol 14 is a vacuum exhaust means, that is, a vacuum pump, and the symbol 15 is a bypass reaction tube, and the gas supply line 2 and the exhaust pipe 13 are connected. The bypass line, symbol 2 1 ' 2 2, 2 3 are the respective valves, for example, a shut-off valve. -18- (15) 1305372 The mass flow controller 3 for adjusting the gas flow rate from the gas supply source 40 is disposed in the gas supply line 2. The respective shut-off valves 4 1 ' 4 2 are provided on the upstream side and the downstream side of the mass flow controller 3. By closing both of the shut-off valves 4 1 , 4 2 , the flow of fluid through the mass flow controller 3 can be shut off, in this case the flow of the shut-off gas (i.e., the gas flow can be made zero). As shown in Fig. 2, the mass flow controller 3 includes a flow rate detecting unit 31, a comparing unit (regulating unit) 3, and a control valve (flow rate adjusting valve) 33 as a flow rate adjusting unit. A more detailed configuration of the mass flow controller 3 will be described based on Fig. 3 . The gas supply line 2 introduced into the inside of the mass flow controller 3 is branched into the cost stream portion 3a and the side stream portion 3b. In order to measure the flow rate in the gas supply line 2, a flow sensor having two heat generating resistor wires 34, 35 is provided in the side stream portion 3b. In the main flow unit 3a, various conditions such as the flow rate of the side stream portion 3b and the main stream portion 3a are adjusted to be the same bypass portion 30. In other words, the bypass portion 30 can adjust the characteristics of the flow rate, the temperature, the pressure, and the like in the main flow portion 3a to be the same as the above-described respective conditions in the side stream portion 3b. Thereby, in the measurement by the sensors 34 and 35, it is possible to prevent an error from occurring. Explain the principle of detection of traffic. The upstream side sensor 34' absorbs heat when the fluid flows, causing the temperature to drop; on the contrary, the downstream side sensor 35 is given heat to raise the temperature. As a result, a temperature difference is generated between the upstream side sensor 34 and the downstream side sensor 35, and the flow rate can be detected based on the temperature difference. -19- (16) 1305372 Mass flow controller 3, further comprising: a bridge circuit 3 6 for detecting a difference in resistance 値 of the heating resistor wire 3 4 ' 3 5 as a voltage signal; and amplifying the amplification of the voltage signal Circuit 3 7. The heating resistor wires 3 4 and 3 5 , the bridge circuit 36 and the amplifier circuit 3 7 constitute the flow rate detecting unit 31. The comparison unit 32 compares a setting signal (set voltage) corresponding to a set flow rate, which will be described later, with a voltage from the amplifier circuit 37, and outputs an opening for adjusting the control valve 33 based on the comparison result (deviation). Operation signal. Further, the control unit 6 is connected to the mass flow controller 3 via the signal conversion unit 5. The signal conversion unit 5 converts the analog signal from the mass flow controller 3 into a digital signal, and converts the digital signal from the control unit 6 into an analog signal. Next, the detailed configuration of the control unit 6 will be described based on Fig. 2 . The control unit 6 is connected to a display unit 51 composed of, for example, a liquid crystal panel. This display unit 51 also serves as a touch panel type output device. Symbol 6a is a data bus, and symbol 60 is a CPU that implements control of the device. Reference numeral 61 is a set voltage output unit for outputting a set voltage corresponding to the set flow rate of the mass flow controller 3. The set voltage output unit 6 1 can set the flow rate of the mass flow controller 3 to 0% to 1 0 0 % by, for example, a set voltage of 0 to 5 V. Reference numeral 6 2 is the first memory unit. When the shutoff valves 4 1 and 4 2 are closed, the output voltage (the voltage detection 传 transmitted from the flow rate detecting unit 3) output from the mass flow controller 3 is stored as the drift voltage in the first memory unit 62. . Reference numeral 63 is a first set voltage correcting unit. The first set voltage correcting unit 63, when the shut-off valves 4 1 and 42 are closed, when the output voltage output from the mass flow -20-(17) 1305372 controller 3 is different from the reference voltage (in this case, 0V) In the case where the drift voltage is ± E 0 ( V ), the set voltage can be corrected. Reference numeral 64 is a first timing setting unit. The first sequence setting unit 64 can set a timing for re-examining (correcting) the set voltage of the mass flow controller 3 with the shutoff valves 4 1 and 42 closed. Symbol 65 is an alarm comparison circuit unit. The alarm comparison circuit unit 65 determines whether or not the drift voltage exceeds a predetermined threshold 値, and if the threshold is exceeded, causes the alarm generation unit 66 to issue an alarm (for example, an alarm sound or a warning display). Furthermore, in this embodiment, 〇. 3V (300 mV) is a critical enthalpy. When the mass flow controller 3 measures a 偏离 which is deviated from the threshold 値 or more, the mass flow controller 3 judges that it is defective, for example, by an alarm output from the alarm generating unit 66. Or an alarm display displayed on the operation panel 51 to notify the operator. Next, the operation of the above embodiment will be described with reference to the flowcharts of Fig. 4 and the graph of Fig. 5. In the mass flow controller 3 used in the present embodiment, the flow rate and the output voltage are linearly controlled, and the maximum flow rate is 5 00 cc / min. The output voltage at this time is set to 5 V. First, when the mass flow controller 3 is assembled in the apparatus, the output voltage is set to 〇 in the state of the flow rate 〇. In this state, the heat treatment unit 1 performs a predetermined heat treatment on the substrate, for example, the wafer W. That is, the set voltage corresponding to the set flow rate of the process to be executed is input from the control unit 6 to the mass flow controller 3 via the signal conversion unit 5. In the mass flow controller 3, the control valve 3 3 (refer to Fig. 2) is adjusted so that the flow rate of the processing gas supplied into the reaction tube is equal to the set flow -21 - (18) 1305372. For example, if the set flow rate is set to 400 cc/min, 4 V is input to the mass flow controller 3. If the mass flow controller period is corrected (reference state) as the output voltage at flow rate 0, the process gas system is supplied to the reaction tube 1 1 at a flow rate of, for example, 4,000 c c /min. Then, based on the time set by the first timing setting unit 64, for example, the standby time before and after the heat treatment is performed, and the state of the flow controller 3 is adjusted as follows. First, when both of the shut-off valves 41 are closed and the gas does not flow into the mass flow controller 3, for example, the control valve 3 3 for controlling the mass flow rate according to an instruction from the control unit 6 (refer to Fig. 3) Become an "open" state example. For example, the state of the gas flows before and after the sensors 34, 35 is in an equilibrium state (S1). At this time, the output voltage output from the mass flow controller 3 (that is, the output voltage output from the mass flow controller 3 at the time of flow rate is stored in the first memory unit 6 2 (step s 2 ). Let E0 = + 0. 1V 〇 Next, it is judged whether or not the output (E0) output from the mass flow controller 3 is within the aforementioned threshold 预先 (S3). For example, if the critical threshold is 300 00 mV, E0 (+ (] 00 mV) is located in the critical enthalpy, and the process proceeds to step S4. On the other hand, the flow of the mass flow controller 3 is set from the display unit 5''. At this time, the set voltage of the set flow rate is corrected by the first set voltage correcting unit 63. That is, the set voltage 4 V ′ output from the set voltage input 6 1 is added (corrected) in the above-mentioned ί 压; 3 initial: pressure is supplied, and the quality is checked. This device 3 is open step Ε0), is in, voltage step 0.  1 V — square is the corresponding output memory -22- (19) 1305372 part 62 output voltage (E0) 0. 1V’ "4V+(+0. 1V) = 4. IV" and the 値 (4. 1V) is given to the mass flow controller 3 as the correct set voltage (voltage indication 値) (step S5). Here, Fig. 5 is a graph showing the relationship between the set voltage and the flow rate of the mass flow controller 3. The voltage-flow characteristics at the time of initial calibration are indicated by solid lines. The set point is point A. Moreover, the zero point of the mass flow controller 3 drifts (changes).  The voltage-flow characteristic at the time when the drift voltage of 1 V (the amount of change in the output voltage) occurs is indicated by a broken line. At this point, the set point moves to point B. That is, in this state, the flow rate becomes 3 90 cc / min. Therefore, the set voltage is corrected as described above. As a result, although the voltage-flow characteristic has not changed, the set point is moved from point B to point C. Thereby, the flow rate set by the mass flow controller 3 becomes 4 0 0 c c as the set flow rate. When the adjustment of the set voltage of the mass flow controller 3 is completed, the shutoff valve 4 1 ' 4 2 is opened (step S 6 ). Further, the wafer W is carried into the reaction tube 1 1 and the valve 21 is opened to supply a gas having a set flow rate into the reaction tube 1 1 to perform a predetermined heat on the wafer W (step S). 7). In the above example, the j, which is the offset from the zero point to the + side, is explained. However, even in the case where the zero point is shifted to the side, for example, for the set voltage 4V output from the voltage output unit 61, (correction) _〇 lv "4V+ ( -〇_1V) = 3. 9V", and the correction after the 値 (3. 9v) is given to the quality control unit 3 as the correct set voltage (voltage indication 値). -23- (20) 1305372 Furthermore, in step S3, when the output voltage (E 0 ) output from the mass flow controller 3 is judged to be larger than the critical value, an alarm is generated by the alarm generating unit 6 6 Further, on the display panel 6, the operator is notified that the mass flow controller 3 is abnormal (step S8). In this case, the operator checks the mass flow controller 3 or asks the manufacturer to repair it. According to the above embodiment, in the state where the shutoff valves 41, 42 provided on the upstream side and the downstream side of the mass flow controller 3 are closed, the flow rate can be compensated based on the output voltage output from the mass flow controller 3. The amount of change in the output voltage (drift voltage) at the time of 〇 is corrected by the set voltage output from the control unit 6. That is, since the setting signal is not adjusted instead of adjusting the mass flow controller 3, the operator does not need to enter the maintenance room in which the mass flow controller 3 is installed to perform the adjustment, and does not need to stop the line. Here, a description will be given of a conventional case where the operator performs the zero point adjustment of the mass flow controller 3. In the past, the operator turned off the power of the device, installed the tool for testing the tester on the mass flow controller 3, and then connected the power supply, and then set the flow zero output by the operation screen, and maintained the state for several minutes. Thereafter, the tester is used to measure the zero point voltage, and then the voltage is adjusted to 値 within a prescribed voltage range. Then, turn off the power, remove the tool, connect the power supply, and use the operation screen to confirm the actual situation. According to the above embodiment, the above-described adjustment work for stopping the trouble of the apparatus can be omitted, and the efficiency of the operation of the apparatus can be improved. Further, since the gas used in the semiconductor manufacturing apparatus often contains toxicity, if -24-(21) 1305372 can avoid opening the gas storage box in which the gas supply device is housed, the risk to humans can be reduced. Further, it is also possible to save labor by periodically checking the mass flow controller 3 which affects the down time of the apparatus. In the above example, the corrected mass flow controller 3 has an output voltage of 0 when there is no gas flow. However, even if the corrected mass flow controller 3, the output voltage when there is no gas flow is not a sputum (for example, 〇. The set voltage corresponding to IV' and the flow rate of 500 cc/min is set to 5.  In the case of 1 V), the present invention is also effective. In this case, the voltage correcting unit is set to determine that the mass flow controller 3 only drifts the output voltage output from the mass flow controller 3 by subtracting the reference voltage (for example, 0. IV) The voltage difference is used to correct the set voltage. Next, another embodiment of the present invention will be described based on Fig. 6 . In this example, the pressure detecting portion 71 is provided in the bypass line 15. Further, a flow rate counter 72 is provided which can determine the flow rate of the flow through the gas supply line 2 based on the rate of rise of the predetermined time zone in the pressure detecting port from the pressure detecting unit 71. Further, in order to save the processing gas, the exhaust gas supply source 45 is connected between the mass flow controller 3 and the shut-off valve 41 on the upstream side thereof via the branch line 43 and the valve, for example, the shut-off valve 44, and is capable of supplying An inert gas such as a nitrogen gas is emitted. Here, the so-called pressure increase rate means that the shut-off valve 44' 2 1 is closed, the gas supply line 2 and the bypass line 15 on the downstream side of the shut-off valve 44 are evacuated, and then the bypass pipe is closed. The shut-off valve 23 of the road 15 and the switch-break valve 44, the rate of pressure rise when the gas passes through the mass flow controller 3 at a predetermined flow rate. Furthermore, in this case, the shut-off valve 41 is closed. -25- 1305372 (22) Set the pressure rise rate calculation means 7 2 a in the flow rate meter 72. The pressure increase rate calculating means 7 2 a is configured to write the time series data of the detected pressure 写入 into the working memory (not shown), calculate the pressure increase rate based on the data, and send the enthalpy to the control. The control unit 6 includes a second storage unit 6 7 that stores a rate of increase in pressure, and a second set voltage correction unit 6 that adjusts the reference pressure at the time of correction by the mass flow controller 3 ( The initial voltage) and the pressure increase rate measured after the mass flow controller 3 are used to correct the set voltage of the mass flow controller 3; and the second timing setting unit 6 9 'the setting unit checks the state of the mass flow controller 3 The timing is also corrected. In addition, the timing for measuring the pressure rise rate is set. The control unit 6 also has the configuration shown in Fig. 1; the adjustment of the zero point shift can be performed as described above. However, in Fig. 6, only the offset map is used to compensate for the offset of the span. Part. Further, although not shown, it is preferable to provide a temperature detecting portion that detects the temperature of the gas supply line 2 and the bypass line 15 when the pressure rise rate is required, and compensates for the temperature change in consideration of the temperature. The impact. Next, an operation of compensating for the offset of the span of the mass flow controller 3 will be described. In this example, the mass flow controller 3 has a maximum set flow rate of 500 cc/min. Further, the output voltage at this time is 5 V, and the detected flow rate of the mass flow controller 3 is proportional to the output voltage, and there is no drift of the zero point. After installing the mass flow controller 3 just after calibration (for example, the new mass -26-(23) 1305372 flow controller 3), the shut-off valve 44 and the valve 2 1 on the upstream side thereof are closed, and the downstream side of the shut-off valve 44 is closed. The gas supply line 2 and the bypass line 15 are vacuum-exhausted by the vacuum pump 14. Then, close the shut-off valve 2 3 of the bypass line]5. Then, the set voltage is output from the set voltage output unit 6 1 so that the flow rate is set to have a predetermined flow rate at the mass flow controller 3 (for example, a flow rate of 80% of the maximum flow rate, that is, 400 cc), and the switch is opened to open the valve 44. The gas flows through the mass flow controller 3. The flow rate counter 72 calculates the pressure increase rate based on the data of the predetermined time zone of the pressure detection 得到 obtained by the pressure detecting unit 7 at this time, and then sends the pressure increase rate to the pressure increase rate. The control unit 6 is stored in the second storage unit VII as the initial 値 (reference 値) in the control unit 6. Fig. 7 is a view showing the pressure change at this time. TO is the time when the switch-off valve 41 is opened, and T3 is the time when the shut-off valve 23 of the bypass line 15 is opened. The time zone for measuring the pressure detection enthalpy is ideally a time zone in which the pressure rise has been stabilized, for example, a time zone of τ 1 to T2. In the same manner as in the above-described embodiment, the predetermined timing set by the second timing setting unit 69 in the use control unit 6 is the same as the initial value of the above-described pressure increase rate after each heat treatment is completed. The pressure at the pressure detecting unit 71 is detected by the same set flow rate, and the pressure increase rate is obtained by the flow rate counter 72, and then the pressure increase rate is sent to the second storage unit 67 of the control unit 6. The control unit 6 compares the pressure increase rate with the initial enthalpy that has been previously obtained, and corrects the set voltage c -27 - (24) 1305372 based on the comparison result. The means uses the line on the upstream side of the bypass line 15. The volume, based on the corresponding inflow flow and pressure rise when the gas flows into the line, directly measures the actual flow rate as a change in pressure. The rate of increase in pressure is, for example, faster than that of the initial period. When 5% (large), the traffic is also fast. 5%. In other words, 'the flow rate is 4V faster than the predetermined flow rate for the set voltage corresponding to the set flow rate of 400 cc/min. 5 %. Therefore, the second set voltage correction unit 68' in the control unit 6 multiplies the set flow rate of the mass flow controller 3, that is, 40 Occ/min, by the increase amount (the faster amount) of the pressure increase rate. . 5% > and calculate the offset "400ccx 2. 5% (0. 025) = 10cc. As a result of this calculation, the offset was calculated to be 10 cc. If the offset 値(1 Occ ) is divided by the set flow rate (4 〇〇 cc ) and multiplied by the set voltage (4 V ) corresponding to the set flow rate, the corresponding offset is obtained. The part of the output voltage 値 △ £ "10cc / 400c. Cx 4V = 0. 1V". Fig. 8 is a state diagram showing an offset change. The solid line (!) indicates a map of the span at the time of correction (change in output with respect to the flow rate); the broken line (2) indicates a map of the span from the span offset at the time of correction. The output voltage calculated based on the above calculation 値△ E = 0. 1 V, from the set flow rate of the corresponding mass flow controller 3 set to 4 0 0 c c 4. 0 V is deducted (4 V -0. 1V = 3. 9V) ' When the next set flow rate is 400cc, the output voltage is 3 · 9 V. The flow offset relative to the 80% position of the maximum flow can be corrected. Therefore, the flow rate is not shifted, and the processing gas having a flow rate like the flow rate can be supplied to the reaction tube 1 1 to perform processing on the substrate. -28- (25) 1305372 Furthermore, in this example, although the output voltage 値 when the gas flow rate is 0 is 0 V, the output voltage 値 when the gas flow rate is 値 is not 0 V (that is, the occurrence of defects) In the case of drift, the set voltage corresponding to the set flow rate of 400 cc is the voltage corrected by the previous embodiment. For example, the change in output voltage at 0 is +0.  If 1 V ′ is used to compensate for the amount of drift, the set voltage of the corresponding set flow rate of 4 0 0 c c in the previous embodiment is 3 · 9 V. At this time, the output voltage 値 Δ E of the corresponding offset due to the span change becomes 10 cc / 400 cc X 3. 9V = 0. 09 7 5V. According to the present embodiment, since the setting signal is not adjusted instead of adjusting the mass flow controller 3, the operator does not need to enter the maintenance room of the mass flow controller 3 to perform the work, and does not need to stop the line. Further, the mass flow controller 3 has a proportional relationship between the set flow rate and the output voltage. However, for a plurality of set flow rates (for example, three points when the flow rate is 150 cc, 300 cc, and the maximum flow rate is 500 cc), the pressure increase rate is grasped by the above method. In the case where the pressure increase rate at each set flow rate is different depending on the respective reference turns, it is preferable that the relationship between the flow rate and the output voltage is corrected by the program in the control unit 6 to be, for example, the ninth. In the case of the curve indicated by the broken line in the figure, the set voltage corresponding to the set flow rate is output from the set voltage output unit 61 based on the curve '. In addition, as described above, even when the flow rate counter 7.2 is used, the difference between the initial pressure and the pressure increase rate at the time of monitoring becomes a certain amount or more (for example, the output converted from the difference in the pressure increase rate) Electric -29- (26) 1305372 When the offset of the pressure exceeds the critical threshold, it can also be used to notify the operator of an alarm. Further, after the set voltage is corrected as described above using the pressure rise rate (for example, 4 V is corrected to 3. After 9 V, the same process can be repeated (the process of determining the pressure increase rate to correct the set voltage), and the flow rate of the mass flow controller 3 is set again by the set voltage to obtain a reference for the pressure increase rate. The amount of change until 变化 converges to within the specified 値 (eg, 1%). In the above description, the change in the span is compensated based on the pressure increase rate. However, it is also possible to use the pressure drop rate instead of the pressure increase rate. In this case, the shut-off valve 44 on the upstream side of the mass flow controller 3 is opened, the shut-off valve 21 is closed, and the shut-off valves 42, 22, 23 are opened. That is, the vent gas system is set to be vented from the bypass line 15 via the mass flow controller 3. Moreover, the mass flow controller 3 is set to a prescribed flow rate. In this state, the shutoff valve 44 is closed, the supply of the exhaust gas is stopped, and the pressure drop rate of the predetermined time zone is obtained based on the time series data of the pressure 得到 obtained by the pressure detecting unit 71. This 値 can be used in the same manner as the aforementioned pressure increase rate. Further, it is also possible to replace the exhaust gas, and the switch valve 4 1 causes the process gas to flow. Further, the present invention is not limited to the case where the gas flows through the mass flow controller 3, and for example, it may be applied to a liquid such as an organic liquid source flowing through the mass flow controller 3, and on the downstream side thereof by a gasifier. It is vaporized and supplied to the reaction vessel. Furthermore, it is also possible to adjust the flow rate of the liquid such as the coating liquid by the flow controller of the mass -30 - (27) 1305372 when the coating liquid such as a resist is applied onto the substrate. Case. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing the configuration of a semiconductor manufacturing apparatus according to an embodiment of the present invention. Fig. 2 is a block diagram showing the configuration of the processing unit and the relationship between the processing unit and the mass flow controller. Figure 3 is a block diagram showing the construction of a mass flow controller. Fig. 4 is a flow chart showing a method of correcting the set voltage of the mass flow controller in the embodiment of the present invention. Figure 5 is a graph showing the relationship between the set voltage and the flow rate of the mass flow controller. Fig. 6 is a block diagram showing the configuration of a semiconductor manufacturing apparatus in another embodiment of the present invention. Fig. 7 is a characteristic diagram showing a state in which the pressure 値 of the pressure detecting portion provided in the bypass line rises. Fig. 8 is a characteristic diagram showing a change in the inclination of a graph indicating the relationship between the actual flow rate of the mass flow controller and the output voltage. Fig. 9 is a characteristic diagram showing a change in the relationship between the actual flow rate of the mass flow controller and the output voltage. [Description of main component symbols] From: Wafer-31 - (28) 1305372 1 : Heat treatment unit 2: Gas supply line 3: Mass flow controller 3 a : Main flow unit 3b: Flow unit 5: Signal conversion unit 6: Control unit 6a: data bus U: reaction tube 1 2: holding tool 1 3 : exhaust pipe 14 : vacuum pump 15 : bypass line 44 : valve (shut-off valve) valve) thermal resistance wire) thermal resistance wire) 21 , 22, 23, 41 ' 42 ' 3 0 : bypass section 3 1 : flow rate detecting section 3 2 : comparison section (regulating section) 3 3 : control valve (flow regulating plug 34: upstream side sensor (i 3 5 : downstream side sensor (Spring 36: Bridge circuit 3 7 : Amplifier circuit 40 : Gas supply source 4 5 : Exhaust gas supply source -32- (29) (29)1305372

5 1 :顯示部(操作面板) 60 : CPU 6 1 :設定電壓輸出部 6 2 :第1記憶部 63 :第1設定電壓補正部 64:第1時序設定部 6 5 :警報用比較電路部 6 6 :警報產生部 6 7 :第2記憶部 6 8 :第2設定電壓補正部 69:第2時序設定部 7 1 :壓力檢測部 7 2 :流量基準計 72a :壓力上升率運算手段5 1 : Display unit (operation panel) 60 : CPU 6 1 : Setting voltage output unit 6 2 : First memory unit 63 : First set voltage correction unit 64 : First timing setting unit 6 5 : Alarm comparison circuit unit 6 6 : Alarm generation unit 6 7 : Second storage unit 6 8 : Second set voltage correction unit 69 : Second timing setting unit 7 1 : Pressure detection unit 7 2 : Flow rate counter 72a : Pressure increase rate calculation means

Claims (1)

1305372 ⑴ 十、申請專利範圍 1. 一種半導體製造裝置,其特徵爲: 具備:處理部,此處理部係用來處理基板而在基板上 製造半導體裝置; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述淪體供給管 路中,根據前述設定電壓,調整前述流體的流量; 第1關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的上游側;及 第2關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的下游側; 前述質量流量控制器,具有: 檢測出前述流體的實際流量而輸出對應的檢測電壓之 檢測部、比較前述設定電壓和前述檢測電壓而輸出操作訊 號之比較部、及根據前述操作訊號來調整流體的流量之流 量調整部; 而且,設置記憶部,此記憶部記憶在前述第I關斷閥 和第2關斷閥被關閉時之從前述質量流量控制器的前述檢 測部輸出的檢測電壓; 且設置設定電壓補正部,此設定電壓補正部根據被記 憶在前述記憶部中的檢測電壓,補正前述設定電壓,使得 -34 - 1305372 (2) 可以補償前述流體的實際流量爲〇時的檢測電壓的變化。 2. 如申請專利範圍第1項所述的半導體製造裝置, 其中更具備時序設定手段,此時序設定手段係用來設定: 前述第1關斷閥和第2關斷閥被關閉,前述記憶部記憶從 前述質量流量控制器的前述檢測部輸出的檢測電壓的時 序。 3. 如申請專利範圍第1項或第2項所述的半導體製 造裝置,其中更具備警報產生手段,此警報產生手段在前 述檢測電壓偏離預先設定的臨界値的時候,發出警報。 4. 一種半導體製造裝置,其特徵爲具備: 處理部,此處理部係用來在規定的真空環境下,處理 基板而在基板上製造半導體裝置; 被連接至前述處理部之真空排氣管路; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 旁通管路,此旁通管路使前述處理部旁通,而從前述 流體供給管路到達前述真空排氣管路; 在前述旁通管路中,由上游側依序地設置之壓力檢測 部和第3關斷閥;及 設定電壓補正部,此設定電壓補正部,根據: -35- 1305372 (3) 於規定的時序,在將前述旁通管路真空排氣之後,關 閉前述第3關斷閥,將前述質量流量控制器設定成規定的 流量,再經由前述流體供給管路將流體供給前述旁通管路 時之藉由前述壓力檢測部所檢測出來的壓力檢測値之規定 時間帶的上升率;及 將前述旁通管路真空排氣之後,關閉前述第3關斷 閥,將被校正成基準狀態的前述質量流量控制器設定成規 定的流量,再經由前述流體供給管路將流體供給前述旁通 管路時之藉由前述壓力檢測部所檢測出來的壓力檢測値之 規定時間帶的基準上升率之比較結果,來補正設定電壓。 5 .如申請專利範圍第4項所述的半導體製造裝置, 其中前述質量流量控制器,具有: 檢測出前述流體的實際流量而輸出對應的檢測電壓之 檢測部、比較前述設定電壓和前述檢測電壓而輸出操作訊 號之比較部、及根據前述操作訊號來調整流體的流量之流 量調整部; 而且,前述設定電壓補正部,可以補正前述設定電 壓,而能補償檢測電壓的跨距的變化。 6.如申請專利範圍第4項所述的半導體製造裝置, 其中前述設定電壓補正部,係根據將前述質量流量控制器 設定成複數個規定的流量所得到的複數個上升率、及將被 校正成基準狀態之前述質量流量控制器設定成複數個規定 的流量所得到的複數個上升率之比較結果,來補正設定電 壓。 -36- (4) 1305372 7. 一種半導體製造裝置,其特徵爲具備: 處理部,此處理部係用來在規定的真空環境下,處理 基板而在基板上製造半導體裝置; 被連接至前述處理部之真空排氣管路; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 旁通管路,此旁通管路使前述處理部旁通,而從前述 流體供給管路到達前述真空排氣管路; 第1關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的上游側; 被設置在前述旁通管路中的壓力檢測部;及 設定電壓補正部,此設定電壓補正部,根據: 於規定的時序,在一邊將前述旁通管路真空排氣一邊 將前述質量流量控制器設定成規定的流量,再經由前述流 體供給管路將流體供給前述旁通管路之狀態下,前述第1 關斷閥關閉時之藉由前述壓力檢測部所檢測出來的壓力檢 測値之規定時間帶的下降率;及 在一邊將前述旁通管路真空排氣一邊將被校正成基準 狀態的前述質量流量控制器設定成規定的流量,再經由前 述流體供給管路將流體供給前述旁通管路之狀態下,前述 -37 - 1305372 (5) 第1關斷閥關閉時之藉由前述壓力檢測部所檢測出來的壓 力檢測値之規定時間帶的基準下降率之比較結果,來補正 設定電壓。 8. 如申請專利範圍第7項所述的半導體製造裝置, 其中前述質量流量控制器,具有: 檢測出前述流體的實際流量而輸出對應的檢測電壓之 檢測部、比較前述設定電壓和前述檢測電壓而輸出操作訊 號之比較部、及根據前述操作訊號來調整流體的流量之流 量調整部; 而且,前述設定電壓補正部,可以補正前述設定電 壓,而能補償檢測電壓的跨距的變化。 9. 如申請專利範圍第7項所述的半導體製造裝置, 其中前述設定電壓補正部,係根據將前述質量流量控制器 設定成複數個規定的流量所得到的複數個下降率、及將被 校正成基準狀態之前述質量流量控制器設定成複數個規定 的流量所得到的複數個下降率之比較結果,來補正設定電 壓。 1 0 . —種半導體製造方法,係針對使用半導體製造裝 置的半導體製造方法,而該半導體製造裝置的特徵爲具 備: 處理部,此處理部係用來處理基板而在基板上製造半 導體裝置; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; -38- (6) 1305372 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 第1關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的上游側;及 第2關斷閥,此關斷閥被設置在前述流體供給管路中 的前述質量流量控制器的下游側; 前述質量流量控制器,具有= 檢測出前述流體的實際流量而輸出對應的檢測電壓之 檢測部、比較前述設定電壓和前述檢測電壓而輸出操作訊 號之比較部、及根據前述操作訊號來調整流體的流量之流 量調整部; 而且,設置記憶部,此記憶部記憶在前述第1關斷閥 和第2關斷閥被關閉時之從前述質量流量控制器的前述檢 測部輸出的檢測電壓; 且設置設定電壓補正部,此設定電壓補正部根據被記 憶在前述記憶部中的檢測電壓,補正前述設定電壓,使得 可以補償前述流體的實際流量爲〇時的檢測電壓的變化; 而此半導體製造方法的特徵係具備: 關閉前述第1關斷閥和前述關第2關斷閥的工程; 藉由前述記憶部,在前述第1關斷閥和前述第2關斷 閥被關閉時,記憶從前述質量流量控制器的前述檢測部輸 出的檢測電壓之工程;及 -39- 1305372 ⑺ 藉由前述設定電壓補正部,根據被記憶在前述記憶部 中的檢測電壓,補正前述設定電壓,使得可以補償前述流 體的實際流量爲〇時的檢測電壓的變化之工程。 1 1 .如申請專利範圍第1 〇項所述的半導體製造方 法,其中更具備:在前述檢測電壓偏離預先設定的臨界値 的時候,發出警報的工程。 12. 一種半導體製造方法,係針對使用半導體製造裝 置的半導體製造方法,而該半導體製造裝置的特徵爲具 備: 處理部,此處理部係用來在規定的真空環境下,處理 基板而在基板上製造半導體裝置; 被連接至前述處理部之真空排氣管路; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; 旁通管路,此旁通管路使前述處理部旁通,而從前述 流體供給管路到達前述真空排氣管路; 在前述旁通管路中,由上游側依序地設置之壓力檢測 部和第3關斷閥;及 設定電壓補正部,此設定電壓補正部,根據: 於規定的時序,在將前述旁通管路真空排氣之後,關 -40- (8) 1305372 閉前述第3關斷閥,將前述質量流量控制器設定成規定的 流量,再經由前述流體供給管路將流體供給前述旁通管路 時之藉由前述壓力檢測部所檢測出來的壓力檢測値之規定 時間帶的上升率;及 將前述旁通管路真空排氣之後,關閉前述第3關斷 閥,將被校正成基準狀態的前述質量流量控制器設定成規 定的流量,再經由前述流體供給管路將流體供給前述旁通 管路時之藉由前述壓力檢測部所檢測出來的壓力檢測値之 規定時間帶的基準上升率之比較結果,來補正設定電壓; 而此半導體製造方法的特徵係具備: 求出在將前述旁通管路真空排氣之後,關閉前述第3 關斷閥,將被校正成基準狀態的前述質量流量控制器設定 成規定的流量,再經由前述流體供給管路將流體供給前述 旁通管路時之藉由前述壓力檢測部所檢測出來的壓力檢測 値之規定時間帶的基準上升率之工程; 求出於規定的時序,在將前述旁通管路真空排氣之 後,關閉前述第3關斷閥,將前述質量流量控制器設定成 規定的流量,再經由前述流體供給管路將流體供給前述旁 通管路時之藉由前述壓力檢測部所檢測出來的壓力檢測値 之規定時間帶的上升率之工程;及 根據前述基準上升率和前述上升率的比較結果,補正 設定電壓的工程。 1 3 .如申請專利範圍第1 2項所述的半導體製造方 法,其中前述質量流量控制器,具有: -41 - (9) 1305372 檢測出前述流體的實際流量而輸出對應的檢測電壓之 檢測部、比較前述設定電壓和前述檢測電壓而輸出操作訊 號之比較部、及根據前述操作訊號來調整流體的流量之流 量調整部; 而且,前述補正設定電壓的工程,係能補償檢測電壓 的跨距的變化之補正前述設定電壓的工程。 1 4 .如申請專利範圍第1 2項所述的半導體製造方 法,其中前述補正設定電壓的工程,係根據將前述質量流 量控制器設定成複數個規定的流量所得到的複數個上升 率、及將被校正成基準狀態之前述質量流量控制器設定成 複數個規定的流量所得到的複數個上升率之比較結果,來 補正設定電壓之工程。 1 5 . —種半導體製造方法,係針對使用半導體製造裝 置的半導體製造方法,而該半導體製造裝置的特徵爲具 備: 處理部,此處理部係用來在規定的真空環境下,處理 基板而在基板上製造半導體裝置; 被連接至前述處理部之真空排氣管路; 流體供給管路,此管路係用來將前述基板的處理所必 要的流體供給至前述處理部; 設定電壓輸出部,此設定電壓輸出部輸出對應前述流 體的設定流量之設定電壓; 質量流量控制器,此控制器被設置在前述流體供給管 路中,根據前述設定電壓,調整前述流體的流量; -42 - (10) 1305372 旁通管路,此旁通管路使前述處理部旁通,而 流體供給管路到達前述真空排氣管路; 第1關斷閥,此關斷閥被設置在前述流體供給 的前述質量流量控制器的上游側; 被設置在前述旁通管路中的壓力檢測部;及 設定電壓補正部,此設定電壓補正部,根據: 於規定的時序,在一邊將前述旁通管路真空排 將前述質量流量控制器設定成規定的流量,再經由 體供給管路將流體供給前述旁通管路之狀態下,前 關斷閥關閉時之藉由前述壓力檢測部所檢測出來的 測値之規定時間帶的下降率;及 在一邊將前述旁通管路真空排氣一邊將被校正 狀態的前述質量流量控制器設定成規定的流量,再 述流體供給管路將流體供給前述旁通管路之狀態下 第1關斷閥關閉時之藉由前述壓力檢測部所檢測出 力檢測値之規定時間帶的基準下降率之比較結果, 設定電壓; 而此半導體製造方法的特徵係具備: 求出在一邊將前述旁通管路真空排氣一邊將被 基準狀態的前述質量流量控制器設定成規定的流量 由前述流體供給管路將流體供給前述旁通管路之狀 前述第1關斷閥關閉時之藉由前述壓力檢測部所檢 的壓力檢測値之規定時間帶的基準下降率之工程; 求出於規定的時序,在一邊將前述旁通管路真 從前述 管路中 氣一邊 前述流 述第1 壓力檢 成基準 經由前 ,前述 來的壓 來補正 校正成 ,再經 態下, 測出來 空排氣 -43- (11) 1305372 一邊將前述質量流量控制器設定成規定的流 述流體供給管路將流體供給前述旁通管路之 第1關斷閥關閉時之藉由前述壓力檢測部所 力檢測値之規定時間帶的下降率之工程;及 根據前述基準下降率和前述下降率的比 設定電壓之工程。 16.如申請專利範圍第1 5項所述的: 法,其中前述質量流量控制器,具有: 檢測出前述流體的實際流量而輸出對應 檢測部、比較前述設定電壓和前述檢測電壓 號之比較部、及根據前述操作訊號來調整流 量調整部; 而且,前述補正設定電壓的工程,係能 的跨距的變化之補正前述設定電壓的工程。 1 7 .如申請專利範圍第1 5項所述的: 法,其中前述補正設定電壓的工程,係根據 量控制器設定成複數個規定的流量所得到I 率、及將被校正成基準狀態之前述質量流量 複數個規定的流量所得到的複數個下降率之 補正設定電壓之工程。 量,再經由前 狀態下,前述 檢測出來的壓 較結果,補正 ΐ導體製造方 的檢測電壓之 而輸出操作訊 體的流量之流 補償檢測電壓 尹導體製造方 將前述質量流 5勺複數個下降 控制器設定成 比較結果,來 -44 -1305372 (1) X. Patent application scope 1. A semiconductor manufacturing apparatus characterized by comprising: a processing unit for processing a substrate to fabricate a semiconductor device on a substrate; and a fluid supply line for the pipeline Supplying a fluid necessary for processing the substrate to the processing unit; setting a voltage output unit that outputs a set voltage corresponding to a set flow rate of the fluid; and a mass flow controller that is disposed in the body In the supply line, the flow rate of the fluid is adjusted according to the set voltage; the first shut-off valve is disposed on the upstream side of the mass flow controller in the fluid supply line; and the second shut-off a valve, the shut-off valve is disposed on a downstream side of the mass flow controller in the fluid supply line; the mass flow controller has: a detecting unit that detects an actual flow rate of the fluid and outputs a corresponding detection voltage, Comparing the set voltage and the detected voltage to output a comparison portion of the operation signal, and according to the operation a flow rate adjusting unit that adjusts a flow rate of the fluid; and a memory unit that stores the output from the detecting unit of the mass flow controller when the first shutoff valve and the second shutoff valve are closed a detection voltage; and a set voltage correction unit that corrects the set voltage based on the detection voltage stored in the memory unit such that -34 - 1305372 (2) can compensate for the actual flow rate of the fluid being 〇 The detection voltage changes. 2. The semiconductor manufacturing apparatus according to claim 1, further comprising timing setting means for setting: the first shut-off valve and the second shut-off valve are closed, and the memory unit The timing of the detected voltage output from the aforementioned detecting portion of the mass flow controller is memorized. 3. The semiconductor manufacturing apparatus according to claim 1 or 2, further comprising an alarm generating means for issuing an alarm when the detection voltage deviates from a predetermined threshold. A semiconductor manufacturing apparatus comprising: a processing unit for processing a substrate in a predetermined vacuum environment to fabricate a semiconductor device on the substrate; and a vacuum exhaust line connected to the processing unit a fluid supply line for supplying a fluid necessary for processing the substrate to the processing unit; a set voltage output unit that outputs a set voltage corresponding to a set flow rate of the fluid; a controller, the controller being disposed in the fluid supply line, adjusting a flow rate of the fluid according to the set voltage; a bypass line that bypasses the processing unit from the fluid supply tube The road reaches the vacuum exhaust line; in the bypass line, a pressure detecting unit and a third shut-off valve that are sequentially provided from the upstream side; and a set voltage correcting unit, the set voltage correcting unit, according to: 35- 1305372 (3) After the vacuum is exhausted from the bypass line at the specified timing, the third shut-off valve is closed to the mass flow. The controller sets a predetermined flow rate, and when the fluid is supplied to the bypass line via the fluid supply line, the rate of rise of the predetermined time zone of the pressure detected by the pressure detecting unit is detected; After the vacuum is exhausted through the line, the third shut-off valve is closed, the mass flow controller corrected to the reference state is set to a predetermined flow rate, and when the fluid is supplied to the bypass line via the fluid supply line The set voltage is corrected by the comparison result of the reference rise rate of the predetermined time zone of the pressure detection 检测 detected by the pressure detecting unit. The semiconductor manufacturing apparatus according to claim 4, wherein the mass flow controller has: a detecting unit that detects an actual flow rate of the fluid and outputs a corresponding detection voltage, compares the set voltage, and the detection voltage And a comparison unit that outputs the operation signal and a flow rate adjustment unit that adjusts a flow rate of the fluid based on the operation signal; and the set voltage correction unit can correct the set voltage and compensate for a change in the span of the detection voltage. 6. The semiconductor manufacturing apparatus according to claim 4, wherein the set voltage correcting unit is a plurality of rising rates obtained by setting the mass flow controller to a plurality of predetermined flow rates, and is to be corrected. The mass flow controller in the reference state sets a comparison result of a plurality of rising rates obtained by a plurality of predetermined flow rates to correct the set voltage. -36- (4) 1305372 7. A semiconductor manufacturing apparatus comprising: a processing unit for processing a substrate in a predetermined vacuum environment to fabricate a semiconductor device on the substrate; and being connected to the processing a vacuum exhaust line; a fluid supply line for supplying a fluid necessary for processing the substrate to the processing unit; and a set voltage output unit for outputting a setting corresponding to the fluid a set voltage of the flow rate; a mass flow controller, the controller is disposed in the fluid supply line, and adjusts a flow rate of the fluid according to the set voltage; a bypass line, the bypass line bypasses the processing unit And from the aforementioned fluid supply line to the aforementioned vacuum exhaust line; a first shut-off valve, the shut-off valve being disposed on the upstream side of the mass flow controller in the fluid supply line; a pressure detecting unit in the through pipe; and a set voltage correcting unit, wherein the set voltage correcting unit is based on a predetermined timing The bypass line is evacuated while the mass flow controller is set to a predetermined flow rate, and the fluid is supplied to the bypass line via the fluid supply line, and the first shut-off valve is closed. The pressure detecting unit detects a lowering rate of the predetermined time zone of the pressure detecting unit; and sets the mass flow controller corrected to the reference state to a predetermined flow rate while evacuating the bypass line. Further, in the state in which the fluid is supplied to the bypass line via the fluid supply line, the pressure detecting unit detected by the pressure detecting unit when the first shut-off valve is closed is closed as described above -37 - 1305372 (5) The set voltage is corrected by comparing the reference rate of the time zone. 8. The semiconductor manufacturing apparatus according to claim 7, wherein the mass flow controller has: a detection unit that detects an actual flow rate of the fluid and outputs a corresponding detection voltage, compares the set voltage, and the detection voltage And a comparison unit that outputs the operation signal and a flow rate adjustment unit that adjusts a flow rate of the fluid based on the operation signal; and the set voltage correction unit can correct the set voltage and compensate for a change in the span of the detection voltage. 9. The semiconductor manufacturing apparatus according to claim 7, wherein the set voltage correcting unit is a plurality of falling rates obtained by setting the mass flow controller to a plurality of predetermined flow rates, and is to be corrected. The mass flow controller in the reference state sets a comparison result of a plurality of falling rates obtained by a plurality of predetermined flow rates to correct the set voltage. A semiconductor manufacturing method for a semiconductor manufacturing method using a semiconductor manufacturing apparatus, characterized in that the semiconductor manufacturing apparatus includes a processing unit for processing a substrate to fabricate a semiconductor device on a substrate; a supply line for supplying a fluid necessary for processing the substrate to the processing unit; -38- (6) 1305372 a set voltage output unit that outputs a set flow rate corresponding to the fluid a voltage setting controller, the controller is disposed in the fluid supply line, and adjusts a flow rate of the fluid according to the set voltage; a first shut-off valve, the shut-off valve is disposed in the fluid supply line The upstream side of the foregoing mass flow controller; and a second shut-off valve disposed on a downstream side of the mass flow controller in the fluid supply line; the mass flow controller having = detection a detection unit that outputs a corresponding detection voltage by the actual flow rate of the fluid, and compares the set voltage and the front a comparison unit that outputs a voltage to detect an operation signal, and a flow rate adjustment unit that adjusts a flow rate of the fluid based on the operation signal; and a memory unit that stores the first shutoff valve and the second shutoff valve are closed a detection voltage outputted from the detection unit of the mass flow controller; and a set voltage correction unit that corrects the set voltage based on a detection voltage stored in the memory unit so that the aforementioned compensation can be compensated The actual flow rate of the fluid is a change in the detection voltage when the enthalpy is ;; and the semiconductor manufacturing method is characterized by: a process of closing the first shut-off valve and the closing of the second shut-off valve; 1 when the shut-off valve and the second shut-off valve are closed, memorizing the detection voltage output from the detecting portion of the mass flow controller; and -39-1305372 (7) by the set voltage correcting portion, according to the memory The detection voltage in the memory portion corrects the set voltage so that the actual flow rate of the fluid can be compensated for The engineering of the change in the detection voltage when 〇. The semiconductor manufacturing method according to the first aspect of the invention, further comprising: an operation for issuing an alarm when the detection voltage deviates from a predetermined threshold 。. 12. A semiconductor manufacturing method for a semiconductor manufacturing method using a semiconductor manufacturing apparatus, characterized in that the semiconductor manufacturing apparatus includes a processing unit for processing a substrate on a substrate in a predetermined vacuum environment. Manufacturing a semiconductor device; a vacuum exhaust line connected to the processing unit; a fluid supply line for supplying a fluid necessary for processing the substrate to the processing unit; setting a voltage output unit, the setting The voltage output unit outputs a set voltage corresponding to the set flow rate of the fluid; the mass flow controller is disposed in the fluid supply line, and adjusts a flow rate of the fluid according to the set voltage; a bypass line The passage portion bypasses the processing portion, and reaches the vacuum exhaust line from the fluid supply line; and the pressure detecting portion and the third shut-off valve that are sequentially disposed from the upstream side in the bypass line And setting the voltage correction unit, the set voltage correction unit, according to: at a predetermined timing, the bypass tube is After the vacuum is exhausted, the off--40-(8) 1305372 is closed to the third shut-off valve, the mass flow controller is set to a predetermined flow rate, and the fluid is supplied to the bypass line via the fluid supply line. The rate of increase of the predetermined time zone of the pressure detected by the pressure detecting unit; and the vacuuming of the bypass line, the third shutoff valve is closed, and the reference state is corrected. Comparison of the reference rate of increase of the predetermined time zone of the pressure detection 检测 detected by the pressure detecting unit when the mass flow controller is set to a predetermined flow rate and the fluid is supplied to the bypass line via the fluid supply line As a result, the set voltage is corrected; and the semiconductor manufacturing method is characterized in that: the mass flow rate control is performed after the third bypass valve is closed after the bypass line is evacuated and the third shutoff valve is closed. The device is set to a predetermined flow rate, and is detected by the pressure detecting portion when the fluid is supplied to the bypass line via the fluid supply line. The pressure rise detection is performed on the reference rise rate of the predetermined time zone. After the vacuum is exhausted from the bypass line at a predetermined timing, the third shut-off valve is closed, and the mass flow controller is set. a predetermined flow rate, and a process of detecting a rising rate of a predetermined time zone of the pressure detected by the pressure detecting unit when the fluid is supplied to the bypass line via the fluid supply line; and rising according to the reference The comparison between the rate and the aforementioned rate of rise corrects the set voltage. The semiconductor manufacturing method according to claim 12, wherein the mass flow controller has: -41 - (9) 1305372 a detecting portion that detects an actual flow rate of the fluid and outputs a corresponding detection voltage a comparison unit that outputs the operation signal by comparing the set voltage and the detection voltage, and a flow rate adjustment unit that adjusts a flow rate of the fluid according to the operation signal; and the correction of the set voltage is capable of compensating for a span of the detection voltage. The correction corrects the aforementioned setting voltage. The semiconductor manufacturing method according to claim 12, wherein the step of correcting the set voltage is based on a plurality of rising rates obtained by setting the mass flow controller to a plurality of predetermined flow rates, and The process of correcting the set voltage by setting the comparison result of the plurality of rising rates obtained by the mass flow controller corrected to the reference state to a plurality of predetermined flow rates. A semiconductor manufacturing method is directed to a semiconductor manufacturing method using a semiconductor manufacturing apparatus, characterized in that the semiconductor manufacturing apparatus includes a processing unit for processing a substrate in a predetermined vacuum environment. a semiconductor device is fabricated on the substrate; a vacuum exhaust line connected to the processing unit; a fluid supply line for supplying a fluid necessary for processing the substrate to the processing unit; and a voltage output unit; The set voltage output unit outputs a set voltage corresponding to the set flow rate of the fluid; the mass flow controller is disposed in the fluid supply line, and adjusts the flow rate of the fluid according to the set voltage; -42 - (10 1305372 a bypass line that bypasses the processing portion and the fluid supply line reaches the vacuum exhaust line; a first shut-off valve that is disposed in the aforementioned fluid supply An upstream side of the mass flow controller; a pressure detecting portion provided in the bypass line; and a set voltage correcting portion The set voltage correcting unit sets the mass flow controller to a predetermined flow rate while the bypass line vacuum row is set at a predetermined timing, and supplies the fluid to the bypass line via the body supply line. In the state, the lowering rate of the predetermined time zone of the test by the pressure detecting unit when the front shut-off valve is closed; and the aforementioned quality of the corrected state when the bypass line is vacuum-exhausted The flow rate controller is set to a predetermined flow rate, and the predetermined time zone in which the force detecting unit detects the force detection time when the first shut-off valve is closed in a state where the fluid supply line supplies the fluid to the bypass line is described. The comparison result of the reference reduction rate sets a voltage; and the semiconductor manufacturing method is characterized in that: the mass flow controller in the reference state is set to a predetermined flow rate while the bypass line is evacuated while being evacuated. When the fluid supply line supplies the fluid to the bypass line, the first shut-off valve is closed, and the pressure detecting unit detects The process of the reference descent rate of the predetermined time zone of the pressure detection ; is obtained at a predetermined timing, and the bypass pipe is actually passed from the pipe in the pipeline before the first pressure test reference is described. The pressure is corrected to be corrected, and in the state of the air, the air exhaust gas is measured - 43- (11) 1305372. The mass flow controller is set to a prescribed flow fluid supply line to supply the fluid to the bypass line. When the first shut-off valve is closed, the pressure detecting unit detects the lowering rate of the predetermined time zone by the pressure detecting unit; and sets the voltage according to the ratio of the reference decreasing rate to the decreasing rate. 16. The method according to claim 15, wherein the mass flow controller has: a comparison portion that detects an actual flow rate of the fluid and outputs a corresponding detecting portion, and compares the set voltage and the detected voltage number. And adjusting the flow rate adjustment unit based on the operation signal; and correcting the set voltage, the process of correcting the set voltage by changing the span of the energy. 1 7 . The method according to claim 15 , wherein the step of correcting the set voltage is based on an I rate set by the quantity controller to a plurality of predetermined flows, and is corrected to a reference state. The process of correcting the set voltage of the plurality of falling rates obtained by the plurality of predetermined flow rates of the mass flow rate. In the pre-existing state, the pressure detected by the above-mentioned detected voltage comparison result is corrected by the detection voltage of the conductor of the conductor, and the flow rate of the output operation body is compensated for the detection voltage. The Yin conductor manufacturer reduces the mass flow by 5 scoops. The controller is set to compare the results to -44 -
TW093121383A 2003-07-16 2004-07-16 Semiconductor manufacturing device and semiconductor manufacturing method TW200504822A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197936A JP3872776B2 (en) 2003-07-16 2003-07-16 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
TW200504822A TW200504822A (en) 2005-02-01
TWI305372B true TWI305372B (en) 2009-01-11

Family

ID=34074361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093121383A TW200504822A (en) 2003-07-16 2004-07-16 Semiconductor manufacturing device and semiconductor manufacturing method

Country Status (7)

Country Link
US (1) US7510884B2 (en)
EP (1) EP1653312A4 (en)
JP (1) JP3872776B2 (en)
KR (1) KR101116979B1 (en)
CN (1) CN100462887C (en)
TW (1) TW200504822A (en)
WO (1) WO2005008350A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718274B2 (en) * 2005-08-25 2011-07-06 東京エレクトロン株式会社 Semiconductor manufacturing apparatus, flow correction method for semiconductor manufacturing apparatus, program
JP2007214406A (en) * 2006-02-10 2007-08-23 Hitachi Metals Ltd Semiconductor manufacturing apparatus mounted with mass-flow-rate controller having flow-rate testing function
US7869888B2 (en) * 2006-05-31 2011-01-11 Tokyo Electron Limited Information processing apparatus, semiconductor manufacturing system, information processing method, and storage medium
JP5134841B2 (en) * 2007-03-16 2013-01-30 Ckd株式会社 Gas supply unit
JP2009004479A (en) * 2007-06-20 2009-01-08 Panasonic Corp Method and device for monitoring device state
JP5459895B2 (en) * 2007-10-15 2014-04-02 Ckd株式会社 Gas shunt supply unit
DE102007062977B4 (en) * 2007-12-21 2018-07-19 Schott Ag Process for the production of process gases for the vapor phase separation
JP2010169657A (en) * 2008-12-25 2010-08-05 Horiba Stec Co Ltd Mass flow meter and mass flow controller
JP5558871B2 (en) * 2010-03-15 2014-07-23 株式会社ダイヘン Arc welding equipment
JP2012033150A (en) * 2010-06-30 2012-02-16 Toshiba Corp Mass flow controller, mass flow controller system, substrate processing apparatus and gas flow rate adjustment method
JP6047308B2 (en) * 2012-05-28 2016-12-21 日精エー・エス・ビー機械株式会社 Resin container coating equipment
RU2763434C2 (en) 2013-06-19 2021-12-29 ФОНТЕМ ХОЛДИНГС 4 Би.Ви. Device and method for measuring mass air flow
JP6216601B2 (en) * 2013-10-09 2017-10-18 旭有機材株式会社 Flow control device
JP6246606B2 (en) * 2014-01-31 2017-12-13 株式会社Screenホールディングス Substrate processing equipment
KR20160012302A (en) * 2014-07-23 2016-02-03 삼성전자주식회사 method for manufacturing substrate and manufacturing apparatus used the same
KR102628015B1 (en) * 2017-12-01 2024-01-23 삼성전자주식회사 mass flow controller, manufacturing apparatus of semiconductor device and maintenance method of the same
KR102101068B1 (en) * 2017-12-11 2020-04-14 조북룡 Mass Flow Controller and A System for Controlling a Mass Flow Rate
KR102066776B1 (en) * 2017-12-11 2020-01-15 임용일 An Integrated Mass Flow Controller Optimizing System for the Enhancement of Controlling Mass Flow Rate
JP7130524B2 (en) * 2018-10-26 2022-09-05 東京エレクトロン株式会社 CONTROLLER FOR SUBSTRATE PROCESSING APPARATUS AND CONTROL METHOD FOR SUBSTRATE PROCESSING APPARATUS
CN113552909A (en) * 2020-04-26 2021-10-26 长鑫存储技术有限公司 Valve control system and valve control method
CN115454153A (en) * 2022-10-26 2022-12-09 北京七星华创流量计有限公司 Mass flow controller and flow control method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335605A (en) * 1980-05-14 1982-06-22 Thermal Instrument Company Mass flow meter
GB2077434B (en) * 1980-05-30 1984-04-26 Millar John Ascertaining flow rate through valves or pumps
US4655089A (en) * 1985-06-07 1987-04-07 Smith Meter Inc. Mass flow meter and signal processing system
US5062446A (en) * 1991-01-07 1991-11-05 Sematech, Inc. Intelligent mass flow controller
DE69212129T2 (en) * 1991-12-18 1997-01-23 Pierre Delajoud Mass flow meter with constricting element
JPH05289751A (en) * 1992-04-15 1993-11-05 Hitachi Metals Ltd Automatic correction method for zero-point/span shift of mass flow controller and mass flow controller containing automatic correction function
EP0711430A1 (en) * 1992-06-12 1996-05-15 Unit Instruments, Inc. Mass flow controller
JP2982003B2 (en) * 1992-07-28 1999-11-22 コマツ電子金属株式会社 Vapor phase growth apparatus and mass flow controller calibration method in vapor phase growth apparatus
JP2692770B2 (en) * 1992-09-30 1997-12-17 シーケーディ株式会社 Mass flow controller flow rate verification system
JPH07263350A (en) 1994-03-18 1995-10-13 Fujitsu Ltd Manufacture of semiconductor
JP2635929B2 (en) 1994-04-12 1997-07-30 シーケーディ株式会社 Mass flow controller absolute flow rate verification system
US5594180A (en) * 1994-08-12 1997-01-14 Micro Motion, Inc. Method and apparatus for fault detection and correction in Coriolis effect mass flowmeters
JP2802246B2 (en) * 1995-06-29 1998-09-24 久 高橋 Flow control valve with delay compensation function
JP3367811B2 (en) 1996-01-05 2003-01-20 シーケーディ株式会社 Gas piping system certification system
US6185469B1 (en) * 1997-05-28 2001-02-06 Board Of Regents, The University Of Texas System Method and apparatus for testing and controlling a flexible manufacturing system
JP3932389B2 (en) * 1998-01-19 2007-06-20 Smc株式会社 Mass flow controller self-diagnosis method
JP3684307B2 (en) * 1998-10-19 2005-08-17 シーケーディ株式会社 Gas supply control device
US6339727B1 (en) * 1998-12-21 2002-01-15 Recot, Inc. Apparatus and method for controlling distribution of product in manufacturing process
US6119710A (en) * 1999-05-26 2000-09-19 Cyber Instrument Technologies Llc Method for wide range gas flow system with real time flow measurement and correction
JP3513437B2 (en) * 1999-09-01 2004-03-31 キヤノン株式会社 Substrate management method and semiconductor exposure apparatus
JP2001077267A (en) * 1999-09-08 2001-03-23 Mitsubishi Electric Corp Semiconductor manufacturing device and manufacture of semiconductor device
JP2001197936A (en) 2000-01-19 2001-07-24 Fuairudo Kk Improved method for hair styling

Also Published As

Publication number Publication date
JP2005038058A (en) 2005-02-10
CN1751280A (en) 2006-03-22
CN100462887C (en) 2009-02-18
EP1653312A1 (en) 2006-05-03
JP3872776B2 (en) 2007-01-24
TW200504822A (en) 2005-02-01
KR101116979B1 (en) 2012-03-15
EP1653312A4 (en) 2009-05-27
WO2005008350A1 (en) 2005-01-27
KR20060035575A (en) 2006-04-26
US7510884B2 (en) 2009-03-31
US20060172442A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
TWI305372B (en)
US9400004B2 (en) Transient measurements of mass flow controllers
US8667830B2 (en) Method and apparatus for in situ testing of gas flow controllers
US7682843B2 (en) Semiconductor fabrication system, and flow rate correction method and program for semiconductor fabrication system
JP4502590B2 (en) Semiconductor manufacturing equipment
JP4788920B2 (en) Mass flow control device, verification method thereof, and semiconductor manufacturing device
WO2005123236A1 (en) Substrate processing device
US11550341B2 (en) Mass flow control system, and semiconductor manufacturing equipment and vaporizer including the system
JP2008159875A (en) Substrate suction system and semiconductor manufacturing apparatus
US20050064609A1 (en) Semiconductor processing system
JPH05289751A (en) Automatic correction method for zero-point/span shift of mass flow controller and mass flow controller containing automatic correction function
KR102268452B1 (en) Flow control apparatus
JP2003257878A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device using the same
JP5178262B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
JP3311762B2 (en) Mass flow controller and semiconductor device manufacturing equipment
JP5159383B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
KR20050026393A (en) System and method for mass flow detection device calibration
CN109872957A (en) Mass flow controller, the equipment of manufacturing semiconductor devices and its maintaining method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees