TWI298675B - Microinjectors - Google Patents

Microinjectors Download PDF

Info

Publication number
TWI298675B
TWI298675B TW95113319A TW95113319A TWI298675B TW I298675 B TWI298675 B TW I298675B TW 95113319 A TW95113319 A TW 95113319A TW 95113319 A TW95113319 A TW 95113319A TW I298675 B TWI298675 B TW I298675B
Authority
TW
Taiwan
Prior art keywords
substrate
ejection device
fluid
microfluid ejection
microfluid
Prior art date
Application number
TW95113319A
Other languages
Chinese (zh)
Other versions
TW200738478A (en
Inventor
Chung Cheng Chou
Wen Pin Chuang
Original Assignee
Qisda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qisda Corp filed Critical Qisda Corp
Priority to TW95113319A priority Critical patent/TWI298675B/en
Publication of TW200738478A publication Critical patent/TW200738478A/en
Application granted granted Critical
Publication of TWI298675B publication Critical patent/TWI298675B/en

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

1298675 九、發明說明: , 【發明所屬之技術領域】 > 本發明係關於一種微流體喷射裝置,特別係有關於一 種焉您度之微流體喷射裝置。 【先前技術】 隨著半導體製造技術的進步,習知微流體喷射裝置已 可透過微機電系統(Micro Electro Mechanical System, 鲁 MEMS)製程來達到微型化之目的,由於微機電系統(MEMS) 主要係採用單石化結構製作,故可省去傳統對位 (Alignment)以及接合(Bonding)等步驟以提升結構上之精 度,進而可廣泛地應用在喷墨印表機等個人電腦周邊設備 當中。 首先請參閱第1圖,習知微流體喷射裝置例如為一設 置於育墨印表機内之嘴墨晶片’其主要包括一梦基材§、 一歧管10、複數個流道20、複數個流體腔30、複數個喷 φ 孔40以及一喷孔層(未圖示)。前述歧管10、流道2〇以及 流體腔30係以姓刻方式形成於砍基材s上,前述喷孔層則 覆盖於梦基材S上方’其中流體腔3 0係位於梦基材s與喷 孔層之間,前述喷孔40則形成於喷孔層上並且分別與各流 體腔30相通。如第1圖所示,前述歧管1〇係朝γ軸方向 延伸’流道20則朝X軸方向延伸,用以分別連接歧管1〇 以及每一流體腔30,如此一來流體可依序經過歧管1〇、流 道20以及流體腔30(如箭頭方向所示),進而由流體腔3〇 上方之喷孔40喷出。 0535~A21063TWF(N2);A04639;TKLIN 5 1298675 . 一般而言,傳統的流體腔30結構大致呈—矩形,且泣 .· f腔3G之侧邊係平行於X軸或方向。特別地是,; 第1圖所示之相鄰流體腔30係間隔-安全距離d,用以提 供足夠之結構強度來支擇石夕基材S上方之喷孔層,其中每 -流體腔3G在γ軸方向上分別具有—長度h,使得相鄰喷 孔40之間相隔一距離d,其中。 此外,習知美國專利第6,693,045號另揭露了一種利用 Φ MEMS^作噴墨晶片之方法,其主要係透過多階段之钱刻 製程:藉以提升石夕基材上單位面積之喷墨晶片數。然而, 上述=多階段钱刻製程的方式具有製造過程複雜以及成 本較南等缺點’因此如何能提供一種製程簡單且成本低廉 之微流體喷射裝置始成為一重要之課題。 【發明内容】 本發明提供一種微流體喷射裝置,主要包括一矽基 材、一歧官、—流道以及-流體腔。前述歧管、流道以及 #流體^係形成於基材上,其中流道連接歧管與流體腔。里 巾’前述流體腔具有-第—側邊’上述第一側邊相對於流 道方向傾斜一特定角度。 於一較佳實施例中,前述流體腔大致呈一矩形。 :於-較佳實施射,前述石夕基材為一[1〇〇]石夕基材,且 第一侧邊相對於流道傾斜約45。。 於一較佳實施例中,前述石夕基材為一[100]石夕基材,且. 第一侧邊相對於矽基材之[110]晶格面傾斜約45。。 於一較佳實施例中,前述流體腔大致呈一平行四邊形。 0535-A21063TWF(N2);A04639;TKLIN 6 1298675 ^於一較佳實施例中,前述矽基材為一[110]矽基材, 第一側邊相對於流道傾斜約70.52。。 ^於一較佳實施例中,前述矽基材為一 [11〇]矽基材,且 第一侧邊相對於矽基材之[HI]晶格面傾斜約70.52。。 側邊, 第一、第二側邊之夾角約 於一較佳實施例中,前述流體腔更具有一第 其中第二侧邊鄰接第一侧邊, 70.52° 〇1298675 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a microfluid ejection device, and more particularly to a microfluid ejection device. [Prior Art] With the advancement of semiconductor manufacturing technology, the conventional microfluid ejection device has been able to achieve miniaturization through the Micro Electro Mechanical System (MEMS) process, due to the main system of microelectromechanical systems (MEMS). It is made of a single petrochemical structure, so the traditional alignment and bonding can be omitted to improve the structural precision, and thus can be widely used in personal computer peripherals such as inkjet printers. Referring first to Figure 1, a conventional microfluid ejection device is, for example, a nozzle ink chip disposed in a ink printer, which mainly includes a dream substrate §, a manifold 10, a plurality of flow channels 20, and a plurality of The fluid chamber 30, the plurality of spray holes φ, and a spray hole layer (not shown). The manifold 10, the flow channel 2〇, and the fluid chamber 30 are formed on the chopping substrate s in a surname manner, and the orifice layer is over the dream substrate S. The fluid cavity 30 is located on the dream substrate s. Between the orifice layer and the orifice layer, the orifices 40 are formed in the orifice layer and communicate with the fluid chambers 30, respectively. As shown in Fig. 1, the manifold 1 is extended in the γ-axis direction. The flow passage 20 extends in the X-axis direction for connecting the manifold 1〇 and each fluid chamber 30, respectively, so that the fluid can be sequentially The manifold 1 , the flow path 20 and the fluid chamber 30 (as indicated by the direction of the arrow) are ejected from the orifice 40 above the fluid chamber 3 . 0535~A21063TWF(N2); A04639; TKLIN 5 1298675. In general, the conventional fluid chamber 30 is generally rectangular in shape and has a side that is parallel to the X-axis or direction. In particular, the adjacent fluid chambers 30 shown in FIG. 1 are spaced apart by a safety distance d for providing sufficient structural strength to support the orifice layer above the stone substrate S, wherein each fluid chamber 3G In the γ-axis direction, respectively, there is a length h such that adjacent nozzle holes 40 are separated by a distance d, wherein. In addition, U.S. Patent No. 6,693,045 discloses a method of using Φ MEMS as an ink-jet wafer, which is mainly through a multi-stage process: thereby increasing the number of ink-jet wafers per unit area on the substrate. However, the above-mentioned method of multi-stage engraving process has a complicated manufacturing process and a disadvantage of being relatively cost-effective. Therefore, how to provide a microfluid ejection device which is simple in process and low in cost has become an important subject. SUMMARY OF THE INVENTION The present invention provides a microfluid ejection device that mainly includes a crucible substrate, a manifold, a flow channel, and a fluid chamber. The manifold, the flow path, and the #flux are formed on the substrate, wherein the flow path connects the manifold to the fluid chamber. The towel's fluid chamber has a -first side. The first side is inclined at a specific angle with respect to the flow direction. In a preferred embodiment, the fluid chamber is substantially rectangular. Preferably, the stone substrate is a [1] stone substrate, and the first side is inclined by about 45 with respect to the flow channel. . In a preferred embodiment, the stone substrate is a [100] stone substrate, and the first side is inclined by about 45 with respect to the [110] lattice plane of the germanium substrate. . In a preferred embodiment, the fluid chamber is substantially in the shape of a parallelogram. 0535-A21063TWF(N2); A04639; TKLIN 6 1298675 ^ In a preferred embodiment, the ruthenium substrate is a [110] ruthenium substrate, and the first side is inclined at about 70.52 with respect to the flow channel. . In a preferred embodiment, the ruthenium substrate is a [11 Å] ruthenium substrate, and the first side is inclined by about 70.52 with respect to the [HI] lattice plane of the ruthenium substrate. . The side, the angle between the first side and the second side is about a preferred embodiment, wherein the fluid chamber has a second side, wherein the second side is adjacent to the first side, 70.52° 〇

於一軏佳實施例中,前述微流體噴射裝置更包括一噴 =層以及—噴孔’喷孔層連接矽基材,流體腔係形成於矽 :材與喷孔層之間,前述纽形成於嘴孔層上並且與流體 腔相通。 ❸於-較佳實施例中,前述微流體噴射裝置更包括一流 版貝射致動②,上述流體|射致動器係鄰近於前述喷孔, 用以驅動流體腔内之一流體由噴孔噴出。 、 於一較佳實施例中,前述流體腔係以非等向性蝕刻之 方式形成於矽基材上。 —^發明更提供一種微流體噴射裝置,包括一矽基材、 I歧管、複數個流道以及複數個流體腔。上述矽基材、政 g、流道以及流體腔皆形成於矽基材上,其中每一流道分 ^連接前述歧管以及各流體腔。前述每—流體腔分別具濟 一第一侧邊,上述第一側邊係相對於流道方向傾斜一特定 角度,其中相鄰流體腔於前述歧管方向上之投影至少都份 重疊。 為使本發明之上述目的、特徵和優點能更明顯易權, 0535-A21063TWF(N2);A04639;TKLIN 7 1298675 下^特舉詳*實施例並配合賴圖式做詳細說明。 【貫施方式】In a preferred embodiment, the microfluid ejection device further includes a spray layer and a nozzle hole orifice layer connected to the base material, and the fluid cavity is formed between the tantalum material and the spray hole layer, and the aforementioned neon formation On the orifice layer and in communication with the fluid chamber. In a preferred embodiment, the microfluid ejection device further includes a first-class version of the ejection actuator 2, and the fluid | ejection actuator is adjacent to the nozzle hole for driving a fluid in the fluid chamber by the orifice ejection. In a preferred embodiment, the fluid chamber is formed on the tantalum substrate in an anisotropic etch. The invention further provides a microfluid ejection device comprising a crucible substrate, an I manifold, a plurality of flow channels, and a plurality of fluid chambers. The crucible substrate, the political g, the flow channel and the fluid chamber are all formed on the crucible substrate, wherein each flow channel is connected to the manifold and the fluid chamber. Each of the fluid chambers has a first side, and the first side is inclined at a specific angle with respect to the direction of the flow path, wherein projections of adjacent fluid chambers in the direction of the manifold at least overlap. In order to make the above-mentioned objects, features and advantages of the present invention more obvious, 0535-A21063TWF(N2); A04639; TKLIN 7 1298675 hereinafter, the details are described in detail with reference to the drawings. [Continuous application method]

睛爹閱弟2圖,於本實施例中之微 為-懷片,其主要包括捭基材5 =:如 ^數個流迢20、複數個流體腔3〇、複數個喷孔你以 噴孔層(未圖示)。如圖所示,前述歧管10、流道2〇以及: 體腔3〇係形成於梦基材S上,其中歧管K)大致朝γ = 向雜,流道2G則大致㈣軸方_伸,用以分別連= 歧官10以及每—流體腔3()。前述噴孔層例如為—低 氮化石夕(lGWSt咖Nitdde)材質,可沉積於絲材8上::刀 在歧管10、流道2G以及流體腔3G上方形成―懸空結:且 其中噴孔40係形成於噴孔層上並且與流體腔%相通二 於本實施例中,每—流體腔3()上方之喷孔仙兩侧分 別設有流體噴射致動器P(例如加熱器),流體係依序經由歧 管10、流道20而供輸至各流體腔30(如箭頭方向所=示), 接著透過流體嘴射致動盗P驅動以迫使流體由流體腔3〇 上方之喷孔40喷出。 如第2圖所示’前述流體腔30係呈一中空之矩形结 構,且流體腔.30之側邊係相對於流道20方向(X轴方向) 候斜一第一角度1。如此一來,前述各流體腔3〇可藉由 交錯排列之方式(亦即相鄰流體腔30在歧管10方向上之投 影至少部份重疊),使得相鄰喷孔40之間在沿歧管1〇方向 (Y轴方向)上具有一最小距離D,,其中相鄰之流體腔30 仍需保持一安全距離d,用以支撐上方的喷孔層。相較於In the present embodiment, the micro-waist film, which mainly includes the base material 5 =: such as a number of flow 迢 20, a plurality of fluid chambers 3 〇, a plurality of nozzles, you spray Hole layer (not shown). As shown in the figure, the manifold 10, the flow channel 2〇, and the body cavity 3 are formed on the dream substrate S, wherein the manifold K) is substantially toward the γ = direction, and the flow channel 2G is approximately (four) the axis _ extension Used to connect = skeptic 10 and each fluid chamber 3 (). The foregoing orifice layer is, for example, a material of low-nitridite (LGW), which can be deposited on the wire 8: the knife forms a "suspension" above the manifold 10, the flow channel 2G and the fluid chamber 3G: 40 is formed on the orifice layer and communicates with the fluid chamber%. In this embodiment, a fluid ejection actuator P (for example, a heater) is disposed on each side of the orifice above each of the fluid chambers 3 (), The flow system is sequentially supplied to each fluid chamber 30 via the manifold 10 and the flow passage 20 (as indicated by the direction of the arrow), and then actuated by the fluid nozzle to actuate the pirate P to force the fluid to be sprayed from above the fluid chamber 3 The hole 40 is ejected. As shown in Fig. 2, the fluid chamber 30 has a hollow rectangular structure, and the side of the fluid chamber 30 is inclined by a first angle 1 with respect to the flow path 20 (X-axis direction). In this way, the fluid chambers 3 can be arranged in a staggered manner (that is, the projections of the adjacent fluid chambers 30 in the direction of the manifold 10 at least partially overlap), so that the adjacent nozzles 40 are in a disparity. The tube 1 〇 direction (Y-axis direction) has a minimum distance D, wherein the adjacent fluid chamber 30 still needs to maintain a safe distance d for supporting the upper orifice layer. Compared to

0535-A21063TWF(N2);A04639;TKLIN 1298675 第1圖中的傳統流體腔30結構設計,本發明可有效地縮短 相郴喷孔40之距離(亦即D,<D),進而可大幅地增加噴孔 4〇之密度。 、 心舉例而5 ’前述矽基材s可為[100]矽基材,並可選用 30%氫氧化鉀蝕刻液對[1〇〇]矽基材s蝕刻而形成流體腔 其中流體腔30之每一側邊係相對於矽基材S上之{11〇] 曰 =格面(X、Y.軸方向)候斜約45:(亦即第一角度Θ1=45。)。 特別地是,前述蝕刻液在此倩況下可對矽基材S之不同晶 格面產生之非等向戧刻效應(an彻卿ic e峨哗德以),亦 、玄P餘刻;^在似1]過程巾對不同晶格面會具有不同之姓刻速 率(30%氫氧化钾钱刻液對晶格面[11〇]/[_之韻刻速率比 約為 1.414)。 基於上述原理,假設蝕刻條件與蝕刻時間相同,則當 钱刻液於-既定時_沿2軸方向刻至—預定深度時, 於本^施例中之流體腔3〇結構(如第2圖所示)可藉由前述 之非等向钱刻效應而相較於第〗圖中之流體腔3〇結構在 灯平面上具有更大之截面積,並且.可在相同的钱刻時間 内獲得-較大之流體腔容量。同理,當欲在矽基材§上蝕 刻出-特定容積之流體腔時,則如第2圖所示之流體腔3〇 所需之兹刻時間可較傳統流體腔3〇所需之钱刻時間更 短,進而可大幅地提升蝕刻效率。 、於本實施例中藉由使矩形流體腔3〇之側邊相對於流 道20方向(X轴方向)傾斜—特定角度,故可透過交錯排列 的方式’使得相鄰流體腔30在歧管10方向(γ軸方向)上 0535-Α21063TWF(N2);A04639;TKLIN 9 1298675 ,投影至少部份重疊’如此-來可有效縮短相鄰喷孔40 fY軸方向上之距離(亦即D’ <〇),進而大幅地提升在歧 官10方向(Y軸方向)上之喷孔4〇密度。然而,於另一較 佳實施例中亦可改用咖或氨水_糊作為姓刻液,藉 以在發基材s _L飿料前述流體腔3G,如此同樣可具有上 述功效,其中EDP或氨水_4〇戰刻液對晶格面 [11〇]/_]之制速率制、於1。此外,當採聊Ο]石夕基 材s與30%氫氧⑽作輕雜時,可使矩形流體腔% 之側^對於石夕基材S之[1〇〇]晶格面傾斜約45。,如此一 來可藉以利用其轉向侧效應以提升軸效率,進而降 低製造成本。 ^著請參閱第3圖’該圖絲示本發明中另一實施例 之示意圖。如圖所示’於本實施例之石夕基材§係採用[明 矽基材,其中各流道20平行於石夕基材S中之_晶格面, 用以連接歧管ίο以及各流體腔3G ;此外,歧管ig係相對 於矽基材S之[111]晶格面(χ軸方向)傾斜約w 二角度0 2所示)。 特別地是,前述流體腔30係透過交錯排列的方式使得 相鄰流體腔30在歧管!〇方向上之投影至少部份重疊(如第 3圖所示),藉以有效地縮短相鄰喷孔4〇在歧管向上 之間距,其中相鄰流體腔3〇之間仍需保持安全距離d,以 穩定地支撐上方喷孔層。 請繼續參閱第3圖,於本實施例中之流體腔3Q係呈平 行四邊形,其中每個流體腔30具有相鄰之第一侧邊術. 0535-A21063TWF(N2);A04639;TKLIN 1〇 1298675 以及第二側邊302。如圖所示,前述第一侧邊301係相對 於矽基材S中之[111]晶格面(X軸方向)具有約70.52。之傾 斜角(如第二角度0 2所示),且每個流體腔30之第一、第 二側邊301、302具有約70.52°之夾角(如第二角度Θ2所 示),此外相鄰流體腔30之間則相隔一安全距離d,用以支 撐上方喷孔層。 於本實施例中流體腔30同樣可選用30%氫氧化_作為 蝕刻液,其中30%氫氧化卸對於[11 〇]晶格面之钕刻速率約 為[100]晶格面的1.414倍’且對[111]面姓刻速率幾乎可匆 略不計。如前所述,本實施例中之流體腔30係採交錯排列 设計’故可有效地提升在歧管10方向上之喷孔4〇密度; 此外,前述流體腔30之第二侧邊302在蝕刻後由於會產生 輕微的侧蝕斜面(未圖示)進而可增加流體腔3〇之容積,故 同時具有縮短兹刻時間以及提升钱刻效率等功效。. 综上所述,本發明提供一種微流體喷射裝置,藉由將 # 流體腔之側邊相對於流道傾斜一特定角度並採取交錯排列 晶格面傾斜一特定角度, 之配置方式,如此-來可大幅地縮短相鄰嘴孔間之距離; 此外,本發明藉由使流體腔之侧邊相對於係基材上之特定 ’進而可利用蝕刻液 所產生之非等 縮短兹刻時間 向钕刻效應,藉以達到提升流體腔容量以及 等功效。0535-A21063TWF(N2); A04639; TKLIN 1298675 The structural design of the conventional fluid chamber 30 in Fig. 1 can effectively shorten the distance of the nozzle holes 40 (i.e., D, < D), and thus can be greatly Increase the density of the orifice 4〇. For example, the core substrate s may be a [100] ruthenium substrate, and a 30% potassium hydroxide etchant may be used to etch the [1 〇〇] 矽 substrate s to form a fluid cavity in which the fluid chamber 30 is Each side of the side is inclined by about 45 with respect to the {11〇] 曰= grid (X, Y. axis direction) on the crucible substrate S (that is, the first angle Θ1=45.). In particular, the etchant can produce an anisotropic engraving effect on different lattice faces of the bismuth substrate S in this case (anche ic e 峨哗 以), also, Xuan P remnant; ^In the process of 1], the process towel will have different singular rate for different lattice faces (30% potassium hydroxide money engraving versus lattice surface [11〇]/[_ rhyme rate ratio is about 1.414). Based on the above principle, assuming that the etching conditions are the same as the etching time, the fluid cavity 3〇 structure in the embodiment (as shown in FIG. 2) when the money engraving is engraved to a predetermined depth in the 2-axis direction. The above-described non-isotropic engraving effect can have a larger cross-sectional area on the lamp plane than the fluid cavity 3〇 structure in the figure, and can be obtained in the same time. - Larger fluid chamber capacity. Similarly, when a fluid cavity of a specific volume is to be etched on the ruthenium substrate §, the time required for the fluid chamber 3〇 as shown in Fig. 2 can be compared with that of the conventional fluid chamber. The engraving time is shorter, which in turn can greatly improve the etching efficiency. In the present embodiment, by arranging the sides of the rectangular fluid chamber 3〇 with respect to the direction of the flow channel 20 (X-axis direction) by a specific angle, the adjacent fluid chambers 30 can be made in the manifold by staggering the arrangement. In the 10 direction (γ-axis direction), 0535-Α21063TWF(N2); A04639; TKLIN 9 1298675, the projection at least partially overlaps 'so- effectively shortens the distance in the direction of the fY axis of the adjacent nozzle 40 (ie D' <; 〇), and further greatly increase the density of the orifice 4 in the direction of the skating 10 (Y-axis direction). However, in another preferred embodiment, a coffee or ammonia water paste may be used as the surname engraving, so that the fluid chamber 3G is digested in the substrate s_L, so that the same effect can be obtained, wherein EDP or ammonia water_ 4〇 Battle engraving on the lattice surface [11〇] / _] rate system, at 1. In addition, when the 夕 Ο 石 石 石 基材 基材 基材 与 与 与 与 与 与 30 30 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材. In this way, the steering side effect can be utilized to increase shaft efficiency and thus reduce manufacturing costs. Referring to Figure 3, the figure shows a schematic view of another embodiment of the present invention. As shown in the figure, the stone substrate of the present embodiment is a [alum substrate in which each flow channel 20 is parallel to the lattice plane in the stone substrate S for connecting the manifolds and each The fluid chamber 3G; in addition, the manifold ig is inclined with respect to the [111] lattice plane (the x-axis direction) of the tantalum substrate S by about w two angles 0 2 ). In particular, the fluid chambers 30 are arranged in a staggered manner such that adjacent fluid chambers 30 are in the manifold! The projections in the 〇 direction at least partially overlap (as shown in FIG. 3), thereby effectively shortening the distance between adjacent nozzle holes 4 in the upward direction of the manifold, wherein a safe distance between adjacent fluid chambers 3〇 is still required. To stably support the upper orifice layer. Referring to FIG. 3, the fluid chamber 3Q in this embodiment is a parallelogram, wherein each fluid chamber 30 has an adjacent first side edge. 0535-A21063TWF(N2); A04639; TKLIN 1〇1298675 And a second side 302. As shown, the first side 301 has about 70.52 with respect to the [111] lattice plane (X-axis direction) in the ruthenium substrate S. The angle of inclination (as indicated by the second angle 0 2), and the first and second sides 301, 302 of each fluid chamber 30 have an included angle of about 70.52° (as indicated by the second angle Θ 2), and are adjacent The fluid chambers 30 are separated by a safe distance d to support the upper orifice layer. In the present embodiment, the fluid chamber 30 can also be selected from 30% hydroxide _ as an etchant, wherein the 30% hydroxide etch rate for the [11 〇] lattice plane is about 1.414 times that of the [100] lattice plane and The rate of engraving on the [111] face can almost be ignored. As described above, the fluid chambers 30 in this embodiment are arranged in a staggered arrangement so that the density of the orifices 4 in the direction of the manifold 10 can be effectively increased. Further, the second side 302 of the fluid chamber 30 is 302. After the etching, a slight side etching slope (not shown) is generated to increase the volume of the fluid chamber 3, so that the utility model has the advantages of shortening the etching time and improving the efficiency of the money. In summary, the present invention provides a microfluid ejection device by arranging the sides of the # fluid chamber at a specific angle with respect to the flow channel and adopting a staggered arrangement of the lattice faces at a specific angle, so that - In addition, the distance between adjacent nozzle holes can be greatly shortened; in addition, the present invention shortens the time by using the etching liquid to make the side of the fluid cavity relative to the specific one on the base substrate. Engraving effect, in order to achieve increased fluid chamber capacity and other effects.

0535-A21063TWF(N2);A04639;TKLIN 1298675 _ 【圖式簡單說明】 ’ 第1圖係表示習知微流體喷射裝置之示意圖; ' 第2圖係表示本發明之微流體喷射裝置示意圖;以及 第3圖係表示本發明中另一實施例之示意圖。 【主要元件符號說明】 10〜歧管 20〜流道 • 30〜流體腔 301〜第一侧邊 302〜第二侧邊 40〜喷孔 D、D’〜距離 d〜安全距離 h〜長度 P〜流體喷射致動器 鲁 S〜梦基材 6*1〜第一角度 Θ 2〜第二角度 0535-A21063TWF(N2);A04639;TKLIN 120535-A21063TWF(N2); A04639; TKLIN 1298675 _ [Simplified description of the drawings] 'FIG. 1 is a schematic view showing a conventional microfluid ejection device; 'Fig. 2 is a schematic view showing a microfluid ejection device of the present invention; 3 is a schematic view showing another embodiment of the present invention. [Description of main component symbols] 10 to manifold 20 to runners 30 to 30 to fluid chamber 301 to first side 302 to second side 40 to orifice D, D' to distance d to safety distance h to length P~ Fluid ejection actuator Lu S ~ dream substrate 6 * 1 ~ first angle Θ 2 ~ second angle 0535-A21063TWF (N2); A04639; TKLIN 12

Claims (1)

1298675 十、申請專利範圍: 1.一種微流體喷射裝置,包括: 一矽基材; 一=管,形成於該基材上; 一^ ’形成於縣材±錢接該歧管; 側邊’且該第-侧邊相對於該流道方:: 請專利範®第1項所述之微流體噴抑置1 中該流體腔大致呈一矩形。 ’珩衣置 中該2項所述之微趙_裝置,$ 以土為[10〇]矽基材,且該第一侧邊相對於 傾斜約45。。 4·如申請專利範圍第2項所述之微流體噴射裝班, 中該梦基材為-_石夕基材,且該第一侧邊相對於ς石” 材之[110]晶袼面傾斜約45。。 〜^ 5·如申睛專利範圍第丨項 之流體 中該流體腔大致呈—平行㈣形。 6.如申請專利範圍第5項所述之微流體噴射裝置,其 中該矽基材為一[110]矽基材,且該第一側邊相對於該替 傾斜約70.52。。 、〜机k 7·如申請專利範圍第5項所述之微流體噴射裝置,其 中該矽基材為一[110]矽基材,且該第一側邊相對^該矽基 材之[111]晶格面傾斜約70.52。。 土 0535-Α21 〇63TWF(N2);A04639;TKLIN 13 1298675 8·如申請專利範圍第5項所述之微流體噴射装置,其 中該流體腔更具有一第二侧邊,該第二側邊鄰接該第一側 邊,且該第一、第二側邊之夾角約70.52。。 9·如申請專利範圍第1項所述之微流體噴射裳置,其 中該微流體喷射裝置更包括一喷孔層以及一嗔孔,該喷孔 層連接該矽基材,該流體腔係形成於矽基材與該喷孔層之 間’該噴孔形成於談喷孔層上並且與該流體腔相通。 10·如申請專利範圍第9項所述之微流體噴射裝置,其 中該微流體喷射裝置更包括一流體噴射致動器,該流體喷 射致動器係鄰近於該喷孔,用以驅動該流體腔内之一流體 由該喷孔喷出。 11·如申請專利範圍f 1 J頁戶斤述之微流體喷射裝置, 其中該流體腔係財等向性㈣之方式形成於該梦基材1298675 X. Patent application scope: 1. A microfluid ejection device comprising: a substrate; a tube formed on the substrate; a ^ ' formed in the county material ± money connected to the manifold; side ' And the first side is opposite to the flow path side: The micro fluid spray set 1 in the first aspect of the patent is in a rectangular shape. </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; . 4. The microfluidic jetting device according to item 2 of the patent application, wherein the dream substrate is a -_shixi substrate, and the first side is opposite to the [110] wafer surface of the vermiculite material. The microfluid ejection device of the fifth aspect of the invention, wherein the fluid cavity is substantially parallel-shaped (four). The substrate is a [110] 矽 substrate, and the first side is inclined with respect to the replacement by about 70.52. The machine is the microfluid ejection device according to claim 5, wherein the 矽The substrate is a [110] ruthenium substrate, and the first side is inclined by about 70.52 with respect to the [111] lattice plane of the ruthenium substrate. Soil 0535-Α21 〇63TWF(N2); A04639; TKLIN 13 1298675 8. The microfluid ejection device of claim 5, wherein the fluid chamber further has a second side, the second side abuts the first side, and the first and second sides The microfluid ejection device according to claim 1, wherein the microfluid ejection device further comprises a spray hole layer. And a boring layer connected to the enamel substrate, the fluid cavity being formed between the ruthenium substrate and the vent layer. The orifice is formed on the permeable orifice layer and communicates with the fluid chamber. The microfluid ejection device of claim 9, wherein the microfluid ejection device further comprises a fluid ejection actuator adjacent to the orifice for driving the fluid chamber One of the fluids is ejected from the orifice. 11. The microfluid ejection device of the invention is described in the patent application, wherein the fluid cavity is formed in the dream substrate by means of the isotropic (4) method. 12·—種微流體喷射裝置,包括: 一梦基材; 一歧管'形成於該基材上; 複數個流道,形成於該基材上並軸該歧f .以及 六複數㈣龜,軸歸㈣上齡觸應地連辦 4 “ ’其中每一該等流體腔分別具有-第一侧邊,該! 對於該流道方向傾斜一特定角度,且該等纖 於該歧管方向上之投影至少部份重疊。 13.如申請專利範圍第12項所述之微 , 其中該等流體腔大致呈一矩形。 貝町衣直 0535-A21063TWF(N2);A04639;TKLIN 14 1298675 14·如申請專利範圍第13項所述之微流體噴射裝置, 其中該石夕基材為一 [100]石夕基材,且該第一侧邊相對於該流 道方向傾斜約45。。 L 15.如申請專利範圍第13項所述之微流體噴射裴置, 其中該矽基材為一 [100]矽基材,且該第一侧邊相對於該矽 基材之[110]晶格面傾斜約45。。 16·如申請辜利範圍策12項所述之微流體噴射裝置, 其中該專流體腔大致呈一平行四邊形。 17’如申請專利範圍第16項所述之微流體喷射|置, 其中該矽基材為一[110]矽基材,且該第一側邊相對於該流 道方向傾斜約70.52。。 18·如申請專利範圍第15項所述之微流體喷射裝置, 其中該矽基材為一 [110]矽基材,且該第一侧邊相對於該矽 基材之[111]晶格面傾斜約70.52。。 19·如申請專利範圍第16項所述之微流體噴射裝置, 其中該流體腔更具有一第二侧邊,該第二侧邊鄰接該第— 侧邊,且該第一、第二侧邊之夾角約7〇.52。。 20·如申請專利範圍第12項所述之微流體噴射裝置, 其中該微流體贺射裝置更包括一喷孔層以及一噴孔,兮喷 孔屠連接該矽基材,且該流體腔係形成於矽基材與該嘴孔 層之間,該喷孔形成於該喷孔層上並且與該流體腔^通。 21·如申請專利範圍第20項所述之微流體噴射裝置, 其中該微流體喷射裝置更包括一流體噴射致動器,該流體 喷射致動器係鄰近於該喷孔,用以驅動該流體腔内丄二流 0535-A21063TWF(N2);A04639;TKLIN 15 129867512. A microfluid ejection device comprising: a dream substrate; a manifold 'formed on the substrate; a plurality of flow channels formed on the substrate and the axis f. and six complex (four) turtles, Axis return (4) Upper age contact ground 4 "" Each of these fluid chambers has a first side, which is inclined to the flow direction by a specific angle, and the fibers are oriented in the manifold direction The projections are at least partially overlapped. 13. The micro-cavity as described in claim 12, wherein the fluid chambers are substantially rectangular. Pikcho clothes straight 0535-A21063TWF (N2); A04639; TKLIN 14 1298675 14· The microfluid ejection device of claim 13, wherein the stone substrate is a [100] stone substrate, and the first side is inclined by about 45 with respect to the flow direction. The microfluid ejection device of claim 13, wherein the crucible substrate is a [100] crucible substrate, and the first side is inclined with respect to the [110] lattice plane of the crucible substrate Approximately 45. 16. The microfluid ejection device of claim 12, wherein the specific fluid cavity is substantially A parallelepiped. 17' The microfluidic jet according to claim 16, wherein the crucible substrate is a [110] crucible substrate, and the first side is inclined relative to the flow channel direction. The microfluid ejection device of claim 15, wherein the crucible substrate is a [110] crucible substrate, and the first side is opposite to the crucible substrate [111] The microfluid ejection device of claim 16, wherein the fluid chamber further has a second side, the second side abutting the first side, and The microfluid ejection device of the invention of claim 12, wherein the microfluidic device further comprises a spray hole layer and a spray The hole and the nozzle are connected to the base material, and the fluid cavity is formed between the base material and the nozzle hole layer, and the spray hole is formed on the spray hole layer and communicates with the fluid cavity. The microfluid ejection device of claim 20, wherein the microfluid ejection device further comprises a first-class Ejection actuator, the fluid ejector actuator system adjacent to the orifice, the fluid chamber for driving the second rate Shang 0535-A21063TWF (N2); A04639; TKLIN 15 1298675 體由該噴孔喷出。 22.如申請專利範圍第12項所述之微流體喷射裝置, 其中該流體腔係以非等向性蝕刻之方式形成於該矽基材 上0 0535-A21063TWF(N2);A04639;TKL!N 16The body is ejected from the orifice. 22. The microfluid ejection device of claim 12, wherein the fluid cavity is formed on the substrate by an anisotropic etching 0 0535-A21063TWF(N2); A04639; TKL!N 16
TW95113319A 2006-04-14 2006-04-14 Microinjectors TWI298675B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95113319A TWI298675B (en) 2006-04-14 2006-04-14 Microinjectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95113319A TWI298675B (en) 2006-04-14 2006-04-14 Microinjectors

Publications (2)

Publication Number Publication Date
TW200738478A TW200738478A (en) 2007-10-16
TWI298675B true TWI298675B (en) 2008-07-11

Family

ID=45069460

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95113319A TWI298675B (en) 2006-04-14 2006-04-14 Microinjectors

Country Status (1)

Country Link
TW (1) TWI298675B (en)

Also Published As

Publication number Publication date
TW200738478A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
US6868605B2 (en) Method of manufacturing a bubble-jet type ink-jet printhead
CN101557938B (en) Liquid ejector having improved chamber walls and preparing method thereof
US6533399B2 (en) Bubble-jet type ink-jet printhead and manufacturing method thereof
TWI333897B (en) Ink jet print head and method of manufacturing ink jet print head
JP2007190918A (en) Inkjet printer head and method for manufacturing the same
US6499832B2 (en) Bubble-jet type ink-jet printhead capable of preventing a backflow of ink
JP2008114589A5 (en)
TW200538297A (en) Printhead
JP3773843B2 (en) Method of manufacturing an ink jet print head having a hemispherical ink chamber
JP2008126420A (en) Inkjet recording head and its manufacturing method
TWI298675B (en) Microinjectors
US20060071976A1 (en) Ink-jet printhead and method for manufacturing the same
EP1447223B1 (en) Ink-jet printhead and method for manufacturing the same
EP1481806A1 (en) Ink-jet printhead and method for manufacturing the same
JP2010142972A5 (en)
KR100464307B1 (en) A piezo-electric ink-jet printhead and a fabricating method thereof
JP5569010B2 (en) Inkjet head
JP2004136679A (en) Inkjet print head and method of manufacturing the same
US8070265B2 (en) Heater stack in a micro-fluid ejection device and method for forming floating electrical heater element in the heater stack
JP3791385B2 (en) Liquid discharge head and manufacturing method thereof
KR100474832B1 (en) A ink jet printer head using a piezoelectric materia and a fabricating method thereof
KR100474827B1 (en) A piezoelectric impulse ink-jet printhead and a method for fabricating the same
TWI228765B (en) Monolithic fluid eject device and method of fabricating the same
KR100400229B1 (en) Bubble-jet type inkjet printhead and manufacturing method threrof
JP5929276B2 (en) Nozzle plate manufacturing method and droplet discharge head manufacturing method