TWI303829B - Internal voltage geneator of semiconductor integrated circuit - Google Patents
Internal voltage geneator of semiconductor integrated circuit Download PDFInfo
- Publication number
- TWI303829B TWI303829B TW095133725A TW95133725A TWI303829B TW I303829 B TWI303829 B TW I303829B TW 095133725 A TW095133725 A TW 095133725A TW 95133725 A TW95133725 A TW 95133725A TW I303829 B TWI303829 B TW I303829B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- reference voltage
- coupled
- resistor
- temperature
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 69
- 239000000758 substrate Substances 0.000 claims description 115
- 230000007423 decrease Effects 0.000 claims description 9
- 230000000630 rising effect Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 206010011469 Crying Diseases 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 239000002699 waste material Substances 0.000 claims 2
- 238000000605 extraction Methods 0.000 claims 1
- 239000003999 initiator Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 28
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/147—Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/145—Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dram (AREA)
- Semiconductor Integrated Circuits (AREA)
- Control Of Electrical Variables (AREA)
- Logic Circuits (AREA)
Description
1303829 九、發明說明: 【發明所屬之技術領域】 尤指一種半導體積體 本發明係關於半導體積體電路 電路之内部電壓產生器。 【先前技術】1303829 IX. Description of the invention: [Technical field to which the invention pertains] In particular, a semiconductor integrated body The present invention relates to an internal voltage generator of a semiconductor integrated circuit. [Prior Art]
離I、應給半導體積體電路,特别是DRAM (動 _存取記憶體)的外部電壓VDD已經降低。因此,即 需要儘可能抑制由於溫度變化造成的内部功率變化。再 :方2要控制每一内部功率改變(正向或負向)到一較 佳方向的方向。 f 的基本記憶胞結構中,將—電晶體 /、電谷盗連接到-字兀線與一位元線,如第一示。 對於使用在DRAM中的電晶體,已經使用了晶 體,其效能可優於PMOS電晶體,但尺寸車六大 第二圖™於繼M中不同電黯準之間的比較 結果。根據該峰結果,個㈣壓位準的大小順 p VDD,VCORE,VBLP&VCP,及 vbb。 , 電麼VDD為由DRAM外部所供應的電壓,而電壓徵 VCORE,VBLP&VCP及VBB係由增加或降低電壓vdd所 產生。電壓VPP基本上係用於—字元_㈣、—資料輸 出驅動β或類似者’藉以補償做為—記憶胞之基本元件的 -電晶體之臨界電壓VT之損失。該電壓νρρ由增加電壓 VDD產生,且其大於電壓Vc〇RE+臨界值ντ (為内部電 6 1303829 f :的最大值)。電壓VCORE為對應於—胞電 憶胞的資料位準。電壓VBLP對應於, 充電電壓’且電壓VCP為—胞板電壓, 位兀線預The external voltage VDD from the I, the semiconductor integrated circuit, especially the DRAM (moving_access memory) has been reduced. Therefore, it is necessary to suppress internal power variations due to temperature changes as much as possible. Again: square 2 controls each internal power change (positive or negative) to a better direction. In the basic memory cell structure of f, connect the transistor/electric thief to the - word line and one bit line, as shown in the first. For the transistors used in DRAM, crystals have been used, and their performance is better than that of PMOS transistors, but the size of the car is larger than the comparison between the different levels of electricity in M. According to the peak result, the magnitude of the (four) pressure level is cis, VDD, VCORE, VBLP & VCP, and vbb. The VDD is the voltage supplied from the outside of the DRAM, and the voltage sign VCORE, VBLP & VCP and VBB are generated by increasing or decreasing the voltage vdd. The voltage VPP is basically used for the loss of the threshold voltage VT of the transistor, which is used for the word_(4), the data output drive β or the like to compensate for the basic element of the memory cell. This voltage νρρ is generated by the increase voltage VDD, which is greater than the voltage Vc 〇 RE + the critical value ντ (which is the maximum value of the internal power 6 1303829 f :). The voltage VCORE is the data level corresponding to the cell memory cell. The voltage VBLP corresponds to the charging voltage 'and the voltage VCP is the cell voltage, and the bit line is pre-
=的位準。此外,電請B對應於一基慨P "被^加於具有—負值的大部份電晶體。&電壓,且 。後一半導體積體電路之 附屬圖式做說明。 仏屋生電路將參考= the level of =. In addition, the electricity B corresponds to a group of P " is added to most of the transistors with a negative value. & voltage, and . The attached schematic of the latter semiconductor integrated circuit will be described.仏屋生电路 will refer to
^二®為根據相關技藝之半導體積體電 路圖。第四圖為第三圖所示之基心 _狀内部結構的電路圖。第五圖為第三圖所示之 ===之内部結構的電路圖。第六圖為根據相關^ :之翏考電壓變化的圖形。第七圖為在低溫之下的 壓需求條件之圖形。 a 如第二圖所示,根據相關技藝之半導體積體電路的内 部電壓產生電路包括一參考電壓產生單元1〇,其在當一外 部電壓VDD增加而達到一預定位準時產生一基本參考電 壓VREF_BASE; —位準偏移器u,其可轉換該基本參考 電壓VREF—BASE成為一第一參考電壓VREF—c,用以產 生一胞電壓及一基板偏壓電壓,及一第二參考電壓 VREF-P,用以產生一升高的電壓,並將其輸出;_胞電^ 產生單元12,其使用該第一參考電壓VREF—C產生一胞電 壓VC0RE ; —基板偏壓電壓產生單元,其使用該第一 參考電壓VREF_C產生一基板偏壓電壓VBB,·及_升高電 壓產生單元14,其使用該第二參考電壓VREFjp產生一升 1303829 高電壓VPP。^ Two® for semiconductor integrated circuit diagrams based on related feats. The fourth figure is a circuit diagram of the base-shaped internal structure shown in the third figure. The fifth figure is a circuit diagram of the internal structure of === shown in the third figure. The sixth picture is a graph of the voltage change according to the reference of the relevant ^:. The seventh picture is a graph of the pressure demand conditions at low temperatures. a As shown in the second figure, the internal voltage generating circuit of the semiconductor integrated circuit according to the related art includes a reference voltage generating unit 1 产生 which generates a basic reference voltage VREF_BASE when an external voltage VDD is increased to reach a predetermined level. And a level shifter u, which converts the basic reference voltage VREF-BASE into a first reference voltage VREF-c for generating a cell voltage and a substrate bias voltage, and a second reference voltage VREF- P, for generating an elevated voltage and outputting it; a cell generating unit 12, which uses the first reference voltage VREF-C to generate a cell voltage VC0RE; a substrate bias voltage generating unit, which uses The first reference voltage VREF_C generates a substrate bias voltage VBB, and the _ boost voltage generating unit 14 generates a liter 1303829 high voltage VPP using the second reference voltage VREFjp.
W該位準偏移$ u具有_差動比較器的結構。在位準偏 移盗11巾’該基本參考電壓VREF—BASE及由電阻R1及 R2所區分的電屢VR為透過一反饋作業維持在相同的數 值’而該第一參考電壓vref_C由電阻則及幻之間的電 阻比值所決定。此外,該第二參考電壓vref、由調整 ,亥電阻比例產生,如同在第—參考電壓vref』。例如, 具有比電阻R1及R2要小之電阻值之複數電卩且會彼此連 接,而該第二參考電壓VREF_p由—節點輸出,其係在複 數卽點當巾選出,並輸出—想要的電壓。 該胞錢產生單元12包括-比較器、12小其具有一反 向終端’用以接收該第—參考電壓VREF—c,及二電晶體 12_2 ’其具有一閘極來接收該比較器12-1之輪出,饋 入该胞電壓回到該比較器m的非反向終端+時,根據該 閘才f立準轉換—外部電壓獅,以輸出-胞電髮vc〇rE。 此時’為了維持該胞電壓VCORE的位準在值, 產生單元12依下述方式運作。也就是說,該胞電W This level offset $u has the structure of the _differential comparator. The reference voltage VREF-BASE and the electrical VR differentiated by the resistors R1 and R2 are maintained at the same value through a feedback operation while the first reference voltage vref_C is The ratio of the resistance between the phantoms is determined. In addition, the second reference voltage vref is generated by adjusting, the ratio of the resistance of the sea, as in the first reference voltage vref. For example, a plurality of capacitors having a resistance value smaller than the resistors R1 and R2 and connected to each other, and the second reference voltage VREF_p is output by the node, which is selected at the plurality of points, and outputs - desired Voltage. The cell generating unit 12 includes a comparator, 12 small having a reverse terminal 'for receiving the first reference voltage VREF-c, and a second transistor 12_2' having a gate for receiving the comparator 12- When the wheel is turned back to the non-inverting terminal + of the comparator m, the external voltage lion is converted according to the gate, and the output is - MG 〇rE. At this time, in order to maintain the level of the cell voltage VCORE at the value, the generating unit 12 operates in the following manner. That is, the cell
Cct VREF〜C與該胞電壓 亚當該胞電壓VCORE降低到不超過該 參 的電壓時赚編體匕2,使得該胞 12被供應—外部電壓侧,藉以增加該胞 電ι RE。另外,#該胞電壓VCQRE麵列、於該第 3:?=2EF-C之電壓時,該胞電壓產生單元12即關 閉邊包日日體12_2,使得該胞電壓VC0RE不會再捭加。 1303829 再者’該基板偏壓電壓產生單元13包括一比較器 13-1、一電晶體13-2、一基板偏壓電壓偵測器13-3,用於 偵測該電晶體13-2所輸出的一電壓VC0RE_BB的位準, 並輸出一基板偏壓電壓泵致能信號,以及一基板偏壓電壓 泵13-4 ’其由該基板偏壓電壓泉致能信號驅動,並抽取該 , 基板偏壓電壓VBB。比較器13-1與電晶體13-2之間的連 接結構與胞電壓產生單元12相同。但是,雖然該電壓 VCORE—BB的位準相同於胞電壓VCORE的位準,因為所 鲁 消耗的電流量在該基板偏壓電壓產生單元13中較小,該電 壓VCORE一BB不同於該胞電壓VCORE,其中在該基板偏 壓電壓產生單元13中該比較器13-1與電晶體13-2之大小 即小於在該胞電壓產生單元12中的那些元件。此外,該基 板偏壓電壓偵測器13-3之結構如第四圖所示。如果該基板 偏壓電壓VBB的絕對值變得較小,一較低電晶體之阻抗組 件即會增加。因此,該基板偏壓電壓偵測器13-3於,DET, φ 節點處造成一電位差,而成為一高位準,藉此造成 ’BB—ENM’之電位差變為一低位準。此時,該,Ββ_ΕΝΜ,為 在由電晶體13-2所輸出的電壓VCORE_BB及該接地電壓 VSS之間擺盪的一信號。該位準偏移器轉換,BB_Enbl,信號 成為一基板偏壓電壓泵致能信號’BB一ENb2’,其係在該外部 電壓VDD與接地電壓VSS之間擺盪。當’BB—ENb2,成為一 低位準日^*’该基板偏堡電麼果13-4即運作。 ‘該弟^一麥考電M VREF 一C由於任何原因而增加時, 該DET節點之電位差亦會增加。藉此,為了允許在 1303829 節點處的電位差成為一低位準,該基板偏髮電壓棚之絕 、子值必/員進步增加。因此,該基板偏壓電壓之絕對 值即增加。 違升局電壓產生單7〇 14包括一升高的電㈣測器 14-1,其藉由仙該第二參考糕vref』之位準而輸出 .一=高電壓泵致能信號,以及一升高電壓泵14_2,其由該 - 升鬲笔壓泵致此彳5號所驅動,並抽取該升高的電壓VPP。 •=,該升高電壓债測1114]之結構如第五圖所示。也就 是說,在一’X節點,處的電壓與一第二參考電壓vref_p 即輪入到該差動比較器之兩個輪人終端。該,χ節點,對應於 一個可分配阻抗的節點,使得其在當該升高電壓νρρ為一 目標值時,即與該第二參考電壓VREF_p具有相同的電位 差。因此,當該升高電壓VPP變得低於該目標值時,因為 在'X節點’處的電壓亦會變得小於該第二參考電壓 VREF—P,-升高電壓泵致能信f#“ipp__EN,即會一透過該比較 #器之運作而變為-高位準’使得該升高電壓泵Μ可抽取 該升高電壓VPP。 如果用於產生-升高電壓之第二參考電壓VREF p為 了任何原因而增加’在該升高的電壓偵測器14]中,該升 高電壓WP即會變為大於-原始目標值,其即造成該升高 電壓泵致能信號,PP一EN’之位準即成為—低位準。因此, 即會增加該升高電壓VPP。 此時’如帛六目射’當職本參考電壓VREFBASE 改變時,由該位準偏移器11輪出的該第二參考電磨 10 1303829 VREF_P亦會改變。也就是說,當該基本參考電壓 VREF_BASE降低時,用於產生該升高電壓之第二參考電 壓VREF JP亦會降低。 同時,在低溫狀況下(即在較冷的溫度,例如_ 1〇。〇, 即使當該升高電壓vpp、該胞電壓VCC)RE及該基板偏壓 '電壓VBB為恆定時,§亥NM0S電晶體之臨界值VTN即會 .增加,其即造成降低了該NMOS電晶體之電流驅動性 此,如第七圖所示,在該低溫條件下,增加升高電壓vpp 及胞電麼VCORE,並降低該基板偏壓電屋vbb (然後該 基板偏壓電壓VBB之降低即參考到絕對值之降低)即對於 該半導體積體電路之正常運作有影響。 但是,根據相關技藝,該相對應内部電壓係藉由使用 源極所產生的參考電壓而產生,而不需要考慮由於溫度條 件所產生的變化。因此,如果該相對應内部電壓,也就是 該升高電壓VPP及胞電壓vc〇RE由在該低溫條件下藉由 • 增加該參考電壓彻〇及VREF一C而增加,該基板漏 電麼VBB即必彡貞低賴相對應位準,或_在該相對應位 準’其亦會增加(㈣,該基板偏壓錢VBB之增加即會 參考到該絕對值之增加)。因此,該半導體之積體電路元; 的效能即會降低。 【發明内容】 本發明係用於解決上述的問題。本發明的目的係要提 供半導體積體電路之内部電麼產生器,其能夠根據每個 11 1303829 溫度條件控制每個内部電壓位準,並防止降低該半導體積 體電路之效能。 根據本發明第一態樣,一半導體積體電路之内部電壓 產生器包括至少一可變參考電壓產生單元,其可根據溫度 的變化而產生一基本參考電壓的增加或降低;至少一位準 .偏移單元,其轉換由該至少一可變參考電壓產生單元所輸 出的該基本參考電壓成為用於產生内部電壓的至少一預定 參考電壓,並輸出該轉換的參考電壓,及至少一内部電壓 > 產生單元,其藉由使用該至少一參考電壓而產生一内部電 壓,以用於產生由該至少一位準偏移單元所輸出的内部電 壓。 根據本發明第二態樣,其提供了一半導體積體電路之 内部電壓產生器,其使用一胞電壓VCORE,一升高的電壓 VPP,及一基板偏壓電壓VBB,其由轉換由外界施加的外 部電壓成為内部電壓所產生。一半導體積體電路之内部電 | 壓產生器包括一溫度-反比型態參考電壓產生單元,其可根 據溫度的降低而產生一增加的基本參考電壓;一第一位準 偏移單元,其可轉換由該溫度-反比型態參考電壓產生單元 輸出的該基本參考電壓成為一胞電壓產生參考電壓及一升 南的電壓產生爹考電壓,並輸出該轉換的麥考電壓;一第 一内部電壓產生單元,其藉由使用該胞電壓產生參考電壓 及由該第一位準偏移單元輸出的該升高電壓產生參考電壓 而產生該胞電壓及該升高電壓;一溫度-正比型態參考電壓 產生單元,其根據溫度的降低而產生一降低的基本參考電 12 1303829 壓;一第二位準偏移單元,其可轉換由該溫度正比型態參 考電壓產生單元輸出的該基本參考電壓成為一基板偏壓電 壓產生參考電壓,並輸出該轉換的參考電壓;及一第二内 部電壓產生單元,其藉由使用由該第二位準偏移單元所輸 出的該基板偏壓電壓產生參考電壓而產生該基板偏壓電 . 壓。 根據本發明第三態樣,其提供了一半導體積體電路之 内部電壓產生器,其使用一胞電壓VCORE,一升高的電壓 ® VPP,及一基板偏壓電壓VBB,其由轉換由外界施加的外 部電壓成為内部電壓所產生。一半導體積體電路之内部電 壓產生器包括一溫度-無關型態參考電壓產生單元,其可產 生一預定位準之基本參考電壓,而無關於溫度的變化:一 第一位準偏移單元,其可轉換由該溫度-無關型態參考電壓 產生單元輸出的該基本參考電壓成為一胞電壓產生參考電 壓及一升高的電壓產生參考電壓,並輸出該轉換的參考電 φ 壓;一第一内部電壓產生單元,其藉由使用該胞電壓產生 參考電壓及由該第一位準偏移單元輸出的該升高電壓產生 參考電壓而產生該胞電壓及該升高電壓;一溫度-正比型態 參考電壓產生單元,其根據溫度的降低而產生一降低的基 本參考電壓;一第二位準偏移單元,其可轉換由該溫度正 比型態參考電壓產生單元輸出的該基本參考電壓成為一基 板偏壓電壓產生參考電壓,並輸出該轉換的參考電壓;及 一第二内部電壓產生單元,其藉由使用由該第二位準偏移 單元所輸出的該基板偏壓電壓產生參考電Μ而產生該基板 13 1303829 偏壓電壓。 根據本發明第四態樣^其提供了 一半導體積體電路之 内部電壓產生器,其使用一胞電壓VCORE,一升高的電壓 VPP,及一基板偏壓電壓VBB,其由轉換由外界施加的外 部電壓成為内部電壓所產生。一半導體積體電路之内部電 壓產生器包括一溫度-反比型態參考電壓產生單元,其可根 據溫度的降低而產生一增加的基本參考電壓;一第一位準 偏移單元,其可轉換由該溫度-反比型態參考電壓產生單元 輸出的該基本參考電壓成為一胞電壓產生參考電壓及一升 高的電壓產生參考電壓,並輸出該轉換的參考電壓;一第 一内部電壓產生單元,其藉由使用該胞電壓產生參考電壓 及由該第一位準偏移單元輸出的該升高電壓產生參考電壓 而產生該胞電壓及該升高電壓;一溫度-無關型態參考電壓 產生單元,其產生一預定位準的基本參考電壓,而無關於 溫度的變化;一第二位準偏移單元,其可轉換由該溫度獨 立型態參考電壓產生單元輸出的該基本參考電壓成為一基 板偏壓電壓產生參考電壓,並輸出該轉換的參考電壓;及 一第二内部電壓產生單元,其藉由使用由該第二位準偏移 單元所輸出的該基板偏壓電壓產生參考電壓而產生該基板 偏壓電壓。 【實施方式】 在說明本發明之較佳具體實施例之前,將參考第八圖 說明根據本發明之基本觀念的一具體實施例。 14 1303829 如第八圖所示,根據本發明一具體實施例之半導體積 體電路的内部電壓產生器包括一第一可變參考電壓產生單 元20,其可根據溫度的變化產生任何一基本參考電壓的增 加,根據溫度變化之基本參考電壓之降低,及一具有一預 定位準之基本參考電壓,無關於溫度變化;一第一位準偏 . 移器21,其轉換由該第一可變參考電壓產生單元20所輸 出的該基本參考電壓成為至少一預定的參考電壓,用以產 生内部電壓並將其輸出;一第一内部電壓產生單元22,藉 ® 由使用至少一參考電壓產生一内部電壓,其用以產生由第 一位準偏移器21所輸出的内部電壓;一第二可變參考電壓 產生單元30,其可根據溫度變化產生增加了任何一基本參 考電壓,及根據溫度變化產生一降低的基本參考電壓,以 及一具有一預定位準之基本參考電壓,其無關於溫度變 化,一第二位準偏移器31,其轉換由第二可變參考電壓產 生單元30所輸出的該基本參考電壓成為至少一預定的參 φ 考電壓,其用以產生内部電壓,並將其輸出;以及一第二 内部電壓產生單元32,其藉由使用至少一參考電壓產生一 内部電壓,用以產生由第二位準偏移器31所輸出的内部電 壓。 每個第一可變參考電壓產生單元20與第二可變參考 電壓產生單元30係由下列之溫度正比型態參考電壓產生 單元、溫度-反比型態參考電壓產生單元、與一溫度-無關 型態參考電壓產生單元中任何一項所構成,其係根據一相 對應的内部電壓係增加、降低或維持來決定,藉以改善在 15 1303829 一相對應溫度條件之下的運作特性。 該溫度-正比型態參考電壓產生單 位準根據溫度下降而降低,該溫度炎:二:: =之特㈣其輸出位準根據溫度下降而:寺;^產生 無關型態參考電壓產生單元之特性為維持一預定的;:: 準,而無關於溫度的變化。 、、輸出位Cct VREF~C and the cell voltage Adam's cell voltage VCORE is reduced to not exceed the voltage of the parameter, and the bank 赚2 is earned so that the cell 12 is supplied to the external voltage side, thereby increasing the cell ι RE. In addition, when the voltage of the cell voltage VCQRE is at the voltage of the third:?=2EF-C, the cell voltage generating unit 12 turns off the side body 12_2 so that the cell voltage VC0RE is not added. 1303829 Further, the substrate bias voltage generating unit 13 includes a comparator 13-1, a transistor 13-2, and a substrate bias voltage detector 13-3 for detecting the transistor 13-2. Outputting a level of a voltage VC0RE_BB, and outputting a substrate bias voltage pump enable signal, and a substrate bias voltage pump 13-4' driven by the substrate bias voltage spring enable signal, and extracting the substrate Bias voltage VBB. The connection structure between the comparator 13-1 and the transistor 13-2 is the same as that of the cell voltage generating unit 12. However, although the level of the voltage VCORE_BB is the same as the level of the cell voltage VCORE, since the amount of current consumed by the device is smaller in the substrate bias voltage generating unit 13, the voltage VCORE-BB is different from the cell voltage. VCORE, in which the size of the comparator 13-1 and the transistor 13-2 in the substrate bias voltage generating unit 13 is smaller than those in the cell voltage generating unit 12. Further, the structure of the substrate bias voltage detector 13-3 is as shown in the fourth figure. If the absolute value of the substrate bias voltage VBB becomes smaller, the impedance component of a lower transistor increases. Therefore, the substrate bias voltage detector 13-3 causes a potential difference at the DET, φ node to become a high level, thereby causing the potential difference of 'BB-ENM' to become a low level. At this time, Ββ_ΕΝΜ is a signal oscillating between the voltage VCORE_BB outputted from the transistor 13-2 and the ground voltage VSS. The level shifter converts, BB_Enbl, the signal into a substrate bias voltage pump enable signal 'BB_ENb2', which swings between the external voltage VDD and the ground voltage VSS. When 'BB-ENb2, it becomes a low-level quasi-day ^*'. ‘The power of the DET node will increase when the V-C-C is increased for any reason. Thereby, in order to allow the potential difference at the node of 1303829 to become a low level, the substrate bias voltage vest must be increased, and the sub-value must be increased. Therefore, the absolute value of the substrate bias voltage is increased. The booster voltage generating unit 7〇14 includes an elevated electric (four) detector 14-1 which is output by the level of the second reference cake vref. A = high voltage pump enable signal, and a The boosting voltage pump 14_2 is driven by the pump to the fifth pump and extracts the boosted voltage VPP. • =, the structure of the elevated voltage debt test 1114] is as shown in the fifth figure. That is to say, the voltage at an 'X node' and a second reference voltage vref_p are clocked into the two wheel terminals of the differential comparator. The χ node corresponds to a node to which the impedance can be distributed such that it has the same potential difference as the second reference voltage VREF_p when the boosted voltage νρρ is a target value. Therefore, when the boosted voltage VPP becomes lower than the target value, since the voltage at the 'X node' also becomes smaller than the second reference voltage VREF-P, the boosted voltage pump enables the signal f#" ipp__EN, which becomes a high level through the operation of the comparison device, such that the boosted voltage pump can extract the boosted voltage VPP. If the second reference voltage VREF p for generating the boosted voltage is For any reason, in the increased voltage detector 14, the boosted voltage WP will become greater than the original target value, which causes the boosted voltage pump enable signal, PP-EN' The level becomes the low level. Therefore, the boosted voltage VPP is increased. At this time, if the reference voltage VREFBASE is changed, the first shift by the level shifter 11 The second reference electric grinder 10 1303829 VREF_P also changes. That is, when the basic reference voltage VREF_BASE is lowered, the second reference voltage VREF JP for generating the boosted voltage is also lowered. Meanwhile, in the low temperature condition (ie, At cooler temperatures, such as _ 1 〇. 〇, even when the rise When the voltage vpp, the cell voltage VCC)RE, and the substrate bias voltage VBB are constant, the critical value VTN of the NMOS NM0S transistor is increased, which causes the current driving of the NMOS transistor to be reduced. As shown in the seventh figure, under the low temperature condition, increasing the voltage vpp and the cell voltage VCORE, and lowering the substrate bias voltage house vbb (then the substrate bias voltage VBB is reduced, that is, the absolute value is reduced) That is, it has an effect on the normal operation of the semiconductor integrated circuit. However, according to the related art, the corresponding internal voltage is generated by using the reference voltage generated by the source without considering the change due to the temperature condition. Therefore, if the corresponding internal voltage, that is, the boosted voltage VPP and the cell voltage vc〇RE, is increased by increasing the reference voltage and VREF-C under the low temperature condition, the substrate leakage is VBB. That is, it must be lower than the corresponding level, or _ at the corresponding level 'it will also increase ((4), the increase of the substrate bias money VBB will refer to the increase of the absolute value). Therefore, the semiconductor Product The present invention is directed to solving the above problems. It is an object of the present invention to provide an internal power generator for a semiconductor integrated circuit that can be used according to each of the temperature conditions of 11 1303829. Controlling each internal voltage level and preventing degradation of the performance of the semiconductor integrated circuit. According to a first aspect of the present invention, an internal voltage generator of a semiconductor integrated circuit includes at least one variable reference voltage generating unit, which can be a change in temperature to produce an increase or decrease in a basic reference voltage; at least one quasi-offset unit that converts the basic reference voltage output by the at least one variable reference voltage generating unit to at least generate an internal voltage a predetermined reference voltage, and outputting the converted reference voltage, and at least one internal voltage > generating unit that generates an internal voltage by using the at least one reference voltage for generating a quasi-offset by the at least one bit The internal voltage output by the unit. According to a second aspect of the present invention, there is provided an internal voltage generator of a semiconductor integrated circuit using a cell voltage VCORE, an elevated voltage VPP, and a substrate bias voltage VBB, which are applied by the outside by conversion The external voltage is generated by the internal voltage. The internal power of the semiconductor integrated circuit includes a temperature-inverse ratio type reference voltage generating unit that generates an increased basic reference voltage according to a decrease in temperature; a first level shifting unit, which can Converting the basic reference voltage outputted by the temperature-inverse ratio type reference voltage generating unit to a voltage generating reference voltage and a voltage of one liter south generating a reference voltage, and outputting the converted McCaw voltage; a first internal voltage a generating unit that generates the reference voltage by using the cell voltage to generate a reference voltage and the boosted voltage output by the first level shifting unit to generate the reference voltage and the boosted voltage; a temperature-proportional type reference a voltage generating unit that generates a reduced base reference voltage 12 1303829 according to a decrease in temperature; a second level shifting unit that converts the basic reference voltage output by the temperature proportional type reference voltage generating unit a substrate bias voltage generates a reference voltage and outputs the converted reference voltage; and a second internal voltage generating unit by Generating the substrate bias voltage with a reference voltage generated by the second level-shift the output of the unit substrate bias voltage voltage. According to a third aspect of the present invention, there is provided an internal voltage generator of a semiconductor integrated circuit using a cell voltage VCORE, an elevated voltage VPP, and a substrate bias voltage VBB, which are converted by the outside world. The applied external voltage is generated by the internal voltage. An internal voltage generator of a semiconductor integrated circuit includes a temperature-independent type reference voltage generating unit that generates a predetermined reference basic reference voltage without any change in temperature: a first level shifting unit, The basic reference voltage outputted by the temperature-independent type reference voltage generating unit is converted into a cell voltage generating reference voltage and an elevated voltage generating reference voltage, and the converted reference voltage φ is output; An internal voltage generating unit that generates a reference voltage by using the cell voltage to generate a reference voltage and the boosted voltage output by the first level shifting unit to generate the reference voltage and the boosted voltage; a temperature-proportional type a state reference voltage generating unit that generates a reduced basic reference voltage according to a decrease in temperature; a second level shifting unit that converts the basic reference voltage output by the temperature proportional type reference voltage generating unit into a a substrate bias voltage generates a reference voltage and outputs the converted reference voltage; and a second internal voltage generating unit by The substrate 13 1303829 bias voltage is generated using the substrate bias voltage output by the second level shifting unit to generate a reference voltage. According to a fourth aspect of the present invention, an internal voltage generator of a semiconductor integrated circuit is provided which uses a cell voltage VCORE, an elevated voltage VPP, and a substrate bias voltage VBB which is applied by the outside by conversion The external voltage is generated by the internal voltage. An internal voltage generator of a semiconductor integrated circuit includes a temperature-inverse ratio type reference voltage generating unit that generates an increased basic reference voltage according to a decrease in temperature; a first level shifting unit that is convertible by The basic reference voltage outputted by the temperature-inverse ratio type reference voltage generating unit becomes a cell voltage generating reference voltage and an elevated voltage generating reference voltage, and outputs the converted reference voltage; a first internal voltage generating unit Generating the cell voltage and the boosted voltage by generating a reference voltage by using the cell voltage and generating the reference voltage by the boosted voltage output by the first level shifting unit; a temperature-independent type reference voltage generating unit, It generates a predetermined reference level of the reference voltage without any change in temperature; a second level shifting unit that converts the basic reference voltage output by the temperature independent type reference voltage generating unit into a substrate bias The voltage voltage generates a reference voltage and outputs the converted reference voltage; and a second internal voltage generating unit The substrate bias voltage is generated by generating a reference voltage by the substrate bias voltage outputted by the second level shifting unit. [Embodiment] Before describing a preferred embodiment of the present invention, a specific embodiment of the basic idea according to the present invention will be described with reference to the eighth embodiment. 14 1303829 As shown in the eighth embodiment, the internal voltage generator of the semiconductor integrated circuit according to an embodiment of the present invention includes a first variable reference voltage generating unit 20, which can generate any basic reference voltage according to a change in temperature. The increase, the decrease of the basic reference voltage according to the temperature change, and a basic reference voltage having a predetermined level, irrespective of the temperature change; a first level shifter 21, the conversion is performed by the first variable reference The basic reference voltage outputted by the voltage generating unit 20 becomes at least a predetermined reference voltage for generating an internal voltage and outputting the same; a first internal voltage generating unit 22 generates an internal voltage by using at least one reference voltage. , which is used to generate an internal voltage output by the first level shifter 21; a second variable reference voltage generating unit 30, which can generate any basic reference voltage according to the temperature change, and generate according to the temperature change a reduced basic reference voltage, and a basic reference voltage having a predetermined level, irrespective of temperature changes, a second a quasi-offset 31 that converts the basic reference voltage outputted by the second variable reference voltage generating unit 30 into at least one predetermined reference voltage for generating an internal voltage and outputting the same; The internal voltage generating unit 32 generates an internal voltage by using at least one reference voltage to generate an internal voltage output by the second level shifter 31. Each of the first variable reference voltage generating unit 20 and the second variable reference voltage generating unit 30 is composed of the following temperature proportional type reference voltage generating unit, a temperature-inverse ratio type reference voltage generating unit, and a temperature-independent type. The state reference voltage generating unit is constructed by any one of the corresponding internal voltage systems to increase, decrease or maintain, thereby improving the operating characteristics under a corresponding temperature condition of 15 1303829. The temperature-proportional type reference voltage generating unit is decreased according to the temperature drop, and the temperature is inflamed: two:: = special (four) the output level is decreased according to the temperature: the temple; ^ produces the characteristics of the irrelevant type reference voltage generating unit In order to maintain a predetermined;:: accurate, and no change in temperature. Output bit
也就是說,每個第—可變參考_產生單元如 ΖΪ考電壓產生單元3。係由該溫度-反比型態參考Ϊ; f早疋所構成,#其需要在—特定溫度條件下要增加一 内:電壓時,也就是—低溫條件下。再者,每個第 蒼考電壓產生單元2G與第二可變參考電壓產生單元則系 由該溫度_正_態參考電壓產生單元所構成,當其需要在 -低溫條件下要減少—内部電壓時。再者,每個第—可變 參考電壓產生單元2〇與第二可變參考電壓產生單元3〇係 由該溫度·無關型s參考電壓產生單元所構成,#其需求在 於需要維持-内部麵時,而無關於溫度變化。 特別是,如果第一可變參考電壓產生單元2〇由一溫度 -反比型態參考電壓產生單元所構成,其在當於低溫條件下 運作時即增加一基本參考電壓VREF_BASE,並輸出該增 加的基本參考電壓。因此,内部電壓VINT1及VINTU, 由第一内部電壓產生單元22所輸出,其亦會使用由 一原始 電壓位準增加的電壓位準來輸出。另外,如果第一可變參 考電壓產生單元20由一溫度_正比型態參考電壓產生單元 所構成’其在當於低溫條件下運作時即降低基本參考電壓 16 1303829 VREF—BASE及該等内部電壓VINT1及VINT11,並輸出該 降低的基本參考電壓與内部電壓。再者,如果第一可變參 考電壓產生單元20由一溫度獨立型態參考電壓產生單元 所構成,基本參考電壓VREF_BASE及該等内部電壓 VINT1與VINT11即維持在該原始電壓位準,而無關於溫 , 度變化。 在第八圖所示的本發明具體實施例中例示了一組可變 參考電壓產生單元20、第一位準偏移器21、與第一内部電 ® 壓產生單元22,及一組第二可變參考電壓產生單元30、第 二位準偏移器31,與第二内部電壓產生單元32。但是,其 必須瞭解到上述的具體實施例不具有限制性,僅為各態樣 的例示。也就是說,組合的數目根據所需要的内部電壓數 目而增加或減少。因為本發明之該等較佳具體實施例將在 稍後說明,第八圖之結構的詳細說明將被省略。 形成該溫度-正比型態參考電壓產生單元、該溫度-反 0 比型態蒼考電壓產生早元或該溫度-無關型態蒼考電壓產 生單元之原理與結構範例將參考第九圖及第十圖做詳細的 說明。 第九圖為例示第八圖所示之可變參考電壓產生單元的 觀念之電路圖。第十圖為例示第八圖所示之可變參考電壓 產生單元的内部結構之電路圖。 該可變參考電壓產生單元,其可由下列之溫度-正比型 態參考電壓產生單元、溫度-反比型態參考電壓產生單元、 與溫度-無關型態參考電壓產生單元之任何一項所構成,其 17 1303829 包括一電壓產生單元41,其根據一第一溫度係數產生一電 壓、一乘法器42,其將電壓產生單元41之輸出乘以一比 例常數K,一雙極性接面電晶體BJT 43,其可根據一第二 溫度係數產生一電壓VBE,及一加法器44,其可加入該乘 法器42的輸出到該BJT 43之輸出,並輸出一參考電壓 VREFJBASE,如第九圖所示。此時,參考電壓VREF—BASE 由下式1所定義。 •[式 1]That is, each of the first-variable reference_generating units is referred to as a reference voltage generating unit 3. It is composed of the temperature-inverse ratio type reference Ϊ; f is early, and it needs to be added under the specific temperature conditions: voltage, that is, under low temperature conditions. Furthermore, each of the first reference voltage generating unit 2G and the second variable reference voltage generating unit are constituted by the temperature_positive state reference voltage generating unit, and when it is required to be reduced under the low temperature condition - the internal voltage Time. Furthermore, each of the first variable reference voltage generating unit 2A and the second variable reference voltage generating unit 3 is constituted by the temperature-independent type s reference voltage generating unit, and the demand thereof is that the maintenance-internal surface is required. Time, regardless of temperature changes. In particular, if the first variable reference voltage generating unit 2 is constituted by a temperature-inverse ratio type reference voltage generating unit, it increases a basic reference voltage VREF_BASE when operating under a low temperature condition, and outputs the increased Basic reference voltage. Therefore, the internal voltages VINT1 and VINTU are output by the first internal voltage generating unit 22, which is also outputted using a voltage level that is increased by an original voltage level. In addition, if the first variable reference voltage generating unit 20 is constituted by a temperature-proportional type reference voltage generating unit, it lowers the basic reference voltage 16 1303829 VREF-BASE and the internal voltage when operating under low temperature conditions. VINT1 and VINT11, and output the reduced basic reference voltage and internal voltage. Furthermore, if the first variable reference voltage generating unit 20 is constituted by a temperature independent type reference voltage generating unit, the basic reference voltage VREF_BASE and the internal voltages VINT1 and VINT11 are maintained at the original voltage level without any concern. temperature change. In the embodiment of the present invention shown in the eighth figure, a set of variable reference voltage generating unit 20, a first level shifter 21, a first internal voltage generating unit 22, and a second group are illustrated. The variable reference voltage generating unit 30, the second level shifter 31, and the second internal voltage generating unit 32. However, it must be understood that the specific embodiments described above are not limiting and are merely illustrative of the various aspects. That is, the number of combinations is increased or decreased depending on the number of internal voltages required. Since the preferred embodiments of the present invention will be described later, the detailed description of the structure of the eighth embodiment will be omitted. The principle and structure example of forming the temperature-ratio type reference voltage generating unit, the temperature-reverse 0 ratio type tang test voltage generating element or the temperature-independent type tang test voltage generating unit will refer to the ninth figure and the first Ten pictures are explained in detail. The ninth diagram is a circuit diagram illustrating the concept of the variable reference voltage generating unit shown in the eighth diagram. The tenth diagram is a circuit diagram illustrating the internal structure of the variable reference voltage generating unit shown in the eighth diagram. The variable reference voltage generating unit may be constituted by any one of a temperature-ratio type reference voltage generating unit, a temperature-inverse ratio type reference voltage generating unit, and a temperature-independent type reference voltage generating unit 17 1303829 includes a voltage generating unit 41 for generating a voltage according to a first temperature coefficient, a multiplier 42 multiplying the output of the voltage generating unit 41 by a proportional constant K, a bipolar junction transistor BJT 43, It can generate a voltage VBE according to a second temperature coefficient, and an adder 44 can be added to the output of the multiplier 42 to the output of the BJT 43, and output a reference voltage VREFJBASE, as shown in the ninth figure. At this time, the reference voltage VREF_BASE is defined by the following Equation 1. •[Formula 1]
VREF—BASE = VBE + K * VTHERM 在此例中,一基極-射極電壓VBE之溫度係數約為-2.2 mV/°C,而一 VTHERM成份之溫度係數約為+ 0.085 mV/°C。因此,該可變參考電壓產生單元可藉由調整該比 例常數K而由下列溫度-正比型態參考電壓產生單元、溫度 -反比型態參考電壓產生單元、及溫度-無關型態參考電壓 φ 產生單元中任一項所構成。 第十圖為一案例之圖式,其中第九圖所示之可變參考 電壓產生單元之觀念即應用到一實際電路。在第十圖中, 該可變參考電壓產生單元具有以下的結構。也就是說,該 可變參考電壓產生單元包括一第一電晶體51、一第一電阻 R1,其將一端連接到第一電晶體51之射極,第二及第三電 阻R2及R3,其彼此串聯,且並聯到該第一電阻R1之另一 端,一第二電晶體52,其具有一射極連接到第三電阻R3, 及一比較器53,其具有一非反向終端+連接到第一電阻R1 18 1303829 之另一端的一連接節點,與第一電晶體51之射極,及一反 向終端,其連接到第二電阻R2及第三電阻R3之連接節 點。比較器53之輪出即反饋到第一電阻R1及第二電阻R2。 此時,該參考電壓VREF一BASE由下式2所定義。 [式2] VREF_BASE = VBE + (1+ R2/R3)ln(n) * Vtherm 在此例中,第二電晶體52之,n,值係參照到一射極尺寸 與第一電晶體51之比例,及,(1 + R2/R3)ln(n),值對應於公 式1中的比例常數’κ’。因此,設計者有可能藉由調整, ’R3’及’n’之數值使用下列溫度_正比型態參考電壓產生單 凡、^度-反比型態參考電壓產生單元及一溫度_無關型態 參考產生單το中任一項來建構一參考電壓產生單元。 接下來根據本發明每個較佳具體實施例之内部電壓 產生設備將參考附屬圖式做說明。 第十一圖為根據本發明第一具體實施例之半導體積, J路的内部電壓產生器之電路圖,第十二圖綱 -具體實施例之半導體積體電路的㈣電壓產生器之電 弟十二圖為根據本發明第三具體實施例之半導體 積體電路的内部電壓產生器之電路圖。 第一具體實施例 本备明之第-具體實施例之結構使得在—低溫條件 ’一胞電壓VC〇RE及一升高電壓νρρ皆增加,而一基 19 • 1303829 板偏壓電壓VBB降低。 如第十一圖所示,根據本發明第一具體實施例之半導 體積體電路的内部電壓產生器具有以下的結構。也就是 說二—半導體積體電路之内部電壓產生器包括一溫度_反比 里“ > 考電壓產生單元60,其在當溫度升高時產生一增加 -的基本參考電壓VREF_BASE1;—第一位準偏移器61,盆 可轉換由該溫度-反比型態參考電壓產生單元60輸出的基 φ本參考電壓VREF_BASE1成為—胞電壓產生參考電壓 彻以及一升高的電壓產生參考電壓vre",並將豆輸 ㈣電壓產生單元62,其藉由使用胞電壓產生 參考電W—C及由第-位準偏移器61輸出的升高電壓 產生參考電壓VREF—P而產生胞電壓VCQRE及升高電壓 術;-溫度-正比型態參考電屋產生單$70,其在當溫度 降低時產生-降低的基本參考電壓;—第二位準偏移哭 71’其可轉換由該溫度正比型態參考電壓產生單元7〇輸出 φ的-基本參考電壓VREF_BASE2成為一基板偏壓電壓產 生參考電壓VREF一B,並將其輸出;以及,一第二内部電 壓產生單兀72 ’其藉由使用由第二位準偏移器71所輸出 的基板偏壓電壓產生參考電壓VREF—B而產生基板偏壓電 壓 VBB。 溫度-反比型態芩考電壓產生單元6〇使用如第十圖所 示的組態。根據此組態,為了滿足該溫度_反比型態之特 性,第二電阻R2及第三電阻R3之阻抗,以及第二電晶體 52之射極大小n皆會被調整,藉以具有一負溫度係數。 20 •1303829 第一内部電壓產生單元62包括一比較器62-1,其具有 一反向終端,其用於接收由第一位準偏移器61所輸出的一 胞電壓產生參考電壓VREF_C ; —電晶體62-2,其具有一 閘極可接收比較器62-1的輸出,且其根據該閘極位準轉換 一外部電壓VDD而輸出一胞電壓VCORE,而允許該胞電 壓被反饋回到比較器62-1之非反向終端+,一升高電壓偵 測器62-3,其可偵測由第一位準偏移器61所輸出的一升高 電壓產生參考電壓VREF_P之位準,並輸出一升高電壓泵 致能信號,及一升高電壓泵62-4,其由該升高電壓泵致能 信號驅動,並抽取升高電壓VPP。 該溫度-正比型態參考電壓產生單元使用如第十圖所 示的組態。根據此組態,為了滿足該溫度-正比型態之特 性,第二電阻R2及第三電阻R3之阻抗,以及第二電晶體 52之射極大小η皆會被調整,藉以具有一正溫度係數。 第二内部電壓產生單元72包括一比較器72-1,其具有 一反向終端,用於接收由第二位準偏移器71所輸出的一基 板偏壓電壓產生參考電壓VREF_B ; —電晶體72-2,其具 有一閘極可接收比較器72-1的輸出,且其根據該閘極位準 轉換一外部電壓VDD而輸出一轉換過的電壓,而允許該轉 換的電壓被反饋回到比較器72-1之非反向終端;一基板偏 壓電壓偵測器72-3,其可偵測由電晶體72-2所輸出的一電 壓之位準,並輸出一基板偏壓電Μ泵致能信號;以及一基 板偏壓電壓泵72-4,其由該基板偏壓電壓泵致能信號驅 動,並抽取基板偏壓電壓VBB。 21 1303829 具有上述結構之根據本發明第一具體實施例的半導體 積體電路之内部電壓產生器之運作在以下說明。 — 首先,當溫度下降時,溫度-反比型態參考電壓產生單 元60輸出一在溫度下降之前由該基本參考電壓增加的一 基本參考電壓VREF BASE: 1。 以後弟位準偏移器61轉換基本參考電壓 VREF—BASE1成為—胞電壓產生參考電壓vref—〇及—升 高電壓產生參考電壓VREF__P,並將其輸出。 此時,因為基本參考電壓VREFJBASE1由一原始基本 參考電壓增加,胞電壓產生參考電壓VREF一C及升高電壓 產生參考電壓VREFJP亦正比於已經增加的該基本參考電 壓而增加。 此外’弟一内部電壓產生單元62藉由使用已經增加的 胞電壓產生參考電壓VREF一C及升高電壓產生參考電壓 VREF—P而產生一胞電壓VCORE及一升高電壓VPP。 此時,因為胞電壓產生參考電壓VREF—C及升高電壓 產生參考電壓VREFJP皆增加,胞電壓VCORE及升高電 壓vpp亦正比於已經增加的胞電壓產生參考電壓VREF c 及升高電壓產生參考電壓VREF_P而增加。 同時,當溫度下降時,溫度-正比型態參考電壓產生單 元70輸出一在溫度下降之前由基本參考電壓降低的一基 本參考電壓VREF_BASE2。 然後,第二位準偏移器71轉換基本參考電壓 VREF_BASE2成為一基板偏壓電壓產生參考電壓 22 1303829 VREF—B,並將其輸出。 此時,因為基本參考電壓VREF_BASE2由一原始基本 參考電壓降低,基板偏壓電壓產生參考電壓VREF_B亦正 比於已經降低的該基本參考電壓而降低。 此外’第二内部電壓產生單元72藉由使用已經降低的 基板偏壓電壓產生參考電壓VREF_B而產生一基板偏壓電 壓 VBB。 I 此時’因為基板偏壓電壓產生參考電壓VREF_B降 低’基板偏壓電壓VBB亦正比於已經降低的基板偏壓電壓 產生參考電壓VREFJB而降低。 因此’在一半導體積體電路胞中一 NMOS電晶體的電 流驅動性在低溫條件下即會降低。但是,根據本發明第一 具體實施例,胞電壓VCORE及升高電壓VPP即增加,也 就是說,一驅動電壓會增加,所以即可改善該NMOS電晶 體之驅動性。此外,基板偏壓電壓VBB即降低,也就是說, φ 該臨界電壓會降低,所以可以改善該NMOS電晶體的驅動 性。因此,即可執行正常運作。 第二具體實施例 本發明第二具體實施例之結構使得一胞電壓VCORE 及一升高電壓VPP被維持在預定數值,而無關於溫度變 化,且一基板偏壓電壓VBB即降低。 如第十二圖所示,根據本發明第二具體實施例之半導 體積體電路的内部電壓產生器具有以下的結構。也就是 23 1303829VREF—BASE = VBE + K * VTHERM In this example, the temperature coefficient of a base-emitter voltage VBE is approximately -2.2 mV/°C, and the temperature coefficient of a VTHERM component is approximately + 0.085 mV/°C. Therefore, the variable reference voltage generating unit can be generated by the following temperature-ratio analog type reference voltage generating unit, temperature-inverse ratio type reference voltage generating unit, and temperature-independent type reference voltage φ by adjusting the proportional constant K Any of the units. The tenth figure is a diagram of a case in which the concept of the variable reference voltage generating unit shown in FIG. 9 is applied to an actual circuit. In the tenth diagram, the variable reference voltage generating unit has the following structure. That is, the variable reference voltage generating unit includes a first transistor 51 and a first resistor R1 that connects one end to the emitter of the first transistor 51, and the second and third resistors R2 and R3. Connected to each other in series, and connected in parallel to the other end of the first resistor R1, a second transistor 52 having an emitter connected to the third resistor R3, and a comparator 53 having a non-inverting terminal + connected to A connection node at the other end of the first resistor R1 18 1303829, an emitter of the first transistor 51, and a reverse terminal are connected to the connection node of the second resistor R2 and the third resistor R3. The turn of the comparator 53 is fed back to the first resistor R1 and the second resistor R2. At this time, the reference voltage VREF_BASE is defined by the following Equation 2. [Expression 2] VREF_BASE = VBE + (1+ R2/R3)ln(n) * Vtherm In this example, the value of n of the second transistor 52 is referred to an emitter size and the first transistor 51. The ratio, and, (1 + R2/R3) ln(n), corresponds to the proportional constant 'κ' in Equation 1. Therefore, it is possible for the designer to adjust the values of 'R3' and 'n' using the following temperature_proportional type reference voltage to generate a single, ^-inverse-ratio type reference voltage generating unit and a temperature_independent type reference. Any one of the single το is generated to construct a reference voltage generating unit. Next, the internal voltage generating device according to each of the preferred embodiments of the present invention will be described with reference to the attached drawings. 11 is a circuit diagram of an internal voltage generator of a semiconductor product according to a first embodiment of the present invention, and a circuit diagram of a voltage generator of a semiconductor integrated circuit of a twelfth embodiment-specific embodiment 2 is a circuit diagram of an internal voltage generator of a semiconductor integrated circuit according to a third embodiment of the present invention. First Embodiment The structure of the first embodiment of the present invention is such that both the low-temperature condition 'cell voltage VC〇RE and an elevated voltage νρρ increase, and a base 19 • 1303829 plate bias voltage VBB decreases. As shown in Fig. 11, the internal voltage generator of the semiconductor body circuit according to the first embodiment of the present invention has the following structure. That is to say, the internal voltage generator of the second semiconductor integrated circuit includes a temperature_inverse ratio "> test voltage generating unit 60, which generates an increase-base reference voltage VREF_BASE1 when the temperature rises; a quasi-offset 61, the basin is convertible by the temperature-inverse ratio type reference voltage generating unit 60, the base φ, the reference voltage VREF_BASE1 becomes a cell voltage generating reference voltage and an elevated voltage generating a reference voltage vre" The bean (four) voltage generating unit 62 generates a cell voltage VCQRE and rises by using the cell voltage generating reference voltage W_C and the boosted voltage outputted by the first-level shifter 61 to generate the reference voltage VREF-P. Voltage--temperature-proportional type reference house generates a single $70, which produces a -lower basic reference voltage when the temperature is lowered; - second level offsets crying 71' which can be converted by the temperature proportional type reference The voltage generating unit 7 outputs a basic reference voltage VREF_BASE2 of φ to become a substrate bias voltage generating reference voltage VREF-B, and outputs it; and a second internal voltage generating unit 72' The substrate bias voltage VBB is generated by generating the reference voltage VREF-B using the substrate bias voltage outputted by the second level shifter 71. The temperature-inverse ratio type reference voltage generating unit 6 is used as shown in FIG. According to this configuration, in order to satisfy the characteristics of the temperature_inverse ratio type, the impedances of the second resistor R2 and the third resistor R3, and the emitter size n of the second transistor 52 are adjusted. The first internal voltage generating unit 62 includes a comparator 62-1 having a reverse terminal for receiving a cell voltage output by the first level shifter 61. A reference voltage VREF_C is generated; - a transistor 62-2 having a gate receiving the output of the comparator 62-1, and converting an external voltage VDD according to the gate level to output a cell voltage VCORE, while allowing the The cell voltage is fed back to the non-inverting terminal + of the comparator 62-1, and a boosted voltage detector 62-3 detects the generated voltage generated by the first level shifter 61. Reference voltage VREF_P level, and output a boosted voltage pump enable letter And a booster voltage pump 62-4 driven by the boosted voltage pump enable signal and extracting the boosted voltage VPP. The temperature-proportional type reference voltage generating unit uses the configuration as shown in FIG. According to this configuration, in order to satisfy the characteristic of the temperature-ratio type, the impedances of the second resistor R2 and the third resistor R3, and the emitter size η of the second transistor 52 are adjusted to have a positive temperature. The second internal voltage generating unit 72 includes a comparator 72-1 having a reverse terminal for receiving a substrate bias voltage generating reference voltage VREF_B outputted by the second level shifter 71; The transistor 72-2 has a gate receiving the output of the comparator 72-1, and it converts an external voltage VDD according to the gate level to output a converted voltage, and allows the converted voltage to be fed back. Returning to the non-inverting terminal of the comparator 72-1; a substrate bias voltage detector 72-3, which can detect the level of a voltage outputted by the transistor 72-2 and output a substrate bias An electric pump enable signal; and a substrate bias voltage pump 72-4 Substrate bias voltage pump drive enable signal, and extracting the substrate bias voltage VBB. 21 1303829 The operation of the internal voltage generator of the semiconductor integrated circuit according to the first embodiment of the present invention having the above structure is explained below. - First, when the temperature drops, the temperature-inverse ratio type reference voltage generating unit 60 outputs a basic reference voltage VREF BASE: 1 which is increased by the basic reference voltage before the temperature drops. The subsequent bit shifter 61 converts the basic reference voltage VREF_BASE1 into a cell voltage generating reference voltage vref_〇 and a rising voltage generating reference voltage VREF__P, and outputs it. At this time, since the basic reference voltage VREFJBASE1 is increased by an original basic reference voltage, the cell voltage generating reference voltage VREF_C and the boosting voltage generating reference voltage VREFJP are also increased in proportion to the base reference voltage which has been increased. Further, the internal voltage generating unit 62 generates a cell voltage VCORE and a boosted voltage VPP by generating the reference voltage VREF_C using the increased cell voltage and generating the reference voltage VREF_P. At this time, since the cell voltage generation reference voltage VREF-C and the boost voltage generation reference voltage VREFJP are both increased, the cell voltage VCORE and the boosted voltage vpp are also proportional to the increased cell voltage generation reference voltage VREF c and the boost voltage generation reference. The voltage VREF_P increases. At the same time, when the temperature drops, the temperature-ratio type reference voltage generating unit 70 outputs a basic reference voltage VREF_BASE2 which is lowered by the basic reference voltage before the temperature drops. Then, the second level shifter 71 converts the basic reference voltage VREF_BASE2 into a substrate bias voltage generating reference voltage 22 1303829 VREF_B, and outputs it. At this time, since the basic reference voltage VREF_BASE2 is lowered by an original basic reference voltage, the substrate bias voltage generation reference voltage VREF_B is also lowered in proportion to the fundamental reference voltage which has been lowered. Further, the second internal voltage generating unit 72 generates a substrate bias voltage VBB by generating the reference voltage VREF_B using the substrate bias voltage which has been lowered. I at this time 'the reference voltage VREF_B is lowered because the substrate bias voltage is lowered'. The substrate bias voltage VBB is also lowered in proportion to the already lower substrate bias voltage generating reference voltage VREFJB. Therefore, the current driveability of an NMOS transistor in a semiconductor integrated circuit cell is lowered under low temperature conditions. However, according to the first embodiment of the present invention, the cell voltage VCORE and the boosted voltage VPP increase, that is, a driving voltage is increased, so that the driving force of the NMOS transistor can be improved. Further, the substrate bias voltage VBB is lowered, that is, the threshold voltage of φ is lowered, so that the driving force of the NMOS transistor can be improved. Therefore, normal operation can be performed. Second Embodiment The second embodiment of the present invention is structured such that a cell voltage VCORE and a boosted voltage VPP are maintained at predetermined values irrespective of temperature changes, and a substrate bias voltage VBB is lowered. As shown in Fig. 12, the internal voltage generator of the semiconductor body circuit according to the second embodiment of the present invention has the following structure. That is 23 1303829
說’一半導體積體電路之内部電壓產生器包括 型態麥考電壓產生單元80’其可產生1定的基本參考電 壓VREF_BASE卜而無關於溫度變化;—第一位準偏移器 81 ’其轉換由溫度·無關型態參考電壓產生單元⑽所輸出 的基本參考電壓VREF_BASm成為—胞電壓產生參考電 壓VREF—c及—升高霞產生參考電壓p,並將盆 輸出;-第-内部電壓產生單以2,其藉由使用由第一位 準偏移器81所輸出的胞電壓產生參考電壓⑽迎c及升高 電壓產生參考電壓VREF_P而產生胞電壓彻re及升高 電壓VPP; 一溫度-正比型態參考電壓產生單元90,其在當 溫度降低時產生-降低的基本參考電麗;—第二位準偏移 $ 91 ’其轉換由溫度·正比型態參考電壓產生單元90輸出 的-基本參考電壓VREF_BASE2成為—基板偏壓電壓產 生,考電壓VREF—B’並將其輸出;及—第二内部電壓產 ΐ早?" 92,其使用由第二位準偏移器91所輸出的基板偏 t VKEF—Β而產生基板偏壓電壓。 —溫^·無關型態參考電壓產生單元⑼使用如第十圖所 =的組恶。根據此組態’為了滿足該溫度-無關型態特性, 第二電阻R2與第三電阻R3之阻抗,及第二電晶體^之 射極^小η皆被調整,藉以具有一溫度係數為〇。 第一内部電壓產生單元82可具有與第十-圖中根據 本發明第-具體實施例之第一内部電麼產生單元62相同 的結構。因此,其詳細說明將會省略。 溫度-正比型態參考電壓產生單元9G使用如第十圖所 24 1303829 八的組您。根據此組態,為了滿足該溫度-正比型態之特 陡,第二電阻R2與第三電阻R3之阻抗,及第二電晶體52 之射極大小n皆被調整,藉以具有一正溫度係數。 一第二内部電壓產生單元92可具有與根據第十一圖所 八之本發明第一具體實施例之第二内部電壓產生單元72 ' 相同的結構。因此,其詳細說明將被省略。 - 具有上述結構之根據本發明第二具體實施例之半導體 φ 積體電路的内部電壓產生器之運作即如下所述。 首先,溫度-無關型態參考電壓產生單元8〇輸出一預 定的基本參考電壓VREF—BASE1,而無關於溫度變化。 然後,第一位準偏移器81轉換基本參考電壓 VREF—BASE1成為一胞電壓產生參考電壓vREF—c及一升 高電壓產生參考電壓VREF—p,並將其輸出。 此時,因為基本參考電壓VREF-BASE1為恆定,無關 於溫度變化’胞電壓產生參考電壓VREF—C及升高電壓產 籲生參考電壓VREFjp中每一電壓亦被維持在正比於該基本 參考電壓之一預定的輸出位準。 此外,第—内部電壓產生單元82藉由使用胞電壓產生 參考電[VREF〜C與升南電壓產生參考電壓VREFJP而產 生一胞電壓VCORE及一升高電壓VPP。 此時,因為胞電壓產生參考電壓VREF—C與該升高電 壓產生參考電壓VREF—P中每一電壓為值定,胞電壓 VCORE與升高_ vpp中每—電麼亦被維持在一預定輸 出位準。 25 1303829 同時,當溫度下降時,溫度_正比型態參考電壓產生單 元90輸出了在溫度下降之前由該基本參考電壓降低的一 基本參考電壓VREF_BASE2。 然後,第二位準偏移器91轉換基本參考電壓 VREF—BASE2成為一基板偏壓電壓產生參考電壓 - VREFJB,並將其輸出。 • 此時,因為基本參考電壓VREF_BASE2由一原始基本 擊 參考電壓降低,基板偏壓電壓產生參考電壓VREFJB亦正 比於已經降低的該基本參考電壓而降低。 此外,第二内部電壓產生單元92藉由使用已經降低的 基板偏壓電壓產生參考電壓VREF_B而產生一基板偏壓電 壓 VBB。 此時’因為基板偏壓電壓產生參考電壓VREF B降 低,基板偏壓電壓VBB亦正比於已經降低的基板偏壓電壓 產生參考電壓VREFJB而降低。 鲁 因此’在一半導體積體電路胞中一 NMOS電晶體的電 流驅動性在低溫條件下即會降低。但是,根據本發明第二 具體實施例,基板偏壓電壓VBB即會降低,也就是說,該 臨界電壓降低,所以可改善該NMOS電晶體的驅動性,而 允許執行正常運作。 第三具體實施例 本發明之第三具體實施例之結構可使得一胞電壓 VCORE及一升高電壓VPP在一低溫條件下增加,而一基 26 1303829 板偏壓電壓VBB被維持在一預定數值,而無關於溫度變 化。 如第十三圖所示,根據本發明第三具體實施例之半導 體積體電路的内部電壓產生器具有以下的結構。也就是 說,一半導體積體電路之内部電壓產生器包括一溫度-反比 . 型態參考電壓產生單元100,其在當溫度下降時可產生一 增加的基本參考電壓VREF_BASE1 ; —第一位準偏移器 101,其可轉換由溫度-反比型態參考電壓產生單元100輸 * 出的基本參考電壓VREF_BASE1成為一胞電壓產生參考 電壓VREF_C及一升高電壓產生參考電壓VREF_P,並將 其輸出;一第一内部電壓產生單元102,其藉由使用由第 一位準偏移器101輸出的胞電壓產生參考電壓VREF_C與 升高電壓產生參考電壓VREFJP而產生胞電壓VCORE與 升高電壓VPP ; —溫度-無關型態參考電壓產生單元110, 其可產生一預定的基本參考電壓,而無關於溫度變化;一 φ 第二位準偏移器111,其可轉換由溫度-無關型態參考電壓 產生單元110輸出的一基本參考電壓VREF—BASE2成為一 基板偏壓電壓產生參考電壓VREFJB,並將其輸出;以及 一第二内部電壓產生單元112,其使用由第二位準偏移器 111輸出的基板偏壓電壓產生參考電壓VREF_B產生基板 偏壓電壓VBB。 溫度-反比型態參考電壓產生單元100使用如第十圖所 示的組態。根據此組態,為了滿足該溫度-反比特性,第二 電阻R2與第三電阻R3之阻抗,與第二電晶體52之射極 27 1303829 大小η皆被調整,藉以具有一負溫度係數。 第一内部電壓產生單元102可具有與第十一圖中根據 本發明第一具體實施例之第一内部電壓產生單元62相同 的結構。因此,其詳細說明將會省略。 溫度_無關型態參考電壓產生單元110使用如第十圖所 示的組態。根據此組態,為了滿足該溫度-無關型態特性, 第二電阻R2與第三電阻R3之阻抗,及第二電晶體52之 射極大小η皆被調整,藉以具有一溫度係數為0。 第二内部電壓產生單元112可具有與根據第十一圖所 示之本發明第一具體實施例之第二内部電壓產生單元72 相同的結構。因此,其詳細說明將被省略。 具有上述結構之根據本發明第三具體實施例之半導體 積體電路的内部電壓產生器之運作將在以下說明。 首先,當溫度下降時,溫度-反比型態參考電壓產生單 元100輸出在溫度下降之前由基本參考電壓增加的一基本 參考電壓VREF_BASE1。 然後,第一位準偏移器101轉換基本參考電壓 VREF—BASE1成為一胞電壓產生參考電壓VREF—C與一升 高電壓產生參考電壓VREFJP,並將其輸出。 此時,因為基本參考電壓VREF—BASE1由該原始基本 參考電壓增加,胞電壓產生參考電壓VREF_C與升高電壓 產生參考電壓VREF_P亦正比於已經增加的該基本參考電 壓而增加。 此外,第一内部電壓產生單元102藉由使用已經增加 28 1303829 的胞電壓產生參考電壓VREF一c與升高電壓產生參考電壓 VREF—P而產生一胞電壓vc〇RE與一升高電壓vpp。 此時,因為胞電壓產生參考電壓VREF一c與升高電壓 產生參考電壓VREF—P皆增加,胞電壓Vc〇RE與升高電 壓vpp亦正比於已經增加的胞電壓產生參考電壓。 與升高電壓產生參考電壓VREF_p而增加。 同時,溫度-無關型態參考電壓產生單元11〇輸出一預 定的基本參考電壓VREFJBASE2,而無關於溫度變化。 然後,第二位準偏移器m轉換基本參考電壓 VREF—BASE2成為一基板偏壓電壓產生參考電壓 VREF_B,並將其輸出。 此時,因為基本參考電壓VREFjBASE2為恆定,無關 於溫度變化,基板偏壓電壓產生參考電壓VREFjb亦可維 持在正比於該基本參考電壓之一預定位準上。 此外,第二内部電壓產生單元112藉由使用基板偏壓 電壓產生麥考電壓VREFJB產生基板偏壓電壓VBB。 此時,因為基板偏壓電壓產生參考電壓VREF_B為恆 疋,基板偏壓電壓VBB亦可維持在正比於基板偏壓電壓產 生參考電壓VREFJB之一預定位準上。 因此,在一半導體積體電路胞中一 NMOS電晶體的電 凌驅動性在低溫條件下即會降低。但是,根據本發明第三 具體實施例’胞電壓VCORE與升高電壓VPP皆增加,也 就是說,該驅動電壓增加,所以可以改善該NMQS電晶體 之驅動性。此外’該基板偏壓電壓Vbb可避免增加,也就 29 1303829 是說,該臨界電壓可避免增加,所以可以改善該NMOS電 晶體之驅動性,其可允許執行一正常運作。 其應瞭解到本技藝專業人士在不背離本發明之範圍及 精神之下可進行不同修正及改變。因此,應該可以瞭解到 上述的具體實施例不具有限制性,而是在各態樣上進行例 . 示。本發明之範圍係由附屬申請專利範圍所定義,而非由 先前的說明所定義,而所有的變更與修正皆位於該等申請 專利範圍之界定與範圍内,因此這些界定與範圍之同等者 • 皆由該等申請專利範圍所包含。 根據本發明之該等具體實施例,一半導體積體電路之 内部電壓產生器可以根據溫度條件而獨立地控制該升高電 壓、該胞電壓及該基板偏壓電壓。因此,一半導體積體電 路之内部電壓產生器可以達到以下的效果; 首先,其可能防止該半導體積體電路之效能由於溫度 變化而降低。 φ 第二,其有可能設計出一種半導體積體電路,其不受 到元件特性變化的影響;也就是說,可在嚴苛的環境變化 之下仍然進行正常運作。 【圖式簡單說明】 本發明將參考附屬圖式進行說明,其中類似的編號代 表類似的元件,其中: 第一圖為一習用記憶胞之結構的配置圖; 第二圖為用於一習用半導體積體電路中不同電壓之比 30 1303829 較結果之圖式; 第三圖為根據相關技藝之半導體積體電路的一内部電 壓產生電路之電路圖; 第四圖為在第三圖中所示之一基板偏壓電壓偵測器之 内部結構的電路圖; . 第五圖為在第三圖中所示之一升高電壓偵測器之内部 結構的電路圖, 第六圖為根據相關技藝之參考電壓中的變化之圖式; ® 第七圖為在一低溫狀況下一内部電壓需求條件之圖 式, 第八圖為例示根據本發明一具體實施例之半導體積體 電路的内部電壓產生器之觀念的電路圖; 第九圖為例示第八圖所示之一可變參考電壓產生單元 的觀念之電路圖; 第十圖為例示第八圖所示之一可變參考電壓產生單元 Φ 的内部結構之電路圖; 第十一圖為例示根據本發明之第一具體實施例之半導 體積體電路的内部電壓產生器的電路圖; 第十二圖為例示根據本發明之第二具體實施例之半導 體積體電路的内部電壓產生器之電路圖;以及 第十三圖為例示根據本發明之第三具體實施例之半導 體積體電路的内部電壓產生器之電路圖。 【主要元件符號說明】 31 1303829 10 參考電壓產生單元 11 第一位準偏移器 12 胞電壓產生單元 12-1 比較器 12-2 電晶體 13 基板偏壓電壓產生單元 13-1 比較器 13-2 電晶體 ® 13-3 VBB偵測器 13-4 VBB泵 14 升高電壓產生單元 14-1 VPP偵測器 14-2 VPP泵 20 第一可變參考電壓產生單元 21 第一位準偏移器 • 22 第一内部電壓產生單元 22-1 比較器 22-2 電晶體 22-3 偵測器 22-4 泵 30 第二可變參考電壓產生單元 31 第二位準偏移器 32 第二内部電壓產生單元 32-1 比較器 32 1303829It is said that the internal voltage generator of a semiconductor integrated circuit includes a type of digital voltage generating unit 80' which can generate a constant basic reference voltage VREF_BASE without any change in temperature; the first level shifter 81' Converting the basic reference voltage VREF_BASm outputted by the temperature-independent type reference voltage generating unit (10) into a cell voltage generating reference voltage VREF-c and increasing the reference voltage p, and outputting the basin; - the first internal voltage is generated 2, which generates a reference voltage V10_C by using a cell voltage outputted by the first level shifter 81, and generates a reference voltage VREF_P to generate a cell voltage and a voltage VPP; a proportional type reference voltage generating unit 90 which generates a base reference voltage which is lowered when the temperature is lowered; a second level offset $91' which is converted by the temperature/ratio type reference voltage generating unit 90 - the basic reference voltage VREF_BASE2 becomes - the substrate bias voltage is generated, the test voltage VREF - B' is output and is output; and - the second internal voltage is produced early &< 92, which is used by the second level offset Biasing the substrate 91 outputted t VKEF-Β generates the substrate bias voltage. - The temperature-independent type reference voltage generating unit (9) uses the group evil as = in the tenth figure. According to this configuration, in order to satisfy the temperature-independent type characteristic, the impedances of the second resistor R2 and the third resistor R3, and the emitters of the second transistor ^ are all adjusted, thereby having a temperature coefficient 〇 . The first internal voltage generating unit 82 may have the same structure as the first internal electric generating unit 62 according to the tenth embodiment of the present invention. Therefore, the detailed description will be omitted. The temperature-ratio type reference voltage generating unit 9G uses the group of 24 1303829 VIII as shown in the tenth figure. According to this configuration, in order to satisfy the temperature-ratio mode, the impedance of the second resistor R2 and the third resistor R3, and the emitter size n of the second transistor 52 are adjusted to have a positive temperature coefficient. . A second internal voltage generating unit 92 may have the same structure as the second internal voltage generating unit 72' of the first embodiment of the present invention according to the eleventh drawing. Therefore, the detailed description thereof will be omitted. - The operation of the internal voltage generator of the semiconductor φ integrated circuit according to the second embodiment of the present invention having the above structure is as follows. First, the temperature-independent type reference voltage generating unit 8 outputs a predetermined basic reference voltage VREF_BASE1 regardless of the temperature change. Then, the first level shifter 81 converts the basic reference voltage VREF_BASE1 into a cell voltage generating reference voltage vREF-c and a rising voltage generating reference voltage VREF_p, and outputs it. At this time, since the basic reference voltage VREF-BASE1 is constant, regardless of the temperature change, the voltage of the cell voltage generation reference voltage VREF-C and the boosted voltage production reference voltage VREFjp are also maintained at a ratio proportional to the basic reference voltage. One of the predetermined output levels. Further, the first internal voltage generating unit 82 generates a cell voltage VCORE and a boosted voltage VPP by using the cell voltage generating reference voltage [VREF~C and the rising south voltage generating reference voltage VREFJP. At this time, since each of the voltages of the reference voltage VREF-C and the boosted voltage generating reference voltage VREF-P is determined, each of the cell voltage VCORE and the rising_vpp is maintained at a predetermined time. Output level. 25 1303829 Meanwhile, when the temperature is lowered, the temperature_proportional type reference voltage generating unit 90 outputs a basic reference voltage VREF_BASE2 which is lowered by the basic reference voltage before the temperature falls. Then, the second level shifter 91 converts the basic reference voltage VREF_BASE2 into a substrate bias voltage generation reference voltage - VREFJB, and outputs it. • At this time, since the basic reference voltage VREF_BASE2 is lowered by a raw reference voltage, the substrate bias voltage generation reference voltage VREFJB is also lowered in proportion to the fundamental reference voltage that has been lowered. Further, the second internal voltage generating unit 92 generates a substrate bias voltage VBB by generating the reference voltage VREF_B using the substrate bias voltage which has been lowered. At this time, since the substrate bias voltage generation reference voltage VREF B is lowered, the substrate bias voltage VBB is also lowered in proportion to the substrate bias voltage which has been lowered to generate the reference voltage VREFJB. Therefore, the current driveability of an NMOS transistor in a semiconductor integrated circuit cell is lowered under low temperature conditions. However, according to the second embodiment of the present invention, the substrate bias voltage VBB is lowered, that is, the threshold voltage is lowered, so that the driving force of the NMOS transistor can be improved, and normal operation can be performed. Third Embodiment The structure of the third embodiment of the present invention is such that a cell voltage VCORE and a boosted voltage VPP are increased under a low temperature condition, and a substrate 26 1303829 plate bias voltage VBB is maintained at a predetermined value. And nothing about temperature changes. As shown in Fig. 13, the internal voltage generator of the semiconductor body circuit according to the third embodiment of the present invention has the following structure. That is, the internal voltage generator of a semiconductor integrated circuit includes a temperature-inverse ratio type reference voltage generating unit 100, which generates an increased basic reference voltage VREF_BASE1 when the temperature drops; The shifter 101 converts the basic reference voltage VREF_BASE1 outputted by the temperature-inverse ratio type reference voltage generating unit 100 into a cell voltage generating reference voltage VREF_C and a boosting voltage generating reference voltage VREF_P, and outputs the same; The first internal voltage generating unit 102 generates the cell voltage VCORE and the boosted voltage VPP by using the cell voltage generated by the first level shifter 101 to generate the reference voltage VREF_C and the boosted voltage generating reference voltage VREFJP; An irrelevant type reference voltage generating unit 110 which generates a predetermined basic reference voltage irrespective of temperature change; a φ second level shifter 111 convertible by a temperature-independent type reference voltage generating unit A basic reference voltage VREF-BASE2 of the 110 output becomes a substrate bias voltage generating reference voltage VREFJB, and outputs it; and a second The internal voltage generating unit 112 generates the substrate bias voltage VBB using the substrate bias voltage generated by the second level shifter 111 to generate the reference voltage VREF_B. The temperature-inverse ratio type reference voltage generating unit 100 uses the configuration as shown in the tenth diagram. According to this configuration, in order to satisfy the temperature-inverse ratio characteristic, the impedances of the second resistor R2 and the third resistor R3, and the magnitude η of the emitter 27 1303829 of the second transistor 52 are adjusted to have a negative temperature coefficient. The first internal voltage generating unit 102 may have the same structure as the first internal voltage generating unit 62 according to the first embodiment of the present invention in the eleventh drawing. Therefore, the detailed description will be omitted. The temperature_independent type reference voltage generating unit 110 uses the configuration as shown in the tenth figure. According to this configuration, in order to satisfy the temperature-independent type characteristic, the impedances of the second resistor R2 and the third resistor R3, and the emitter size η of the second transistor 52 are adjusted to have a temperature coefficient of zero. The second internal voltage generating unit 112 may have the same structure as the second internal voltage generating unit 72 of the first embodiment of the present invention shown in the eleventh diagram. Therefore, the detailed description thereof will be omitted. The operation of the internal voltage generator of the semiconductor integrated circuit according to the third embodiment of the present invention having the above structure will be explained below. First, when the temperature drops, the temperature-inverse ratio type reference voltage generating unit 100 outputs a basic reference voltage VREF_BASE1 which is increased by the basic reference voltage before the temperature drops. Then, the first level shifter 101 converts the basic reference voltage VREF_BASE1 into a cell voltage generating reference voltage VREF-C and a rising voltage generating reference voltage VREFJP, and outputs it. At this time, since the basic reference voltage VREF_BASE1 is increased by the original basic reference voltage, the cell voltage generation reference voltage VREF_C and the boosted voltage generation reference voltage VREF_P are also increased in proportion to the base reference voltage which has been increased. Further, the first internal voltage generating unit 102 generates a cell voltage vc〇RE and a boosted voltage vpp by generating the reference voltage VREF_c and the boosted voltage generating reference voltage VREF_P using the cell voltage which has been increased by 28 1303829. At this time, since the cell voltage generating reference voltage VREF-c and the boosting voltage generating reference voltage VREF-P are both increased, the cell voltage Vc〇RE and the boosting voltage vpp are also proportional to the increased cell voltage to generate the reference voltage. It increases with the boost voltage generating the reference voltage VREF_p. At the same time, the temperature-independent type reference voltage generating unit 11 outputs a predetermined basic reference voltage VREFJBASE2 regardless of the temperature change. Then, the second level shifter m converts the basic reference voltage VREF_BASE2 into a substrate bias voltage generating reference voltage VREF_B, and outputs it. At this time, since the basic reference voltage VREFjBASE2 is constant irrespective of the temperature change, the substrate bias voltage generation reference voltage VREFjb can also be maintained at a predetermined level proportional to the basic reference voltage. Further, the second internal voltage generating unit 112 generates the substrate bias voltage VBB by generating the McCaw voltage VREFJB using the substrate bias voltage. At this time, since the substrate bias voltage generation reference voltage VREF_B is constant, the substrate bias voltage VBB can also be maintained at a predetermined level proportional to the substrate bias voltage generation reference voltage VREFJB. Therefore, the transistor driving force of an NMOS transistor in a semiconductor integrated circuit cell is lowered under low temperature conditions. However, according to the third embodiment of the present invention, both the cell voltage VCORE and the boosted voltage VPP are increased, that is, the driving voltage is increased, so that the driving force of the NMQS transistor can be improved. In addition, the substrate bias voltage Vbb can be prevented from increasing, that is, 29 1303829, the threshold voltage can be prevented from increasing, so that the driving force of the NMOS transistor can be improved, which allows a normal operation to be performed. It will be appreciated that various modifications and changes can be made by those skilled in the art without departing from the scope and spirit of the invention. Therefore, it should be understood that the specific embodiments described above are not limiting, but rather are illustrated in various aspects. The scope of the present invention is defined by the scope of the appended claims, and is not defined by the foregoing description, and all such changes and modifications are within the scope and scope of the scope of the claims. All are covered by the scope of these patent applications. In accordance with these embodiments of the present invention, an internal voltage generator of a semiconductor integrated circuit can independently control the boost voltage, the cell voltage, and the substrate bias voltage in accordance with temperature conditions. Therefore, the internal voltage generator of a semiconductor integrated circuit can achieve the following effects; first, it is possible to prevent the performance of the semiconductor integrated circuit from being lowered due to temperature variations. φ Second, it is possible to design a semiconductor integrated circuit that is immune to variations in component characteristics; that is, it can operate normally under severe environmental changes. BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described with reference to the accompanying drawings, in which like numerals represent like elements, in which: FIG. 1 is a configuration diagram of a conventional memory cell structure; The ratio of the different voltages in the integrated circuit is 30 1303829. The third figure is a circuit diagram of an internal voltage generating circuit of the semiconductor integrated circuit according to the related art; the fourth figure is one of the ones shown in the third figure. Circuit diagram of the internal structure of the substrate bias voltage detector; Fig. 5 is a circuit diagram of the internal structure of one of the boosted voltage detectors shown in the third figure, and the sixth figure is in the reference voltage according to the related art. The pattern of the change; the seventh figure is a diagram of the internal voltage demand condition under a low temperature condition, and the eighth figure is an illustration of the concept of the internal voltage generator of the semiconductor integrated circuit according to an embodiment of the present invention. FIG. 9 is a circuit diagram illustrating a concept of a variable reference voltage generating unit shown in FIG. 8; FIG. 11 is a diagram showing a variable reference power shown in FIG. A circuit diagram for generating an internal structure of a unit Φ; FIG. 11 is a circuit diagram illustrating an internal voltage generator of a semiconductor integrated circuit according to a first embodiment of the present invention; and FIG. 12 is a second specific embodiment of the present invention A circuit diagram of an internal voltage generator of a semiconductor integrated circuit of an embodiment; and a thirteenth diagram is a circuit diagram illustrating an internal voltage generator of a semiconductor integrated circuit according to a third embodiment of the present invention. [Main component symbol description] 31 1303829 10 Reference voltage generating unit 11 First bit shifting device 12 Cell voltage generating unit 12-1 Comparator 12-2 Transistor 13 Substrate bias voltage generating unit 13-1 Comparator 13- 2 Transistor® 13-3 VBB detector 13-4 VBB pump 14 boost voltage generating unit 14-1 VPP detector 14-2 VPP pump 20 first variable reference voltage generating unit 21 first bit shift • 22 first internal voltage generating unit 22-1 comparator 22-2 transistor 22-3 detector 22-4 pump 30 second variable reference voltage generating unit 31 second level shifter 32 second internal Voltage generating unit 32-1 comparator 32 1303829
32-2 電晶體 32-3 偵測器 32-4 泵 41 電壓產生單元 42 乘法器 43 電晶體B JT 44 加法器 51 第一電晶體 52 第二電晶體 53 比較器 60 溫度-反比型態參考電壓產生單元 61 第一位準偏移器 70 溫度_正比型態參考電壓產生單元 71 第二位準偏移器 62 第一内部電壓產生單元 62-1 比較器 62-2 電晶體 62-3 VPP偵測器 62-4 VPP泵 72 第二内部電壓產生單元 72-1 比較器 72-2 電晶體 72-3 VBB偵測器 72-4 VBB泵 33 1303829 80 溫度-無關型態參考電壓產生單元 81 第一位準偏移器 90 溫度-正比型態參考電壓產生單元 91 第二位準偏移器 82 第一内部電壓產生單元 82-1 比較器 82-2 電晶體 82-3 VPP偵測器 ® 82-4 VPP泵 92 第二内部電壓產生單元 92-1 比較器 92-2 電晶體 92-3 VBB偵測器 92-4 VBB泵32-2 Transistor 32-3 Detector 32-4 Pump 41 Voltage Generation Unit 42 Multiplier 43 Transistor B JT 44 Adder 51 First Transistor 52 Second Transistor 53 Comparator 60 Temperature-Inverse Ratio Reference Voltage generating unit 61 first bit shifter 70 temperature_proportional type reference voltage generating unit 71 second level shifter 62 first internal voltage generating unit 62-1 comparator 62-2 transistor 62-3 VPP Detector 62-4 VPP pump 72 Second internal voltage generating unit 72-1 Comparator 72-2 Transistor 72-3 VBB detector 72-4 VBB pump 33 1303829 80 Temperature-independent type reference voltage generating unit 81 First quasi-offset 90 temperature-proportional type reference voltage generating unit 91 second level shifter 82 first internal voltage generating unit 82-1 comparator 82-2 transistor 82-3 VPP detector® 82-4 VPP pump 92 Second internal voltage generating unit 92-1 Comparator 92-2 Transistor 92-3 VBB detector 92-4 VBB pump
3434
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050085165A KR100738957B1 (en) | 2005-09-13 | 2005-09-13 | Apparatus for Generating Internal Voltages of Semiconductor Integrated Circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200713303A TW200713303A (en) | 2007-04-01 |
TWI303829B true TWI303829B (en) | 2008-12-01 |
Family
ID=37854923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095133725A TWI303829B (en) | 2005-09-13 | 2006-09-12 | Internal voltage geneator of semiconductor integrated circuit |
Country Status (4)
Country | Link |
---|---|
US (2) | US7417490B2 (en) |
JP (1) | JP5133545B2 (en) |
KR (1) | KR100738957B1 (en) |
TW (1) | TWI303829B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI833351B (en) * | 2022-07-17 | 2024-02-21 | 南亞科技股份有限公司 | Power voltage supply device with automatic temperature compensation |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI337744B (en) * | 2007-06-05 | 2011-02-21 | Etron Technology Inc | Electronic device and related method for performing compensation operation on electronic element |
KR100878314B1 (en) * | 2007-06-18 | 2009-01-14 | 주식회사 하이닉스반도체 | Apparatus for Generating Internal Voltages of Semiconductor Integrated Circuit |
KR100924353B1 (en) * | 2008-03-28 | 2009-11-02 | 주식회사 하이닉스반도체 | Internal voltage generator |
KR100944328B1 (en) * | 2008-08-04 | 2010-03-03 | 주식회사 하이닉스반도체 | Phase change memory device compensating temperature change |
KR101131940B1 (en) * | 2009-06-16 | 2012-04-12 | 주식회사 하이닉스반도체 | Semiconductor device |
KR101045069B1 (en) | 2010-03-31 | 2011-06-29 | 주식회사 하이닉스반도체 | Semiconductor intergrated circuit |
KR20120086953A (en) | 2011-01-27 | 2012-08-06 | 에스케이하이닉스 주식회사 | Internal votage generation circuit and semiconductor memory device |
US8638605B2 (en) | 2011-05-25 | 2014-01-28 | Micron Technology, Inc. | Apparatus and methods including a bipolar junction transistor coupled to a string of memory cells |
US8547166B2 (en) * | 2011-07-29 | 2013-10-01 | Macronix International Co., Ltd. | Temperature compensation circuit and temperature compensated metal oxide semiconductor transistor using the same |
KR101890427B1 (en) * | 2011-12-28 | 2018-08-22 | 에스케이하이닉스 주식회사 | Internal voltage generation circuit using the same |
JP2017224978A (en) * | 2016-06-15 | 2017-12-21 | 東芝メモリ株式会社 | Semiconductor device |
KR20190064893A (en) * | 2017-12-01 | 2019-06-11 | 에스케이하이닉스 주식회사 | Digital temperature sensing circuit |
US11271566B2 (en) * | 2018-12-14 | 2022-03-08 | Integrated Device Technology, Inc. | Digital logic compatible inputs in compound semiconductor circuits |
KR102571603B1 (en) * | 2018-12-24 | 2023-08-29 | 에스케이하이닉스 주식회사 | Internal voltage generation device and method |
CN117631743A (en) * | 2022-08-15 | 2024-03-01 | 长鑫存储技术有限公司 | Power supply circuit and chip |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5315230A (en) * | 1992-09-03 | 1994-05-24 | United Memories, Inc. | Temperature compensated voltage reference for low and wide voltage ranges |
KR960002457B1 (en) * | 1994-02-07 | 1996-02-17 | 금성일렉트론주식회사 | Constant voltage circuit |
KR0143344B1 (en) * | 1994-11-02 | 1998-08-17 | 김주용 | Reference voltage generator |
JPH11213664A (en) * | 1998-01-23 | 1999-08-06 | Mitsubishi Electric Corp | Semiconductor integrated-circuit device |
US6082115A (en) * | 1998-12-18 | 2000-07-04 | National Semiconductor Corporation | Temperature regulator circuit and precision voltage reference for integrated circuit |
US6232828B1 (en) * | 1999-08-03 | 2001-05-15 | National Semiconductor Corporation | Bandgap-based reference voltage generator circuit with reduced temperature coefficient |
KR20010017280A (en) * | 1999-08-10 | 2001-03-05 | 윤종용 | Temperature detecting circuit, temperature compensation apparatus and method thereof |
KR100393226B1 (en) * | 2001-07-04 | 2003-07-31 | 삼성전자주식회사 | Internal reference voltage generator capable of controlling value of internal reference voltage according to temperature variation and internal power supply voltage generator including the same |
JP2003197764A (en) | 2001-12-26 | 2003-07-11 | Oki Electric Ind Co Ltd | Semiconductor device, reference voltage generator circuit and its manufacturing method |
US6814485B2 (en) * | 2003-01-23 | 2004-11-09 | Sun Microsystems, Inc. | On-die thermal monitoring technique |
JP3751966B2 (en) * | 2003-11-21 | 2006-03-08 | 日本テキサス・インスツルメンツ株式会社 | Thermal shutdown circuit |
US7038530B2 (en) * | 2004-04-27 | 2006-05-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reference voltage generator circuit having temperature and process variation compensation and method of manufacturing same |
KR100610443B1 (en) * | 2004-08-19 | 2006-08-09 | 주식회사 하이닉스반도체 | Internal voltage generating circuit |
-
2005
- 2005-09-13 KR KR1020050085165A patent/KR100738957B1/en active IP Right Grant
-
2006
- 2006-09-12 TW TW095133725A patent/TWI303829B/en active
- 2006-09-13 US US11/519,829 patent/US7417490B2/en active Active
- 2006-09-13 JP JP2006248747A patent/JP5133545B2/en active Active
-
2008
- 2008-08-04 US US12/185,448 patent/US7667528B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI833351B (en) * | 2022-07-17 | 2024-02-21 | 南亞科技股份有限公司 | Power voltage supply device with automatic temperature compensation |
US12007800B2 (en) | 2022-07-17 | 2024-06-11 | Nanya Technology Corporation | Power voltage supply device with automatic temperature compensation |
Also Published As
Publication number | Publication date |
---|---|
US7667528B2 (en) | 2010-02-23 |
TW200713303A (en) | 2007-04-01 |
US7417490B2 (en) | 2008-08-26 |
KR100738957B1 (en) | 2007-07-12 |
JP5133545B2 (en) | 2013-01-30 |
US20070058457A1 (en) | 2007-03-15 |
KR20070030474A (en) | 2007-03-16 |
JP2007081406A (en) | 2007-03-29 |
US20090033406A1 (en) | 2009-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI303829B (en) | Internal voltage geneator of semiconductor integrated circuit | |
US9785176B2 (en) | Small-circuit-scale reference voltage generating circuit | |
US7514987B2 (en) | Bandgap reference circuits | |
JP4937865B2 (en) | Constant voltage circuit | |
JP5446529B2 (en) | Low pass filter circuit, constant voltage circuit using the low pass filter circuit, and semiconductor device | |
CN100570528C (en) | Folded cascode bandgap reference voltage circuit | |
TWI317133B (en) | Negative voltage generator | |
US20070222502A1 (en) | Semiconductor apparatus | |
US20010010478A1 (en) | Level detection by voltage addition/subtraction | |
TWI759924B (en) | Reference generator and method for providing voltage reference signal at output node using reference signal generator | |
TW201021388A (en) | Analog variable-frequency controller and DC-DC switching converter with thereof | |
TW201217933A (en) | Low drop out voltage regulator | |
US7289051B2 (en) | Digital-to-analog converters including charge pumps and related automatic laser power control devices and methods | |
TWI352267B (en) | ||
US7482876B2 (en) | Amplifier circuit and method for amplifying a signal to be amplified | |
EP1563507B1 (en) | Cascode amplifier circuit for producing a fast, stable and accurate bit line voltage | |
JP2008107971A (en) | Power supply voltage generation circuit and semiconductor integrated circuit device | |
US6696877B2 (en) | Level shift circuit | |
US20050110470A1 (en) | Analog level shifter | |
US7834682B2 (en) | Reference voltage generation circuit and semiconductor storage apparatus using the same | |
KR100878314B1 (en) | Apparatus for Generating Internal Voltages of Semiconductor Integrated Circuit | |
CN110797057A (en) | Reference current generator and memory device using the same | |
JP2005134298A (en) | Voltage generation circuit | |
CN116204025A (en) | Multi-reference voltage generation circuit and method based on resistor array module | |
TW206297B (en) | Reference voltage circuit with positive temperature compensation |