TWI301876B - - Google Patents

Download PDF

Info

Publication number
TWI301876B
TWI301876B TW96106646A TW96106646A TWI301876B TW I301876 B TWI301876 B TW I301876B TW 96106646 A TW96106646 A TW 96106646A TW 96106646 A TW96106646 A TW 96106646A TW I301876 B TWI301876 B TW I301876B
Authority
TW
Taiwan
Prior art keywords
white light
light
high uniformity
composite lens
element according
Prior art date
Application number
TW96106646A
Other languages
Chinese (zh)
Other versions
TW200835880A (en
Inventor
Peng Keou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW96106646A priority Critical patent/TW200835880A/en
Publication of TW200835880A publication Critical patent/TW200835880A/en
Application granted granted Critical
Publication of TWI301876B publication Critical patent/TWI301876B/zh

Links

Description

1301876 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種白光照明元件,特別是指藉由一可整理光束使之同 向發射之轉換裝置,和一複合透鏡調變光束,使光源發射出的光束穿過上 述裝置後,形成均勻度高之照明光束,並經由均厚之光波轉換層轉換為高 色均之白光。 【先前技術】 現有之白光,如第1圖所示,其基本的發光模式是:光源丨發光時, 中間射出的光束B亮度較亮,而側邊的光束亮度則較暗。 但上述之發光模式,其照明度不佳,對於平面的液晶顯示板而言並不 恰當’理想的狀態以達到如第2圖所示之均勻照明為較佳。 但該光束B2亮度為在光源S以等半徑之強度發射,其流明線的佈局成 半球狀,若是其光軸垂直於一反光或折射平面時,則光軸的作用會在平面 反映出高對比光點,上述設計不適合在平面需求均勻光的場合使用,如需 求背光的液晶顯示屏幕。 以背光照射的液晶面板而言,照明強度和傾角有關(第3圖所示),在 Q方向上光強度為時,液晶面板p上的光強度Ip=IaC〇SQ。是知,為了 在液晶面板上得到均勻的照明,從白光來的光應該隨著偏角“的增加而增 加(如圖中的光束B3),這和第2圖所示白光發光的照明光束強度分佈相反。 此外,眾所周知,現行白光白光技術,主要使用螢光粉層,使白光發 出的藍光或紫外光經該螢光粉層反射後轉換,而產生含有藍光和紫外光之 白光B4。(請參照第4圖所示),白光光源為螢光粉膠體ρ包圍時,光源s 至少有五個發光面,當白光發光時,其上方反光面發出的光和四個側面發 出的光通過螢光粉膠體F所產生的光混合成白光後向外射出。為了提高^ 4 1301876 .效率,統和螢光粉膠體係、被放置在—凹杯内,使側面光反射姆斤射光, 和上端發光面所發出的光在同一方向上。 但由於螢光粉膠體F是混溶體,當光線B5射入凹杯3〇〇後,反射的光 可能會在進域光轉體F㈣被脑和錄,麟㈣的㈣光束在主 光方向上的貢獻無法發揮。而且,固化的榮光粉膠體F,因其形狀不易控制, .對絲的酿分布影響並不確定,使得自光的發光品質無法獲得良好的控 制0 【發明内容】 因此,本發明主要提供一種高均勻度白光照明元件,使光源射出的光 束在出射面可以制均自飾,關平面使㈣自光照尤其是液晶面板的 背光設備,其係利用透鏡強制調變其單一光束偏角,和利用均等反應之光 波轉換層轉化,使液晶面板上可得到均勻的白光照明。 本發明次一目的在提供一種高均勻度白光照明元件,藉由從光源放射 面所設凹杯形成光波轉換層賦形依據,使光經過確定的固化螢光粉膠體, 產生品質穩定的白光發光面,進而在光學元件的作用下,於液晶面板上產 生均勻的照明。 至於本發明之詳細構造、應用原理、作用與功效,則參照下列依附圖 所作之說明。 【實施方式】 請參照第5圖所示,是在一體所連結轉換裝置4的底部,開設一比光 源40外形相形略大的凹孔41,在光源40形體外表和凹孔41之間形成光波 轉換層33,該轉換層33係由螢光粉膠330填入凹孔41後模製形成,所填 入榮光粉膠330形成一三維化的實體層面,膠質層的厚度取決於光源4〇和 凹孔41之間的空隙互對表面距離為均等。光源40從上表面40c發出的光 1301876 白槪。峨源4G議43發出的光經過 後’鳴形成白光账。 上述之光源4〇為白光或可為易於轉換成白色光之藍光或紫色光發光晶 ^ ^ , ^ 〇 置4可抓塑化材質經—體成形,而且在底部可同體形成光學反射面犯。 以-體成形者,則無空氣槽働的存在,光源仙的光束,則經一體成形的 塑化材料絲雛,料顺合魏44,複合魏&是絲難置* 結合。 ,為了使白光WBS射向與白光WBc相同的方向,在側向光伽的光路上, 置設-反射光學面42。所科—空氣槽棚,_在反射光學面42上 的王反射白光WBs可以和白光WBc形成同一角向光束,射向複合透鏡料, 在它的作用下’形成均勻的白光Β。該线槽棚進一步可換置為導光體, 且該導光鑛鮮與複合透鏡44 #元件辦為佳,上制自光光源為白 光、或藍光,或紫色光經轉換而成。 複合透鏡44 _用,為可將點狀光源2〇的輻射光束,經各別安排的 角位折射,使折射出之光束⑽作用在出射面任—高度平面,如在液晶 面板背光制面,可得羽的平面光輝,使液晶面板整關面可得均等背 光作用。其巾複合透鏡44的:η作顧為複合了錄不等㈣角度的光學透 鏡441、442、443、444、445 ’以包含同心圓的環構排列方式構成,每一透 鏡與光源2G之間為不等角折射角侧,形成多重焦距,安排在出射面可在 出射面對外等高平面位置,擴散出均等亮度的光束。 實施光波轉換的設計,除前述在凹孔41實施外,進一步可在光學反射 面42實施了一層螢光粉膠,得在反射面42獲得光束反射及轉換光波雙重 功能。 睛參照第6圖所示,為了使光源的光束有均勻的分布,本發明進一步在光 6 1301876 源20的照射朝向,設有轉換裝置3,轉換裝置3設有一凹杯300,凹杯300 的内側面做成鍍以反射膜的光學反射面31,其反射膜可使用銀或鋁材料, 使光源20側面發出的光2〇s可與直上的光Be相同,而經反射形成光Bs同 向射出,折射出的所有光束再進一步由一複合透鏡35整合成為均勻光。 其中轉換裝置3為以光學塑化材質,以一體成形方式製作,需求反射 膜的光學反射面31,則進行鍍膜。 上述凹杯300之形體内表為包含非球面之任何曲率反射面31,且反射 面31為包含全反射作用。 為了減少複合透鏡35入射面35a上的光反射,在凹杯腔體32内可填 入光學折射率和複合透鏡35相同或類似的導光光學材料35〇。 對光波轉換層33而言,它的光源20為自光,它可以是藍光或紫外光, 通過轉換層33的作用,所產生之白光。 所述轉換層33為螢光粉膠層34〇得以塗佈或印刷的方式形成在複合透 鏡35的入射面35a,光源20來的光經過轉換層33的作用產生白光胍。 為了減>、進入轉換層33入射面的反射作用,同樣在凹杯腔體32内, 可填入光學折射率和轉換層33類等之膠合材料或類似的光學材料35〇,依 光學材料350及複合透鏡35的入射面35a平行規範出均厚空間,提供轉換 層33可得均厚的轉換膠層34〇。 、 "上述之光波機操作,進_步可直接在反射面31實施了—層均厚的勞 絲膠’使該反射面31獲得光束射向變換及光波轉換雙重功能。 、本發明之高均勻度白光照明耕,如第7圖所示,係在白光光源2〇的 光束射出方向上,設有一組多重焦點複合透鏡22,該多重焦點Μ、呦、 FC3、、且成之複合透鏡22 ’至倾兩似上不同曲率半徑賴^圓環狀透鏡 所組成,示所顯示的是由三個同心圓透鏡孤、挪、处組成的複合透 鏡該等同〜圓透鏡22a、22b、22c的光學性能各不相同。從光源2〇發出 7 .1301876 • 的光束其中心^伤光束21a被中心透鏡22a擴散成光束23a。侧邊的光束 21b被環形透鏡22b擴散成環狀光束23b,同樣地,環形透鏡2仏則將光束 21c擴散為環狀錐形光束Me。 由此可知,選擇透鏡22a、22b和22c的寬度和曲率,就可以改變其發 散的光束23a、23b和23c的發散角,藉由其射出的光束可以相互重疊,改 變出射光束的強度分布就可以得到和第3圖近似的光束分布,以及光源2〇 的廢熱,係從其端腳翻,可在底部導接-散熱元件24,形賴導及散熱 功用。 上述之複合透鏡22可使用由同心圓環菲涅爾(Fresnel)透鏡所組成(如 第8圖所不),透過菲涅爾(Fresnel)透鏡的特性,使射出之光束強度為均 勻月儿或者,亦可使用一般同心圓環全相透鏡或一般微透鏡$組成(如第 9圖所示)。 上述第5 ' 68、9圖所述複合透鏡22、35、44與任一光源20皆可搭 配使用該取單-的透鏡與任何光波波長作用,並無折射率的變化問題, 所以任一複合透鏡22 ' 35、44皆可各別搭配白光、藍光或紫色光。 從上所述可知,本發明之高均勻度白光照明元件,其並未見諸公開使 用,合於專概之規定,歸賜准補,實為德便。 而陳明者’以上所述者乃是本創作較佳具體的實施例,若依本創作之 構想所作之改變,其產生之雜作用,仍未超出說财觸示所涵蓋之精 神時,均應在本創作之範圍内,合先陳明。 8 .1301876 【圖式簡單說明】 第1圖為習見白光之光束分佈圖; 第2圖為白光理想均勻照明之光束分佈圖; 第3圖為白光之光束射向液晶面板之表示; 第4圖為習見白光白光之光束分佈圖; 第5圖為本發明實施例圖; 第6圖為本發明白光轉換另一實施圖; 第7圖為本發明透鏡實施方式之一圖; 第8圖為本發明透鏡實施方式之二圖; 第9圖為本發明透鏡實施方式之三圖。 【主要元件符號說明】 光源...........卜S、20、40 光束...........21a、21b、21c、23a、23b 23c、B、B2、B31301876 IX. Description of the Invention: [Technical Field] The present invention relates to a white light illumination element, and more particularly to a conversion device that emits in the same direction by a collimable beam, and a composite lens to modulate the light beam to make the light source After the emitted light beam passes through the above device, an illumination beam with a high uniformity is formed, and is converted into white light of high color through the uniform light wave conversion layer. [Prior Art] In the conventional white light, as shown in Fig. 1, the basic light-emitting mode is that when the light source 丨 emits light, the light beam B emitted in the middle is brighter, and the brightness of the light beam on the side is darker. However, the illumination mode described above has poor illumination, and is not suitable for a flat liquid crystal display panel. The ideal state is preferably uniform illumination as shown in Fig. 2. However, the brightness of the beam B2 is emitted at an intensity equal to the radius of the light source S, and the flow line is arranged in a hemispherical shape. If the optical axis is perpendicular to a reflective or refractive plane, the effect of the optical axis reflects a high contrast in the plane. The light spot, the above design is not suitable for use in applications where the plane requires uniform light, such as a liquid crystal display screen that requires backlighting. In the liquid crystal panel illuminated by the backlight, the illumination intensity is related to the tilt angle (shown in FIG. 3), and when the light intensity is in the Q direction, the light intensity Ip=IaC〇SQ on the liquid crystal panel p. It is known that in order to obtain uniform illumination on the liquid crystal panel, the light from the white light should increase as the off angle "increased (such as the light beam B3 in the figure), and the illumination beam intensity of the white light illumination shown in Fig. 2 In addition, it is known that the current white light white light technology mainly uses a phosphor powder layer, so that blue light or ultraviolet light emitted by white light is reflected by the phosphor powder layer and converted to produce white light B4 containing blue light and ultraviolet light. Referring to FIG. 4), when the white light source is surrounded by the phosphor colloid ρ, the light source s has at least five light emitting surfaces. When the white light emits light, the light emitted from the upper reflecting surface and the light emitted from the four sides pass through the fluorescent light. The light produced by the powder colloid F is mixed into white light and then emitted outward. In order to improve the efficiency of the ^ 4 1301876, the system and the fluorescent powder glue system are placed in the concave cup, so that the side light reflects the light, and the upper end emits light. The light emitted by the surface is in the same direction. However, since the phosphor powder F is a miscible body, when the light B5 is incident on the concave cup 3, the reflected light may be recorded in the inversion light F (four). , Lin (four)'s (four) beam at The contribution in the main light direction cannot be exerted. Moreover, the cured glare powder colloid F is difficult to control due to its shape, and the influence on the brewing distribution of the silk is not determined, so that the light quality of the self-light cannot be well controlled. Therefore, the present invention mainly provides a high uniformity white light illumination component, such that the light beam emitted by the light source can be self-decorated on the exit surface, and the off plane enables (4) self-illumination, especially the backlight device of the liquid crystal panel, which is forcedly modulated by the lens. The single beam off-angle and the light wave conversion layer converted by the equal reaction enable uniform white illumination on the liquid crystal panel. The second object of the present invention is to provide a high uniformity white light illumination component, which is provided by the radiation surface of the light source. The concave cup forms a light wave conversion layer forming basis, and the light passes through the determined solidified phosphor powder colloid to produce a stable white light emitting surface, thereby generating uniform illumination on the liquid crystal panel under the action of the optical element. For detailed construction, application principle, function and effect, refer to the following description according to the drawings. Referring to FIG. 5, a recessed hole 41 slightly larger than the outer shape of the light source 40 is formed at the bottom of the integrated switching device 4, and a light wave conversion layer 33 is formed between the outer surface of the light source 40 and the recess 41. The conversion layer 33 is formed by molding the phosphor powder 330 into the recess 41, and is filled with the glare powder 330 to form a three-dimensional solid layer. The thickness of the gel layer depends on the light source 4 and the recess 41. The gap between the mutually opposing surfaces is equal. The light emitted from the upper surface 40c by the light source 40 is white. The light emitted by the source 4G 43 is turned into a white light account. The above-mentioned light source 4 is white light or can be easily Converted into white light blue or purple light illuminating crystal ^ ^ , ^ 〇 set 4 can be plasticized material through the body forming, and can form an optical reflective surface at the bottom of the body. In the body shape, there is no air slot The presence of enamel, the beam of the light source, is formed by the integrally formed plasticized material, and the material is compliant with Wei 44, and the composite Wei & In order to cause the white light WBS to be directed in the same direction as the white light WBc, an optical surface 42 is disposed on the optical path of the lateral light. The light-reflecting white light WBs on the reflective optical surface 42 can form the same angular beam as the white light WBc, and are directed toward the composite lens material, under which it forms a uniform white light Β. The wire trough can be further replaced with a light guide body, and the light guide mineral fresh and composite lens 44 # component is better, and the upper self-light source is white light, or blue light, or purple light is converted. The composite lens 44 is used to refract the radiation beam of the point source 2 经 through the respective angular positions, so that the refracted beam (10) acts on any plane of the exit surface, such as in the backlight of the liquid crystal panel. The flat brilliance of the feather can be obtained, so that the liquid crystal panel can achieve equal backlighting. The optical lens 441, 442, 443, 444, 445' of the composite lens 44 of the towel composite lens 44 is formed by a ring-shaped arrangement including concentric circles, and between each lens and the light source 2G. For the unequal angle of refraction of the angle side, multiple focal lengths are formed, and the exiting surface can be arranged to emit a beam of equal brightness at the exiting plane facing the outer contour plane. In addition to the above-described implementation of the light wave conversion, a layer of phosphor powder can be further applied to the optical reflecting surface 42 to obtain a double function of reflecting and converting light waves on the reflecting surface 42. Referring to Fig. 6, in order to make the light beam of the light source have a uniform distribution, the present invention further provides a conversion device 3 in the direction of illumination of the source 20 of the light 6 1301876, and the conversion device 3 is provided with a concave cup 300, the concave cup 300 The inner side surface is made of an optical reflecting surface 31 plated with a reflective film, and the reflecting film can be made of silver or aluminum material, so that the light 2 〇s emitted from the side of the light source 20 can be the same as the straight light Be, and the reflected light forms the light Bs. All of the beams that are emitted and refracted are further integrated into a uniform light by a composite lens 35. The conversion device 3 is made of an optical plastic material and is integrally formed. The optical reflection surface 31 of the reflective film is required to be coated. The inner surface of the concave cup 300 is any curvature reflecting surface 31 including an aspherical surface, and the reflecting surface 31 contains total reflection. In order to reduce light reflection on the incident surface 35a of the composite lens 35, a light guide optical material 35A having the same or similar optical refractive index as that of the composite lens 35 may be filled in the concave cavity 32. For the light wave conversion layer 33, its light source 20 is self-light, which may be blue light or ultraviolet light, and the white light generated by the action of the conversion layer 33. The conversion layer 33 is formed on the incident surface 35a of the composite lens 35 in such a manner that the phosphor powder layer 34 is coated or printed, and the light from the light source 20 generates white light by the action of the conversion layer 33. In order to reduce the reflection effect on the incident surface of the conversion layer 33, a gluing material such as an optical refractive index and a conversion layer 33 or the like may be filled in the concave cavity 32, depending on the optical material. 350 and the incident surface 35a of the composite lens 35 are parallel to define a uniform space, and the conversion layer 33 is provided to obtain a uniform thickness of the conversion adhesive layer 34. "The above-mentioned operation of the light wave machine, the step-by-step can be carried out directly on the reflecting surface 31 - a layer of uniform thickness of the mortar glue 'the reflective surface 31 obtains the dual function of beam directing transformation and light wave conversion. The high uniformity white light illumination of the present invention, as shown in FIG. 7, is provided with a set of multiple focus composite lenses 22 in the beam emission direction of the white light source 2〇, the multiple focus Μ, 呦, FC3, and The composite lens 22' is formed by a ring-shaped lens with different curvature radii, and the composite lens shown by three concentric circular lenses is shown as an equivalent lens. The optical properties of 22b and 22c are different. From the light source 2, a beam of 7.1301876 is emitted, and the center beam 27a is diffused by the center lens 22a into a beam 23a. The side beam 21b is diffused into the annular beam 23b by the annular lens 22b, and similarly, the annular lens 2 is diffused into the annular cone beam Me. It can be seen that by selecting the width and curvature of the lenses 22a, 22b and 22c, the divergence angles of the diverging beams 23a, 23b and 23c can be changed, and the beams emitted by the beams 22a, 23b and 23c can overlap each other, and the intensity distribution of the outgoing beam can be changed. The beam distribution similar to that of Fig. 3 and the waste heat of the light source 2〇 are turned from the end legs, and the heat dissipation element 24 can be guided at the bottom, and the heat dissipation function can be used. The composite lens 22 described above can be composed of a concentric annular Fresnel lens (as shown in FIG. 8), and the characteristics of the Fresnel lens can be used to make the intensity of the emitted beam uniform. It can also be composed of a general concentric annular full-phase lens or a general microlens $ (as shown in Fig. 9). The composite lenses 22, 35, 44 and any of the light sources 20 described in the above 5' 68, 9 can be used together with the single-lens lens to interact with any wavelength of light waves, and there is no problem of refractive index change, so any composite The lenses 22' 35, 44 can each be paired with white, blue or purple light. As can be seen from the above, the high uniformity white light illumination element of the present invention has not been used for public use, and is in accordance with the provisions of the general provisions. The Chen Mingren's above is a better specific embodiment of this creation. If the changes made according to the concept of this creation, the miscellaneous effects produced by it are still beyond the spirit of the financial indications, Should be within the scope of this creation, together with Chen Ming. 8 .1301876 [Simple diagram of the diagram] Figure 1 is the beam distribution diagram of Xiguang Baiguang; Figure 2 is the beam distribution diagram of the ideal uniform illumination of white light; Figure 3 is the representation of the beam of white light directed toward the liquid crystal panel; FIG. 5 is a view showing an embodiment of the present invention; FIG. 6 is another embodiment of the white light conversion of the present invention; FIG. 7 is a view showing a lens embodiment of the present invention; The second embodiment of the lens embodiment is shown; Figure 9 is a third view of the lens embodiment of the present invention. [Description of main component symbols] Light source ...........Bu S, 20, 40 Beams ...........21a, 21b, 21c, 23a, 23b 23c, B, B2 , B3

光............Bs、20s、BC 複合透鏡.........22、35、44 同心圓透鏡........22a、22b、22c 散熱元件.........24 轉換裝置.........3、4 凹杯...........300 光學反射面........31 凹杯腔體.........32 轉換層..........33 螢光粉膠.........330 膠層...........340 -1301876 光學材料.........350 入射面..........35a 側向光..........40s 上表面..........40c 空氣槽..........400 凹孔...........41 反射光學面........42 側面...........43 光學透鏡.........441、442、443、444、445 微透鏡..........5 光強度..........I α、IpLight............Bs, 20s, BC compound lens.........22,35,44 Concentric lens........22a, 22b, 22c Heat dissipating component...24 conversion device.........3,4 concave cup...........300 optical reflective surface....... .31 concave cup cavity .........32 conversion layer ..........33 fluorescent powder glue ....330 glue layer ..... ......340 -1301876 Optical material.........350 Incident surface..........35a Lateral light..........40s Upper surface ..........40c Air Slot..........400 Recessed Hole...........41 Reflective Optical Surface........42 Side ...........43 Optical Lens.........441,442,443,444,445 Microlens..........5 Light Intensity.. ........I α, Ip

液晶面板.........P 偏角...........αLCD panel.........P Deflection...........α

螢光粉膠體........F 白光...........WB、WBs、WBc、Β4 焦點...........Fa、FC2、FC3 ίοFluorescent powder colloid........F white light...........WB, WBs, WBc, Β4 Focus...........Fa, FC2, FC3 ίο

Claims (1)

1301876 十、申請專利範圍: 1· 一種高均勻度白光照明元件,包括有: 一照明光源; 光源轉換裝置,具妓射面,將光源之光束整化為單— 將光波轉換成白光功能; 丁尤,及 -組複合魏,為具有多重f、距,並關^圓構成多數雜複合狀。 2· ^申請專利範圍第丨項之高均勻度白光照件,其中該轉換裝置底部 設有-凹孔,提供光源置人,底部相對光關圍,設有反射面,將光 作用於上方結合之複合透鏡。 3·如申明專利圍第2項之高均勻度白光照明元件,其巾凹孔與光源之 間,填佈有螢光粉膠轉換層。 、 4·如申請專利範圍第2項之高均勻度白光照明元件,其中反射面與複合透 鏡之間’為一體連結。 5·如申请專利範圍第2項之高均勻度白光照明元件,其中反射面與複合透 鏡之間為由一空氣槽所間隔。 6.如申請專利範圍第1項之高均勻度白光照明元件,其中轉換裝置為内部 形成一凹杯’ ί哀繞於一光源周圍,上方結合複合透鏡。 7·如申請專利範圍第6項之高均勻度白光照明元件,其中該凹杯之内表為 反射面,包含了非球面曲率之曲形凹杯。 8.如申請專利範圍第6項之高均勻度白光照明元件,其中凹杯内腔與複合 透鏡之間,填佈有光學透明介質。 9·如申請專利範圍第6項之高均勻度白光照明元件,其中複合透鏡底面結 合有一光波轉換器。 10. 如申請專利範圍第1項之高均勻度白光照明元件,其中所述之光源為白 光、或藍光或紫色光。 11. 如申請專利範圍第2或6項之高均勻度白光照明元件,其中所述之光源 為白光、或藍光或紫色光。 1301876 12·如申請專利範圍第1項之高均勻度白光照明元件,其中所述之複合透 鏡’是由一組橫切光束,不同焦距的光學元件組合而成,以在所要求的 平面上得到一所需要光強度分布的照明。 13·如申請專利範圍第2或6項之高均勻度白光照明元件,其中所述之複合 透鏡’是由一組橫切光束,不同焦距的光學元件組合而成,以在所要求 的平面上得到一所需要光強度分布的照明。 14·如申請專利範圍第1項之高均勻度白光照明元件,其中所述之複合透 鏡’是由一組同心圓環菲涅耳鏡套裝而成。 15·如申請專利範圍第2或6項之高均勻度白光照明元件,其中所述之複合 透鏡’是由一組同心圓環菲涅耳鏡套裝而成。 16.如申請專利範圍第1項之高均勻度白光照明元件,其中所述之複合透 鏡,是由一組同心圓環全相光學元件套裝而成,各環形光學元件的焦距 不同,以在所要求光照的平面上得到一光強度均勻的照明。 17·如申請專利範圍第2或6項之高均勻度白光照明元件,其中所述之複合 透鏡,是由一組同心圓環全相光學元件套裝而成,各環形光學元件的焦 距不同,以在所要求光照的平面上得到一光強度均勻的照明。 18·如申凊專利範圍第1項之高均勻度白光照明元件,其中複合透鏡底面設 有螢光粉膠。 19·如申請專利範圍第2或6項之高均勻度白光照明元件,其中複合透鏡底 面設有螢光粉膠。 20·如申明專利範圍弟2項之局均勻度白光照明元件,其中該轉換裝置為以 光學材料一體製成,上表面形成透鏡,下方形成凹孔及圍繞之反射面。 21·如申請專利額第1或2或7項之高均勻度白光卿树,其中該反射 面設有一層均厚螢光粉膠。 12 13018761301876 X. Patent application scope: 1. A high uniformity white light illumination component, comprising: an illumination source; a light source conversion device having a pupil plane, normalizing the beam of the light source into a single light-converting function into a white light function; In particular, and the group of composite Wei, in order to have multiple f, distance, and close the circle constitute a majority of heterogeneous complex. 2· ^Applicable to the high uniformity white light component of the scope of the patent, wherein the bottom of the conversion device is provided with a concave hole for providing a light source for the person, the bottom is opposite to the light, and a reflecting surface is provided for the light to act on the upper side. Composite lens. 3. For example, the high uniformity white light illumination element of claim 2 is filled with a phosphor powder conversion layer between the recessed hole and the light source. 4. A high uniformity white light illumination element according to item 2 of the patent application, wherein the reflective surface and the composite lens are integrally connected. 5. The high uniformity white light illumination element of claim 2, wherein the reflective surface and the composite lens are separated by an air slot. 6. The high uniformity white light illuminating element according to claim 1, wherein the converting means internally forms a concave cup, and the composite lens is attached to the upper side. 7. A high uniformity white light illumination element according to claim 6 wherein the inner surface of the concave cup is a reflective surface comprising a curved concave cup having an aspheric curvature. 8. A high uniformity white light illumination element according to claim 6 wherein an optically transparent medium is interposed between the concave cavity and the composite lens. 9. A high uniformity white light illumination element according to item 6 of the patent application, wherein a light wave converter is coupled to the bottom surface of the composite lens. 10. The high uniformity white light illumination element of claim 1, wherein the light source is white light, or blue or violet light. 11. A high uniformity white light illumination element according to claim 2 or 6, wherein said light source is white light, or blue or violet light. 1301876 12. The high uniformity white light illuminating element according to claim 1, wherein the composite lens 'is a combination of a set of optical elements with transverse beams and different focal lengths to obtain on the required plane. A lighting that requires a distribution of light intensity. 13. The high uniformity white light illuminating element according to claim 2 or 6, wherein the composite lens 'is composed of a set of optical elements of transverse beam and different focal lengths to be combined on a desired plane. An illumination of the desired light intensity distribution is obtained. 14. A high uniformity white light illumination element as claimed in claim 1 wherein said composite lens ' is formed from a set of concentric annular Fresnel lenses. 15. A high uniformity white light illumination element according to claim 2 or 6, wherein said composite lens ' is formed from a set of concentric annular Fresnel lenses. 16. The high uniformity white light illuminating component according to claim 1, wherein the composite lens is formed by a set of concentric annular all-phase optical components, and the focal lengths of the annular optical components are different. A uniform illumination of light is obtained on the plane where illumination is required. 17. The high uniformity white light illuminating component according to claim 2 or 6, wherein the composite lens is formed by a set of concentric annular all-phase optical components, and the focal lengths of the annular optical components are different, A uniform illumination of the light intensity is obtained on the plane of the desired illumination. 18. A high uniformity white light illumination element according to item 1 of the patent application scope, wherein the bottom surface of the composite lens is provided with a phosphor powder. 19. A high uniformity white light illumination element according to claim 2 or 6, wherein the composite lens is provided with a phosphor powder on the bottom surface. 20. A uniform white light illumination element according to claim 2, wherein the conversion device is integrally formed of an optical material, the upper surface forms a lens, and the lower surface forms a concave hole and a surrounding reflective surface. 21· If applying for a high uniformity white light tree of No. 1 or 2 or 7 of the patent amount, the reflecting surface is provided with a layer of uniform fluorescent powder. 12 1301876 第5圖 1301876 五、中文發明摘要: 一種高均勻度白光照明元件,尤指利用二極體發光晶粒為光源,係在 晶粒的四周设有一光束轉換裝置,以將從晶粒之側面光束整形為同軸向平 行光,整體導向祈許投射面,轉換裝置内部進一步包含有一厚产均 波轉換螢光層,以及,在光束射出方向,介入有一多重 二先 使光束調變不同出射角;藉此獲得高均勻之*光照明树、。°透鏡, 六、英文發明摘要: 七、指定代表囷: (一)本案指定代表圖為:第(8 )圖。 (一)本代表圖之元件符號簡單說明·· ··········· 複合透鏡· · · ·.....99 八、本案若有化學式時,制綠輯科__化學式: 3Figure 5: 1301876 V. Abstract of Chinese invention: A high-uniformity white light illumination component, especially a diode light-emitting die is used as a light source, and a beam conversion device is arranged around the die to make a beam from the side of the die Shaped into the same axial parallel light, the overall guiding prayer plane, the conversion device further comprises a thick uniform wave conversion fluorescent layer, and, in the beam emission direction, the intervention has a plurality of two first to make the beam modulation different exit angle; This results in a highly uniform *lighting tree. ° Lens, VI, English Abstract: VII. Designated representative: (1) The representative representative of the case is: (8). (1) A brief description of the symbol of the representative figure························································································· Chemical formula: 3
TW96106646A 2007-02-27 2007-02-27 White light illumination device with high lighting uniformity TW200835880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96106646A TW200835880A (en) 2007-02-27 2007-02-27 White light illumination device with high lighting uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96106646A TW200835880A (en) 2007-02-27 2007-02-27 White light illumination device with high lighting uniformity

Publications (2)

Publication Number Publication Date
TW200835880A TW200835880A (en) 2008-09-01
TWI301876B true TWI301876B (en) 2008-10-11

Family

ID=44819805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96106646A TW200835880A (en) 2007-02-27 2007-02-27 White light illumination device with high lighting uniformity

Country Status (1)

Country Link
TW (1) TW200835880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507635B (en) * 2008-11-05 2015-11-11 Philips Lumileds Lighting Co Led with molded bi-directional optics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507635B (en) * 2008-11-05 2015-11-11 Philips Lumileds Lighting Co Led with molded bi-directional optics

Also Published As

Publication number Publication date
TW200835880A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
TWI249257B (en) Illumination apparatus
JP5415539B2 (en) Compact optical system for producing uniform collimated light
JP4546579B1 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
US7688526B2 (en) Light-emitting devices and lens therefor
JP5779096B2 (en) Lighting system, lighting fixture, collimator, and display device
TW201235620A (en) Colour-tunable light source unit with phosphor element
JP5342939B2 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
TWI487983B (en) Optical film and backlight module using the same
TW201235707A (en) LED lens and light emitting device using the same
JP2007005218A (en) Light emitting apparatus and lighting equipment provided therewith
CN109491187A (en) Wavelength converter, light-source system and projection device
JP5351354B2 (en) Light distribution control lens, light source device using the same, and lighting fixture
JP2016524309A (en) Illumination unit having light diffusing optical fiber
CN108027118A (en) Light supply apparatus and light projector device
TW201704683A (en) Lens and light-emitting element having same
JP2012133920A (en) Light-emitting device and illumination device
JP2010086661A (en) Optical member, planar light source, display, and method of manufacturing the optical member
JP2011165590A (en) Light emitting device, surface light source device, display device, and luminous flux control member
TWI301876B (en)
WO2016001271A1 (en) A lighting device providing light mixed from several light sources
US10795141B2 (en) LED illumination in microscopy
CN113494685A (en) Lighting device
JP2009123361A (en) Light guide plate, and backlight unit for liquid crystal display device
JP6749084B2 (en) LED lighting device
CN104595811A (en) Zoom projection lamp

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees