TWI303434B - Method and apparatus for testing operation of semiconductor memory device - Google Patents

Method and apparatus for testing operation of semiconductor memory device Download PDF

Info

Publication number
TWI303434B
TWI303434B TW093119520A TW93119520A TWI303434B TW I303434 B TWI303434 B TW I303434B TW 093119520 A TW093119520 A TW 093119520A TW 93119520 A TW93119520 A TW 93119520A TW I303434 B TWI303434 B TW I303434B
Authority
TW
Taiwan
Prior art keywords
signal
block
memory
test
address
Prior art date
Application number
TW093119520A
Other languages
Chinese (zh)
Other versions
TW200523935A (en
Inventor
Yong-Bok An
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of TW200523935A publication Critical patent/TW200523935A/en
Application granted granted Critical
Publication of TWI303434B publication Critical patent/TWI303434B/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/096Arrangements for giving variable traffic instructions provided with indicators in which a mark progresses showing the time elapsed, e.g. of green phase

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Dram (AREA)

Description

1303434 * a 日料1303434 * a Japanese material

436, 〜…J 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體記憶裝置,特別是有 種具有增強測試能力之半導體記憶裝置,用以發現 體組插置模式中之半導體記憶裝置操作中的錯誤。 【先前技術】 一種半導體記憶裝置包括多數個記憶胞元。假如 體裝置中之任一個胞元係超出操作順序,該半導體 置是無法使用的。在半導體記憶裝置製造過程之後 是需要一個測試程序用來發現在此半導體記憶裝置 庇胞元。 一般來說,該半導體記憶裝置具有一個附加用在 路的區域,此電路能測試在半導體裝置處於高速時 胞元(cell)。不過,依據半導體裝置積體化的增加 需要很多的時間與努力來測試半導體裝置的胞元, 與發展該半導體裝置。 因此,爲了節省測試半導體裝置的時間,一壓縮 式則是被用來使用的。在該壓縮測試模式中,資料 經由一部分的輸入/輸出腳(pin)DQs,而非經由所 入/輸出腳DQs,輸入至所有包括在半導體中的記 (bank)。用以確認自每一個單位胞元所輸出的資 一個輸出的資料係不是同時經由所有的輸入7輸出 自所有的記憶體組輸出,其中這些多數個閘,例; 閘或NOR閘,每一個皆對應至每一個輸入/輸出腳 關於一 在記憶 在半導 記憶裝 ,在此 中的瑕 測試電 所有的 ,在此 以硏究 測試模 被同步 有的輸 憶體組 料,每 腳DQs 扣 AND DQs被 1303434 使用。 第1圖係顯示一用在習知半導體記憶裝置的一測試區塊 之方塊圖。 如圖所示,該測試區塊包括一內部記憶體組位址產生器 1 〇、一讀取解碼區塊2 0、一壓縮控制區塊 3 0、一資料壓 縮區塊40、一寫入解碼區塊50,一寫入控制區塊60與一 寫入驅動區塊7 0。 該內部記憶體組位址產生器1 〇轉換記憶體組位址(bank address )如B A0與BA1以成爲多數個內部記憶體組位址, 如 a,/a,b5 /b,c,/c,d,/d。該多數個內部記憶體組位址 如a,/a,b,/b,c,/c,d,/d皆被輸入至讀取解碼區塊20。 讀取解碼區塊20將多數個內部記憶體組位址如a,/a,b,/b, e,/c,d,/d解碼,藉以產生多數個讀取記憶體組操作訊 號 rdbankO, rd_bankl, rd_bank2 與 rd_bank3 以回應附力口 的閂鎖訊號AL0。壓縮控制區塊3 0是用以控制資料壓縮 區塊40以回應多數個讀取記憶體組操作訊號rd_bank0, rd —bankl,rd_bank2 與 rd_bank3。資料壓縮區塊 40 具有 多數個DQ輸出緩衝器,例如DQ輸出緩衝器3 6是用來壓 縮每一記憶體組資料輸出之資料。 此外,部分多數個內部記憶體組位址如a,/a,b,/b被輸 入至寫入解碼區塊5 0。寫入解碼區塊5 0解碼部分多數個 內部記憶體組位址如a,/a,b,/b,藉此產生多數個寫入記 憶體組操作訊號 wt__bank0、wt-bankl、wt — bank2、 wt_bank3。寫入控制區塊60係用來控制寫入驅動區塊70 1303434 年月日條正替Μ 以回應寫入啓動訊號WTen與多數個寫入記憶體組 號 wt一bankO 、 wt一bankl 、 wt_bank2 、 wt—bank3 〇 寫 區塊7 0係儲存在每一記憶體組所包括之胞元陣歹 array) 80所輸入之資料。 此外,內部記憶體組位址產生器1 0包括一緩衝 一閂鎖區塊與一路由區塊。緩衝區塊包括兩個緩衝 如緩衝器1 2,每一個緩衝器係用來接收一第一位 體組位址ΒΑ0與一第二位元記憶體組位址BA1以 第一位元記憶體組位址ΒΑ0與第二位元記憶體組位 成爲內部記憶體組位址如 b a 0 _ a d d,b a 0 _ a d d b , b a 1 _ bal_addb,每一緩衝器對應於第一位元記憶體組位 與第二位元記憶體組位址B A 1。閂鎖區塊包括兩 器,例如閂鎖器1 4,每一閂鎖器係被壓縮測試訊§ 控制用以傳輸內部記憶體組位址如 ba0_add,ba bal_add 與 bal_addb至路由區塊如部分多數個內 體組位址a,/ a,b,/ b。路由區塊也包括兩個路由器 路由器1 6,每一路由器用以延遲部分多數個內部 組位址如a,/a,b,/b,藉以產生其他多數個內部記 位址如 c,/ c,d,/ d。 更仔細地說,壓縮控制區塊3 0包括讀取控制區去 一選通訊號產生區塊3 4。讀取控制區塊3 2包括多 取控制器,每一控制器被一讀取啓動訊號RD en控 收讀取記憶體組操作訊號;選通訊號產生區塊3 4 數個選通訊號產生器,每一選通訊號產生器用以產 操作訊 入驅動 [](cell 區塊, 區,例 元記憶 及轉換 址B A 1 add 與 址 ΒΑ0 個閂鎖 ^ tp ara 0_addb, 部記憶 ,例如 記憶體 憶體組 电32與 數個讀 :制以接 包括多 生多數 1303434 年月日修正替換頁 ΠΒ 1! 1. I_ 個選通訊號,例如iostb。 在此,每一讀取控制器,每一選通訊號產生器H 輸出緩衝器係個別的對應至每一個包括在習知半 裝置中之記憶體組。此外,每一個緩衝區,每一 與每一個路由器在內部記憶體組位址產生器1 〇 地對應至每一記憶體組位址之位元。 在此之後,描述該半導體記憶裝置之一測試操 縮測試訊號tpara被啓動時。 首先,該內部記憶體組位址產生器1 〇不管記 址以回應該壓縮測試訊號tpara啓動該些內部記 址如a,/a,b,/b,c,/c,d,/d。然後,讀取解碼Ϊ 出之讀取記憶體組操作訊號r d __ b a n k 0,r d _ b a n k 1, 與rd__bank3,及寫入解碼區塊50輸出之該些寫 組操作訊號 wt_bank、0、wt_bankl、wt — bank2 與 皆被啓動。如果該寫入啓動訊號WTen被啓動, 制區塊60與該寫入驅動區塊70被啓動,然後資 至胞元陣列80。此外,如果讀取啓動訊號RDen 多數個輸出自胞元陣列80之資料LI00<0: 15>至 被壓縮與輸出。 此外,測試區塊的操作方法,也就是用以解碼 與壓縮輸出資料之方法係被仔細地描述。 在習知記憶裝置中,每一個記憶體組具有一資 以一次接收四個資料。這四個資料被看作成 (BUNCH);而四個資料串構成一 16位元資料 每每一 DQ 導體記憶 個閂鎖器 中是個別 作當該壓 憶體組位 憶體組位 色塊2 0輸 rd_bank2 入記憶體 wt_b ank3 該寫入控 料被輸入 被啓動, LI<0: 1 5> 壓縮資料 料墊,用 一資料串 。在一寫 1303434 I---! 入操作中’相同的1 6位元資料被輸入至每一個記憶體組。 在讀取操作中,1 6位元資料被輸入至被分類之四個資 料串的每一個記憶體組;每〜個數據(d a t u m )係經由相 同的資料墊被輸入,介於每~個資料串的四個資料係被相 互比較。然後經由對應於每一個記憶體組之資料墊,輸出 比較結果。 在此’假如經由資料墊輸出之訊號的一邏輯狀態是高邏 輯準位’此半導體記憶裝置則不具有瑕疵胞元;但是反之, 半導體記憶裝置具有至少一個瑕疵胞元。 鲁 第2圖係用來描述第1圖中在閂鎖區塊1 4所包括閂鎖 器之結構電路圖。 - 如圖所述,此閂鎖器包括一個第一反相器11,第一閂鎖 _ 胞元14a,一第二閂鎖胞元14b,一第一 NAND閘ND1與 一第二NAND閘ND2。在此,此第一與第二閂鎖胞元14a 與1 4b係由兩個連接至反相器的電路集所構成。 此弟一反相器11是用來將壓縮測試訊號t p a r a反相。第 一閂鎖胞元1 4 a是用來閂鎖一反相內部記憶體組位址,例 鲁 如ba0_addb ;第二閂鎖胞元14b是用來閂鎖一內部記憶體 組位址,例如baO-add。第一 NAND閘ND 1耦接於此第一 閂鎖胞元1 4 a與第一反相器11,並接收此反相內部記憶體 組位址之一反相狀態,也就是說,內部記憶體組位址與反 相壓縮測試訊號用以產生一個如第一內部記憶體組位址a 的NAND操作之結果訊號。再者,此第二NAND閘ND2 耦接於此第二閂鎖胞元1 4b與此第一反相器11接收此內 1303434 部記憶體組位址的一反相狀態,也就是反相內部記憶體組 位址,及一反相壓縮測試訊號以產生一 NAND閘操作的一 結果訊號如一第一內部記憶體組位址/a。 第3圖係用來描述第1圖中在路由區塊1 6所包括的路 由器之結構電路圖。 如圖所示,路由器包括一個閂鎖與延遲區塊1 7,一第 二反相器12, 一第三NAND閘ND3與一第四NAND閘ND4。436, ...... J IX, invention description: [Technical Field] The present invention relates to a semiconductor memory device, and more particularly to a semiconductor memory device having enhanced test capability for discovering a body group insertion mode An error in the operation of the semiconductor memory device. [Prior Art] A semiconductor memory device includes a plurality of memory cells. If any of the cell elements in the device exceeds the operational sequence, the semiconductor device is unusable. After the semiconductor memory device fabrication process, a test program is needed to find the cells in the semiconductor memory device. Generally, the semiconductor memory device has an additional area for testing the cell when the semiconductor device is at a high speed. However, it takes a lot of time and effort to test the cells of the semiconductor device in accordance with the increase in the integration of the semiconductor device, and to develop the semiconductor device. Therefore, in order to save time in testing the semiconductor device, a compression type is used. In this compression test mode, data is input to all banks included in the semiconductor via a portion of the input/output pins DQs, rather than via the input/output pins DQs. The data used to confirm the output from each unit cell is not output from all the memory banks via all the inputs 7 at the same time, and these are many gates, such as gates or NOR gates, each of which is Corresponding to each input/output pin about one in memory in the semi-conducting memory device, all of the 瑕 test powers here, in this case to test the test mode is synchronized with the memory component, each foot DQs buckle AND DQs are used by 1303434. Figure 1 is a block diagram showing a test block used in a conventional semiconductor memory device. As shown, the test block includes an internal memory bank address generator 1 一, a read decoding block 20, a compression control block 30, a data compression block 40, and a write decoding. Block 50, a write control block 60 and a write drive block 70. The internal memory bank address generator 1 converts a memory bank address such as B A0 and BA1 to become a plurality of internal memory group addresses, such as a, /a, b5 /b, c, / c,d, /d. The plurality of internal memory bank addresses such as a, /a, b, /b, c, /c, d, /d are all input to the read decoding block 20. The read decoding block 20 decodes a plurality of internal memory group addresses such as a, /a, b, /b, e, /c, d, /d, thereby generating a plurality of read memory group operation signals rdbankO, Rd_bankl, rd_bank2 and rd_bank3 respond to the latch signal AL0 of the attached port. The compression control block 30 is for controlling the data compression block 40 in response to a plurality of read memory group operation signals rd_bank0, rd_bank1, rd_bank2 and rd_bank3. The data compression block 40 has a plurality of DQ output buffers, for example, the DQ output buffer 36 is used to compress the data output of each memory bank. In addition, a portion of the plurality of internal memory bank addresses such as a, /a, b, /b are input to the write decoding block 50. The write decoding block 50 decodes a plurality of internal memory group addresses such as a, /a, b, /b, thereby generating a plurality of write memory group operation signals wt__bank0, wt-bank1, wt_bank2. Wt_bank3. The write control block 60 is used to control the write drive block 70 1303434 year and month strips in response to the write start signal WTen and a plurality of write memory group numbers wt-bankO, wt-bankl, wt_bank2, The wt-bank3 write block 70 is stored in the data input by the cell array array 80 included in each memory group. In addition, the internal memory bank address generator 10 includes a buffer-latch block and a routing block. The buffer block includes two buffers, such as a buffer 12, each of which is configured to receive a first bit group address ΒΑ0 and a second bit memory group address BA1 with a first bit memory group. The address ΒΑ0 and the second bit memory group become internal memory group addresses such as ba 0 _ add, ba 0 _ addb , ba 1 _ bal_addb, and each buffer corresponds to the first bit memory group bit and The second bit memory group address is BA 1. The latch block includes two devices, such as a latch 14 , each of which is controlled by a compression test to transfer internal memory bank addresses such as ba0_add, ba bal_add and bal_addb to a routing block such as a partial majority. The inner body group addresses a, / a, b, / b. The routing block also includes two router routers 16. Each router is used to delay a portion of a plurality of internal group addresses such as a, /a, b, /b, thereby generating other majority internal addresses such as c, /c , d, / d. More specifically, the compression control block 30 includes a read control area to select a communication number generation block 34. The read control block 3 2 includes a multi-fetch controller, each controller is controlled by a read start signal RD en to read and read the memory group operation signal; the selected communication number generation block 3 4 is selected by a number of communication number generators Each selected communication number generator is used to generate the operation input driver [] (cell block, area, instance memory and conversion address BA 1 add and address ΒΑ 0 latches ^ tp ara 0_addb, part memory, such as memory memory The body group 32 and several readings: the system includes the majority of the 1303434 day and day correction replacement page ΠΒ 1! 1. I_ selected communication number, such as iostb. Here, each read controller, each selection The communication number generator H output buffers are individually associated with each of the memory groups included in the conventional half device. In addition, each buffer, each and each router is in the internal memory bank address generator 1 〇 corresponds to the bit of each memory group address. After that, one of the semiconductor memory devices is described as the test torque test signal tpara is activated. First, the internal memory bank address generator 1 does not care. Addressing should be compressed back The test signal tpara starts the internal addresses such as a, /a, b, /b, c, /c, d, /d. Then, the read memory group operation signal rd __ bank 0 is read and decoded. The write group operation signals wt_bank, 0, wt_bank1, wt_bank2 are outputted by rd_bank1 and rd__bank3, and written to the decoding block 50. If the write start signal WTen is started, the block is activated. 60 and the write drive block 70 are activated and then transferred to the cell array 80. Further, if the read enable signal RDen is output, a plurality of data LI00<0:15> output from the cell array 80 are compressed and outputted. In addition, the method of operating the test block, that is, the method for decoding and compressing the output data, is carefully described. In the conventional memory device, each memory bank has one resource to receive four data at a time. The data is treated as (BUNCH); and the four data strings constitute a 16-bit data. Each DQ conductor memory is latched individually. When the memory group is in the memory group, the bit color block is 20 rd_bank2. Into the memory wt_b ank3 the write control is entered Started, LI<0: 1 5> Compresses the data pad, using a data string. In the write 1303434 I---! In the operation, the same 16-bit data is input to each memory group. In the read operation, 16-bit data is input to each memory group of the four classified data strings; each data (datum) is input via the same data pad, and each data string is input. The four data sheets are compared to each other. The comparison result is then output via a data pad corresponding to each memory group. Here, if a logic state of the signal output via the data pad is a high logic level, the semiconductor memory device does not have a cell; however, the semiconductor memory device has at least one cell. Lu 2 is a structural circuit diagram for describing the latch included in the latch block 14 in Fig. 1. - As shown, the latch includes a first inverter 11, a first latch_cell 14a, a second latch cell 14b, a first NAND gate ND1 and a second NAND gate ND2. . Here, the first and second latch cells 14a and 14b are formed by two sets of circuits connected to the inverter. The inverter-inverter 11 is used to invert the compression test signal t p a r a . The first latch cell 14a is used to latch an inverted internal memory bank address, such as ba0_addb; the second latch cell 14b is used to latch an internal memory bank address, for example baO-add. The first NAND gate ND 1 is coupled to the first latch cell 14a and the first inverter 11, and receives an inverted state of the inverted internal memory bank address, that is, internal memory. The body group address and the inverted compression test signal are used to generate a result signal of a NAND operation such as the first internal memory bank address a. Furthermore, the second NAND gate ND2 is coupled to the second latching cell 14b and the first inverter 11 receives an inverted state of the internal memory address of the 1303434 memory group, that is, the inverted internal phase. The memory bank address, and a reverse phase compression test signal to generate a NAND gate operation, a result signal such as a first internal memory bank address /a. Fig. 3 is a structural circuit diagram for describing a router included in the routing block 16 in Fig. 1. As shown, the router includes a latch and delay block 177, a second inverter 12, a third NAND gate ND3 and a fourth NAND gate ND4.

此閂鎖與延遲區塊1 7接收第一內部記憶體組位址,也 就是a,及第一反相內部記憶體組位址,也就是/a,自閂 鎖器輸出藉以輸出一延遲訊號至該第三NAND閘。第二反 相器12用以反相壓縮測試訊號tpara。第三NAND閘ND3 耦接至閂鎖與延遲區塊1 7與第二反相器12接收一自閂鎖 與延遲區塊1 7之輸出訊號,及一反相壓縮測試訊號產生 如一第三內部記憶體組位址c之NAND操作之一結果訊 號。再者,該第二NAND閘ND2耦接於第一反相器II接 收第三內部記億體組位址,也就是c與一反相壓縮測試訊 號以產生如一第三反相記憶體組位址/c之NAND操作之一 結果訊號。 參考這些例子,每一個閂鎖器與每一個路由器個別的具 有相同之架構;因此則省略閂鎖器與路由器的詳細說明。 第4圖爲第1圖中描述讀取解碼區塊2 0的電路圖。 如圖所示,該讀取解碼區塊20,包括一控制訊號產生 器21與多數個解碼器22、24、26與28。該控制訊號產 生器21產生控制訊號如AL Ob與ALOd以回應附加延遲訊 -10- 1303434 kiiig 號ALO。每一個解碼器接收兩個內部記憶體組位址以及選 擇此兩個內部記憶體組位址之一以回應控制訊號如ALOb 與ALOd ’藉以產生一反相選擇位址作爲讀取記憶體組操 作訊號。The latch and delay block 17 receives the first internal memory bank address, that is, a, and the first inverted internal memory group address, that is, /a, and outputs a delay signal from the latch output. To the third NAND gate. The second inverter 12 is used to invert the compression test signal tpara. The third NAND gate ND3 is coupled to the latch and delay block 17 and the second inverter 12 receives a self-latching and delay block 17 output signal, and an inverted compression test signal is generated as a third internal One of the NAND operations of the memory bank address c is the result signal. Furthermore, the second NAND gate ND2 is coupled to the first inverter II to receive the third internal memory group address, that is, c and an inverted compression test signal to generate a third inversion memory group position. One of the result signals of the NAND operation of the address /c. Referring to these examples, each latch has the same architecture as each router; therefore, a detailed description of the latch and router is omitted. Fig. 4 is a circuit diagram for reading the decoding block 20 in Fig. 1. As shown, the read decode block 20 includes a control signal generator 21 and a plurality of decoders 22, 24, 26 and 28. The control signal generator 21 generates control signals such as AL Ob and ALOd in response to the additional delay signal -10 1303434 kiiig ALO. Each decoder receives two internal memory bank addresses and selects one of the two internal memory bank addresses in response to a control signal such as ALOb and ALOd ' to generate an inverted selection address as a read memory bank operation Signal.

更仔細地說,此控制訊號產生器2 1包括一第三反相器13 用以反相壓縮測試訊號,一第五NAND閘ND5用以產生 附加延遲訊號AL0的結果測試訊號與反相壓縮測試訊號 與一第四反相器14用以反相一第一控制訊號ALOb,也就 是第五NAND閘ND5輸出之訊號,藉以產生一第二控制 訊號A L 0 d。 每一個解碼器包括兩個NAND閘,兩個傳輸閘與一反相 器。每兩個NAND閘中之其中一個接收兩個內部記憶體組 位址與產生NAND操作之一結果訊號;每兩個傳輸閘中之 其中一個傳輸此結果訊號以回應第一與第二控制訊號 ALOb與ALOd。然後,反相器係將兩個傳輸閘輸出之輸出More specifically, the control signal generator 2 1 includes a third inverter 13 for inverting the compression test signal, and a fifth NAND gate ND5 for generating the result of the additional delay signal AL0, the test signal and the inverse compression test. The signal and a fourth inverter 14 are used to invert a first control signal ALOb, that is, a signal output by the fifth NAND gate ND5, thereby generating a second control signal AL 0 d. Each decoder includes two NAND gates, two transmission gates and an inverter. One of each of the two NAND gates receives two internal memory bank addresses and produces a result signal of one of the NAND operations; one of each of the two transmission gates transmits the result signal in response to the first and second control signals ALOb With ALOd. Then, the inverter outputs the output of the two transmission gates.

訊號轉換’藉以產生輸出訊號的反相訊號作爲讀取記憶體 組操作訊號。 參考第4圖,讀取解碼區塊2 〇包括四個解碼器。多數 個內部記憶體組位址,也就是a,/a,b,/b,c,/c,d,/d,係 被分類成四個族群,每一個族群包括四個內部記憶體組位 址· (/a’ /b’ /c, /d), (a, /b, c, /d), (/a, b, /c, d), (a,b,c,d) 〇 在此,每一個解碼器,例如解碼器2 2、解碼器2 4、解 碼器26與解碼器28 ,解碼閂鎖區塊所輸出之一群非延遲 -11- 1303434The signal conversion 'is used to generate an inverted signal of the output signal as a read memory group operation signal. Referring to Figure 4, the read decoding block 2 〇 includes four decoders. Most of the internal memory group addresses, namely a, /a, b, /b, c, /c, d, /d, are classified into four groups, each of which includes four internal memory groups. Address · (/a' /b' /c, /d), (a, /b, c, /d), (/a, b, /c, d), (a,b,c,d) 〇 Here, each decoder, such as decoder 2 2, decoder 24, decoder 26 and decoder 28, decodes the latch block to output a group of non-delay-11-1303434

;年月3修正替換賣I | τ 11.1 .1.. 一£-L—,一..《*·<>*-—」 內部記憶體組位址,也就是a,/a,b, /b,與路由區塊輸出 之延遲內部記憶體組位址,也就是c,/c,d,/d,以回應第 一與第二控制訊號ALOb與ALOd。 在習知記憶體裝置中,需要一 RAS至CAS延遲tRCD, tRCD係由提供一列啓動訊號之一最小時間,以供應一行 啓動訊號。不過,如一附加延遲係被導入用以增加半導體 記憶裝置之一操作速度,此行啓動訊號被供應在RAS至 C AS延遲tRCD之前,在列啓動訊號被供應之後。也就是, 根據此附加延遲,供應此行啓動訊號的時序係能被調整。 假使附加延遲訊號 AL0不被啓動,例如此附加延遲訊 號是2或3,此行啓動訊號係在RAS至C AS延遲tRCD之 前輸入,然後,在此有很多的時間餘裕(time margin)用 以存取資料以回應行啓動訊號。此例中,因爲有很多時間 餘裕,延遲內部記憶體組位址,也就是c,/c,d,/d,,其 係在讀取解碼區塊2 0被解碼且藉由路由區塊1 6延遲。 此外’假使此附加延遲訊號AL0被啓動,例如此附加 延遲爲〇,此行啓動訊號係在RAS至C AS延遲tRCD之後 被輸入’然後’有許多時間餘裕用以存取資料以回應此行 啓動訊號接觸資料。在此例中,因爲一些時間餘裕,非延 遲內部記憶體組位址,也就是如a,/a,b,/b在讀取解碼區 塊20中被解碼。 第5圖係根據第1圖所述之資料壓縮區塊40包括之DQ 輸出緩衝器之電路圖。 如圖所示’此DQ輸出緩衝器包括在資料壓縮區塊40 -12- 1303434 年月日修正替換頁 Ωβ II ί β 中,此資料壓縮區塊40包括一選通控制產生器42’ 一比 較區塊4 4與一選通驅動區塊4 6。此外,在此顯示一 G10 驅動器包括串列耦接於一供應電壓與接地之間的兩個Μ 〇 S 電晶體ΡΜ1與ΝΜ1。 此選通控制產生器42接收壓縮測試訊號tpara以及訊號 產生區塊所包括之選通訊號產生器輸出之選通訊號 iostb,藉以產生一第一與一第二資料選通訊號iostb2與 iost2b。比較區塊44接收胞元陣列80輸出之每一個資料 用以壓縮成1 6位元資料。最後地,此選通驅動區塊46輸 出一自比較區塊44輸出之壓縮資料至GI0驅動器,以回 應第一與第二資料選通訊號i〇stb2與iostb2b。 如上所述,此習知半導體記憶裝置能快速地藉由使用此 壓縮測試模式以測試所有之胞元單位。 不過,包括在半導體記憶裝置之此測試模式不能測試一 記憶體組插置模式(interleaving mode),因爲包括在半導 體記憶裝置之所有記憶體組係同步地被啓動。事實上,半^ 導體記憶裝置操作在此gS憶體組插置模式用以增加一丨喿作 速度。在記憶體組插置模式中,資料碰撞或偏離。“…係 發生在當資料是任意地讀取與寫入在每一個記憶體組間。 因此’用以測試一半導體記憶裝置在記憶體組插置模式 之ί栄作’資料不能被壓縮’所以結果是測試所需的時間會 很長。 【發明內容】 ,用以 因此本發明提出一種進階模式之半導體記憶裝置 -13-Year 3 Correction Replacement Sell I | τ 11.1 .1.. One £-L-, one.. "*·<>*--" Internal memory group address, ie a, /a, b , /b, and the delayed internal memory bank address of the routing block output, that is, c, /c, d, /d, in response to the first and second control signals ALOb and ALOd. In conventional memory devices, a RAS to CAS delay tRCD is required, and the tRCD is supplied with a row of start signals for a minimum time to supply a row of start signals. However, if an additional delay is introduced to increase the operating speed of one of the semiconductor memory devices, the row start signal is supplied before the RAS to C AS delay tRCD after the column start signal is supplied. That is, according to this additional delay, the timing for supplying the line start signal can be adjusted. If the additional delay signal AL0 is not activated, for example, the additional delay signal is 2 or 3, the line start signal is input before the RAS to C AS delay tRCD, and then there is a lot of time margin for storing. Take the data in response to the line start signal. In this example, because there is a lot of time margin, the internal memory bank address is delayed, that is, c, /c, d, /d, which is decoded in the read decoding block 20 and is routed through the block 1. 6 delay. In addition, if this additional delay signal AL0 is activated, for example, the additional delay is 〇, the line start signal is input after the RAS to C AS delay tRCD and then there is a lot of time margin for accessing the data in response to the start of the line. Signal contact data. In this example, the non-delayed internal memory bank address, i.e., a, /a, b, /b, is decoded in the read decoding block 20 because of some time margin. Fig. 5 is a circuit diagram of a DQ output buffer included in the data compression block 40 according to Fig. 1. As shown in the figure, 'this DQ output buffer is included in the data compression block 40 -12 - 1303434 year-and-month correction replacement page Ωβ II ί β, this data compression block 40 includes a gate control generator 42' Block 4 4 and a gate drive block 46. In addition, it is shown here that a G10 driver includes two 〇 S transistors ΡΜ1 and ΝΜ1 connected in series between a supply voltage and ground. The strobe control generator 42 receives the compressed test signal tpara and the selected communication number iostb of the selected communication number generator included in the signal generating block, thereby generating a first and a second data selection communication number iostb2 and iost2b. The comparison block 44 receives each of the data output by the cell array 80 for compression into 16-bit data. Finally, the strobe driving block 46 outputs a compressed data output from the comparison block 44 to the GI0 driver to respond to the first and second data selection communication numbers i〇stb2 and iostb2b. As described above, the conventional semiconductor memory device can quickly test all of the cell units by using this compression test mode. However, this test mode included in the semiconductor memory device cannot test a memory group interleaving mode because all of the memory groups included in the semiconductor memory device are simultaneously activated. In fact, the semi-conductor memory device operates in this gS memory group insertion mode to increase the speed of a shot. In the memory group insertion mode, data collides or deviates. "... occurs when the data is arbitrarily read and written between each memory group. Therefore, 'to test a semiconductor memory device in the memory bank insertion mode, the 'data cannot be compressed', so the result The time required for the test can be very long. [Invention] Therefore, the present invention proposes an advanced mode semiconductor memory device-13-

1303434 在半導體記憶裝置的記憶體組插置模式(i n t e r 1 e a v i n g m o d e ) 操作中尋找錯誤以減少測試時間。 從本發明的一觀點來看,本發明提出了 一種在壓縮測 試模式中測試具有多數個記憶體組之半導體記憶裝置操作 之方法,包括下列步驟;(A )藉由同時啓動多數個記憶 體組以測試該半導體記憶裝置(B )藉由隨機啓動多數個 記憶體組以測試該半導體記憶裝置。 由本發明的另一觀點來看,本發明提出一種用以測試在 壓縮測試模式中具有多數個記憶體組之半導體裝置操作之 裝置,包括一內部位址產生器,用以接收一外部記憶體組 位址以及產生內部記憶體組位址以回應一記憶體組插置測 試訊號;一讀取操作測試區塊,用以接收內部記憶體組位 址與測試半導體記憶裝置中的一讀取操作以回應記憶體組 插置測試訊號;一寫入操作測試區塊,用以接收內部記憶 體組位址與測試半導體記憶裝置的一寫入操作。 【實施方式】 以下將根據所附圖示仔細描述根據本發明之半導體記憶 體裝置。 第6圖係顯示根據本發明之使用在半導體記憶裝置中之 測試區塊圖。 如圖所示,此測試區塊包括一內部位址產生器1 00,一 讀取操作測試區塊與一寫入操作測試區塊。 此內部位址產生器100,接收一外部記憶體組位址如ΒΑ0 以及產生內部記憶體組位址如a與/a以回應一記憶體組插 •14- 1303434 mu: 置測試訊號iocomp。此讀取操作測試區塊,用以接收內 部記憶體組位址如a與/a及測試該半導體記憶裝置的一讀 取操作以回應該§2憶體組插置測試訊號i 〇 c 〇 m p。此寫入 操作測試區塊,用以接收內部記憶體組位址如a與/a,以 及測試此半導體記憶裝置的一寫入操作。 在此,此讀取操作測試包括一讀取解碼區塊2 0 0,一壓 縮控制區塊3 00與一資料壓縮區塊400 ;以及一寫入操作 測S式區塊’包括一*寫入解碼區塊5 0 0,一寫入控制區塊6 0 〇 與一寫入驅動區塊700。 更仔細地說,該內部記憶體組位址產生器1 0 0轉換一記 憶體組位址,例如ΒΑ0與BA1,以成爲多數個內部記憶 體組位址,也就是a,/a,b,/b,c,/c,d,/d,以回應一壓縮 測試訊號tpara與此記憶體組插置測試訊號iocomp。在此, 該內部記憶體組位址,也就是a,/a,b,/b,c,/c,d,/d,係 被分類爲非延遲內部記憶體組位址,即a,/a,b,/b,與延 遲內部記憶體組位址,即 c, /c,d,/d。該些多數個內部 記憶體組位址如a,/a,b,/b,c,/c,d,/d被輸入至該讀取 解碼區塊2 0 0。此讀取解碼區塊2 0 0解碼多數個內部記憶 體組位址,也就是a,/ a,b,/ b,c,/ c,d,/ d,藉以產生多數 個讀取記憶體組操作訊號rd — bankO,rd —bankl,rd —bank2 與rd_bank3,以回應一'附加延遲訊號A L 0與該記憶體組 插置測試訊號i 〇 c 〇 mp。此壓縮控制區塊3 0 0係用以控制 該資料壓縮區塊4 0 0以回應該些讀取記憶體組操作訊號 rd bankO,rd__bankl,rd_bank2 與 rd — bank3。此資料壓縮 -15- 1303434 日I正替換頁 區塊400具有多數個DQ輸出緩衝器,用以壓縮每一個記 憶體組所輸出的資料,藉以輸出一測試結果訊號以回應壓 縮測試訊號tpara與一記憶體組非啓動訊號Xedb_ba。 此外,該非延遲內部記憶體組位址,也就是a,/a,b,/b, 被輸入至寫入解碼區塊5 0 0。寫入解碼區塊5 0 0解碼內部 記憶體組位址a,/a,b,/b的一部分,藉以產生多數個寫入 記憶體組操作訊號 wt_bank0, wt_bankl, wt_bank2 與 wt_bank3。寫入控制區塊600控制寫入驅動區塊700以回 應一寫入啓動訊號WTen與多數個寫入記憶體組操作訊號 wt — bankO,wt — bankl,wt — bank2 與 wt_bank3〇 寫入驅動區 塊700用以儲存輸入至包括在每一個記憶體組之胞元陣列 8 00 〇 此外,該內部記憶體組位址產生器1 〇 〇包括一閂鎖控制 器1 8 0,一緩衝區塊,一閂鎖區塊,一路由區塊。閂鎖控 制器1 8 0,用以接收壓縮測試訊號tpara與記憶體組插置 測試訊號iocomp與控制一閂鎖控制訊號。緩衝區塊包括 兩個緩衝器,例如緩衝器1 20,每一個緩衝器用以接收一 第一位元記億體組位址ΒΑ0與一第二位元記憶體組位址 BA1,並且轉換第一位元記憶體組位址ΒΑ0與一第二位元 記憶體組位址 BA1成爲內部記憶體組位址如 ba0_add, ba0_addb,bal—add,與 bal_addb,每一値皆對應至第一位 元記憶體組位址ΒΑ0與第二位元記憶體組位址BA1。此 閂鎖區塊包括兩個閂鎖器’如閂鎖器1 40,每一個閂鎖器 係被閂鎖控制訊號控制以傳輸內部位址如 ba0_addd, -16-1303434 Look for errors in the memory bank insertion mode (i n t e r 1 e a v i n g m o d e ) operation of the semiconductor memory device to reduce the test time. From the perspective of the present invention, the present invention proposes a method of testing the operation of a semiconductor memory device having a plurality of memory banks in a compression test mode, comprising the following steps; (A) simultaneously starting a plurality of memory banks To test the semiconductor memory device (B), the semiconductor memory device is tested by randomly starting a plurality of memory banks. In another aspect of the present invention, the present invention provides an apparatus for testing the operation of a semiconductor device having a plurality of memory banks in a compression test mode, including an internal address generator for receiving an external memory bank Addressing and generating an internal memory bank address in response to a memory bank insertion test signal; a read operation test block for receiving an internal memory bank address and a read operation in the test semiconductor memory device Responding to the memory bank insertion test signal; a write operation test block for receiving an internal memory bank address and a write operation of the test semiconductor memory device. [Embodiment] Hereinafter, a semiconductor memory device according to the present invention will be described in detail based on the accompanying drawings. Figure 6 is a diagram showing a test block used in a semiconductor memory device in accordance with the present invention. As shown, the test block includes an internal address generator 100, a read operation test block and a write operation test block. The internal address generator 100 receives an external memory bank address such as ΒΑ0 and generates internal memory group addresses such as a and /a in response to a memory bank insertion. 14-1303434 mu: the test signal iocomp. The read operation test block is configured to receive an internal memory bank address such as a and /a and to test a read operation of the semiconductor memory device to respond to the §2 memory group insertion test signal i 〇c 〇mp . The write operation test block is configured to receive internal memory bank addresses such as a and /a, and to test a write operation of the semiconductor memory device. Here, the read operation test includes a read decoding block 200, a compression control block 300 and a data compression block 400; and a write operation S-block 'including a * write The decoding block 500, a write control block 60 and a write drive block 700. More specifically, the internal memory bank address generator 1 0 0 converts a memory bank address, such as ΒΑ0 and BA1, to become a plurality of internal memory bank addresses, that is, a, /a, b, /b,c,/c,d,/d, in response to a compression test signal tpara and the memory group insert test signal iocomp. Here, the internal memory group address, that is, a, /a, b, /b, c, /c, d, /d, is classified as a non-delayed internal memory group address, that is, a, / a, b, /b, and delayed internal memory group addresses, ie c, /c, d, /d. The plurality of internal memory bank addresses such as a, /a, b, /b, c, /c, d, /d are input to the read decoding block 200. The read decoding block 200 decodes a plurality of internal memory group addresses, that is, a, / a, b, / b, c, / c, d, / d, thereby generating a plurality of read memory groups. The operation signals rd - bankO, rd - bankl, rd - bank2 and rd_bank3 are in response to an 'additional delay signal AL 0' and the memory bank insertion test signal i 〇c 〇mp. The compression control block 300 is used to control the data compression block 400 to respond to the read memory group operation signals rd bankO, rd__bank1, rd_bank2 and rd_bank3. This data compression -15 - 1303434 day I positive replacement page block 400 has a plurality of DQ output buffers for compressing the data outputted by each memory group, thereby outputting a test result signal in response to the compression test signal tpara and one The memory group is not activated signal Xedb_ba. In addition, the non-delayed internal memory bank address, that is, a, /a, b, /b, is input to the write decoding block 500. The write decode block 500 decodes a portion of the internal memory bank address a, /a, b, /b, thereby generating a plurality of write memory bank operation signals wt_bank0, wt_bank1, wt_bank2 and wt_bank3. The write control block 600 controls the write drive block 700 in response to a write enable signal WTen and a plurality of write memory bank operation signals wt_bankO, wt_bankl, wt_bank2 and wt_bank3〇 write drive blocks 700 is used for storing input to the cell array 8 00 included in each memory group. In addition, the internal memory bank address generator 1 includes a latch controller 1 800, a buffer block, and a buffer block. Latch block, a routing block. The latch controller 180 is configured to receive the compression test signal tpara and the memory bank insertion test signal iocomp and to control a latch control signal. The buffer block includes two buffers, such as a buffer 120, each buffer for receiving a first bit record group address ΒΑ0 and a second bit memory group address BA1, and converting the first The bit memory group address ΒΑ0 and a second bit memory group address BA1 become internal memory group addresses such as ba0_add, ba0_addb, bal_add, and bal_addb, each corresponding to the first bit memory The body group address ΒΑ0 and the second bit memory group address BA1. The latch block includes two latches, such as latches 140, each of which is controlled by a latch control signal to transmit an internal address such as ba0_addd, -16-

1303434 ba0_addb, bal_add與bal_addb至路由區塊作爲非延遲內 部記憶體組位址如a,/ a,b,/ b。此路由區塊也包括兩個路 由器,例如路由器160,每一個路由器用以延遲部分多數 個內部記憶體組位址如a,/a,b,/b,藉以產生作爲延遲內 部記憶體組位址如c,/c,d,/d。1303434 ba0_addb, bal_add and bal_addb to the routing block as non-delay internal memory group addresses such as a, / a, b, / b. The routing block also includes two routers, such as router 160, each of which delays a portion of a plurality of internal memory bank addresses such as a, /a, b, /b, thereby generating a delayed internal memory bank address. Such as c, /c, d, /d.

更仔細地說,壓縮測試區塊3 00包括一讀取控制區塊320 與一選通訊號產生區塊340。讀取控制區塊3 20包括多數 個讀取控制器,每一個控制器被一讀取啓動訊號RDen控 制以接收讀取記憶體組操作訊號與輸出記憶體組非插置訊 號如Xedb_ba至資料壓縮區塊400 ;以及一選通訊號產生 區塊3 40包括多數個選通訊號產生器,每一個選通訊號產 生器用以產生多數個選通訊號,例如iostb。More specifically, the compression test block 300 includes a read control block 320 and a select communication number generation block 340. The read control block 3 20 includes a plurality of read controllers, each of which is controlled by a read enable signal RDen to receive the read memory bank operation signal and the output memory bank non-interpolation signal such as Xedb_ba to data compression. Block 400; and select communication number generation block 3 40 includes a plurality of selected communication number generators, each of which selects a plurality of selected communication numbers, such as iostb.

在此,每一個讀取控制器,每一個選通訊號產生器與每 一個DQ輸出緩衝器係個別的對應至每一個包括在習知半 導體記憶裝置中之記憶體組。此外,每一個緩衝區,每一 個閂鎖器以及每一個路由器在內部記憶體組位址產生器中 是個別地對應至每一記憶體組位址之每一位元。 接下來描述當壓縮測試訊號tpara被啓動時,半導體記 憶裝置的測試操作。 首先,內部記憶體組位址產生器1 〇〇不管這些記憶體組 位址啓動這些內部記憶體組位址如a,/a,b,/b,c,/c,d,/d 以回應壓縮測試訊號tpara。然後,讀取解碼區塊200所 輸出的這些讀取記憶體組操作訊號rd_bank0,rd_bankl, rd_bank2與rd_bank3以及寫入解碼區塊5 0 0所輸出的這 -17- ! 6 1303434 些寫入記憶體組操作訊號wt_bank0、wt__bankl、wt_bank2 與wt_bank3皆被啓動。如果寫入啓動訊號WTen被啓動, 寫入控制區塊6 0 0與寫入驅動區塊7 0 0則被啓動,然後, 資料被輸入至胞元陣列8 00。此外,如果讀取啓動訊號RDen 被啓動以回應附加延遲訊號 AL0與記憶體組插置測試訊 號iocomp,多數個胞元陣列800所輸出之資料LI00<0:15> 至LI<〇 : 1 5>則被壓縮與輸出。此時,其他記憶體組位址, 如沒有被選擇到的記憶體組,輸出一邏輯高位準訊號取代 測試結果訊號以回應記憶體組非啓動訊號如Xedb_ba。 鲁 在此,假如一經由資料墊所輸出之訊號的邏輯狀態是高 位準時,半導體記憶裝置不具有瑕疵胞元;但是,否則此 · 半導體記憶裝置則至少具有一個瑕疵胞元。 ^ 第7圖係描述在第6圖所示之閂鎖區塊的閂鎖器1 4 0與 閂鎖控制器1 8 0之電路圖。 如圖所示,此閂鎖控制器1 80包括第5反相器15與一 第六NAND閘ND6;閂鎖器140包括一第一閂鎖胞元142, 一第二閂鎖胞元1 44, 一第七NAND閘ND7與一第八NAND Φ 閘ND2。在此,此第一與第二閂鎖胞元142與144係由兩 個電路集連接反相器所建構。 在閂鎖控制器1 80中,第五反相器15是用以反相記憶 體組插置測試訊號iocomp。第六NAND閘接收第五反相 器15輸出的輸出訊號與壓縮測試訊號tpara藉以產生 NAND操作的一結果訊號。 此第一閂鎖胞元1 42用以閂鎖一反相內部記憶體組位 -18- 1303434 96.11. 1 6 址’如b a 0 _a d d b ;以及第二閂鎖胞元1 4 4則是用來閂鎖一 內部記憶體組位址如baO —add。第七NAND閘ND7接收一 問鎖控制器1 8 0輸出的一輸出訊號與一反相內部記憶體組 位址’也就是內部記憶體組位址與一反相壓縮測試訊號以 產生NAND操作的結果訊號作爲一第一內部記憶體組位 址。再者,此第八NAND閘ND8接收閂鎖控制器180所 輸出的輸出訊號與反相壓縮測試訊號來產生一 NAND操作 的結果訊號作爲第一反相內部記憶體組位址/a。 第8圖係描述在第6圖所示之讀取解碼器之電路圖。 鲁 如圖所示,此讀取解碼區塊2 0 0包括一控制訊號產生器 2 1 0與多數個解碼器2 2 0、2 4 0、2 6 0與2 8 0。此控制訊號 · 產生器210用以產生第一與第二控制訊號,如ALOb與 A L 0 d,以回應附力Π延遲訊號A L 0、此壓縮測試訊號t p a r a 以及記憶體組插置測試訊號i〇 comp。每一個解碼器接收 兩個記憶體組位址以回應此第一與第二控制訊號如A L 0 b 與ALOd,並且選擇這兩個內部記憶體組位址的其中之一, 藉以產生一反相選擇位址作爲讀取記憶體組操作訊號。在 · 此,每一個解碼器係與第4圖中的每一個習知解碼器的結 構相同,因此,關於每一個解碼器的詳細描述則省略。 更仔細地說,此控制訊號產生器2 1 0包括一第一 NOR 閘NR 1用以執行此壓縮測試訊號tpara的操作與記憶體組 插置測試訊號i 〇 c 〇 m p,一第九N A N D閘N D 9用以產生附 加延遲訊號AL0與第一 NOR閘NR1之輸出訊號於NAND 操作下的一結果訊號,以及一第六反相器16用以反相一 -19- ㈣if正替換頁 1303434 第一控制訊號ALOb,也就是自第九NAND閘ND9所輸出 之訊號,藉以產生一第二控制訊號ALOd。 第9圖係描述在第6圖所示之資料壓縮區塊的DQ輸出 緩衝器之電路圖。 如圖所示,此DQ輸出緩衝器,如緩衝器3 60,係包括 在一資料壓縮產區塊400中,此緩衝器包括一選通控制產 生器420,一比較區塊440,一選通驅動區塊460與一輸 出控制器4 8 0。此外,在此顯示一 GI0驅動器,包括兩個 串接於供應電壓與接地之間的M0S電晶體PM2與NM2。 此選通控制產生器420接收此壓縮測試訊號tpara與記 憶體組非啓動訊號Xedb_ba與包括在訊號產生區塊3 40的 選通訊號產生器輸出之選通訊號iostb,藉以產生一輸出 控制訊號tgiob、一第一與第二資料選通訊號iostb2與 iostb2b。比較區塊440接收胞元陣歹[]800輸出的每一個資 料LI00<0:15>至LI03<0:15>,用以壓縮此16位元的資料 作爲測試結果訊號。再者,此選通驅動區塊4 6 0輸出比較 區塊440所輸出之一壓縮資料至GI0驅動器以回應此第一 與第二資料選通訊號i〇stb2與iostb2b。最後,輸出控制 器4 8 0包括兩個N AND閘,用以選擇性地輸出此測試結果 訊號與一邏輯高位準訊號以回應輸出控制訊號tgiob。 在此,假如記憶體組非啓動訊號如Xedb_ba被啓動後, 此對應記:丨意體組會輸出邏輯高位準訊號。這是因爲一記憶 體組輸出一邏輯低位準訊號假如此記憶體組至少具有一個 瑕疵胞元。假如沒被選擇的記憶體組中的其中之一輸出一 -20- 1303434 ;年弓C]修丘―替壤. 196.1L一16„.一.... 邏輯低位準訊號,在選擇到的記憶體組發現錯誤則是可能 的。 第10圖係描述在第6圖所示之寫入解碼區塊之電路圖。 如圖所述,寫入解碼區塊5 0 0包括四個NAND閘,每一 個NAND閘用以接收非延遲內部記億體組位址,藉以產生 寫入記憶體組操作訊號,如wt_bank0。在此,寫入解碼 區塊5 00僅接收非延遲內部記憶體組位置,因爲寫入操作 之閂鎖通常較其用於半導體記憶裝置的讀取操作短一個時 脈週期。 如上所述,此測試區塊藉由使用壓縮測試模式來測試半 導體記憶裝置中的記憶體組插置模式。此外,此半導體記 - 憶裝置能快速地測試所有的胞元單位係藉由使用壓縮測試 _ 模式。 在此,雖然此測試所使用之內部記憶體組位址在本發明 中係藉由附加延遲所控制,但此測試能不用顧慮附加延遲 來執行。 因此,在記憶體組插置模式中用以測試半導體記憶裝置 ® 的操作,壓縮測試模式能被實行,而所需要的測試時間則 明顯的減少。 本發明之應用係與韓國專利第 20 04- 1 8 9 1 9與第 2004-0 1824號之專利案相關,上述專利申請案係分別在2004 年3月19號與2004年1月10號於韓國專利局被提出申 請,整個內容係藉由這些例子在此整合。 當本發明已依據這些特別實施例敘述之後,本發明係與 -21- 1303434 — s 二 y t>, 11 *· |- tj. - ……一 習知技術有種種不同,熟習此技藝者可在不脫離本發明的 精神與範圍內做種種的改變與修正,因此本發明之保護範 圍當視後附之專利範圍爲準。 【圖式簡單說明】 第1圖係顯示一用在習知半導體記憶裝置的一測試區塊 之方塊圖; 第2圖係用來描述第1圖中在閂鎖區塊所包括的閂鎖器之 結構電路圖; 第3圖係用來描述第1圖中在路由區塊所包括的路由器之 結構電路圖; 第4圖唯一如第1圖中描述讀取解碼區塊的電路圖; 第5圖係根據第1圖所述之資料壓縮區塊包括之D Q輸出 緩衝器之電路圖; 第6圖係顯示根據本發明之使用在半導體記憶裝置中之 一測試區塊圖; 第7圖係描述在第6圖所示之閂鎖區塊的閂鎖器之電路 圖; 第8圖係描述在第6圖所示之路由區塊的路由器之電路 圖; 第9圖係描述在第1圖所示之資料壓縮區塊的D Q輸出 緩衝器之電路圖; 第10圖係描述在第6圖所不之寫入解碼區塊之電路圖。 元件代表符號 10 > 100 內部記憶體組位址產生器 -22- 1303434 9§ ΐΐ f言正替換頁 20 、 200 讀取解碼區塊 21 控制訊號產生器 22 、 24 、 26 、 28 解碼器 30 壓縮控制區塊 32 、 320 讀取控制區塊 34 、 340 選通訊號產生區塊 36 ' 360 DQ輸出緩衝器 40 、 400 資料壓縮區塊 42 、 420 選通控制產生器 44 、 440 比較區塊 46 、 460 選通驅動區塊 480 輸出控制器 50 、 500 寫入解碼區塊 60 、 600 寫入控制區塊 70 、 700 寫入驅動區塊 80 、 800 胞元陣列 BAO 第一位元記憶體組位址 BA1 第二位元記憶體組位址 12 、 120 緩衝器 14 、 140 閂鎖器 16、160 路由器 11 第一反相器 14a、142 第一閂鎖胞元Here, each of the read controllers, each of the selected communication number generators and each of the DQ output buffers are individually associated with each of the memory banks included in the conventional semiconductor memory device. In addition, each buffer, each latch, and each router individually corresponds to each bit of each memory bank address in the internal memory bank address generator. Next, the test operation of the semiconductor memory device when the compression test signal tpara is activated will be described. First, the internal memory bank address generator 1 initiates these internal memory group addresses such as a, /a, b, /b, c, /c, d, /d in response to these memory group addresses. Compress test signal tpara. Then, the read memory bank operation signals rd_bank0, rd_bank1, rd_bank2 and rd_bank3 outputted by the decoding block 200 and the write 174-! 6 1303434 output memory written by the decoding block 500 are read. The group operation signals wt_bank0, wt__bank1, wt_bank2, and wt_bank3 are all started. If the write enable signal WTen is enabled, the write control block 600 and the write drive block 70 are enabled, and then the data is input to the cell array 800. In addition, if the read enable signal RDen is activated in response to the additional delay signal AL0 and the memory bank insertion test signal iocomp, the data output from the plurality of cell arrays 800 is LI00<0:15> to LI<〇: 1 5> It is then compressed and output. At this time, other memory group addresses, such as the memory group that is not selected, output a logic high level signal to replace the test result signal in response to the memory group non-start signal such as Xedb_ba. Here, if the logic state of the signal output via the data pad is high, the semiconductor memory device does not have a cell; however, the semiconductor memory device has at least one cell. ^ Fig. 7 is a circuit diagram showing the latch 1404 and the latch controller 180 of the latch block shown in Fig. 6. As shown, the latch controller 180 includes a fifth inverter 15 and a sixth NAND gate ND6; the latch 140 includes a first latch cell 142 and a second latch cell 144. , a seventh NAND gate ND7 and an eighth NAND Φ gate ND2. Here, the first and second latch cells 142 and 144 are constructed by two circuit set connection inverters. In the latch controller 180, the fifth inverter 15 is for inverting the memory bank insertion test signal iocomp. The sixth NAND gate receives the output signal output by the fifth inverter 15 and the compression test signal tpara to generate a result signal of the NAND operation. The first latch cell 1 42 is used to latch an inverting internal memory bank -18- 1303434 96.11. 1 6 site 'such as ba 0 _a ddb ; and the second latch cell 1 4 4 is used To latch an internal memory bank address such as baO — add. The seventh NAND gate ND7 receives an output signal from the lock controller 1880 and an inverted internal memory group address 'that is, an internal memory bank address and an inverted compression test signal to generate a NAND operation. The resulting signal acts as a first internal memory bank address. Moreover, the eighth NAND gate ND8 receives the output signal output by the latch controller 180 and the inverted compression test signal to generate a result signal of a NAND operation as the first inverted internal memory group address /a. Fig. 8 is a circuit diagram showing the read decoder shown in Fig. 6. As shown in the figure, the read decoding block 200 includes a control signal generator 2 1 0 and a plurality of decoders 2 2 0, 2 4 0, 2 6 0 and 2 8 0. The control signal generator 210 is configured to generate first and second control signals, such as ALOb and AL 0 d, in response to the attached delay signal AL 0, the compression test signal tpara, and the memory group insertion test signal i〇 Comp. Each decoder receives two memory bank addresses in response to the first and second control signals, such as AL 0 b and ALOd, and selects one of the two internal memory bank addresses to generate an inversion. The address is selected as the read memory group operation signal. In this case, each decoder is identical to the structure of each of the conventional decoders in Fig. 4, and therefore, a detailed description about each decoder is omitted. More specifically, the control signal generator 2 1 0 includes a first NOR gate NR 1 for performing the operation of the compression test signal tpara and the memory bank insertion test signal i 〇c 〇mp, a ninth NAND gate The ND 9 is used to generate a result signal of the additional delay signal AL0 and the output signal of the first NOR gate NR1 in the NAND operation, and a sixth inverter 16 is used to invert a -19-(four) if positive replacement page 1303434. The control signal ALOb, that is, the signal output from the ninth NAND gate ND9, generates a second control signal ALOd. Figure 9 is a circuit diagram showing the DQ output buffer of the data compression block shown in Figure 6. As shown, the DQ output buffer, such as buffer 360, is included in a data compression block 400, which includes a gate control generator 420, a comparison block 440, and a strobe. The drive block 460 is coupled to an output controller 480. In addition, a GI0 driver is shown here, including two MOS transistors PM2 and NM2 connected in series between the supply voltage and ground. The strobe control generator 420 receives the compressed test signal tpara and the memory group non-activated signal Xedb_ba and the selected communication number iostb of the selected communication number generator output included in the signal generating block 3 40, thereby generating an output control signal tgiob. First and second data selection communication numbers iostb2 and iostb2b. The comparison block 440 receives each of the data LI00<0:15> to LI03<0:15> outputted by the cell array [] 800 to compress the 16-bit data as a test result signal. Moreover, the strobe driving block 460 outputs a compressed data outputted by the comparison block 440 to the GI0 driver in response to the first and second data selection communication numbers i〇stb2 and iostb2b. Finally, the output controller 408 includes two N AND gates for selectively outputting the test result signal and a logic high level signal in response to the output control signal tgiob. Here, if the memory group non-start signal such as Xedb_ba is activated, the corresponding note: the body group will output a logic high level signal. This is because a memory bank outputs a logical low-level signal. Thus, the memory bank has at least one cell. If one of the memory groups that have not been selected outputs one -20- 1303434; the year bow C] Xiuqiu-Tieian. 196.1L-16 „.一.... Logic low-level signal, in the selected It is possible to find an error in the memory bank. Fig. 10 is a circuit diagram showing the write decoding block shown in Fig. 6. As shown, the write decoding block 500 includes four NAND gates, each of which A NAND gate is used to receive the non-delayed internal bank address, thereby generating a write memory bank operation signal, such as wt_bank0. Here, the write decode block 500 only receives the non-delayed internal memory bank location because The latch of the write operation is typically one clock cycle shorter than its read operation for the semiconductor memory device. As described above, the test block tests the memory bank insertion in the semiconductor memory device by using the compression test mode. In addition, the semiconductor memory device can quickly test all cell units by using a compression test _ mode. Here, although the internal memory bank address used in this test is used in the present invention Additional delay is controlled, but this The test can be performed without concern for additional delays. Therefore, in the memory bank insertion mode for testing the operation of the semiconductor memory device®, the compression test mode can be performed, and the required test time is significantly reduced. The application department is related to the patents of Korean Patent No. 20 04- 1 8 9 1 9 and No. 2004-0 1824. The above patent applications were filed at the Korean Patent Office on March 19, 2004 and January 10, 2004, respectively. The entire contents are hereby incorporated by reference to these examples. The present invention is hereby incorporated by reference to the particular embodiments of the present invention, and the present invention is associated with -21 - 1303434 - s y t >, 11 *· | - tj. There are various differences in the art of the present invention, and those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention, and the scope of the invention is subject to the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing a test block used in a conventional semiconductor memory device; Fig. 2 is a view for describing the structure of a latch included in the latch block in Fig. 1. Circuit diagram 3 is used to describe the structural circuit diagram of the router included in the routing block in FIG. 1; FIG. 4 is only a circuit diagram for reading the decoding block as described in FIG. 1; FIG. 5 is a diagram according to FIG. The data compression block includes a circuit diagram of the DQ output buffer; FIG. 6 shows a test block diagram used in the semiconductor memory device according to the present invention; and FIG. 7 depicts the latch shown in FIG. Circuit diagram of the latch of the block; Fig. 8 is a circuit diagram of the router of the routing block shown in Fig. 6; Fig. 9 is a diagram showing the DQ output buffer of the data compression block shown in Fig. 1. Circuit diagram; Fig. 10 is a circuit diagram for writing a decoding block in Fig. 6. Component Representation Symbol 10 > 100 Internal Memory Group Address Generator -22 - 1303434 9 § 言 f 正 Positive Replacement Page 20 , 200 Read Decode Block 21 Control Signal Generator 22 , 24 , 26 , 28 Decoder 30 Compression control block 32, 320 read control block 34, 340 select communication number generation block 36' 360 DQ output buffer 40, 400 data compression block 42, 420 gate control generator 44, 440 comparison block 46 460 gate drive block 480 output controller 50, 500 write decode block 60, 600 write control block 70, 700 write drive block 80, 800 cell array BAO first bit memory group Address BA1 second bit memory bank address 12, 120 buffer 14, 140 latch 16, 160 router 11 first inverter 14a, 142 first latch cell

-23- 1303434-23- 1303434

14b 、 144 ND1 ND2 ND3 ND4 ND5 ND6 ND7 ND8 ND9 PM1、NM1 a, /a, b, /b iocomp tpara 11 12 第二閂鎖胞元 第一 NAND閘 第二NAND閘 第三NAND閘 第四NAND閘 第五NAND閘 第六NAND閘 第七NAND閘 第八NAND閘 第九NAND閘 M0S電晶體 內部記憶體組位址 記憶體組插置測試訊號 壓縮測試訊號 第一反相器 第二反相器14b, 144 ND1 ND2 ND3 ND4 ND5 ND6 ND7 ND8 ND9 PM1, NM1 a, /a, b, /b iocomp tpara 11 12 Second latch cell first NAND gate second NAND gate third NAND gate fourth NAND gate Fifth NAND gate sixth NAND gate seventh NAND gate eighth NAND gate ninth NAND gate M0S transistor internal memory group address memory group insertion test signal compression test signal first inverter second inverter

-24--twenty four-

Claims (1)

I ) G 4 4 ^________ j年月日修正替換寶 07 K.3 0____ 第93 1 1 9 5 20號「用以測試半導體記憶裝置之操作的方法 及裝置」專利案 (200 8年5月修正) 十、申請專利範圍: 1 · 一種用以測試在壓縮測試模式中具有多數個記憶體組之 半導體記憶裝置操作之方法,該方法包括下列步驟: (A) 藉由同時啓動該等多數個記憶體組以測試該半導 體記憶裝置;以及 (B) 藉由選擇性啓動該等多數個記憶體組以測試該半 導體記憶裝置, 其中,在壓縮測試模式中,藉由記憶體組插置測試訊 號選擇步驟(A)與步驟(B)之一。 2·如申請專利範圍第1項之方法,其中該等多數個記憶體 組之每一個包括一資料墊,用以輸入與輸出資料。 3.如申請專利範圍第2項之方法,其中該步驟(B)包括步驟 (B-1),供應一般狀態資訊至多數個資料墊,每一個資料 墊對應至除了該等已啓動之記憶體組以外之未啓動之記 憶體組的每一個,用以避免該等未啓動之記憶體組被視 爲瑕疵記憶體組。 4·如申請專利範圍第1項之方法,其中更包括步驟(C),以 延遲一記憶體組位址,該記憶體組位址被用來啓動該等 記憶體組之每一個,依據附加延遲以測試半導體記憶裝 置的操作。 Ι3Ό3434 5·—種用以測試在壓縮測試模式中具有多數個記憶體組之 半導體記憶裝置操作之裝置,該裝置包括: 一內部位址產生器,用以接收一外部記憶體組位址與 基於該外部記憶體組位址,產生多個內部記憶體組位 址,以回應壓縮測試訊號與記憶體組插置測試訊號; 一讀取操作測試區塊,用以接收該等內部記憶體組位 址並測試由該等內部記憶體組位址所選之至少一個記憶 體組之讀取操作,以回應附加延遲訊號、該壓縮測試訊 號與該記憶體組插置測試訊號;以及 一寫入操作測試區塊,用以接收該等內部記憶體組位 址與測試所選之記憶體組之寫入操作, 其中,在該壓縮測試模式中,多數個記憶體組係被同 時啓動或選擇性啓動,以響應該記憶體組插置測試訊 號。 6. 如申請專利範圍第5項之裝置,其中該等內部記憶體組 位址被分爲多個非延遲內部記憶體組位址與多個延遲內 部記憶體組位址。 7. 如申請專利範圍第6項之裝置,其中該內部位址產生器 包括: 一閂鎖控制器,用以接收該壓縮測試訊號與該記憶體 組插置測試訊號並控制一閂鎖控制訊號; 一緩衝區塊,用以轉換該外部記憶體組位址成爲該等 內部記憶體組位址; 1303434 一 • . 971:5...3. 0一,—一」 一閂鎖區塊,係由該閂鎖控制訊號控制,用以閂鎖該 等內部記憶體組位址,藉以輸出該等內部記憶體組位址 作爲該等非延遲內部記憶體組位址;以及 一路由區塊,用以延遲該閂鎖區塊所輸出之該等非延 遲內部記憶體組位址,藉以產生該等延遲內部記憶體組 位址。 8 ·如申請專利範圍第7項之裝置,其中該緩衝區塊包括多 數個緩衝器,該等緩衝器之每一個對應至該外部記憶體 組位址之每一位元。 9.如申請專利範圍第8項之裝置,其中該閂鎖區塊包括多 數個被該閂鎖控制訊號控制之閂鎖器,該等閂鎖器之每 一個對應至該外部記憶體組位址之每一位元。 1 0 ·如申請專利範圍第9項之裝置,其中該路由區塊包括多 數個路由器,該等路由器之每一個對應至該外部記憶體 組位址之每一位元。 1 1 .如申請專利範圍第6項之裝置,其中該讀取操作測試區 塊包括: 一讀取解碼區塊,基於該附加延遲訊號、該壓縮測試 訊號與該記憶體組插置測試訊號,用以解碼該等非延遲 內部記億體組位址與該等延遲內部記憶體組位址之一, 藉以產生多數個讀取記憶體組操作訊號; 一壓縮控制區塊,係被一讀取啓動訊號控制,用以接 收該等多數個讀取記憶體組操作訊號並產生多數個選通 1303434 t---I • I年月日料H襖買 yrZ_5wJi-〇—.. 訊號;以及 一資料壓縮區塊,用以壓縮胞元陣列所輸出之多數個 ^料於已選擇的多數個記憶體組中並產生一測試結果訊 號’以回應該壓縮測試訊號與該等多數個選通訊號。 1 2 ·如申請專利範圍第1 1項之裝置,其中該讀取解碼區塊 包括: 一控制訊號產生器,用以接收該附加延遲訊號、該壓 縮測試訊號與該記憶體組插置測試訊號,藉以產生多數 個第一與第二控制訊號;及 多數個解碼器,每一個解碼器用以解碼該非延遲內部 記憶體組位址與該延遲內部記憶體組位址,以回應該等 第一與該第二控制訊號, 其中該等解碼器之每一個對應至該等複數個記憶體組 每一個記憶體組。 1 3 ·如申請專利範圍第1 2項之裝置,其中該資料壓縮區塊 包括多數個DQ輸出緩衝器,該等DQ輸出緩衝器之每 一個對應至該等複數個記憶體組之每一個記憶體組。 14·如申請專利範圍第13項之裝置,其中該等DQ輸出緩衝 器之每一個包括: 一選通控制產生器,用以產生一輸出控制訊號、第一 與第二資料選通訊號,以回應一般型態資訊訊號、該壓 縮測試訊號與該等選通訊號; 一比較區塊,用以接收多數個資料與產生該測試結果 *1303434 r—一一^——一—”.‘·ι T I 1 斤 r.; r? .·/.: .Ά 攻 β ·ί • · a .'η q7. ^ ! 訊號; ~選通驅動區塊’用以輸出該測試結果訊號,以回應 該等第一與第二控制訊號;以及 一輸出控制器,用以輸出該測試結果訊號,以回應該 輸出控制訊號。 1 5 ·如申請專利範圍第6項之裝置,其中該寫入操作測試區 塊包括: 一寫入解碼區塊,用以解碼該非延遲內部記憶體組位 址,藉以產生多數個寫入記憶體組操作訊號; 一寫入控制區塊,係由一寫入啓動訊號控制,用以接 收該等多數個寫入記憶體組操作訊號與產生多數個寫入 驅動訊號;以及 一資料壓縮區塊,用以儲存輸入資料至已選擇的記憶 體組之胞元陣列中,以回應該等多數個寫入驅動訊號。I) G 4 4 ^________ j Year Month Day Correction Replacement Bao 07 K.3 0____ No. 93 1 1 9 5 20 "Methods and Devices for Testing the Operation of Semiconductor Memory Devices" Patent Case (Amended in May 2008) X. Patent Application Range: 1 · A method for testing the operation of a semiconductor memory device having a plurality of memory banks in a compression test mode, the method comprising the following steps: (A) by simultaneously activating the plurality of memories Testing the semiconductor memory device by the body group; and (B) testing the semiconductor memory device by selectively activating the plurality of memory banks, wherein the test signal is selected by the memory bank in the compression test mode One of step (A) and step (B). 2. The method of claim 1, wherein each of the plurality of memory groups includes a data pad for inputting and outputting data. 3. The method of claim 2, wherein the step (B) comprises the step (B-1) of supplying general status information to a plurality of data pads, each of the data pads corresponding to the activated memory. Each of the unactivated memory groups other than the group is used to avoid such unactivated memory groups being considered as memory banks. 4. The method of claim 1, further comprising the step (C) of delaying a memory group address, the memory group address being used to activate each of the groups of memory, according to the addition Delay to test the operation of the semiconductor memory device. Ι3Ό3434 5—a device for testing the operation of a semiconductor memory device having a plurality of memory banks in a compression test mode, the device comprising: an internal address generator for receiving an external memory bank address and based on The external memory group address generates a plurality of internal memory group addresses to respond to the compression test signal and the memory group insertion test signal; and a read operation test block for receiving the internal memory group position And testing a read operation of the at least one memory bank selected by the internal memory bank addresses in response to the additional delay signal, the compression test signal, and the memory bank insertion test signal; and a write operation a test block for receiving the internal memory bank address and a write operation of the selected memory group, wherein in the compression test mode, a plurality of memory groups are simultaneously activated or selectively activated In response to the memory group inserting the test signal. 6. The device of claim 5, wherein the internal memory group address is divided into a plurality of non-delayed internal memory group addresses and a plurality of delayed internal memory group addresses. 7. The device of claim 6, wherein the internal address generator comprises: a latch controller for receiving the compression test signal and inserting a test signal with the memory bank and controlling a latch control signal a buffer block for converting the external memory group address into the internal memory group address; 1303434 a. 971:5...3. 0 one, - one" a latch block, Controlled by the latch control signal for latching the internal memory bank addresses, thereby outputting the internal memory bank addresses as the non-delayed internal memory bank addresses; and a routing block, The non-delayed internal memory bank address output by the latch block is delayed to generate the delayed internal memory group address. 8. The device of claim 7, wherein the buffer block comprises a plurality of buffers, each of the buffers corresponding to each bit of the external memory bank address. 9. The device of claim 8 wherein the latch block comprises a plurality of latches controlled by the latch control signal, each of the latches corresponding to the external memory bank address Every bit of it. 1 0. The device of claim 9, wherein the routing block comprises a plurality of routers, each of the routers corresponding to each bit of the external memory bank address. The apparatus of claim 6, wherein the read operation test block comprises: a read decoding block, and the test signal is inserted based on the additional delay signal, the compression test signal, and the memory group, Decoding the non-delay internal memory group address and one of the delayed internal memory group addresses, thereby generating a plurality of read memory group operation signals; a compression control block is read by Initiating signal control for receiving the plurality of read memory group operation signals and generating a plurality of strobes 1303434 t---I • I year, month, material, H, yrZ_5wJi-〇.. signal; and a data The compressed block is configured to compress a plurality of outputted by the array of cells to select a plurality of memory groups and generate a test result signal to return the test signal and the plurality of selected communication numbers. The device of claim 11, wherein the read decoding block comprises: a control signal generator for receiving the additional delay signal, the compression test signal, and the memory group insertion test signal And generating a plurality of first and second control signals; and a plurality of decoders, each of the decoders for decoding the non-delayed internal memory group address and the delayed internal memory group address, so as to wait for the first The second control signal, wherein each of the decoders corresponds to each of the plurality of memory groups. 1 3 - The apparatus of claim 12, wherein the data compression block comprises a plurality of DQ output buffers, each of the DQ output buffers corresponding to each of the plurality of memory groups Body group. 14. The device of claim 13, wherein each of the DQ output buffers comprises: a gate control generator for generating an output control signal, first and second data selection communication numbers, Responding to the general type information signal, the compression test signal and the selected communication number; a comparison block for receiving a plurality of data and generating the test result *1303434 r-一一^——一—". TI 1 kg r.; r? ../.: .Ά attack β · ί • · a .'η q7. ^ ! signal; ~ strobe drive block 'to output the test result signal, to return should wait And an output controller for outputting the test result signal to output the control signal. 1 5 · The device of claim 6 wherein the write operation test block The method includes: a write decoding block for decoding the non-delayed internal memory group address, thereby generating a plurality of write memory group operation signals; and a write control block controlled by a write start signal, To receive the majority of the writes The memory group operates on the signal and generates a plurality of write drive signals; and a data compression block for storing the input data into the array of cells of the selected memory group, so as to wait for a plurality of write drive signals.
TW093119520A 2004-01-10 2004-06-30 Method and apparatus for testing operation of semiconductor memory device TWI303434B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20040001824 2004-01-10
KR10-2004-0018919A KR100537188B1 (en) 2004-01-10 2004-03-19 Semiconductor memory device with data compress test mode of bank interleave

Publications (2)

Publication Number Publication Date
TW200523935A TW200523935A (en) 2005-07-16
TWI303434B true TWI303434B (en) 2008-11-21

Family

ID=37263081

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093119520A TWI303434B (en) 2004-01-10 2004-06-30 Method and apparatus for testing operation of semiconductor memory device

Country Status (2)

Country Link
KR (1) KR100537188B1 (en)
TW (1) TWI303434B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100892669B1 (en) * 2007-09-04 2009-04-15 주식회사 하이닉스반도체 Semiconductor Integrated Circuit And Multi Test Method Thereof
KR100913968B1 (en) 2007-12-12 2009-08-26 주식회사 하이닉스반도체 Semiconductor memory apparatus
KR102236573B1 (en) * 2014-12-22 2021-04-07 에스케이하이닉스 주식회사 Semiconductor Memory Apparatus
KR102518849B1 (en) 2018-03-07 2023-04-07 에스케이하이닉스 주식회사 Memory device

Also Published As

Publication number Publication date
KR100537188B1 (en) 2005-12-16
KR20050074246A (en) 2005-07-18
TW200523935A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
US7441156B2 (en) Semiconductor memory device having advanced test mode
TWI277095B (en) Semiconductor memory device with ability to adjust impedance of data output driver
JP4996149B2 (en) Semiconductor memory device
US7466623B2 (en) Pseudo SRAM capable of operating in continuous burst mode and method of controlling burst mode operation thereof
JP3758860B2 (en) Synchronous burst mass chrome and data reading method thereof
KR100391730B1 (en) Semiconductor memory device in which use of cache can be selected, a method of acessing a semiconductor memory deivce, and a data processing system
US20060112321A1 (en) Transparent error correcting memory that supports partial-word write
JP2000030464A (en) Semiconductor storage
KR100735024B1 (en) An address converter of a semiconductor device and semiconductor memory device
JP2000163969A (en) Semiconductor storage
US8437209B2 (en) Integrated circuit
US6965539B2 (en) Write path scheme in synchronous DRAM
JP4582757B2 (en) Interleave control device using non-volatile ferroelectric memory
US20100329050A1 (en) Semiconductor memory device
TW200832404A (en) Low-power DRAM and method for driving the same
JP4439033B2 (en) Semiconductor memory device
TWI293732B (en) Multi-port memory device
TWI267857B (en) Apparatus for adjusting slew rate in semiconductor memory device and method therefor
US7660174B2 (en) Semiconductor memory device having wafer burn-in test mode
US8817556B2 (en) Command generation circuit and semiconductor memory device
TWI787255B (en) Data control circuit, and semiconductor memory apparatus and semiconductor system including the same
TW200404290A (en) Semiconductor memory device
TWI303434B (en) Method and apparatus for testing operation of semiconductor memory device
US7424559B2 (en) Input/output upper and lower byte control device using nonvolatile ferroelectric register
JP2004171753A (en) Semiconductor memory device having structure for making page length convertible, and conversion method of page length therefor