TWI303665B - Silver alloy for use as reflective or semi-reflective layer - Google Patents
Silver alloy for use as reflective or semi-reflective layer Download PDFInfo
- Publication number
- TWI303665B TWI303665B TW95102970A TW95102970A TWI303665B TW I303665 B TWI303665 B TW I303665B TW 95102970 A TW95102970 A TW 95102970A TW 95102970 A TW95102970 A TW 95102970A TW I303665 B TWI303665 B TW I303665B
- Authority
- TW
- Taiwan
- Prior art keywords
- silver alloy
- alloy
- weight
- film
- patent application
- Prior art date
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
Description
.1303665 * r 九、發明說明: 【發明所屬之技術領域】 • 本發明係關於一種銀合金,以及其作為反射層或半反射 層之用途。 5 【先前技術】 隨著電子業科技之突飛猛進,光電工業,如光碟業及 籲 平面顯示器業等開發了大量的消費產品,其中金屬反射膜 扮演了不可或缺的角色。利用金屬的反射、半反射、分光、 10 濾光等特色,可設計出不同的光學元件。 舉例言之,於讀取光學資料記錄媒體之資料過程中, 雷射光束透過聚碳酸酯基板及記錄層而在反射層上藉由反 射之光束讀取訊息。反射率、耐熱衝擊性及化學穩定性等 因而為選用反射層材料所需考量之因素。已知用於反射層 15 之材料有銀、銀合金(如合金)、鋁合金(如Al-Ti 合金)。一般常用於光學資料記錄媒體之雷射波長為780、 650及405 附近,而此類金屬或合金在400至80〇 nm 廣域波長fe圍内多顯現南反射率。就顯示裝置而言,則多 使用銘趁合金(如Al_Nd合金)作為反射層之材料。 2〇 近來,高容量、高音質與高晝質之DVD時代來臨,其 中單面雙層的DVD光碟片除了具有高度反射層以外,亦具 有+反射層。於半反射層之應用上,為取得反射率與穿透 _ 料目近之組合,通常f使用多層膜方能達成。例如,台灣 第90118577號專利申請案揭露組合銀合金層及氧化鈦層 1303665 以得到反射率及穿透率約相等之效果。有鑑於此,僅需鍍 單層膜即可達相同效果之合金因而更符合業界之需求。 【發明内容】 5 本發明提供一種銀合金,其可兼具反射及半穿透之光 學特性,因此可藉由形成單層膜而於廣的波長範圍内達到 穩定之反射率及穿透率組合。又,藉由調整該合金膜之厚 度可取得所需之反射及穿透率組合,而應用在光學元件之 I 反射層或半反射層上。 10 為符合上述需求,本發明目的之一為提供銀合金,其 主要由Ag、一種選自Zn、Sn及Cd之金屬及一種選自A卜 Ga、In、Si、Ge及Sb之金屬組成,其以式AgxXzYr代表, 其中 X 為 Zn、Sn 或 Cd,Y 為 A卜 Ga、In、Si、Ge 或 Sb ; 且以銀合金總重為基準,z為0·01〜5重量%,r為0.01〜3 15 重量%及X為餘量。 本發明又提供一銀合金,其主要由Ag、Cu及一種選 . 自Zn、Sn及Cd之金屬組成,其以式AgxCuyXz代表,其 中X為Zn、Sn或Cd;且以銀合金總重為基準,y為0.01〜8 重量%,z為0.01〜5重量%,及X為餘量。 2〇 本發明之銀合金可另含一種選自Al、Ga、In、Si、Ge 及Sb之金屬,其以式AgxCuyXzYr代表,其中X為Zn、Sn 或Cd,Y為A卜Ga、In、Si、Ge或Sb ;且以銀合金總重 為基準,y為0.01〜8重量%,z為0·01〜5重量%,r為0.01〜3 重量%及X為餘量。 -6- H:\Wendyc(WW)\ 國內申請案 \94693-spec(final).doc .1303665 本發明之銀合金不僅具有獨特之光學特性,其製法亦 較習知方法簡易。具體言之,本發明之銀合金可利用週波 感應溶煉製程’首先將銀加熱至溶化,隨後添加適量合金 元素(依合金比例調整),澆鑄製成鑄錠。相較於其他合金 5 需使用真空電狐溶煉系統(Vacuum Arc Remelting.1303665 * r IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a silver alloy and its use as a reflective or semi-reflective layer. 5 [Prior Art] With the rapid advancement of technology in the electronics industry, the optoelectronics industry, such as the optical disc industry and the flat panel display industry, have developed a large number of consumer products, among which metal reflective films play an indispensable role. Different optical components can be designed using features such as metal reflection, semi-reflection, spectroscopic, and 10 filter. For example, during reading of the data of the optical data recording medium, the laser beam passes through the polycarbonate substrate and the recording layer to read the information on the reflective layer by the reflected beam. Reflectivity, thermal shock resistance and chemical stability are factors that are required for the selection of reflective layer materials. Materials known for the reflective layer 15 are silver, silver alloys (e.g., alloys), and aluminum alloys (e.g., Al-Ti alloys). The laser wavelengths commonly used in optical data recording media are around 780, 650, and 405, and such metals or alloys exhibit a south reflectance in the wide range of wavelengths from 400 to 80 〇 nm. In the case of a display device, an alloy of a good name (such as Al_Nd alloy) is often used as a material for the reflective layer. 2〇 Recently, the DVD era with high capacity, high sound quality and high quality has come. Among them, single-sided double-layer DVD discs have a + reflective layer in addition to a highly reflective layer. In the application of the semi-reflective layer, in order to obtain a combination of reflectance and penetration _ material, it is usually achieved by using a multilayer film. For example, Taiwan Patent Application No. 90118577 discloses a combination of a silver alloy layer and a titanium oxide layer 1303665 to obtain an effect of approximately equal reflectance and transmittance. In view of this, it is more desirable to meet the needs of the industry by simply plating a single layer of film to achieve the same effect. SUMMARY OF THE INVENTION The present invention provides a silver alloy which has both optical properties of reflection and translucency, thereby achieving stable reflectance and transmittance combination over a wide wavelength range by forming a single layer film. . Further, by adjusting the thickness of the alloy film, a desired combination of reflection and transmittance can be obtained, and it can be applied to the I reflective layer or the semi-reflective layer of the optical element. In order to meet the above needs, one of the objects of the present invention is to provide a silver alloy mainly composed of Ag, a metal selected from the group consisting of Zn, Sn, and Cd, and a metal selected from the group consisting of A, Ga, In, Si, Ge, and Sb. It is represented by the formula AgxXzYr, where X is Zn, Sn or Cd, Y is A, Ga, In, Si, Ge or Sb; and based on the total weight of the silver alloy, z is 0·01~5 wt%, r is 0.01 to 3 15% by weight and X is the balance. The invention further provides a silver alloy mainly composed of Ag, Cu and a metal selected from Zn, Sn and Cd, which is represented by the formula AgxCuyXz, wherein X is Zn, Sn or Cd; and the total weight of the silver alloy is For the reference, y is 0.01 to 8 wt%, z is 0.01 to 5 wt%, and X is the balance. 2) The silver alloy of the present invention may further comprise a metal selected from the group consisting of Al, Ga, In, Si, Ge and Sb, which is represented by the formula AgxCuyXzYr, wherein X is Zn, Sn or Cd, and Y is A, Ga, In, Si, Ge or Sb; and based on the total weight of the silver alloy, y is 0.01 to 8% by weight, z is 0. 01 to 5% by weight, r is 0.01 to 3% by weight, and X is the balance. -6- H:\Wendyc(WW)\ Domestic Application \94693-spec(final).doc .1303665 The silver alloy of the present invention not only has unique optical properties, but also has a simpler method than the conventional method. Specifically, the silver alloy of the present invention can be heated to melt by first using a cycle induction melting process. Then, an appropriate amount of alloying elements (adjusted according to the ratio of the alloy) is added and cast into an ingot. Compared to other alloys 5, a vacuum electric fox melting system (Vacuum Arc Remelting) is required.
Process ’ VAR)或真空感應熔煉製程(vacuum Induction Melting Process,VIM)等較為複雜且昂貴製程,更具競爭 _ 性。使用週波感應熔煉後,去除所得銀合金表面之氧化物 並利用滾壓機加工至9 X 9 cm大小後,進行熱處理使材料 ίο 均質化並整平材料表面以利後續加工,再以線切割機裁下 2忖圓形靶材(厚度約3 mm)。由於標準靶材厚度為約6.35 mm,因此將合金靶材以銦進行軟焊接合在紅銅背板上使靶 材達到標準厚度。 本發明之銀合金可藉由習知之濺鍍方法形成金屬層。 15 :般而言,合金鍍膜之表面粗糙度主要受工作壓力及基板 .咖度景>響。若提高工作壓力可提高電漿解離率,但會因膜 層容易夾雜氣體使薄膜密度降低,造成薄膜結構鬆散且表 面粗糙度較高;而將基板加熱會使薄膜的晶粒隨著基板溫 度之增加而成長變大,且產生明顯的晶界凹溝出現,因此 2〇 ,面,糙度相對提高。本發明所採用的主要製程參數(如 2景壓力、工作壓力、濺鍍功率與基板溫度)都控制相同, 因此,本發明之銀合金所形成之薄膜的平均粗糙度差異性 不大。此外,本發明之銀合金對耐熱性亦有明顯改善,因 斤^成之合金薄膜在熱處理下具有小的平均粗饒度。 -7- H:\Wendyc(WW)\國內申請案\94693_spec(fmal) d〇c .1303665Process ’ VAR) or vacuum Induction Melting Process (VIM) is a more complex and expensive process that is more competitive. After using the circumferential induction melting, the oxide of the surface of the obtained silver alloy is removed and processed to a size of 9 X 9 cm by a rolling machine, and then heat-treated to homogenize the material and level the surface of the material for subsequent processing, and then use a wire cutting machine. Cut 2 round targets (about 3 mm thick). Since the standard target thickness is about 6.35 mm, the alloy target is soft welded to the copper back plate with indium to bring the target to a standard thickness. The silver alloy of the present invention can be formed into a metal layer by a conventional sputtering method. 15: Generally speaking, the surface roughness of the alloy coating is mainly affected by the working pressure and the substrate. If the working pressure is increased, the plasma dissociation rate can be increased, but the film density is reduced due to the easy inclusion of gas in the film layer, resulting in loose film structure and high surface roughness. Heating the substrate causes the film grain to follow the substrate temperature. When the growth is increased, the growth becomes large, and a distinct grain boundary groove appears, so that the surface roughness and the roughness are relatively increased. The main process parameters (e.g., 2 glaze pressure, working pressure, sputtering power, and substrate temperature) used in the present invention are all controlled to be the same. Therefore, the average roughness of the film formed by the silver alloy of the present invention is not significantly different. Further, the silver alloy of the present invention also has a marked improvement in heat resistance, since the alloy film of the alloy has a small average roughness under heat treatment. -7- H:\Wendyc(WW)\Domestic application\94693_spec(fmal) d〇c .1303665
本發明之另一目的即提供反射厣,豆 金所形成。本發明之銀合金膜厚約8〇 务明之銀合 全反射層之效果。另—方面,杯上時,可達到 於80麵時,可應用在半反射層上,、复口,在膜厚約小 20%〜40%及穿透率約观以上較佳。、中反射率為约 本發明之銀合金的應用範圍Another object of the present invention is to provide a reflective ruthenium formed by soybeans. The silver alloy film of the present invention has an effect of a thickness of about 8 Å, which is a silver-rich total reflection layer. On the other hand, when the cup is on the surface, it can be applied to the semi-reflective layer, and the opening is preferably about 20% to 40% and the transmittance is about 20%. Medium reflectance is about the application range of the silver alloy of the present invention.
10 1510 15
DVD)以外,亦可#用於、%曰I、 1 α先碟製造業(如 助理(PDA)等多種產業。 坡璃或個人數位 【實施方式】 下述實施例僅為例示性說明本發明之應用以 並非用於聞本發明。㈣#有通f知識錢於不悖離 本發明之精神所為的各種修正與變更均屬於本發明之範邊 内。 X 4 銀合金之製備眚你丨 合金炫煉 將銀置於如圖1所示之週波感應熔煉爐(參考:Μ· Ρ·In addition to DVD), it can also be used for various industries such as % 曰 I, 1 α first disc manufacturing (such as assistant (PDA). Slope or personal digital [Embodiment] The following examples are merely illustrative of the present invention. The application is not intended to be used in the present invention. (4) Various modifications and alterations that are not inconsistent with the spirit of the present invention are within the scope of the present invention. X 4 Preparation of Silver Alloy 眚 Your Alloy The smelting silver is placed in the cycle induction melting furnace as shown in Figure 1 (Reference: Μ· Ρ·
Groover,“Fundamentals of Modem Manufacturing 2/e”,2002 JohnGroover, "Fundamentals of Modem Manufacturing 2/e", 2002 John
Wiley&S〇nS,InC.P235·)中,將銀加熱至熔化。隨後添加其 他合金元素,其成分比例如表丨所示。澆鑄製成鑄錠。 H:\Wendyc(WW)\國內申請案 \94693-spec(final).doc 20 1303665 成分 •------ 預計 實際比例 (ICP)In Wiley & S〇nS, InC. P235.), the silver is heated to melt. Subsequent addition of other alloying elements, the composition ratio of which is shown, for example. Casting into ingots. H:\Wendyc(WW)\Domestic Application \94693-spec(final).doc 20 1303665 Ingredients •------ Estimated Actual Ratio (ICP)
98.062 重量% 乾材加工眚t 使用週波感應熔煉銀人 物並利用滚壓機加工至9 Q i後,去除銀合金表面的氣 整平材料表;=:理使* 下2对厚3mm之圓形 力 冉以線切割機裁 於紅銅背板上’使乾材達銦進行軟銲接合 …皁厗度6.35 mm。 r点,„偶合電裝質1普儀(ICP_MS)對製得之聲人 订成为分析,其實際合金成分關記錄於表丨。合金進 利用光學顯微鏡對製得之銀合金把材進行 八結果如圖2及圖3 (a)所示。 刀 15 對製得之銀合金乾材進行能量分散光讀儀⑽幻分 析’結果如圖3 (b)所示。 Μ之製備 本發明之銀合金靶材以習知濺鍍方法製成分別厚3〇 nm及100 nm之鍍膜,其中使用之濺鍍參數如表2所示。 -9- H:\Wendyc(WW)\國內申請案\94693-spec(final).doc 1303665 表2丨賤鍛參數 基板 Si晶片、BK7玻璃 背景壓力 7.0 X l〇-4Torr Ar流量 約 100 seem 工作壓力 5.0 X ΙΟ'3 Torr 直流電源 100W 撞擊時間 15秒 塗覆時間 5秒至45秒 鍍膜分析 5 場發射電子顯微鏡觀察 使用場發射電子顯微鏡觀察鍍膜厚30 nm及100 nm之本 發明銀合金薄膜之表面形貌,如圖4(a)及4(b)所示。 原子力顯微鏡(AFM)觀察 使用原子力顯微鏡觀察厚度30 nm及100 nm之本發明銀 ® 合金薄膜表面輪廓,其立體影像圖如圖5 (a)及5 (b)所示。 經由表面粗糙度量測,其薄膜表面粗糙度(Ra)均小於0.8 nm。 表面粗糙度之比較 經由表面粗糙度量測,比較本發明銀合金薄膜與其他習知 之合金薄膜之表面粗糙度,如表3所示。 -10- H:\Wendyc(WW)\國內申請案\94693-spec(final).doc 15 1303665 表3初鑛膜薄膜表面粗糙度之比較 粗趟;度 \nm) 厚度(nm)\ AC0.5 (比較例) AC1.5 (比較例) ACT1 (比較例) ACT3 (比較例) ACZ1 (本發明) 100 0.746 0.752 0.416 0.589 0.169 30 0.262 0.299 0.334 0.677 0.155 各合金薄膜經不同溫度熱處理後表面粗糙度之變化如表98.062% by weight Dry material processing 眚t Using a centrifugal induction smelting silver character and using a roller press to 9 Q i, remove the gas flat material table on the surface of the silver alloy; =: rationale * 2 pairs of 3 mm thick round冉 裁 裁 冉 冉 冉 冉 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁 裁r point, „coupled electric quality 1 ICP (ICP_MS) is made into an analysis of the sounds made, and the actual alloy composition is recorded in the table. The alloy is made into eight results using the optical microscope. As shown in Fig. 2 and Fig. 3(a), the knife 15 performs an energy dispersive optical reader (10) phantom analysis on the obtained silver alloy dry material. The result is shown in Fig. 3 (b). The preparation of the silver alloy of the invention The targets were prepared by conventional sputtering methods with thicknesses of 3 〇 nm and 100 nm, respectively, and the sputtering parameters used are shown in Table 2. -9- H:\Wendyc(WW)\Domestic Application\94693- Spec(final).doc 1303665 Table 2 Upset parameter substrate Si wafer, BK7 glass background pressure 7.0 X l〇-4Torr Ar flow rate about 100 seem Working pressure 5.0 X ΙΟ'3 Torr DC power supply 100W Impact time 15 seconds Coating time 5 seconds to 45 seconds coating analysis 5 field emission electron microscope observation using a field emission electron microscope to observe the surface morphology of the silver alloy film of the invention with a thickness of 30 nm and 100 nm, as shown in Figures 4(a) and 4(b) Atomic force microscopy (AFM) observation using an atomic force microscope to observe thicknesses of 30 nm and 100 nm The surface profile of the invented silver® alloy film is shown in Figures 5(a) and 5(b). The surface roughness (Ra) of the film is less than 0.8 nm by surface roughness measurement. Comparing the surface roughness of the silver alloy film of the present invention with other conventional alloy films by surface roughness measurement, as shown in Table 3. -10- H:\Wendyc(WW)\Domestic Application\94693-spec( Final).doc 15 1303665 Table 3 Comparison of Surface Roughness of Primary Membrane Film Roughness; Degree\nm) Thickness (nm)\AC0.5 (Comparative Example) AC1.5 (Comparative Example) ACT1 (Comparative Example) ACT3 ( Comparative Example) ACZ1 (Invention) 100 0.746 0.752 0.416 0.589 0.169 30 0.262 0.299 0.334 0.677 0.155 The surface roughness of each alloy film after heat treatment at different temperatures is as follows
4及表5所示。 表4各合金薄膜(厚度= 100 nm)經不同溫度熱處理後之表面 粗糙度 粗链度 \nm) AC0.5 (比較例) AC1.5 (比較例) ACT1 (比較例) ACT3 (比較例) ACZ1 (本發明) 初鍍膜 0.746 0.752 0.416 0.589 0.169 100°C 0.628 0.892 0.381 0.628 0.311 200°C 1.389 0.323 0.628 0.548 0.266 -11 - H:\Wendyc(WW)\國內申請案\94693-spec(fmal).doc 1303665 表5各合金薄膜(厚度=30 nm)經不同溫度熱處理後之表面 粗糙度 粗糙度 \Qirn) AC0.5 (比較例) AC1.5 (比較例) ACT1 (比較例) ACT3 (比較例) ACZ1 (本發明) 初鍍膜 0.262 0.299 0.334 0.677 0.155 100°C 0.405 0.292 0.347 0.177 0.499 200°C 0.471 0.556 0.268 0.834 0.234 5 圖6(a)、(b)及圖7(a)、(b)為本發明ACZ1合金鍍膜 經l〇〇°C與200°C熱處理後之AFM表面形貌量測結果。結果顯 示ACZ1對耐熱性有明顯改善,不論是1〇〇艽或2〇〇°c之熱處 理’平均粗糖度都在〇.2 nm左右。 10 金金薄膜之来學特柹4 and Table 5. Table 4 Surface roughness of each alloy film (thickness = 100 nm) after heat treatment at different temperatures \nm) AC0.5 (Comparative Example) AC1.5 (Comparative Example) ACT1 (Comparative Example) ACT3 (Comparative Example) ACZ1 (Invention) Initial coating 0.746 0.752 0.416 0.589 0.169 100°C 0.628 0.892 0.381 0.628 0.311 200°C 1.389 0.323 0.628 0.548 0.266 -11 - H:\Wendyc(WW)\Domestic application\94693-spec(fmal). Doc 1303665 Table 5 Surface roughness of each alloy film (thickness = 30 nm) after heat treatment at different temperatures \Qirn) AC0.5 (Comparative Example) AC1.5 (Comparative Example) ACT1 (Comparative Example) ACT3 (Comparative Example) ACZ1 (Invention) Initial coating 0.262 0.299 0.334 0.677 0.155 100°C 0.405 0.292 0.347 0.177 0.499 200°C 0.471 0.556 0.268 0.834 0.234 5 Figure 6(a), (b) and Figure 7(a) and (b) are The surface topography measurement results of the ACZ1 alloy coating film of the invention after heat treatment at 100 ° C and 200 ° C. The results show that ACZ1 has a significant improvement in heat resistance, regardless of the heat treatment of 1 〇〇艽 or 2 〇〇 °c. The average crude sugar content is around 2.2 nm. 10 Gold and gold film to learn characteristics
’使用分光光度計(SP 1024 USB spectrophotometer,IZOVAC'Using a spectrophotometer (SP 1024 USB spectrophotometer, IZOVAC
Ltd·)測1分別厚20 nm及30 rim之本發明合金與習知合金初 鍍薄膜於400〜800 nm波長範圍内之反射率,如圖8所示。 又’使用分光光度計測量厚30 nm之本發明合金與習知合 I5金初鑛薄膜之反射率。取得4〇〇〜8〇〇 nm波長範圍内之各合金 薄膜反射率vs·穿透率光譜圖,如圖9 (a)至(e)所示。由光 譜圖可知,本發明ACZ1合金薄膜相較於其他習知合金薄膜在 400〜800 nm波長範圍内具有穩定之反射率與穿透率比例。 -12 - H:\Wendyc(WW)\ 國內申請案\94693-spec(fmal).doc J303665 比較本發明ACZ1合金薄膜與習知ACT1合金薄膜經各種試 驗後之反射率變化,如圖10(a)及10(b)所示。由圖可知, 放置一週後ACT1的反射率下降比例很大,但ACZ1對於各項 試驗後之反射率則呈現線性緩和下降。 本發明ACZ1合金薄膜在各項試驗後於400〜800 nm波長範 圍内測量其反射率,取得光譜圖,如圖Π (a)及11 (b)所 示。 【圖式簡單說明】 圖1為製備本發明銀合金之週波感應熔煉爐。 圖2為本發明具體例之一 ACZ1合金靶材的微結構。 圖3(a)為本發明具體例之一 ACZ1合金靶材中之析出物。 圖3 (b)為本發明具體例之一 ACZ1合金靶材中之EDX 分析。 圖4(a)為膜厚30nm之本發明ACZ1合金薄膜原始表面 形貌之場發射電子顯微鏡觀察。 圖4(b)為膜厚100nm之本發明ACZ1合金薄膜原始表 面形貌之場發射電子顯微鏡觀察。 圖5 ( a)為初鍍膜厚1〇〇 nm之本發明ACZ1合金薄膜原 始表面形貌之原子力顯微鏡觀察。 圖5(b)為初鍍膜厚30nm之本發明ACZ1合金薄膜原始 表面形貌之原子力顯微鏡觀察。 圖6(a)為厚1〇〇nm之本發明aczi合金薄膜經100¾熱 處理後原始表面形貌之原子力顯微鏡觀察。 -13- H:\Wendyc(WW)\國內申請案 \94693-spec(final).doc 圖6 (b)為厚100 nm之本發明ACZ1合金薄膜經200°C 熱處理後原始表面形貌之原子力顯微鏡觀察。 圖7(a)為厚30nm之本發明ACZ1合金薄膜經100°C熱 處理後原始表面形貌之原子力顯微鏡觀察。 圖7(b)為厚30nm之本發明ACZ1合金薄膜經200°C熱 處理後原始表面形貌之原子力顯微鏡觀察。 圖8 為厚20 nm及30 nm之銀銅系列合金初鍵薄膜反 射率光譜圖。 圖9 (a)至(e)為各合金初鍍膜薄膜反射率vs.穿透率光 譜圖。 圖10 (a)為波長405 nm下ACT1及本發明ACZ1合金薄 膜經不同試驗後之反射率變化。 圖10 (b)為波長650 nm下ACT1及本發明ACZ1合金薄 膜經不同試驗後之反射率變化。 圖11為本發明ACZ1分別於初鍍膜、放置一週、100°c熱 處理、20(TC處理及耐候試驗後薄膜反射率之光譜 圖。 【主要元件符號說明】 R 反射率 T 穿透率 AC0.5表示銀合金中添加0.5重量%<3\1。 AC1.5表示銀合金中添加1.5重量%<:11。 ACT1表示銀合金中添加1重量%〇1及1重量%Ti。 -14- H:\Wendyc(WW)\ 國內申請案 \94693-spec(final).doc 1303665 ACT3表示銀合金中添加1重量%<3\1及3重量%11。 ACZ1表示銀合金中添加1重量%Cu及1重量%Zn。 ACZ3表示銀合金中添加1重量%(:11及3重量%Zn。Ltd.) Measure the reflectance of the alloy of the present invention having a thickness of 20 nm and 30 rim and a conventional alloy initial plating film in the wavelength range of 400 to 800 nm, as shown in FIG. Further, the reflectance of the alloy of the present invention having a thickness of 30 nm and the conventional I5 gold ore film was measured using a spectrophotometer. A reflectance vs. transmittance spectrum of each alloy film in the wavelength range of 4 〇〇 to 8 〇〇 nm is obtained, as shown in Figs. 9(a) to (e). It can be seen from the spectrogram that the ACZ1 alloy film of the present invention has a stable ratio of reflectance to transmittance in the wavelength range of 400 to 800 nm compared to other conventional alloy films. -12 - H:\Wendyc(WW)\ Domestic Application\94693-spec(fmal).doc J303665 Comparing the reflectance changes of the ACZ1 alloy film of the present invention and the conventional ACT1 alloy film after various tests, as shown in Fig. 10 (a ) and 10(b). As can be seen from the figure, the reflectance of ACT1 decreased greatly after one week of standing, but ACZ1 showed a linear moderate decrease in the reflectance after each test. The ACZ1 alloy thin film of the present invention was measured for its reflectance in the wavelength range of 400 to 800 nm after each test, and a spectrum was obtained, as shown in Figs. a (a) and 11 (b). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cycle induction melting furnace for preparing a silver alloy of the present invention. Fig. 2 is a view showing the microstructure of an ACZ1 alloy target according to one embodiment of the present invention. Fig. 3(a) shows a precipitate in an ACZ1 alloy target which is one of the specific examples of the present invention. Figure 3 (b) is an EDX analysis of an ACZ1 alloy target in one of the specific examples of the present invention. Fig. 4(a) is a field emission electron microscope observation of the original surface morphology of the ACZ1 alloy thin film of the present invention having a film thickness of 30 nm. Fig. 4(b) is a field emission electron microscope observation of the original surface morphology of the ACZ1 alloy thin film of the present invention having a film thickness of 100 nm. Fig. 5 (a) is an atomic force microscope observation of the original surface morphology of the ACZ1 alloy film of the present invention having an initial plating thickness of 1 〇〇 nm. Fig. 5(b) is an atomic force microscope observation of the original surface morphology of the ACZ1 alloy thin film of the present invention having a thickness of 30 nm. Fig. 6(a) is an atomic force microscope observation of the original surface morphology of the aczi alloy film of the present invention having a thickness of 1 〇〇 nm after heat treatment at 1003⁄4. -13- H:\Wendyc(WW)\Domestic Application\94693-spec(final).doc Figure 6 (b) is the atomic force of the original surface topography of the ACZ1 alloy film of the invention with a thickness of 100 nm after heat treatment at 200 °C. Microscopic observation. Fig. 7(a) is an atomic force microscope observation of the original surface morphology of the inventive ACZ1 alloy film having a thickness of 30 nm after heat treatment at 100 °C. Fig. 7(b) is an atomic force microscope observation of the original surface morphology of the inventive ACZ1 alloy film having a thickness of 30 nm after heat treatment at 200 °C. Figure 8 shows the reflectance spectra of the primary bond films of silver-copper series alloys with thicknesses of 20 nm and 30 nm. Figure 9 (a) to (e) are the reflectance vs. transmittance spectra of the initial coating film of each alloy. Fig. 10 (a) shows the change in reflectance of ACT1 and the ACZ1 alloy film of the present invention after different tests at a wavelength of 405 nm. Figure 10 (b) shows the change in reflectance of ACT1 and the ACZ1 alloy film of the present invention after different tests at a wavelength of 650 nm. Figure 11 is a spectrum diagram of the reflectance of the film of ACZ1 in the initial coating, one week, 100 °C heat treatment, 20 (TC treatment and weathering test). [Main component symbol description] R Reflectance T transmittance AC0.5 It is indicated that 0.5% by weight of <3\1 is added to the silver alloy. AC1.5 means 1.5% by weight of the silver alloy is added: <:11. ACT1 means that 1% by weight of 〇1 and 1% by weight of Ti are added to the silver alloy. H:\Wendyc(WW)\ Domestic application\94693-spec(final).doc 1303665 ACT3 means adding 1% by weight of <3\1 and 3% by weight of 11 in the silver alloy. ACZ1 means adding 1% by weight to the silver alloy. Cu and 1% by weight of Zn. ACZ3 means 1% by weight (: 11 and 3% by weight of Zn) added to the silver alloy.
-15- H:\Wendyc(WW)\國內申請案\94693-spec(final).doc-15- H:\Wendyc(WW)\Domestic Application\94693-spec(final).doc
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95102970A TWI303665B (en) | 2006-01-26 | 2006-01-26 | Silver alloy for use as reflective or semi-reflective layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95102970A TWI303665B (en) | 2006-01-26 | 2006-01-26 | Silver alloy for use as reflective or semi-reflective layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200728475A TW200728475A (en) | 2007-08-01 |
TWI303665B true TWI303665B (en) | 2008-12-01 |
Family
ID=45070765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95102970A TWI303665B (en) | 2006-01-26 | 2006-01-26 | Silver alloy for use as reflective or semi-reflective layer |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI303665B (en) |
-
2006
- 2006-01-26 TW TW95102970A patent/TWI303665B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200728475A (en) | 2007-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI325134B (en) | Semi-reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target | |
US8936856B2 (en) | AG base alloy thin film and sputtering target for forming AG base alloy thin film | |
WO2005020222A1 (en) | Reflection film optical recording medium and silver alloy sputtering target for forming reflection film | |
JP2004139712A (en) | Reflection film and translucent reflection film for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium | |
JP4582455B2 (en) | Al alloy reflective film, optical information recording medium, and sputtering target for Al alloy reflective film formation | |
TWI303665B (en) | Silver alloy for use as reflective or semi-reflective layer | |
TWI496908B (en) | An optical interference film or a protective film for an optical information recording medium formed by DC sputtering of a target containing titanium oxide as a main component, and an optical interference film or a protective film containing titanium oxide as a main component for forming an optical information Recording medium | |
TW201013666A (en) | Reflecting film for optical information recording medium, and sputtering target for forming reflecting film for optical information recording medium | |
JP2003293055A (en) | Silver alloy thin film and silver alloy for forming thin film | |
TW200941477A (en) | Reflective film and semi-transmissive reflective film of optical information recording medium, sputtering target for producing the films, and optical information recording medium | |
CN101008055A (en) | Siler alloy for reflection or half-reflection layer | |
JP5896121B2 (en) | Oxide sputtering target and protective film for optical recording medium | |
JP4186221B2 (en) | Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films | |
JP4585952B2 (en) | Thin film made of Ag-based alloy | |
JP3779856B2 (en) | Sputtering target for optical disk protective film formation | |
JP2003160860A (en) | Silver alloy sputtering target for forming reflection coat on optical recording medium | |
JP4186222B2 (en) | Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films | |
TWI265976B (en) | Ag base alloy thin film and sputtering target for forming Ag base alloy thin film | |
KR20090112478A (en) | Electromagnetic interference shielding Ag-based materials and films | |
JP4553149B2 (en) | Translucent reflective film and reflective film for optical recording medium, and Ag alloy sputtering target for forming these translucent reflective film and reflective film | |
TWI314166B (en) | Silver alloy sputtering targe for forming reflective layer of optical recording medium | |
JP2005290404A (en) | High-strength sputtering target | |
JP4693104B2 (en) | Translucent reflective film for optical recording medium and Ag alloy sputtering target for forming the translucent reflective film | |
JP2006012318A (en) | Laminated reflection film for optical recording medium and its forming method | |
JP2002352483A (en) | Diffusion preventive film forming target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |