TWI297930B - Phase change memory cell with vacuum spacer - Google Patents

Phase change memory cell with vacuum spacer Download PDF

Info

Publication number
TWI297930B
TWI297930B TW95117513A TW95117513A TWI297930B TW I297930 B TWI297930 B TW I297930B TW 95117513 A TW95117513 A TW 95117513A TW 95117513 A TW95117513 A TW 95117513A TW I297930 B TWI297930 B TW I297930B
Authority
TW
Taiwan
Prior art keywords
phase change
electrodes
electrode
memory
phase
Prior art date
Application number
TW95117513A
Other languages
Chinese (zh)
Other versions
TW200744158A (en
Inventor
Hsiang Lan Lung
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW95117513A priority Critical patent/TWI297930B/en
Publication of TW200744158A publication Critical patent/TW200744158A/en
Application granted granted Critical
Publication of TWI297930B publication Critical patent/TWI297930B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

-1297930 九、發明說明: 【聯合研究合約之當事人】 [0001]紐約國際商業機械公司、台灣旺宏國際股份有限公司及德 國英飛凌技術公司(Infineon Technologies A.G.)係為聯合研究合約 之當事人。 【發明所屬之技術領域】 鲁 [0⑻2]本發明係關於非揮發記憶體元件,特別是關於使用一相變 化記憶體元素的此種記憶元件。 【先前技術】 [0003]相變化為基礎的記憶材料已廣泛用於讀寫光碟片,且這些 f料也逐漸使用於電腦記憶元件之中。這些材料具有至少二種固 =相,通常為非晶及通常結晶性。雷射脈衝用於讀寫光碟片以在 =些狀態之間切換及在相變化後讀取材料的光學性質,而電流脈 衝則以相同的方式使用於電腦記憶元件之中。 [〇〇〇4]相變化為基礎的記憶材料,如硫屬化物(Chalcogenide)及其 ;的材料,也可以藉由施加合適於積體電路操作之電流而改變 2〜苴此通常為非晶狀態具有較通常為結晶狀態為高的電阻特 愔驊其可以被快速感應資料之用。該性質有利於作為非揮發性記 rt、命電路的可程式電阻材料,其可以用隨機方式進行資料的讀取 興冩入。 ^ 〇5]自非晶狀態改變為結晶狀態的相變化通常是一較低電流的 呆作而自結晶狀態改變為結非晶狀態的相變化,在此稱為重置, 5 MXIC P940172 final .1297930-1297930 IX. Invention Description: [Party of Joint Research Contract] [0001] New York International Commercial Machinery Corporation, Taiwan Wanghong International Co., Ltd. and Infineon Technologies A.G. are parties to the joint research contract. TECHNICAL FIELD OF THE INVENTION [0(8)2] The present invention relates to non-volatile memory elements, and more particularly to such memory elements using one-phase variable memory elements. [Prior Art] [0003] Phase change-based memory materials have been widely used for reading and writing optical discs, and these materials have also been gradually used in computer memory elements. These materials have at least two solid phases, usually amorphous and generally crystalline. Laser pulses are used to read and write optical discs to switch between = states and to read the optical properties of the material after phase changes, while current pulses are used in the same way in computer memory components. [〇〇〇4] Phase change-based memory materials, such as Chalcogenide and its materials, can also be changed by applying a current suitable for operation of the integrated circuit. 2~苴This is usually amorphous The state has a higher resistance than the normally crystalline state, which can be used to quickly sense the data. This property is advantageous as a programmable resistance material for non-volatile volts and life circuits, which can read data in a random manner. ^ 〇5] The phase change from the amorphous state to the crystalline state is usually a lower current stay and the phase change from the crystalline state to the junction amorphous state, referred to herein as reset, 5 MXIC P940172 final . 1297930

I i ^相义化材料快速冷卻後,為綷煉此相變化過 希王望二變相變化結構可以穩定在此非晶狀態。通常 ,健H 晶狀態改變為結非晶狀態的重置電流是越 二>, 4由縮杨軸機化㈣尺相及電及與此相變 古+ 一由 檟的方式,來減小重置所需的重置電流值,所以 门〜4 X可以藉由較小電流通過此相變化材料元件的方式來達After the I i ^ phased material is rapidly cooled, the phase change is changed for the phase change. The structure of the phase change can be stabilized in this amorphous state. Generally, the reset current of the healthy H crystal state is changed to the junction amorphous state is 2, and 4 is reduced by the mechanism of the shrinking Yang axis (4), the phase and the electric phase, and the phase change with the phase + Reset the required reset current value, so the gate ~4 X can be reached by means of a smaller current through this phase change material component

[0006] 目則發展的方向之—已_向形成細小毛孔於積體電路結 構内和利用J/里可程式電阻材料填充於此細小毛孔中。揭露朝 向細小毛孔發展之專利有:加血办於撕年^ β η日獲准美 國,利第5,687,112號、發明名稱為“具尖形接觸窗之多重位元單 一單元s己憶體元件”之專利,Zah〇rik等人於1998年8月4日獲准 美國專利第5,789,277號、發明名稱為,,製造硫屬化物㈣記憶體元 件之方法”之專利,Doan等人於2〇〇〇年η月21日獲准美國專利 第6,150,253號’發明名稱為”可控制雙向相變化半導體記憶體元 件及其製造方法”。以及Reinberg於1999年7月ό曰獲准美國專 利第5,920,788號’發明名稱為,,有著許多硫屬化物電極之硫屬化 物記憶細胞’’。 [0007] 當使用傳統的相變化記憶體結構時,一個特殊的熱傳導問 題會在此傳統設計中發生。通常而言,這些先前技藝教導使用金 屬電極於此相變化記憶細胞的兩側,且金屬電極的大小相當於此 相變化構件的大小。如此的電極會構成熱導體,金屬的高導熱性 會很快將熱帶離此相變化材料。因為此相變化的產生係由熱的結 果,此熱傳導效應會造成需要更高的電流,才能產生所預期的相 6 MXIC Ρ940172 final 1297930 & 變化。 [0008] —種解決此熱傳導效應問題的方式可見於美國專利第 6,815,704號,發明名稱為’’自動對準空氣間隙熱絕緣之奈米等級硫 屬化物電子式(NICE)隨機存取記憶體(RAM),,,其中揭露一絕緣^ 記憶細胞。此結構及其製造過程是#常複雜的,然而仍無法達到 此s己憶元件内的最小電流通過。 [0009] 因此,必須要發展出可提供記憶體細胞結構有著小尺寸以 及低重置電流,此外此結構必須解決熱傳導問題,且其製造方法 必須符合高等級記憶元件所需的嚴謹製程改變異規範。更需要提 供一結構及其製造方法,可以同時適用於同一晶片中週邊電路的 製造。 【發明内容】 [0010]本發明之一重要目的為提供一種記憶體元件包含第一電極 和第二電轉件’分離於一基板上。一相變化元素,與該第一電 極和第二電極構件電性綱錢接分離兩者_空1此相變化 „兩個區段,每一段與_構件之一接觸。這兩個區段 ===的-位置相連,使得該相連位置有著—小於該相變 化餘部分的-截面積。該電極、該基板和該相變化元素定 義一氣室。 【實施方式】 [0016]以下搭配圖式詳細說明本發 說明章節目的鱗在紋義本_。t構射法。本發明内容 定義。舉凡本發明之實施例、特徵二請專利範圍所 蜆點及優點等將可透過下列 MXIC P940172 final 7 1297930 說明申請專利範圍及所附圖式獲得充分瞭解。 [0017]如第1圖所示,為根據本發明之一相變化記憶體元素的 基本佈局圖。如業界所熟知,一相變化隨機存取記憶(pCRAM)細 胞包含一相變化元素20,係由一具有兩個固態相的材料構成。最 好是L此材料可以在施加適當的電流脈衝下由非晶改變至結晶且 可回復至非晶。此記憶細胞的一般操作原則,可以參閱先前所提 到的參考資料,而關於相變化材料的操作細節,則會在以下詳加 敛述。 ^ [〇〇18]以下會先描述關於此記憶細胞的結構以及功能,之後則會 詳述其製程。此細胞最好是形成於一介電層或是基板12之上,最 好包含有一氧化矽或是一習知的替代品,如一高分子材料、氮化 矽或是其他介電填充材料。在一實施例中,此介電層包含一相對 佳的熱以及電絕緣性質,以提供熱絕緣及電絕緣之用。兩個電極 14和16,最好是由一耐熱金屬,如鎢所構成,形成於此介電層之 上。其它的耐熱金屬也可以使用,包括鈦(Ti),銦(M〇),^(A1),组㈣, 銅(Cu),鉑(Pt),銀(ir),鑭(La),鎳(Ni)及釕(ru),以及這些金屬的氧化 • 物或是氮化物。此兩個電極係稍微分開,其距離大約介於30到7〇 奈米之間,最好是50奈米。必須注意的是,自圖面下方向上延伸 ,方向稱為垂直方向,兩側延伸方向稱為侧向或是水平方向,僅 是為了方便說明起見。並不影響實際元件在製造或是操作時的真 實走向。 ’ [0019]相變化元素20通常是包含一細長條的相變化材料於此二電 極之間,並橋接此二電極。此元素的寬度大約介於10到3〇奈米 之間★,最好是20奈米,而厚度約為1〇奈米。介電填充材料%(請 參閱第4h圖)係位於電極以及此相變化元素之上。此介電填充材 MXICP940172 final 8 ‘1297930 料最好疋^基板12的材料相同,或是選自與其類似的族群之中。 此材料應該具有低於氧化石夕的導熱性,或是小於〇侧咖 K*sec。如此的介電填充材料包括低介電係數材料熱絕緣物質,如 具石夕(Si)、碳(C)、氧(0)、氟(F)錢(H)等組合者。做為介電填充材 料26之熱絕緣材料例如包括sic〇H、聚亞醯胺、聚酿胺及_ 合物。其他可作為介電填充材料的實他括氟氧切、倍半氧石^ 院(silsesquioxane)、聚環烯醚(p〇iyaryiene ether)、對二曱苯聚體 (parylene)、氟聚合物、氟化無定型碳、類鑽石碳、多孔性氧化石夕、 • 介多孔(mes〇P〇r〇us)氧化石夕、多孔性倍半氧石夕烧、多孔性聚亞醯胺 及多孔性環烯醚。此介電填充材料係填充封閉介於兩電極上方之 一空隙,因此兩電極和兩介電層可以定義出一真空側壁子於此二 電極之間。 [0020]此相變化元素20可以選自一組最好包含硫屬化物 (Chalcogenide)材料的族群之中。硫屬化物材料包括具氧(〇)、硫 (S)、石西(Se)及碲(Te)四個化學週期表上VI族之一部份元素中任何 一個組成。硫屬化物包括硫屬化物族群與多個帶正電元素或取代 • 基之化合物。硫屬化物合金包括硫屬化物與其他如過渡金屬材料 之組合。硫屬化物通常包含一種或一種以上選自元素週期表第六 攔之其他元素,例如鍺(Ge)及錫(Sn)。通常,硫屬化物合金包括含 有銻(Sb),鎵(Ga),銦(In)及銀(Ag)其中一種或多種之組合。許多 以相變化為主之記憶體材料已經被揭露於技術文獻中,包括Ga/sb,[0006] The direction of development has been to form fine pores in the integrated circuit structure and to fill the fine pores with J/li programmable resistance material. The patents for the development of small pores are: the blood is added to the tearing year ^ β η day is approved in the United States, Li 5,687,112, and the invention name is "multiple-bit single unit s-remembering elements with pointed contact windows" The patent of Zah〇rik et al. was approved on August 4, 1998 by US Patent No. 5,789,277, entitled "Method of Manufacturing Chalcogenide (IV) Memory Element", Doan et al. U.S. Patent No. 6,150,253, entitled "Controllable Bidirectional Phase Change Semiconductor Memory Element and Its Manufacturing Method", and Reinberg, in July 1999, obtained the US Patent No. 5,920,788 For example, chalcogenide memory cells with many chalcogenide electrodes'. [0007] When using conventional phase change memory structures, a particular heat transfer problem can occur in this traditional design. The prior art teaches the use of a metal electrode on both sides of the phase change memory cell, and the size of the metal electrode corresponds to the size of the phase change member. Such an electrode would constitute a thermal conductor. The high thermal conductivity of the metal will quickly change the tropics from this phase of the material. Because this phase change is caused by heat, this heat transfer effect will result in the need for higher currents to produce the desired phase. 6 MXIC Ρ 940172 final 1297930 [0008] A way to solve this heat conduction effect problem can be found in U.S. Patent No. 6,815,704, entitled "Automatic Alignment of Air Gap Thermal Insulation of Nanoscale Chalcogenide Electronic (NICE) Random Storage Taking memory (RAM), which reveals an insulating ^ memory cell. This structure and its manufacturing process are often complicated, but the minimum current flow in this sigma element cannot be achieved. [0009] Therefore, it is necessary To develop a memory cell structure with a small size and low reset current, this structure must solve the heat conduction problem, and its manufacturing method must meet the strict process variation requirements required for high-level memory components. More need to provide a structure And the manufacturing method thereof can be simultaneously applied to the manufacture of peripheral circuits in the same wafer. [Invention] [0010] The present invention An important object is to provide a memory device comprising a first electrode and a second electrical component that are separated from a substrate. A phase change element is separated from the first electrode and the second electrode component. This phase changes „two segments, each segment being in contact with one of the _ members. The positions of the two segments === are connected such that the connected position has a cross-sectional area smaller than that of the phase change portion. The electrode, the substrate and the phase change element define a gas chamber. [Embodiment] [0016] The following is a detailed description of the purpose of the section of the present description. t structured method. SUMMARY OF THE INVENTION The scope and advantages of the patents, embodiments, and features of the present invention will be fully understood by the following MXIC P940172 final 7 1297930. As shown in Fig. 1, there is shown a basic layout of memory elements in accordance with one phase of the present invention. As is well known in the art, a phase change random access memory (pCRAM) cell comprises a phase change element 20 comprised of a material having two solid phases. Preferably, this material can be changed from amorphous to crystalline under the application of a suitable current pulse and can be returned to amorphous. The general operating principles of this memory cell can be found in the references previously mentioned, and the details of the operation of the phase change material are detailed below. ^ [〇〇18] The structure and function of this memory cell will be described first, followed by a detailed description of its process. Preferably, the cells are formed on a dielectric layer or substrate 12, preferably containing ruthenium oxide or a conventional alternative such as a polymeric material, tantalum nitride or other dielectric filler material. In one embodiment, the dielectric layer includes a relatively good thermal and electrical insulating property to provide thermal and electrical insulation. The two electrodes 14 and 16, preferably formed of a heat resistant metal such as tungsten, are formed on the dielectric layer. Other heat resistant metals may also be used, including titanium (Ti), indium (M〇), ^ (A1), group (iv), copper (Cu), platinum (Pt), silver (ir), lanthanum (La), nickel ( Ni) and ruthenium (ru), as well as oxides or nitrides of these metals. The two electrode systems are slightly separated by a distance of between about 30 and 7 nanometers, preferably about 50 nanometers. It must be noted that the direction extends upward from the bottom of the drawing, the direction is called the vertical direction, and the direction of the two sides is called the lateral direction or the horizontal direction, for the convenience of explanation. It does not affect the actual direction of the actual component during manufacture or operation. [0019] Phase change element 20 is typically a phase change material comprising a strip of strips between the two electrodes and bridging the two electrodes. The width of this element is approximately between 10 and 3 nanometers ★, preferably 20 nanometers, and the thickness is approximately 1 nanometer. The dielectric fill material % (see Figure 4h) is located above the electrode and the phase change element. The dielectric filler MXICP940172 final 8 ‘1297930 is preferably the same material as the substrate 12, or is selected from a group similar thereto. This material should have a thermal conductivity lower than that of the oxidized stone, or less than the K*sec side. Such a dielectric filling material includes a low dielectric constant material thermal insulating material such as a combination of Shi Xi (Si), carbon (C), oxygen (0), fluorine (F) money (H) and the like. The thermal insulating material used as the dielectric filler material 26 includes, for example, sic〇H, polyamidamine, polyamine, and a compound. Other materials that can be used as dielectric fillers include oxyfluoride, silsesquioxane, p〇iyaryiene ether, parylene, fluoropolymer, Fluorinated amorphous carbon, diamond-like carbon, porous oxidized oxide, • Mesoporous (mes〇P〇r〇us) oxidized oxide, porous sesquioxane, porous polyimide and porosity Cycloalkenyl ether. The dielectric fill material fills a gap between the two electrodes, so that the two electrodes and the two dielectric layers define a vacuum sidewall between the two electrodes. [0020] This phase change element 20 can be selected from the group of groups that preferably comprise Chalcogenide materials. The chalcogenide material includes any one of the elements of the VI group of the four chemical periodic tables of oxygen (〇), sulfur (S), zeshi (Se) and yttrium (Te). Chalcogenides include chalcogenide groups and a plurality of compounds having a positively charged or substituted group. Chalcogenide alloys include combinations of chalcogenides with other materials such as transition metals. Chalcogenides typically comprise one or more other elements selected from the sixth block of the Periodic Table of the Elements, such as germanium (Ge) and tin (Sn). Generally, the chalcogenide alloy includes a combination of one or more of antimony (Sb), gallium (Ga), indium (In), and silver (Ag). Many memory materials based on phase change have been exposed in the technical literature, including Ga/sb.

In/Sb,In/Se,Sb/Te,Ge/Te,Ge/Sb/Te,In/Sb/Te,Ga/Se/Te,Sn/Sb/Te, In/Sb/Ge,Ag/In/Sb/Te,Ge/Sn/Sb/Te,Ge/Sb/Se/Te 及 Te/Ge/Sb/S 之合 金。在Ge/Sb/Te合金族群裡,有許多的合金組成可以使用。組成 的特徵在於TeaGebSb1(KKa+b),其中a及b代表佔構成元素總原子數 9 MXIC P940172 final 1297930 的原子百分比。冑-位研究人員指出最有用的合金為丁6在已經沉 積之材料内的平均濃度遠低於70%,典型低於約6〇%且一般低到 約23°/。而高到約58%Te,最佳為約48%到58%Te。Ge的濃度超過 約5%,平均材料内的Ge濃度從約8%到約3〇%,一般保持低於 50%。最佳地,Ge的濃度從約8%到約4〇%。組成内其餘的主要 構成元素為Sb。(Ovshinsky‘112專利第lo-u欄)。特別被其他研 究人員肯定的合金包括Ge2Sb2Te5, GeSb2Te4及GeSb4Te7(NoboruIn/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/ Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te and Te/Ge/Sb/S alloys. There are many alloy compositions that can be used in the Ge/Sb/Te alloy group. The composition is characterized by TeaGebSb1(KKa+b), where a and b represent atomic percentages of the total atomic number of constituent elements 9 MXIC P940172 final 1297930. The researchers have pointed out that the most useful alloy is that the average concentration of D6 in the already deposited material is well below 70%, typically below about 6% and generally as low as about 23°. It is as high as about 58% Te, and most preferably about 48% to 58% Te. The concentration of Ge exceeds about 5%, and the Ge concentration in the average material ranges from about 8% to about 3%, and generally remains below 50%. Most preferably, the concentration of Ge is from about 8% to about 4%. The remaining major constituent elements in the composition are Sb. (Ovshinsky '112 patent lo-u column). Alloys that are particularly recognized by other researchers include Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7 (Noboru).

Yamada,“Ge_Sb-Te相變化光碟片在高資料速度紀錄上的可能 性’仰正13109|28-37(1997)。更一般而言,過渡金屬,例如鉻 (Cr) ’鐵(Fe),鎳(Ni),鈮(Ni),|e(Pd),翻(Pt)及混合物或合金可 與Ge/Sb/Te形成一可程式絕緣性質之相變化合金。有用之記憶體 材料的特定實例請參考〇vshinky,112第11-13欄所述,該揭露内 谷在此以參考方式併入本案。 [0021]相變化材料能在此細胞主動通道區域内依其位置順序於材 料為一般非晶狀態之第一結構狀態與為一般結晶固體狀態之第二 結構狀態之間切換。這些相變化材料至少是雙向穩定(bistable)。 鲁在此所稱非晶係指相當沒有秩序之結構,比單晶更無秩序,具有 可被偵測之特徵,例如比結晶狀態更高的電絕緣性。在此所稱之 結晶性係指相當有秩序的結構,比非晶結構更有秩序,具有可被 偵測之特徵,例如比非晶狀態更低之電絕緣性。典型而言,相變 化材料可以電性方式在不同可被偵測狀態切換以跨越完全非晶及 元全結晶狀態之間的光譜。受到非晶及結晶相之間變化影響的其 他材料特徵包括原子順序,自由電子密度及活化能。材料可以轉 換至不同固態相或轉換至二個或更多的固態相,以提供介於完全 非晶及完全結晶狀態之間的灰色地帶。此材料的電性質也可以據 10 MXIC P940172 final 1297930 此對應地改變。 [0022] 相變化材料可以藉由施加電脈衝從一相狀態變化成另一相 狀態。已經觀察出一較短較高振幅脈衝容易使相變化材料變成一 般非晶狀態,一般稱作為重設脈衝。較長較低振幅脈衝容易使相 變化材料變成一通常結晶狀態,一般稱作為程式脈衝。較短較高 振幅脈衝内的能量夠高到使結晶結構之鍵結斷裂,並且短到足以 避免原子重新排成結晶狀態。適合脈衝之狀況可以依照經驗法則 判斷,不需要過多的實驗,而能找出適用於一特定的相變化材料 _ 及元件結構之條件。下列說明裡,相變化材料稱為GST,應了解 其他類型相變化材料也可以使用。用以實施在此所述之電腦記憶 體的材料為Ge2Sb2Te5。 [0023] 其他可程式電阻記憶材料也可以使用於本發明的其他實施 例中,包括N型攙雜相變化材料(GST),GexSbb,或是其他可用不 同結晶相變化來決定電阻值;PrxCayMn〇3,PrSrMnO,ZrOx或其 他可用電子脈衝來改變電阻狀態;TCQN,PCBM,TCNQ_PC:BM, Cu-TCNQ,Ag-TCNQ,C60-TCNQ,TCNQ 中攙雜其他金屬,或 • 是其他任何高分子材料有著可用電子脈衝來控制的雙相穩定或多 重向穩定之電阻狀態。 [0024] 明參閱第2圖,為本發明之記憶細胞的一個更詳細的圖示, 顯示出此相變化元素實際上包含兩個區段2〇a和2〇b,每一段有著 一圓形端點。此兩區段於真空側壁子24上方相連,造成接觸區域 截面積係小於相變化元素其他區域截面積。關於此元素的成形, 將會於底下的敘述釐清此點。 [0025] 明參閱第3圖,顯示了本發明記憶細胞的操作。在圖中顯 不,自電極14流出的操作電流,箭頭標示為j,跟著箭頭進入此 MXIC P940172 final 11 1297930 相變化元素20a和20b,最後自電極16流出。必須注意的是,電 抓的方向僅是為了例示而任意選取的,在實際操作時也可以是相 反的方向。 P026]如圖中所示,在此二相變化元素中的電場和電流密度,相 車乂於此一相變化元素相遇的接觸區域25而言是較低的。接觸區域 中=對較小的截面積會產生較機低素其他區域為高的電流和 電度。其結果是,接觸區域内會產生較相變化元素其他區域 更多的熱,而且相變化僅會在此接觸區域内發生(如圖中的深色區 域)。 [〇〇2η除此之外,此真空侧壁子24的低導熱性會降低熱自接觸區 j内傳導Μ,有效低增加此機化材料單位面_所產生的熱 量。此接觸區域的熱絕緣特性可以使記憶細_設計需要較统 方式更小的電流,如此也可以減少記憶細胞本身的尺寸。 [=8卜根據本發施财如何製造—機化記航件之製作 ::圖:自第3圖開始顯示。為了簡明起見’圖示中僅顯示此相 件及其相關特徵,並沒有顯示第1圖中的電極及其相關結 t 的是,電極結構與相變化結構兩者結合_本㈣ 份,熟知此記憶人士均能輕㈣瞭如何將本發明所 教不的特徵運用於傳統的製程與技術之中。 職絡1 ®㈣—相變化記 4: = t程圖’顯示於第^ _他圖。第—步驟,於第 細始’最好是介嶋如二_的先 基板然後被初始圖案化及_,最好是使用 業界无、知的微影技術,以減少整體 的基板中央部份的上方元素13體的厂子度’僅保留如第4b圖所示 MXIC P940172 final 12 1297930 [0029] 此兩個電極元素會在下兩個步驟所形成。第如圖顯示沈積 電極材料15(如上所述)於基板上的結果,其厚度係大於基板中央 部份的上方元素13。此電極材料然後被平坦化,最好是使用化學 機械研磨(CMP)技術,直到一厚度可以使得基板中央部份的上方元 素I)之上半部裸露出來為止’如第4d圖所示。此|虫刻以形成兩 個電極14和16。 [0030] —選擇性蝕刻製程被使用以除去上方元素13之物質,僅留 下電極間空間23,如第4e圖所示。在此,假設此介電物質是氧化 _ 矽’則最好是使用濕餘刻製程,最好是緩衝氫氟酸。替代的方法 是’乾姓刻,如氟化物為基礎的電漿钮刻,也可以被使用。必須 理解的是,不同的物質必須使用不同的餘刻配方。此步驟之結果 是產生兩個分離之電極14和16於基板之上,其間是電極間空間 23 〇 [0031] 第4f圖顯示此相變化元素20的沈積,以形成此記憶細胞 1〇。此沈積最好是利用一濺鍍製程。如此可以形成一較小截面積 之中央部份,如第4g圖所示的近視圖,其中沈積正在進行中。如 _ 業界人士所熟知,一滅鍍製程或產生如圖中所示的表面邊緣彎 曲。額外生長的物質會造成自兩邊開始沈積,直到最後兩邊於縫 隙中央上方接觸為止。新沈積的物質會與原先已沈積的物質接 合,所以此物質會造成自兩邊開始沈積,直到兩邊於縫隙中央上 方接觸,如圖中所示。這兩邊的接觸會造成電極間空間23的封閉, 因此定義出真空侧壁子24。最後,此相變化元素20裁剪至一合適 的尺寸,令其不會超越電極的寬度,且額外的介電填充材料26被 沈積,如第4h圖所示。此物質封閉此真空側壁子24,使得此元素 保持一真空於其間。 13 MXIC P940172 final 1297930 [0032] 必須明暸的是’這些圖示僅是顯示了理想的情形。第5圖 則是比較符合現實的狀況,其顯示了電極14和16的邊緣不是垂 直向上的,而是在蝕刻上方元素13以形成真空侧壁子24時,會 有-侧削的情況發生。此外,也會於;麟時殘留—些相變化元素 於真空側壁子的底部’但是這些少量的相變化元素並不會影響到 此元件的操作。 [0033] 雖然本發明係已參照較佳實施例來加以描述,將為吾人所 瞭解的是,本發明創作並未受限於其詳細描述内容。替換方式及 修改樣式係已於先能述巾所建議,並且其他賴方式及修改樣 式將為熟習此項技藝之人士所思及。特別是,根據本發明之結構 與方法,所有具有實質上_於本發狀構件結合而達成與本發 ,實質上相同結果者皆不麟本發明之精神範•。因此,所有此 等替換方式及修改樣式係意欲落在本發明於隨附申請專利範圍及 其均等物所界定的範疇之中。Yamada, "The possibility of Ge_Sb-Te phase change discs at high data speed records" Yang Zheng 13109|28-37 (1997). More generally, transition metals such as chromium (Cr) 'iron (Fe), Nickel (Ni), niobium (Ni), |e(Pd), turn (Pt) and mixtures or alloys can form a phase change alloy with Ge/Sb/Te that can be programmed with insulating properties. Specific examples of useful memory materials Please refer to 〇vshinky, 112, columns 11-13, which is incorporated herein by reference. [0021] The phase change material can be in the active channel region of the cell in accordance with its positional order. The first structural state of the crystalline state is switched between a second structural state that is a generally crystalline solid state. These phase change materials are at least bi-directionally stable (bis), which is referred to herein as a relatively unordered structure, Single crystals are more disorderly and have detectable characteristics, such as higher electrical insulation than crystalline states. Crystallinity, as used herein, refers to a fairly orderly structure that is more orderly than amorphous structures and has The characteristics of the detection are, for example, lower electrical insulation than the amorphous state. Typically, phase change materials can be electrically switched across different detectable states to span the spectrum between fully amorphous and meta-crystalline states. Other material characteristics affected by changes between amorphous and crystalline phases include atoms. Sequence, free electron density and activation energy. Materials can be converted to different solid phases or converted to two or more solid phases to provide a gray zone between completely amorphous and fully crystalline states. It can also be changed accordingly according to 10 MXIC P940172 final 1297930. [0022] The phase change material can be changed from one phase state to another phase by applying an electrical pulse. It has been observed that a shorter higher amplitude pulse tends to cause phase change. The material becomes generally amorphous and is generally referred to as a reset pulse. Longer, lower amplitude pulses tend to cause the phase change material to become a normally crystalline state, commonly referred to as a programmed pulse. The energy in the shorter, higher amplitude pulse is high enough to The bond of the crystalline structure breaks and is short enough to prevent the atoms from re-arranging into a crystalline state. The conditions suitable for the pulse can be based on experience. The law judges that without undue experimentation, it can find the conditions that apply to a particular phase change material _ and component structure. In the following description, the phase change material is called GST, and it should be understood that other types of phase change materials can also be used. The material used to implement the computer memory described herein is Ge2Sb2Te5. [0023] Other programmable resistive memory materials can also be used in other embodiments of the invention, including N-type doped phase change material (GST), GexSbb, Or other different crystal phase changes can be used to determine the resistance value; PrxCayMn〇3, PrSrMnO, ZrOx or other available electronic pulses to change the resistance state; TCQN, PCBM, TCNQ_PC: BM, Cu-TCNQ, Ag-TCNQ, C60-TCNQ, TCNQ is doped with other metals, or • Any other polymeric material has a two-phase stable or multi-directional stable resistance state that can be controlled by electronic pulses. [0024] Referring to FIG. 2, a more detailed illustration of the memory cells of the present invention shows that the phase change element actually comprises two segments 2〇a and 2〇b, each segment having a circular shape. End point. The two sections are connected above the vacuum side wall 24 such that the cross-sectional area of the contact area is less than the cross-sectional area of other areas of the phase change element. Regarding the formation of this element, this will be clarified in the description below. [0025] Referring to Figure 3, the operation of the memory cells of the present invention is shown. Shown in the figure, the operating current flowing from the electrode 14, indicated by the arrow j, follows the arrow into the MXIC P940172 final 11 1297930 phase change elements 20a and 20b, and finally flows out of the electrode 16. It must be noted that the direction of the electric grip is only arbitrarily selected for the sake of illustration, and may be the opposite direction in actual operation. P026] As shown in the figure, the electric field and current density in the two-phase change element are relatively low in the contact region 25 where the one-phase change element meets. Contact area = The smaller cross-sectional area produces higher current and electrical energy than other areas. As a result, more heat is generated in the contact area than in other areas of the phase change element, and phase changes occur only in this contact area (as in the dark areas in the figure). [〇〇2η In addition, the low thermal conductivity of the vacuum sidewalls 24 reduces the conduction of heat in the contact zone j, effectively increasing the heat generated by the unit surface of the machined material. The thermal insulation properties of this contact area allow the memory to be designed to require less current than the system, which also reduces the size of the memory cells themselves. [=8Bu how to make money according to this issue--The production of machined navigation parts ::Figure: Displayed from the 3rd picture. For the sake of brevity, 'only the phase piece and its related features are shown in the figure, and the electrode and its associated junction t in Figure 1 are not shown. The electrode structure and the phase change structure are combined. _本(四)份This memory person can lightly (4) how to apply the features taught by the present invention to traditional processes and techniques. Activity 1 ® (4) - phase change record 4: = t map 'shown in the ^ _ his diagram. The first step, at the beginning of the first step, is preferably to introduce the first substrate, such as two, and then to be initially patterned and _, preferably using industry-independent lithography techniques to reduce the central portion of the overall substrate. The factory degree of the upper element 13 body is only retained as shown in Figure 4b. MXIC P940172 final 12 1297930 [0029] These two electrode elements will be formed in the next two steps. The result is shown as depositing electrode material 15 (described above) on the substrate, the thickness of which is greater than the upper element 13 of the central portion of the substrate. The electrode material is then planarized, preferably using a chemical mechanical polishing (CMP) technique, until a thickness can cause the upper half of the upper element I) of the central portion of the substrate to be exposed, as shown in Fig. 4d. This | insect is engraved to form two electrodes 14 and 16. [0030] A selective etching process is used to remove the material of the upper element 13, leaving only the interelectrode space 23 as shown in Fig. 4e. Here, it is preferable to use a wet residue process, preferably buffered hydrofluoric acid, assuming that the dielectric substance is oxidized _ 矽 '. An alternative method is to use a dry name, such as a fluoride-based plasma button, which can also be used. It must be understood that different materials must use different residual formulations. The result of this step is the creation of two separate electrodes 14 and 16 over the substrate with interelectrode space therebetween. [0031] Figure 4f shows the deposition of this phase change element 20 to form this memory cell. This deposition is preferably carried out using a sputtering process. This makes it possible to form a central portion of a smaller cross-sectional area, as shown in the close view of Figure 4g, in which deposition is in progress. As is well known to those skilled in the art, a process of extruding or producing a surface edge bend as shown in the figure. Extra growth of the material will cause deposition from both sides until the last two sides are in contact above the center of the gap. The newly deposited material will bind to the previously deposited material, so the material will begin to deposit from both sides until both sides contact the center of the gap, as shown. The contact of the two sides causes the closing of the space 23 between the electrodes, thus defining the vacuum side wall 24. Finally, the phase change element 20 is tailored to a suitable size so that it does not exceed the width of the electrode and additional dielectric fill material 26 is deposited as shown in Figure 4h. This material encloses the vacuum side wall 24 such that the element remains a vacuum therebetween. 13 MXIC P940172 final 1297930 [0032] It must be understood that these illustrations are only illustrative of the ideal situation. Fig. 5 is a more realistic situation, showing that the edges of the electrodes 14 and 16 are not vertically upward, but that the side-cutting occurs when the upper element 13 is etched to form the vacuum side wall 24. In addition, there will be residual; some phase change elements are at the bottom of the vacuum sidewalls' but these small phase change elements do not affect the operation of this component. Although the present invention has been described with reference to the preferred embodiments, it is understood that the present invention is not limited by the detailed description. Alternatives and modifications are suggested in the first place, and other methods and modifications will be considered by those skilled in the art. In particular, according to the structure and method of the present invention, all of the embodiments having substantially the same as the present invention are substantially the same as the present invention. Therefore, all such alternatives and modifications are intended to be within the scope of the invention as defined by the appended claims and their equivalents.

【圖式簡單說明】 陶1]第1圖係繪示據本發明實施例的相變化記憶元件之立體圖; _2]第2圖騎示根據本發明實_的域化纖元件細 剖面圖; [-立2第3圖鱗禮據本發明第1圖之機化域元件的操作 實施例的製造一相變化 [0014]第4a到4h圖係繪示根據本發明一 圮憶元件的製程步驟; [0015]第5圖係繪示本發明如第1圖之相變化記憶元件。 MXIC P940172 final 14 1297930 【主要元件符號說明】 ίο : 記憶細胞 12 : 基板 13 : 上方元素 14、16 :電極 20、20a、20b :相變化元素 23: 電極間空間 24 : 真空側壁子 • 25: 接觸區域 26 : 介電填充材料BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing a phase change memory element according to an embodiment of the present invention; _2] Fig. 2 is a schematic sectional view showing a domain chemical fiber element according to the present invention; 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 Figure 5 is a phase change memory element of the present invention as shown in Figure 1. MXIC P940172 final 14 1297930 [Key component symbol description] ίο : Memory cell 12 : Substrate 13 : Upper element 14, 16 : Electrode 20 , 20a , 20b : Phase change element 23 : Interelectrode space 24 : Vacuum side wall • 25 : Contact Area 26: Dielectric Filler

15 MXIC P940172 final15 MXIC P940172 final

Claims (1)

1297930 十、申請專利範圍: 1· 一種記憶體元件,包含: 第一電極和第二電極構件,分離於一基板上; -相變化元素’與該第-電極和第二電_件紐 分離兩者間的空間,其中: 運接 該相變化元素包含兩個區段,每一段與該電極構件之一接 觸,在該兩電極之間的一位置相連,使得該相連位置有著一小 於該相變化元素其餘部分的一截面積;以及 該電極、該基板和該相變化元素定義一氣室。 2·如申請專娜圍第1項所述之記髓元件,其巾軸變化元素 包含鍺(Ge)、銻(Sb)、鎊(Te)之組合。 ” 3·如申睛專利範圍第!項所述之記憶體元件,其中該相變化元素 包括二種或二種以上選自由鍺(Ge)、銻(sb)、鎊(Te)、硒、銦 (In) > lt(Ti) ^ ^(〇a) ^ ^(Bi) > ^(Sn) > ^(Cu) ^ 4ε(Ρφ > Λ • 銀(Ag)、硫⑸及*(Au)戶斤組成之族君羊的材料組合。 4·如申請專利範圍第丨項所述之記憶體元件,更包括—介電填充 材料與該電極構件接觸且魏_相變化元素,更封閉由該電極 構件與該相變化元素所定義之該氣室。 5· -種製造-記憶體元件之方法,該方法包含: 提供一基板; 瓜成兩個電極於該基板上,該兩個電極由—電極間空間所分 MXICP940172 final 16 129793ο ' I 形成一相變化記憶元素於該兩個電極之上,包含下列步驟: 開始沈積一相變化材料於於該兩個電極之上,使得該相變 化材料向該電極間空間延伸; Μ 繼續該沈積直到沈積在該兩個之該材料在該電極間空 間互相連接而定義一真空側壁子。1297930 X. Patent application scope: 1. A memory component comprising: a first electrode and a second electrode member separated from a substrate; - a phase change element 'separating from the first electrode and the second electrode Space between the two, wherein: the phase change element comprises two segments, each segment being in contact with one of the electrode members, connected at a position between the electrodes, such that the connected position has a smaller than the phase change a cross-sectional area of the remainder of the element; and the electrode, the substrate, and the phase change element define a gas chamber. 2. For the purpose of applying for the core element described in Item 1 of the special design, the change element of the towel axis includes a combination of 锗 (Ge), 锑 (Sb), and pound (Te). 3. The memory component of claim 2, wherein the phase change element comprises two or more selected from the group consisting of germanium (Ge), germanium (sb), pound (Te), selenium, and indium. (In) > lt(Ti) ^ ^(〇a) ^ ^(Bi) > ^(Sn) > ^(Cu) ^ 4ε(Ρφ > Λ • Silver (Ag), sulfur (5), and *( Au) The material combination of the family and the sheep. 4. The memory element as described in the scope of the patent application, including the dielectric filler material in contact with the electrode member and the Wei_phase change element, is more enclosed a gas chamber defined by the electrode member and the phase change element. 5. A method of manufacturing a memory device, the method comprising: providing a substrate; and forming two electrodes on the substrate, the two electrodes By dividing the space between the electrodes MXICP940172 final 16 129793 ο ' I form a phase change memory element over the two electrodes, comprising the steps of: starting to deposit a phase change material over the two electrodes, such that the phase changes Material extending into the space between the electrodes; Μ continuing the deposition until the two materials deposited in the two are empty between the electrodes They are connected to each other to define a vacuum side wall. 6·如申請專利範圍第5項所述之方法,其中該相 含鍺(Ge)、銻(Sb)、錄(Te)之組合。 變化記憶元素包 7·如申請專利範圍第5項所述之方法,其中該相變化記憶元素包 括二種或二種以上選自由鍺(Ge)、録(sb)、錄(Te)、哪e)、姻⑽、 鈦⑼、鎵(Ga)、轉〇、錫(Sn)、銅(Cu)、把㈣、錯㈣、銀_、 硫(S)及金(Au)所組成之族群的材料組合。 8·如申請專利細第5項所述之方法,更包括沈積—介電填充材 φ 料層於由該電極與該相變化記憶元素形成的結構之上。 MXIC P940172 final 176. The method of claim 5, wherein the phase comprises a combination of germanium (Ge), germanium (Sb), and recording (Te). The method of claim 5, wherein the phase change memory element comprises two or more selected from the group consisting of germanium (Ge), recorded (sb), recorded (Te), and ), marriage (10), titanium (9), gallium (Ga), transition, tin (Sn), copper (Cu), (4), wrong (four), silver _, sulfur (S) and gold (Au) combination. 8. The method of claim 5, further comprising depositing a dielectric filler material φ layer over the structure formed by the electrode and the phase change memory element. MXIC P940172 final 17
TW95117513A 2006-05-17 2006-05-17 Phase change memory cell with vacuum spacer TWI297930B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95117513A TWI297930B (en) 2006-05-17 2006-05-17 Phase change memory cell with vacuum spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95117513A TWI297930B (en) 2006-05-17 2006-05-17 Phase change memory cell with vacuum spacer

Publications (2)

Publication Number Publication Date
TW200744158A TW200744158A (en) 2007-12-01
TWI297930B true TWI297930B (en) 2008-06-11

Family

ID=45069241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95117513A TWI297930B (en) 2006-05-17 2006-05-17 Phase change memory cell with vacuum spacer

Country Status (1)

Country Link
TW (1) TWI297930B (en)

Also Published As

Publication number Publication date
TW200744158A (en) 2007-12-01

Similar Documents

Publication Publication Date Title
TWI311797B (en) Self-align planerized bottom electrode phase change memory and manufacturing method
US7928421B2 (en) Phase change memory cell with vacuum spacer
TWI387103B (en) Fully self-aligned pore-type memory cell having diode access device
US7033856B2 (en) Spacer chalcogenide memory method
TWI316751B (en) Improved thermal isolation for an active-sidewall phase change memory cell
TWI331793B (en) Method of manufacturing a pipe shaped phase change memory
TWI376800B (en) A heating center pcram structure and methods for making the same
TWI451569B (en) Phase change memory cell including a thermal protect bottom electrode and manufacturing methods
US7932101B2 (en) Thermally contained/insulated phase change memory device and method
TWI384664B (en) Memory array with diode driver and method for fabricating the same
TWI357154B (en) Phase change memory cell with filled sidewall memo
TWI323950B (en) Method for making a keyhole opening during the manufacture of a memory cell
TWI376801B (en) Memory cell having a buried phase change region and method for fabricating the same
TWI321355B (en) Vacuum jacket for phase change memory element
TWI352422B (en) Pipe shaped phase change memory
TWI313058B (en) Vacuum cell thermal isolation for a phase change memory device
TWI497706B (en) Mushroom type memory cell having self-aligned bottom electrode and diode access device
TWI397997B (en) Memory cell having improved mechanical stability
TWI376799B (en) Memory cell device with coplanar electrode surface and method
CN101237026B (en) Memory device and its manufacture method
CN100524882C (en) Method for making memory cell device
JP5957375B2 (en) Phase change memory
TW200834911A (en) Memory element with reduced-current phase change element
TW200832678A (en) Multi-layer electrode structure
TW201015713A (en) Dielectric-sandwiched pillar memory device