TWI297103B - Surface treatment method and mask blank and photomask therefrom - Google Patents

Surface treatment method and mask blank and photomask therefrom Download PDF

Info

Publication number
TWI297103B
TWI297103B TW095107371A TW95107371A TWI297103B TW I297103 B TWI297103 B TW I297103B TW 095107371 A TW095107371 A TW 095107371A TW 95107371 A TW95107371 A TW 95107371A TW I297103 B TWI297103 B TW I297103B
Authority
TW
Taiwan
Prior art keywords
film
phase shift
substrate
reticle
light
Prior art date
Application number
TW095107371A
Other languages
Chinese (zh)
Other versions
TW200639579A (en
Inventor
Han Sun Cha
Sung Min Seo
Sin Ju Yang
Se Jong Choi
Kee Soo Nam
Original Assignee
S&S Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S&S Tech Co Ltd filed Critical S&S Tech Co Ltd
Publication of TW200639579A publication Critical patent/TW200639579A/en
Application granted granted Critical
Publication of TWI297103B publication Critical patent/TWI297103B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Description

1297103 19453pif 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種用、上、皆 (lithography)^,, t^^ Jf ==底m—種可施加熱處理和表面處理過程 彳 ==_)準分子雷射微影航其 ㈣造半賴%件之顧巾使用鮮以便在晶圓上形 馳)的微影過程中,需要更臨界㈣㈣的精確 ^及X佳的均勻性’就像f要更高積體化的半導體電路 一樣0 —:了 Λ現上_需求’光微影術中之光源之波長須較 短例如’此波長可為365奈米(nm),248奈米和193奈 米,且較短的波長會使光源之能量較高。而且,化學放大 電阻(CAR)使用在光罩基底和光罩的製造中,以便界定更 9 精細及更準確的圖樣。 然而,化學放大電阻(CAR)會有敏感性改變的問題, 其疋由不同的化學品,例如,像氨和胺之類的驗性材料, 及其它不同的化學品,像硫酸或氫氯酸之類者,所造成, 這些化學品來自無塵室中的建材以及不同製程_及人類中 所用的化學品。上述這些材料所具有的大小是十至數百A 且容易在空氣中遷移。這些化學材料所造成的污染物稱為 空中分子污染物(AMC, airborne molecular 1297103 19453pif contamination)。半導體裝置和材料國際(SEMI)委員會在 SEMI F21 -95”Classiflcation of airborne molecular contamination levels in clean environments” 中定義了 AMC。光罩基底製造處所在的無塵室中若應存在一種高濃 度的AMC,則空中分子將在光罩基底基板上被吸收,這樣 會使光罩基底之光阻敏感性下降且使品質劣化。因此,除 了 ULPA/HEPA濾器之外,亦安裝一種化學濾器以防止無 塵室中的空中分子污染物(AMC)。 又’化學放大電阻(CAR)有基板相依性的問題,例如, 由氮(N)所造成的敏感度改變、基腳(f〇〇ting)、浮渣、表層 和下切等等。氮是包含在光罩基底之抗反射膜中的一種^ 性材料。 另外,就小圖樣的形成和產量的改良而言,例如,使 用硫酸(H2S〇4)、過氧化氫既〇2)和氳氧化銨(NH4〇H)之類 的化學品以施加至淨化過程中。在光罩製程中,一種包含 硝酸鈽銨(CeOMHOXNO3)6)之濕蝕刻劑用來形成一種光阻 止膜_和抗反射膜之圖樣。此製程中,由使用在淨化過程中 之化學品所造成的化學殘留物或濕_劑殘留物可能留在 光罩上而未被完全清除。包含—齡合材料之外膜黏合至 化學殘留物所出現的光罩上。當已被空中分子污染物 (AMC)錢學殘㈣所㈣㈣罩在步賴(其所使用的 ,先源具有《彡過程用義波長和高能量)中使用一段長 可i會發生—種生長缺陷。此生長缺陷會使半 ¥ 4造時的品質惡化且使產量降低。此生長缺陷主要是 1297103 19453pif 由硫酸按((NH4)2S〇4)所造成。琉酸錢是由光罩上的化學殘 遠物與具有南能夏的曝光源相反應後所形成。 【發明内容】 本發明是用來解決上述的問題且本發明的目的是提供 一種光罩基底之製造方法和一種光罩,其具有:優越的光 阻圖樣,其最小的光阻敏感度變化及小的基腳、下切或浮 ,是使空中分子污染物(AMC)最少化和光阻之基板相依性 _ ,小化來達成;以及優越的品質,其無,,生長缺'陷”,這是 藉由基板上使化學殘留物和空中分子污染物(AMC)最少化 來達成。 “為讓本發明之上述和其他㈣、特徵和優點能更明顯 易懂’下文特舉較佳實關,並配合所關式,作詳細說 明如下。 【實施方式】 為了達成上述目的,本發明提供一種光罩基底之製造 此光罩基底包含:至少—膜,其是由透光基板上的 r ·\、;^阻止膜和抗反射膜所形成的組(识〇_尤積而 :成'太:ΐ阻膜,其是在最後所沈積的膜上塗佈光阻而 由ί移膜Ί另提供—種光罩,其中與光_相鄰的膜或 少一二吏在和抗反射膜所形成的組中所選取的至 =使用在熱處理過程和表面處理過程中。 法較:基底之製造時,本發明的製造方 al)製備一透光基板; 1297103 19453pif M)在透光基板上形成一種光阻止膜;1297103 19453pif IX. Description of the Invention: [Technical Field] The present invention relates to a heat treatment and a surface treatment process using lithography ^, t^^ Jf == bottom m 彳 == _ ) Excimer laser lithography (4) The lithography process of using a thin film to shape the wafer on the wafer requires a more critical (four) (four) precision ^ and X good uniformity 'like f is to be higher in integrated semiconductor circuits. 0:: The current wavelength of the light source in photolithography must be shorter, for example, 'this wavelength can be 365 nm (nm), 248 nm and 193 Nano, and the shorter wavelength will make the energy of the light source higher. Moreover, chemical amplification resistors (CAR) are used in the fabrication of reticle substrates and reticle to define more elaborate and more accurate patterns. However, chemical amplification resistors (CAR) have problems with sensitivity changes, which are caused by different chemicals, such as organic materials such as ammonia and amines, and other chemicals such as sulfuric acid or hydrochloric acid. As a result, these chemicals come from building materials in clean rooms and chemicals used in different processes and in humans. These materials have sizes of ten to several hundred A and are easily migrating in the air. The contaminants caused by these chemicals are called airborne molecular pollutants (AMC, airborne molecular 1297103 19453pif contamination). The Semiconductors and Materials International (SEMI) Committee defines AMC in SEMI F21-95 "Classiflcation of airborne molecular contamination levels in clean environments". If a high concentration of AMC is present in the clean room in which the reticle substrate is fabricated, the air molecules will be absorbed on the reticle base substrate, which will reduce the photoresist sensitivity of the reticle base and degrade the quality. Therefore, in addition to the ULPA/HEPA filter, a chemical filter is installed to prevent airborne molecular contamination (AMC) in the clean room. Further, the chemical amplification resistor (CAR) has a problem of substrate dependence, for example, sensitivity change due to nitrogen (N), footing, scum, surface layer and undercut, and the like. Nitrogen is a kind of material contained in the anti-reflection film of the reticle base. Further, in terms of formation of small patterns and improvement of yield, for example, chemicals such as sulfuric acid (H2S〇4), hydrogen peroxide (2), and ammonium cerium oxide (NH4〇H) are used for application to the purification process. in. In the reticle process, a wet etchant comprising cerium ammonium nitrate (CeOMHOXNO3) 6) is used to form a pattern of the photoresist film and the anti-reflection film. In this process, chemical residues or wet-residue residues caused by chemicals used in the purification process may remain on the reticle without being completely removed. Contains a film that is bonded to the chemical residue on the outside of the ageing material. When it has been covered by the Air Molecular Contaminant (AMC), the amount of money used in the (4) (4) (4) cover is used in the step (which is used, the source has the wavelength and high energy of the process). defect. This growth defect deteriorates the quality at half time and reduces the yield. This growth defect is mainly caused by 1297103 19453pif by sulfuric acid ((NH4)2S〇4). The tannic acid is formed by reacting a chemical residue on the mask with an exposure source having Nannengxia. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a photomask substrate and a photomask having a superior photoresist pattern with minimal photoresist sensitivity variation and Small footing, undercutting or floating is to minimize the airborne molecular pollutants (AMC) and the substrate dependence of the photoresist _, to achieve small; and superior quality, its no, growth lacks trap, this is This is achieved by minimizing chemical residues and airborne molecular contaminants (AMC) on the substrate. "To make the above and other (four), features and advantages of the present invention more apparent, the following is a better example, and In conjunction with the closed type, a detailed description is as follows. [Embodiment] In order to achieve the above object, the present invention provides a reticle substrate. The reticle substrate comprises: at least a film formed by an anti-reflective film and an anti-reflective film on the transparent substrate. Group of 〇 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The film or the one or two bismuth selected in the group formed by the antireflection film is used in the heat treatment process and the surface treatment process. Method: when the substrate is manufactured, the manufacturer of the present invention is prepared. a light substrate; 1297103 19453pif M) forming a light blocking film on the light transmissive substrate;

Cl)在光阻止膜上形成一抗反射膜; dl)淨化此抗反射膜; el)對已淨化的抗反射膜進行熱處理; fl)對已熱處理的抗反射膜進行表面處理,· gl)在已完成表面處理的抗反射膜上塗佈光阻。 當進行一種相移光罩基底之製造時,本發明的製造方 法較佳是包含以下各步驟: a2)製備一透光基板; b2)在透光基板上形成一種相移膜,· c2)淨化此相移膜; d2)對已淨化的相移膜進行熱處理; e2)在已熱處理的相移膜上形成光阻止膜; £2)在光阻止膜上形成一種抗反射膜,· g2)淨化此抗反射膜; h2)對已淨化的抗反射膜進行熱處理; i2)對已熱處理的抗反射膜進行表面處理; j2)在已完成表面處理的抗反射膜上塗佈光阻。 而且,本發明的雙重光罩的製造方法較佳是包含以下 各步驟: a3)以一種用在雙重光罩製造時之共同過程,在上述過 程al)至gl)中所製造的雙重光罩基底上形成一種光阻膜、σ 抗反射膜和光阻止膜的圖樣,然後將此光阻膜圖樣剝除· b3)淨化此光阻膜已被剝除的光罩;以及 示, 1297103 19453pif c3)對已淨化的光罩進行熱處理。 各+ =且,本發明的相移光罩的製造方法較佳是包含以下 p 2以—制在相移光罩製造時之共同過程,在上述過 中所製造的相移光罩基底上形成—種光阻膜、 i剝=、総止膜和相频的圖樣,錢將此光阻膜圖 b4)淨化此光阻膜已被剝除的光罩; c4)對已淨化的光罩進行熱處理; d4)對已熱處理的光罩進行表面處理; e4)在表面處理之後藉由光阻塗佈而形成光阻膜; f4)以一種用在相移光罩製造時之共同過程再形成一 抗反射膜、光阻止膜關樣,然後將此光阻膜 圖樣剝除; 狀 g4)淨化此光阻膜已被剝除的光罩; h4)對已淨化的光罩進行熱處理。 以下將詳細說明每一步驟: "步驟al)和切中的透光基板是由驗石灰、玻璃、石英、 既化約(CaF2)等等所構成且對丨_線(365 nm)或微影用之短 波長之光源而言所具有的透射率至少是85%,此透光基板 之尺寸至少是5吋χ5吋。 土 步驟b2)之相移膜是由含有純氣和反應氣體之真空室 内部之金屬藉由麵所沈積者。此相移膜包含由銘(c〇)、 趣(Ta)、鎢(W)、錮(Mo)、鉻(Cr)、鈒(v)、絶(pd)、欽(丁、 10 1297103 19453pif 鈮(Nb)、鋅(Zn)、铪(Hf)、鍺(Ge)、鋁(Ai)、鉑(Pt)、錳(Μη)、 鐵(Fe)和矽(Si)所形成的組中所選取的至少一種金屬。純氣 是由包含氬(Ar)、氦(He)、氖(Ne)、氪(Kr)和氙(Xe)之組中 所選取的至少一種氣體。反應氣體是由包含氧(〇2)、氮 (N2)、一氧化碳(CO)、二氧化碳(C02)、氧化亞氮(n2〇)、 . 氧化氮(NO).、二氧化氮(N〇2)、氨(皿3)和甲烷(CH4)所形成 的組令所選取的至少一種氣體。若相移膜是以矽化鉬 φ (MoSi)為主,則此膜包含氮化矽翻(MoSiN)、氧化石夕铜 (MoSiO)、碳化矽鉬(MoSiC)、氧碳化矽鉬(MoSiCO)、碳氮 化矽鉬(MoSiCN)、氧氮化矽鉬(MoSiON)和碳氧氮化石夕錮 (MoSiCON)中之至少一種,其中各成份是〇 at%_2〇缸% 碳、0 at%_60 at%氧、0 at%_60 at% 氮、20 at%-60 at%矽且 其餘疋金屬。特別是此相移膜可以是一種連續膜,其在此 膜的垂直方向中具有不同的成份比,或此相移膜是一種由 低透射膜(用來作透射控制)和高透射膜(用來作相移控制) 所合成的合成膜。在此種情況下,步驟bl)、e2)、cl)和 _ 2)之光阻止膜和抗反射膜在透光基板侧上具有較高的氮 成份。各膜可以是無確定邊界之連續膜或由多層所構成二 合成膜。 ' 步驟M)和e2)之光阻止膜包含至少一由鉻、鎢、钽和 鈦之組所選取的金屬且是在真空室中藉由反應濺鍍所形 成,真空室中包含至少一種由氬、氦、氖、氙和氪之組^ 所選取的鈍氣和至少一種由氧、氮、碳、一氧化碳、二$ 化石炭、氧化亞氮、氧化氮、二氧化氮、氨和曱烧之組中二 11 1297103 19453pif 選取的反應氣體。當光阻止膜由鉻製成時,其包含氮化鉻 (CrN)、碳化鉻(CrC)和碳氮化鉻(CrCN)中之至少一種。光 阻止層可選擇式地包含〇 at%_2〇 at%碳、〇 at%_6〇 at%氧、 〇at%-60at%氮且其餘是金屬。 步驟cl)和f2)之抗反射膜包含至少一由鎢、鈕、鉻、 鈦和矽化鉬之組所選取的金屬且是在真空室中藉由反應濺 鍍所形成,真空室中包含至少一種由氬、氦、氖、氙和氪 之組中所選取的鈍氣和至少一種由氧、氮、破、一氧化碳、 二氧化碳、氧化亞氮、氧化氮、二氧化氮、氨和甲烷之組 中所選取的反應氣體。當抗反射膜由鉻所製成時,其包含 氧化鉻(CrO)、氧氮化鉻(Cr0N)、氧碳化鉻(CrC〇)或氧碳 氮化鉻(CrCON)。此抗反射膜可以是無確定邊界之連續膜 且可選擇式地包含0 at%-20 at%碳、〇 at%-60 at。/。氧、〇 at%-60at°/〇氮且其餘是金屬。 步驟dl)、c2)、g2)、b3)、b4)和g4)之淨化過程是在 使用由硫酸、過氧化氫、氳氧化銨或〇1水所形成之組(gr〇up) _ 中所選取的至少一種溶液之情況下以超音波或巨音波 (megasonic)或此一者來進行。在淨化過程的最後步驟中, 藉由旋塗法(spinning)或使用異丙醇(IpA)來進行乾燥過 程。淨化過程亦可選擇性地在以上各步驟中進行。 步驟el)、d2)、h2)、c3)、C4)和⑷之熱處理過程可 在考慮AMC之移除、應力解除和餘刻性質的情況下進行。 熱處理過程可使用熱板、真空熱板、真空灶、真空室或爐 來進行。母一步驟的熱處理都在溫度範圍IqMC至l〇〇〇〇c 12 1297败 二佳是在崎至500°C中進行,以及在真空度 熱處理且較佳是在G.lpa至G.3Fa中進行。 用埶|J 可以快速加熱過程(RTP)來進行或使 60‘= 紫外線燈或較燈來進行。熱處理可進行1至 氩=里、,較佳是5至40分鐘。熱處理是在鈍氣(例如,氣、 進行',成)之大氣中進行。冷卻過程可在熱處理之後 可 處理是在大氣壓下或真空中進行。熱處理過程亦 在乂上母一步驟中選擇性地進行。 ^ elt^)1! h2T ' ' W) ' M)^ 步驟可較另和h4)之熱處理過程中的一種 過程中之i? μ/去'^進订。而且,淨化過程和熱處理 狂甲之一或此二者可省略。 射膜進行、^』2)和叫中’使用含碎之有機材料對該抗反 含石夕使Γϊ改良且將表層移除。可使用 基二石夕燒、:甲其===液’這些溶液例如可為六甲 甲基魏H基η魏、氟醋酸三 ,胺、0-三甲基矽烷乙醯丙酮 艾矽::亂 知、三Τ基石夕垸三氟乙酿胺、尹基三甲^;基二甲基矽 酸鹽以及三F基乙氧基石夕貌。* i夕基酮醋 步驟fl)、切和d4)中表面處理 動—r priming)法來進行。當疋,:去或純引 在含石夕的有機材料注人 表面處理可 CCA50cc時進行且轉速 13 1297103 19453pif 是lOrpm至300〇rpm。又,當使用蒸氣引動法時,表面處 理可在20GC至500GC中進行,此時在760毫米汞柱或更小 的壓力程度下使用〇·〇1 L/min至100 L/min之氬或氮。表 面處理過程亦可在步驟fl)、i2)和d4)之每一步驟中選擇性 地進行。 在步驟gl)、j2)和e4)中,一種光阻膜形成在抗反射膜 上且以含矽之有機材料來塗佈光阻以進行表面處理,此光 阻含有可溶於鹼之樹脂和光酸產生劑(PAG),例如, THMR-iP3500 (Tokyo Ohka Kogyo) ^ THMR-iP3600 (TokyoCl) forming an anti-reflection film on the light blocking film; dl) purifying the anti-reflection film; el) heat-treating the purified anti-reflection film; fl) surface-treating the heat-treated anti-reflection film, gl) The photoresist is coated on the surface-treated antireflection film. When manufacturing a phase shift mask substrate, the manufacturing method of the present invention preferably comprises the following steps: a2) preparing a light transmissive substrate; b2) forming a phase shift film on the light transmissive substrate, · c2) purifying This phase shift film; d2) heat treatment of the purified phase shift film; e2) formation of a light blocking film on the heat treated phase shift film; £2) formation of an antireflection film on the light blocking film, · g2) purification The anti-reflection film; h2) heat-treating the purified anti-reflection film; i2) surface-treating the heat-treated anti-reflection film; j2) coating the photoresist on the surface-treated anti-reflection film. Moreover, the method of manufacturing the dual mask of the present invention preferably comprises the following steps: a3) A dual mask substrate manufactured in the above processes a) to gl) in a common process for the manufacture of a double mask. Forming a pattern of a photoresist film, a σ anti-reflection film, and a light blocking film, and then stripping the photoresist film pattern. b3) purifying the mask from which the photoresist film has been stripped; and showing, 1297103 19453pif c3) The purified reticle is heat treated. Each of the + = and the method for fabricating the phase shift mask of the present invention preferably comprises the following p 2 for the common process in the manufacture of the phase shift mask, formed on the phase shift mask substrate manufactured in the above. - a photoresist film, i strip =, 総 stop film and phase frequency pattern, money this photoresist film b4) to clean the photoresist film has been stripped of the mask; c4) the purified mask Heat treatment; d4) surface treatment of the heat-treated reticle; e4) formation of a photoresist film by photoresist coating after surface treatment; f4) forming a common process used in the manufacture of phase-shift reticle The anti-reflection film and the light blocking film are closed, and then the photoresist film pattern is stripped; shape g4) purifying the mask from which the photoresist film has been stripped; h4) heat-treating the cleaned mask. Each step will be described in detail below: "Step a) and the light-transmissive substrate in the cut is composed of lime, glass, quartz, CaF2, etc., and 丨-line (365 nm) or lithography The light source having a short wavelength has a transmittance of at least 85%, and the size of the light transmissive substrate is at least 5 吋χ 5 吋. Soil The phase shifting film of step b2) is deposited by the surface of the metal inside the vacuum chamber containing pure gas and reactive gas. This phase shift film consists of Ming (c〇), Interest (Ta), Tungsten (W), Helium (Mo), Chromium (Cr), 鈒 (v), Absolute (pd), Chin (Ding, 10 1297103 19453pif 铌Selected from the group consisting of (Nb), zinc (Zn), hafnium (Hf), germanium (Ge), aluminum (Ai), platinum (Pt), manganese (Mn), iron (Fe), and antimony (Si) At least one metal. Pure gas is at least one gas selected from the group consisting of argon (Ar), helium (He), neon (Ne), krypton (Kr), and xenon (Xe). The reaction gas is composed of oxygen. (〇2), nitrogen (N2), carbon monoxide (CO), carbon dioxide (C02), nitrous oxide (n2〇), . nitrogen oxide (NO), nitrogen dioxide (N〇2), ammonia (dish 3) And at least one gas selected from the group formed by methane (CH4). If the phase shifting film is mainly molybdenum molybdenum φ (MoSi), the film comprises bismuth nitride (MoSiN), oxidized oxidized copper (MoSiO) At least one of molybdenum carbide (MoSiC), lanthanum oxycarbide (MoSiCO), lanthanum carbonitride (MoSiCN), lanthanum oxynitride (MoSiON), and carbon oxynitride (MoSiCON), wherein Each component is 〇at%_2〇Cym% carbon, 0 at%_60 at% oxygen, 0 at%_60 at% nitrogen, 20 at%-60 at%矽 and the remaining base metals. Especially this phase shift film It is a continuous film having different composition ratios in the vertical direction of the film, or the phase shift film is a low transmission film (for transmission control) and a high transmission film (for phase shift control). The synthesized film is synthesized. In this case, the light blocking film and the antireflection film of steps bl), e2), cl) and _ 2) have a high nitrogen component on the side of the light-transmitting substrate. Each film may be a continuous film having no defined boundaries or a two-synthesis film composed of a plurality of layers. The light blocking film of 'Step M) and e2) comprises at least one metal selected from the group consisting of chromium, tungsten, tantalum and titanium and is formed by reactive sputtering in a vacuum chamber containing at least one argon Groups of 氦, 氖, 氖, 氙 and ^ ^ selected blunt gas and at least one group consisting of oxygen, nitrogen, carbon, carbon monoxide, carbon dioxide, nitrous oxide, nitrogen oxides, nitrogen dioxide, ammonia and strontium Medium 2 11 1297103 19453pif Selected reaction gases. When the light blocking film is made of chromium, it contains at least one of chromium nitride (CrN), chromium carbide (CrC), and chromium carbonitride (CrCN). The light blocking layer may optionally comprise 〇 at%_2〇 at% carbon, 〇 at%_6〇 at% oxygen, 〇at%-60at% nitrogen and the balance being metal. The antireflection film of steps cl) and f2) comprises at least one metal selected from the group consisting of tungsten, button, chromium, titanium and hafnium molybdenum and is formed by reactive sputtering in a vacuum chamber, the vacuum chamber comprising at least one The blunt gas selected from the group consisting of argon, helium, neon, krypton and xenon and at least one selected from the group consisting of oxygen, nitrogen, carbon monoxide, carbon dioxide, nitrous oxide, nitrogen oxide, nitrogen dioxide, ammonia and methane Selected reaction gases. When the antireflection film is made of chromium, it contains chromium oxide (CrO), chromium oxynitride (Cr0N), chromium oxycarbide (CrC) or chromium oxycarbonitride (CrCON). The antireflective film can be a continuous film with no defined boundaries and optionally comprises 0 at%-20 at% carbon, 〇 at%-60 at. /. Oxygen, 〇 at%-60at ° / 〇 nitrogen and the rest is metal. The purification process of steps dl), c2), g2), b3), b4) and g4) is carried out using a group consisting of sulfuric acid, hydrogen peroxide, ammonium oxyhydroxide or hydrazine 1 (gr〇up) _ In the case of at least one selected solution, it is performed by ultrasonic or megasonic or one of them. In the final step of the purification process, the drying process is carried out by spinning or using isopropanol (IpA). The purification process can also be selectively carried out in the above steps. The heat treatment of steps el), d2), h2), c3), C4) and (4) can be carried out in consideration of the removal, stress relief and residual properties of the AMC. The heat treatment process can be carried out using a hot plate, a vacuum hot plate, a vacuum oven, a vacuum chamber or a furnace. The heat treatment in the first step of the mother is carried out in the temperature range IqMC to l〇〇〇〇c 12 1297, preferably in the range of 500 ° C, and in the vacuum treatment, preferably in G.lpa to G.3Fa. get on. Use 埶|J to perform a rapid heating process (RTP) or to make 60'= UV lamps or lamps. The heat treatment can be carried out for 1 to argon = liter, preferably 5 to 40 minutes. The heat treatment is carried out in an atmosphere of blunt gas (for example, gas, performing, forming). The cooling process can be carried out after the heat treatment at atmospheric pressure or in a vacuum. The heat treatment process is also selectively carried out in the first step of the crucible. ^ elt^)1! h2T ' 'W) ' M)^ The step can be compared with i? μ/ go '^ in one of the heat treatment processes of the other and h4). Moreover, one or both of the purification process and the heat treatment madness can be omitted. The film is carried out, and the surface of the film is removed by using the organic material containing the broken material. The solution can be used as a base, and the solution can be, for example, hexamethylmethyl-W-based η-Wei, fluoroacetic acid, amine, 0-trimethyldecane, acetoacetone, azide: Know, Sanchaji Shishixi trifluoroethylene amine, Yinji trimethoate; dimethyl phthalate and tri F-ethoxylated stone. * i- ketone vinegar Steps fl), cut and d4) surface treatment - r priming). When 疋, :去或纯引 In the case of organic materials containing stone eve, the surface treatment can be carried out at CCA50cc and the speed 13 13297103 19453pif is lOrpm to 300 rpm. Further, when the vapor priming method is used, the surface treatment can be carried out in 20GC to 500GC, at which time argon or nitrogen of 〇·〇1 L/min to 100 L/min is used at a pressure of 760 mmHg or less. . The surface treatment process can also be selectively performed in each of steps fl), i2) and d4). In steps gl), j2) and e4), a photoresist film is formed on the anti-reflection film and coated with a photoresist containing a germanium-containing organic material for surface treatment, the photoresist containing alkali-soluble resin and light Acid generator (PAG), for example, THMR-iP3500 (Tokyo Ohka Kogyo) ^ THMR-iP3600 (Tokyo

Ohka Kogy〇)和 j)PR-i7000 (Dongjin Semichem)之類的光 阻 ’ EBR_9 (Toray)、PBS (Chisso)和 ZEP_7〇〇0 (Nippon ZE〇N)之類的電子束光阻,FEP_171 (Fuji Film)之類的正 CAR以及F.27〇 (Fuji朽㈣和N孤22 腿加㈣之類 ^ CAR。光阻在表面處理時可以旋塗法或毛細㈣iHary) 1 層^而塗佈—種單分子層。光阻膜之厚度可由i_A至 祕以在ί驟⑴、渺⑷之光阻塗佈之後,使用一 bai^) C至MW之溫度範圍中進行一種軟烤_ =,本發·更詳細地描述以切之有機材料來對 射膜和相移膜進行表面處理時的各種例子。缺 外 例子只是舉例來描述本發明❿已,並不是對太 各種修改和取代而未脫離本發 的精神和範圍。 、申明專利乾圍 14 1297103 19453pif <例ι> 一種光阻止膜30以CrCN、CrC和CrN中之一種材料 藉由反應濺鍍成厚度300λ至800A而形成在6吋之石英基 板 10 上,其中使用由 Ar、He、Ne、Kr,Xe、N2、C02、〇2、 〇0、]^20、>^0、^[〇2、见13和〇14(請參閱圖1&)中所選取 的鈍氣和反應氣體。 然後,抗反射膜40以CrCON、CrO、CrCO和CrON 中之一種材料藉由反應濺鏡成厚度ΙΟΟΑ至350A而形成在 光阻止膜上,其中使用由Ar、He、Ne、Kr、Xe、N2、C〇2、 Q2'CC)' N2〇、N〇、N〇2、顺3和CEU(請參閱圖lb)中所選取 的純氣和反應氣體。Ohka Kogy〇) and j) Electron beam photoresists such as photoresists EBR_9 (Toray), PBS (Chisso) and ZEP_7〇〇0 (Nippon ZE〇N) such as PR-i7000 (Dongjin Semichem), FEP_171 ( Fuji Film and other positive CAR and F.27〇 (Fuji ( (4) and N 孤 22 legs plus (4) ^ CAR. The photoresist can be spin-coated or capillary (4) iHary in surface treatment) A monolayer. The thickness of the photoresist film can be soft-baked by i_A to the temperature range of bai^) C to MW after the photoresist coating of ((1), 渺(4) _ =, this issue is described in more detail. Various examples of surface treatment of the film and the phase shift film with a cut organic material. The following examples are merely illustrative of the invention and are not intended to be exhaustive or otherwise. A patented dry circumference 14 1297103 19453pif <Example ι> A light-blocking film 30 is formed on a quartz substrate 10 of 6 Å by sputtering to a thickness of 300 λ to 800 A by one of CrCN, CrC and CrN. Use from Ar, He, Ne, Kr, Xe, N2, C02, 〇2, 〇0, ]^20, >^0, ^[〇2, see 13 and 〇14 (see Figure 1&) Selected indulgent gas and reactive gas. Then, the anti-reflection film 40 is formed on the light blocking film by a reactive sputtering mirror to a thickness of 350 A in one of CrCON, CrO, CrCO, and CrON, wherein Ar, He, Ne, Kr, Xe, N2 are used. , C〇2, Q2'CC) 'N2〇, N〇, N〇2, cis 3 and CEU (see Figure lb) for the pure gas and reactive gases.

接著’進行熱處理過程以清除該抗反射膜上的AMC 且,淨化的效率改良。熱處理是在真空室中使用齒素燈來 進熱處理是在O.lPa至0.3Pa之壓力和200〇C至500〇C 又中進行5至40分鐘,其中鈍氣是由Ar、N2、He、 e、Kr和xe中選取。 ^一,若上述的熱處理過程是在大氣壓力下或低真空中進 Γ現,,理_吸取後又釋出的AMC可再被吸收或 理過‘行氣中的AMC^被吸收。又,若此熱處 量不夠=Γ於5分鐘,則AMC被吸取後釋出的 鐘,則i秀本其:,、、之下,若此熱處理進行的時間超過40分 處理是右ί =、光阻止膜或抗反射膜可能受損。若此熱 小於2000C之溫度下進行,則AMC不能足夠地 15 % ’若此熱處理是在大 '光阻止膜或抗反射Then, a heat treatment process is performed to remove the AMC on the anti-reflection film, and the efficiency of purification is improved. The heat treatment is performed by using a dentate lamp in a vacuum chamber for heat treatment at a pressure of 0.1 Pa to 0.3 Pa and a pressure of 200 C to 500 C for 5 to 40 minutes, wherein the indebted gas is Ar, N 2 , He, Choose from e, Kr and xe. ^1. If the above heat treatment process is carried out under atmospheric pressure or in a low vacuum, the AMC released after the absorption can be absorbed or treated, and the AMC in the gas is absorbed. Also, if the amount of heat is not enough = Γ 5 minutes, then the AMC is released after the bell is released, then i show it::,,, if the heat treatment is carried out for more than 40 minutes, the treatment is right ί = The light blocking film or the anti-reflection film may be damaged. If the heat is carried out at a temperature less than 2000 C, the AMC may not be sufficiently 15% 'if the heat treatment is at a large 'light blocking film or anti-reflection

i297m 由抗反射膜吸取後釋出。相對照之下 於500°C之溫度下進行,職光基板 膜可能受損。 在熱處理過程之後,以傳統方法進行淨化過程。 此時,在減料程和淨化雜之前和讀以離子色 ^刀析法(1C)和氣體色層分析法/質譜法(GC/MS)來算出 AMC濃度。 圖2顯不熱處理過程和淨化過程之前和之後空中分子 污染物(AMC)濃度之大小。如圖2所示,已熱處理和淨化 後的透光基板之空中分子污染物(AMC)濃度之大小是% ng/mask,但未受熱處理或未淨化的透光基板者是2234 ng/mask。這似乎頒示出大部份的空中分子污染物(aMc) 在熱處理過程和淨化過程期間已被吸取後釋出。 已受熱處理和淨化的透光基板再受到熱處理以便脫水 烘烤、增加黏合性且去除應力。熱處理過程之條件和上述 者相同。 單分子層50藉由含矽之有機材料(例如,三甲基石夕烧 二乙胺、六f基二矽烷以及醋酸〇-三甲基矽烷酯)來進行 的蒸氣引動方式而形成在已受熱處理的透光基板上,其中 須使用一種可維持真空的熱板,以使該抗反射膜之基板對 CAR之相依性最小化(請參閱圖ic)。氮使用在含發之有機 溶液之蒸氣引動過程中。 氮是在1·5_2 kg/cm2之壓力下以4-15 L/min之速率而 饋入。熱板保持在溫度80-200GC中。表面處理過程進行 16 1297103 19453pif I〜40秒且真空度是7〇〇_2〇〇切 有機材料之數量成為=='二4 _上之與懸空鍵(da f出現在抗反 :超過15 L/—切的有機材料之#;:成^ $石夕的有機材料之與懸空鍵 =成為過夕’使 :於則含爾機材料之與二 正目對如、之下,若溫度超過2〇〇〇c,矽二疋 之與懸空鍵之鍵結可能又會斷開。x,J:=材料 =’則含料_軸散成為^力 則含矽的有機材料不能在抗反射膜 ’ 在使用含石夕的有機材料來進行表面處理 出 抗反射膜之表面上的氫氧基(0 = 麵狀甲基二魏⑽鍵結且使包含在抗反射^: CAR中所產生的強酸(H+)相鍵結,於是使基板相 依性下降。 然後’ FEP-171,正(positive)的CAR,旋塗在已受到 表面處理的抗反射膜上以形成厚度是2〇〇〇_4〇〇〇人之光阻 膜60且在110-150GC時在熱板上進行軟烤5_3〇分鐘 閱圖Id)。 明多 一種雙重光罩基底100由上述過程而製成。 所製成的雙重光罩基底100曝露至具有能量9_1〇 uC/cm2之50kV電子束中以形成圖樣(請參閲圖3a)。 129聲The i297m is released by the anti-reflection film. In contrast, at a temperature of 500 ° C, the film of the luminescent substrate may be damaged. After the heat treatment process, the purification process is carried out in a conventional manner. At this time, the AMC concentration was calculated by ion chromatography (1C) and gas chromatography/mass spectrometry (GC/MS) before and during the reduction and purification. Figure 2 shows the magnitude of the airborne molecular contaminant (AMC) concentration before and after the heat treatment process and the purification process. As shown in Fig. 2, the airborne molecular contaminant (AMC) concentration of the heat-treated and purified light-transmitting substrate is % ng/mask, but the unheated or untreated transparent substrate is 2234 ng/mask. This seems to indicate that most of the airborne molecular contaminants (aMc) have been released after being absorbed during the heat treatment and purification processes. The light-transmissive substrate which has been subjected to heat treatment and purification is subjected to heat treatment for dehydration baking, adhesion, and stress removal. The conditions of the heat treatment process are the same as those described above. The monolayer 50 is formed by heat treatment by a vapor priming method of a cerium-containing organic material (for example, trimethyl sulphuric acid diethylamine, hexadecyldioxane, and cerium acetate-trimethyl decyl ester). On the light-transmissive substrate, a vacuum-retaining hot plate must be used to minimize the dependence of the substrate of the anti-reflective film on CAR (see Figure ic). Nitrogen is used in the vapor priming process of organic solutions containing hair. Nitrogen is fed at a rate of 4-15 L/min at a pressure of 1·5-2 kg/cm2. The hot plate is maintained at a temperature of 80-200 GC. The surface treatment process is carried out 16 1297103 19453pif I~40 seconds and the degree of vacuum is 7〇〇_2 The amount of organic material cut becomes =='2 4 _ on the dangling bond (da f appears in anti-reverse: more than 15 L /—Cut the organic material#;: into ^ ^ Shi Xi's organic material and dangling key = become the eve of the 'to make: then the material of the machine is the same as the two elements, if the temperature exceeds 2 〇〇〇c, the bond between the 矽二疋 and the dangling bond may be broken again. x, J:=Material='The material _axis is a force and the organic material containing bismuth cannot be in the anti-reflective film' The surface treatment of the surface of the anti-reflective film with a hydroxyl-containing organic material (0 = planar methyl di-wet (10) bond and the strong acid contained in the anti-reflection ^: CAR ( H+) phase bonding, thus reducing substrate dependence. Then 'FEP-171, positive CAR, spin-coated on the surface treated anti-reflective film to form a thickness of 2〇〇〇_4〇〇 The photoresist film 60 of the monk is soft baked on a hot plate at 110-150 GC for 5_3 minutes. Id). A double mask substrate 100 is manufactured by the above process. The resulting dual mask substrate 100 is exposed to a 50 kV electron beam having an energy of 9 〇 uC/cm 2 to form a pattern (see Fig. 3a).

然後’在90-1500C時使用一種設有氨濾器之熱板以進 行一種曝光後之烘烤(PEB)5-15分鐘,且使用NM]>W (Tokyo OhkaKogyo),一種含有 2·38〇/〇 TMAH(四曱基氳氧 化銨)之顯像液,來進行顯像過程5〇_7〇秒以形成光阻圖樣 60a(請參閱圖3b)。由於光阻與抗反射膜之鍵結在雙重光罩 基底之製程中被熱處理和表面處理過程所阻止,於是可得 到一種很優良的光阻圖樣。 φ 抗反射膜和光阻止膜以CR-7S(Cyantek),一種濕蝕刻 劑來蝕刻40-70秒,其中使用光阻圖樣作為光罩以獲得一 種抗反射膜圖樣40a和光阻止膜圖樣3〇a(請參閱圖3c)。 然後’在100GC時以硫酸來進行浸潰(dipping)3〇分鐘 以去除光阻圖樣且進行淨化過程(請參閱圖3d)。 然後,在壓力〇·1·〇·3 pa和溫度2〇〇-500〇C時進行熱處 理過程5-40分鐘以製成雙重光罩2〇〇,此時使用一種由 Ar ' N2、He、Ne、Kr和Xe之組所選取的鈍氣。 依據本發明例1之實施例,抗反射膜上的AMC在熱 _ 處理過程中大大地下降。結果,即使在使用KrF或ArF準 分子雷射之微影過程中亦不會發生上述的生長缺陷。又, 由於含矽的有機材料用在表面處理中,則由CAR所產生 之強酸與抗反射膜之鹼性氮之間的反應被阻止,基板相依 性因此會下降。此外,由於熱處理是在光阻止膜之後進行 且抗反射膜圖樣已形成,則AMC濃度(其造成生長缺陷) 之大小會下降。因此,可獲得一種無基腳、浮渣或表層之 很優良的光阻圖樣,且可製成一種無,,生長缺陷,,之高^口質 18 1297103 19453pif 之光罩。 <例2> 一種可施加至KrF和ArF微影術之相移膜2Q以Then 'at 90-1500C, use a hot plate with ammonia filter for a post-exposure bake (PEB) for 5-15 minutes, and use NM] >W (Tokyo OhkaKogyo), one containing 2.38〇 / 〇 TMAH (tetrakisyl ammonium hydride) imaging solution to carry out the development process 5 〇 _ 7 〇 seconds to form the photoresist pattern 60a (see Figure 3b). Since the bonding of the photoresist and the antireflection film is prevented by the heat treatment and the surface treatment process in the process of the double mask substrate, a very excellent photoresist pattern can be obtained. The φ anti-reflection film and the light-blocking film were etched for 40-70 seconds with CR-7S (Cyantek), a wet etchant, in which a photoresist pattern was used as a mask to obtain an anti-reflection film pattern 40a and a light-blocking film pattern 3〇a ( Please refer to Figure 3c). Then, dipping was carried out with sulfuric acid at 100 GC for 3 minutes to remove the photoresist pattern and perform a purification process (see Fig. 3d). Then, the heat treatment process is carried out for 5-40 minutes at a pressure of 〇······3 pa and a temperature of 2〇〇-500〇C to form a double mask 2〇〇, in which case an Ar ' N 2 , He, Blunt gas selected from the group of Ne, Kr and Xe. According to the embodiment of the inventive example 1, the AMC on the antireflection film is greatly lowered during the heat treatment. As a result, the above-described growth defects do not occur even in the lithography process using KrF or ArF quasi-molecular lasers. Further, since the cerium-containing organic material is used in the surface treatment, the reaction between the strong acid generated by the CAR and the basic nitrogen of the antireflection film is prevented, and the substrate dependency is thus lowered. Further, since the heat treatment is performed after the light blocking film and the antireflection film pattern has been formed, the magnitude of the AMC concentration (which causes growth defects) is lowered. Therefore, it is possible to obtain a photoresist pattern which is excellent in no base, scum or surface layer, and can be made into a mask having no height, growth defect, and high quality of 18 1297103 19453pif. <Example 2> A phase shift film 2Q which can be applied to KrF and ArF lithography

MoSiON、MoSiN、MoSiO、MoSiC、M〇Sic〇、M〇siCN 和 MoSiCON中之一種材料藉由反應濺鍍成厚度$⑻人至 900A而为別形成在透光基板上,其中使用由、 Kr、Xe、N2' C〇2、〇2、CO、N2〇、NO、NO2、丽3 和 CH4(請 參閱圖4)中所遙取的鈍氣和反應氣體。相移膜20包含〇 at%-20 at%氧、〇 at%_20 at%氮、20 at%-50 at%石夕、〇 at%-20 at%碳且其餘是鉬。所製成的相移膜相對於193 之入吐 準分子雷射之透射率大約是6%且相移大約是18〇〇。此相 移膜相對於248 nm之KrF準分子雷射之透射率大約是6〇/〇 且相移大約是180G。然後,如例1所示,在此相移膜上形 成光阻止膜30和抗反射膜40,進行熱處理過程和表面處 理過程以形成一種單分子層5〇且塗佈CAR以形成光阻膜 6〇,以分別製成KrF和ArF用之相移光罩基底11〇。KrF 修和ArF微影術用之每一個相移光罩基底具有相同的結構, 其差別只是〇、N、Si、C和Mo之比例以及相移膜2〇中 的厚度。 已製成的相移光罩基底110曝露至具有能量9_1〇 uC/cm之50 kV電子束中以形成圖樣(請參閱圖5a)。然 後,在9CM500C時使用一種設有氨濾器之熱板以進行一種 曝光後之烘烤(PEB)5-15分鐘。 顯像過程中是使用NMD-W (Tokyo Ohka Kogyo;),一 19 !2971〇3 種含有2.38% ΤΜΑΗ(四甲基氫氧化銨)之顯像液,來進行 50-70秒以形成光阻圖樣6〇a(請參閱圖北)。由於光阻盥抗 反射膜之鍵結在娜光罩基底之製料漏處理和表面處 理過程所阻止,於是可得到一種很優良的光阻圖樣術。 ,然後,使用光阻圖樣60a作為光罩來對此抗反射膜4〇 穿光阻止膜30進行乾|虫刻以形成一種抗反射膜圖樣術 和光阻止膜圖樣3〇a(請參閱圖5c)。乾姓刻過程是使用d 〇2和He氣來進行400-600秒。 然後,使用SF6、〇2和He氣來進行乾蝕刻過程4〇〇_6〇q 秒以形成相移膜圖樣2〇a。 在i〇〇Gc時以硫酸來進行浸潰(dipping)3〇分鐘以去除 光阻圖樣且進行淨化過程(請參閱圖5d)。 進仃淨化過程以去除微粒且在與相移光罩基底製造時 相同的條件下進行熱處理過程以使AMC濃度下降,解除 膜應力且使化學阻抗獲得改良(請參閱圖㈣。亦在與相移 光罩基底製造時相同的條件下進行表面處理過程,以便在 曝光過程和PEB過程期間使包含在抗反射膜中之氮不會 =¾酉夂發生鍵結(bQnding),於是可形成—種很優良的 圖樣。 士曰其次,旋塗一種FEIM7:l,正(positive)的CAR,以形 、厚度是2000-4000A之光阻膜16〇且在熱板上進行軟烤 以形成輪緣、形的圖樣(請參閱圖5f)。軟烤過程 110-150%時進行5_3〇分鐘。 然後,光阻膜160曝露至具有能量9·10 uC/cm2i 5〇 20 1297103 I9453pif V子束中且使用一種設有氨滤、器之熱板以便在 90-150GC時進行一種曝光後之烘烤(pEB)過程5_15分鐘(請 參閱圖5g)。 ° •顯像過程中是使用NMD_W (Tokyo Ohka Kogyo),一 種含有2.38% TMAH(izg曱基氫氧化銨)之顯像液,來進行 _ 50-70秒以形成光阻圖樣16〇a(請參閱圖5h)。由於光阻與 抗反射膜之鍵結已被熱處理和表面處理過程所阻止,於是 φ 可得到一種很優良的光阻圖樣l6〇a。 然後,使用光阻圖樣作為光罩來對此抗反射膜和光阻 止膜進彳τ乾I虫刻以形成-種輪緣形之抗反射膜圖樣4〇b和 輪緣形之光阻止膜圖樣30b(請參閱圖5i)。乾蝕刻過程是使 用、〇2和He氣來進行400_600秒。 、其—人,在l〇〇Gc時以硫酸來進行浸潰(dipping)3〇分鐘 以去除光阻圖樣且進行淨化過程以去除微粒(請參閱圖 5j)。 " 然後,在與上述相同的情況下進行熱處理過程,以將 ·= 應力解紅吸取AMC後釋出。於是得到—種相移光罩 依據本發明例2之實施例,不只在相移光罩基底穿』造 時而且在相移光罩製造時都藉由熱處理過程和表面處理過 程使基板相依性下降且使AMC濃度減低。結果,可製造 一種可分別施加至KrF和ArF準分子雷射之相移去 具有很優良的光阻圖樣且未具備生長缺陷。 /、 <比較用的例1> 21 1297娜 一種相移膜由 MoSiON、MoSiN、MoSiO、MoSiC、 MoSiCO、MoSiCN和MoSiCON中之-種材料而形成在透 光基板上,且光阻止膜和抗反射膜以和例2相同之方式依 序而形成。然後,在未進彳亍熱處理或表面處理之情況下, 使厚度3000-4000A之光阻膜形成在一種具有CAR之抗反 射膜上’以製造一種相移光罩基底。 AMC濃度的大小經測量後的結果是2 312 ng/mask, 其是一種在半導體之微影製程中在曝露至KrF或ArF準分 • 子雷射期間可能發生上述生長缺陷時的位準。 又,在未進行表面處理過程之情況下當進行圖樣形成 過程時,基腳70在正的CAR時發生(請參閱圖6a),下切 8〇在負的CAR時發生(請參閱圖6b)。 ^其理由如下。在藉由反應性濺鍍使膜形成期間,加入 氮以作為反應氣體’考慮該抗反射膜之反射性、光學密度、 蝕刻速率、膜穩定性等等(請參閱圖7)。氮原子具有一對電 子三在塗佈CAR以便在抗反射膜上形成光罩圖樣時,由 ❿曝露至電子束或雷射(其在pEB過程中放大)的CAR中產 生強酸。此處,CAR應轉換成可被顯像劑顯像的分子形 式。然而,在抗反射膜和CAR之介面上由於氮原子(Lewis 鹼)¼與電子而使H+離子被中和,且CARi H+離子(Lewis 接收電子’如圖7所示。@此,在未進行表面處理過程 曰守,基腳在正的CAR時發生,下切在負的cAR時發生。 如比較用關1所示,在婦光罩基底製造期間若熱 处理和表面處理過程未進行,則會得到一種光阻圖樣,其 22 1297】· 缺陷是與基板有關,且因此 。^ 會發生可觀的縱,使得先的先罩。此外, ^ _ A 件尤罩在曝露至KrF或ArF準分 子运射日才會有形成上述生長缺陷的傾向。 依據本發明之光罩基底和光罩之製造方法 i重=;之CD準確性的高品質光罩時是有利的:且可 猎由對'有鹼性材料之以鉻為主之抗反射膜之表面處理而 CAR^^ , 抗反射膜之表面上的鹼性氮與由 可下降,α 中和反應可減弱。結果,基板相依性 ,㈢刀解且在抗反射膜和光阻膜之介面上平滑 也擴放,於是使基腳或下切最小化。 之庫於熱處理過程可使AMC濃度最小化且使殘餘 之應力除’則可得到古口所a 0 的先罩㈣光罩圖樣形成過 担干揲缺存在且在使用跡或入 過程中無,,生長缺陷”。 刀子田射之U衫 本發明已參考較佳實施例來詳述,但孰 :::各:修改和取代而未脫離本發明以;;附的申以 利耗圍之精神和範圍。 ΙΠ7 月專 限定太丄^月已以較佳貫施例揭露如上,然其並非用以 ^範圍i任何㈣此技藝者,在不脫離本發明之精神 r門未^1自可作些許之更動與顯’因此本發明之保1 附之中請專利範圍所界定者為準。 【圖式簡單說明】 圖la至Id顯示本發明之雙重(bina 過程的橫切面圖。 力尤罩基底之製備 23 129聊 圖2顯示熱處理和淨化之前和之後空中分子污染物之 程度。 圖3a至3d是本發明之雙重(binary)光罩之製備過程的 橫切面圖。 圖4是本發明之相移光罩基底之橫切面圖。 圖5a至5j是本發明之相移光罩之製備過程的橫切面 圖。 圖6a和6b是顯像過程之後傳統之光阻圖樣的橫切面 • 圖。 圖7是氮與強酸相結合時的反應圖。 【主要元件符號說明】 10 基板 20 相移膜 30 光阻止膜 30a,30b 光阻止膜圖樣 40 抗反射膜 40a, 40b 抗反射膜圖樣 50 單分子層 60 光阻膜 60a 光阻圖樣 70 基腳 80 下切 100 雙重光罩基底 110 相移光罩基底 24 1297耶 160 光阻膜 160a 光阻圖樣 200 雙重光罩 210 相移光罩 25One of MoSiON, MoSiN, MoSiO, MoSiC, M〇Sic〇, M〇siCN, and MoSiCON is sputter-plated to a thickness of $(8) to 900A, and is formed on a light-transmissive substrate using Kr, Blunt gas and reactive gases taken from Xe, N2' C〇2, 〇2, CO, N2〇, NO, NO2, 丽3, and CH4 (see Figure 4). The phase shift film 20 comprises 〇 at%-20 at% oxygen, 〇 at%_20 at% nitrogen, 20 at%-50 at% Shixi, 〇 at%-20 at% carbon and the balance is molybdenum. The phase shift film produced has a transmittance of about 6% with respect to the 193 excimer laser and a phase shift of about 18 Å. The phase shift film has a transmittance of about 6 〇/〇 with respect to a KrF excimer laser of 248 nm and a phase shift of about 180G. Then, as shown in Example 1, a light blocking film 30 and an anti-reflection film 40 were formed on the phase shift film, and a heat treatment process and a surface treatment process were performed to form a monomolecular layer 5 Å and a CAR was coated to form a photoresist film 6 〇, to separately form a phase shift mask substrate 11 for KrF and ArF. KrF repair and ArF lithography have the same structure for each of the phase shift mask substrates, the difference being only the ratio of 〇, N, Si, C, and Mo and the thickness in the phase shift film 2〇. The resulting phase shift mask substrate 110 was exposed to a 50 kV electron beam having an energy of 9 〇 uC/cm to form a pattern (see Fig. 5a). Then, a hot plate equipped with an ammonia filter was used at 9CM500C for a post-exposure bake (PEB) for 5-15 minutes. During the development process, NMD-W (Tokyo Ohka Kogyo;), a 19:2971〇3 type of imaging solution containing 2.38% lanthanum (tetramethylammonium hydroxide) was used for 50-70 seconds to form a photoresist. Figure 6〇a (see figure north). Since the bond of the photoresist and the anti-reflective film is prevented by the process of the material leakage treatment and the surface treatment of the nano-mask base, a very excellent photoresist pattern can be obtained. Then, the photoresist pattern 60a is used as a mask to blew the anti-reflection film 4 to prevent the film 30 from being dried to form an anti-reflection film pattern and a light-blocking film pattern 3〇a (see FIG. 5c). . The dry surrogate process is performed using d 〇 2 and He gas for 400-600 seconds. Then, SF6, 〇2, and He gas were used to carry out a dry etching process for 4 〇〇 6 〇 q seconds to form a phase shift film pattern 2 〇 a. Dipping was carried out with sulfuric acid for 3 Torr at i 〇〇 Gc to remove the photoresist pattern and perform a purification process (see Fig. 5d). The purification process is carried out to remove the particles and the heat treatment process is performed under the same conditions as when the phase shift mask substrate is manufactured to lower the AMC concentration, release the film stress and improve the chemical impedance (see Fig. 4). Also in phase shift The surface treatment process is performed under the same conditions when the photomask substrate is manufactured, so that the nitrogen contained in the anti-reflection film does not bond (bQnding) during the exposure process and the PEB process, so that it can be formed Excellent pattern. Secondly, spin-coat a FEIM7:l, positive CAR, with a thickness of 2000-4000A photoresist film 16〇 and soft-bake on a hot plate to form a rim, shape The pattern is shown (see Figure 5f). The soft-bake process is performed for 10_3 minutes at 110-150%. Then, the photoresist film 160 is exposed to an energy 9·10 uC/cm2i 5〇20 1297103 I9453pif V beamlet and a A hot plate with ammonia filter is used to perform a post-exposure bake (pEB) process for 5-15 minutes at 90-150 GC (see Figure 5g). ° • NMD_W (Tokyo Ohka Kogyo) is used during development. One containing 2.38% TMAH (izg thioglycolate) Like liquid, _ 50-70 seconds to form a photoresist pattern 16〇a (see Figure 5h). Since the bond between the photoresist and the anti-reflective film has been prevented by heat treatment and surface treatment, φ can be obtained. Very good photoresist pattern l6〇a. Then, using the photoresist pattern as a mask to insert the anti-reflection film and the light-blocking film into the 彳τ dry I insect to form a rim-shaped anti-reflection film pattern 4〇b And the rim-shaped light block film pattern 30b (see Figure 5i). The dry etching process is performed using 〇2 and He gas for 400_600 seconds. It is a person, and is immersed in sulfuric acid at l〇〇Gc. (dipping) 3 minutes to remove the photoresist pattern and perform a purification process to remove the particles (see Figure 5j). " Then, perform the heat treatment process in the same case as above to absorb the redness of the AMC after the stress Released. Thus, a phase shift mask is obtained according to the embodiment of the second embodiment of the present invention, and the substrate is not only used in the phase shift mask substrate but also in the phase shift mask manufacturing process by the heat treatment process and the surface treatment process. The dependence decreases and the AMC concentration decreases. As a result, it can be manufactured. The phase shifts which can be applied to the KrF and ArF excimer lasers respectively have excellent photoresist patterns and no growth defects. /, <Comparative Example 1> 21 1297 A phase shift film from MoSiON, MoSiN A material of MoSiO, MoSiC, MoSiCO, MoSiCN, and MoSiCON was formed on the light-transmitting substrate, and the light-blocking film and the anti-reflection film were sequentially formed in the same manner as in Example 2. Then, a photoresist film having a thickness of 3000 to 4000 A is formed on an antireflection film having CAR to form a phase shift mask substrate without heat treatment or surface treatment. The measured AMC concentration is 2 312 ng/mask, which is a level at which the above-mentioned growth defects may occur during exposure to KrF or ArF quasi-sub-laser in a semiconductor lithography process. Further, when the pattern forming process is not performed, the footing 70 occurs at a positive CAR (see Fig. 6a), and the lower cut occurs at a negative CAR (see Fig. 6b). ^The reasons are as follows. During the formation of the film by reactive sputtering, nitrogen is added as a reaction gas. The reflectance, optical density, etching rate, film stability, and the like of the antireflection film are considered (see Fig. 7). The nitrogen atom has a pair of electrons three. When the CAR is coated to form a reticle pattern on the antireflective film, a strong acid is produced in the CAR exposed to the electron beam or laser which is amplified during the pEB process. Here, the CAR should be converted into a molecular form that can be visualized by the imaging agent. However, at the interface between the antireflection film and the CAR, the H+ ion is neutralized due to the nitrogen atom (Lewis base) and electrons, and the CARi H+ ion (Lewis receiving electron ' is shown in Fig. 7. @这,在未进行The surface treatment process is carried out, the base leg occurs at a positive CAR, and the undercut occurs at a negative CAR. As shown in the comparison 1, if the heat treatment and surface treatment process are not carried out during the manufacture of the reticle base, Obtaining a photoresist pattern, the 22 1297] defects are related to the substrate, and therefore ^ considerable longitudinal rupture occurs, making the first hood first. In addition, ^ _ A hood is exposed to KrF or ArF excimer transport There is a tendency to form the above-mentioned growth defects in the shooting day. The method for manufacturing the reticle substrate and the reticle according to the present invention is advantageous when the high-quality reticle of the CD accuracy is used: The surface treatment of the chromium-based anti-reflective film of the material is CAR^^, the basic nitrogen on the surface of the anti-reflective film can be decreased, and the neutralization reaction can be weakened. The result is substrate dependence, (3) knife solution And smooth and spread on the interface between the anti-reflection film and the photoresist film, so The base or undercut is minimized. The library can minimize the AMC concentration during the heat treatment process and divide the residual stress by ', then the first cover of the ancient mouth a 0 (four) reticle pattern is formed and the dry trace is present and used in the trace Or no, growth defects in the process of entering. The U-shirt of the knife field has been described in detail with reference to the preferred embodiment, but::: each: modification and substitution without departing from the invention;; In order to benefit from the spirit and scope of the stipulations. ΙΠ July special limited 丄 丄 ^ month has been disclosed as a better example, but it is not used to ^ any i (4) this artist, without departing from the spirit of the invention It is not possible to make a few changes and manifestations of the invention. Therefore, the scope of the patent is defined in the scope of the patent application. [Layer's Brief Description] Figures la to Id show the duality of the present invention (the horizontal of the bina process) Fig. 2 shows the extent of airborne molecular contamination before and after heat treatment and purification. Figures 3a to 3d are cross-sectional views of the preparation process of the binary reticle of the present invention. Figure 4 is a cross-sectional view of the phase shift mask substrate of the present invention Figures 5a to 5j are cross-sectional views showing the preparation process of the phase shift mask of the present invention. Figures 6a and 6b are cross-sectional views of a conventional photoresist pattern after the development process. Fig. 7 is a combination of nitrogen and strong acid. Reaction diagram [Major component symbol description] 10 Substrate 20 phase shift film 30 Light blocking film 30a, 30b Light blocking film pattern 40 Antireflection film 40a, 40b Antireflection film pattern 50 Monolayer 60 Photoresist film 60a Photoresist pattern 70 Base foot 80 cut 100 double mask base 110 phase shift mask base 24 1297 yeah 180 photoresist film 160a photoresist pattern 200 double mask 210 phase shift mask 25

Claims (1)

!297l〇3 月&amp;曰修(更)正本 19453pif 為第95107371號中文專利範圍無劃線修正本 十、申請專利範圍: 1·一種光罩基底,包括: 一透光基板; 至少-由形成在透光基板上的相移膜、光阻止膜 反射膜所構成之組(group)中所選取的臈丨 、几 二?阻膜’其形成在至少一膜上;以及 以:Γΐ子層,其以含梦的有機材料藉由表面處理而形 日耖膘、先阻止膜和抗反射膜所構 成之組(group)中所選取的膜之間。 摄而H光罩基底之製造妓,其包含由町各步驟所 且中所選取的至少一個步驟:製備-透光基板,在 =先J板上形成-種相移膜,在相移膜上形成—種光阻止 饮止光阻賴上形成—餘反射膜以及在抗反射膜上塗 师光阻, 由透光基板、相移膜、光阻止膜和抗反射膜所構成的 2所選取的至少-膜以含石夕之有機材料來進行表面處理 而形成一種單分子層。 3甘如申請專利範圍第2項所述之光罩基底之製造方 :中更包含以下各步驟所構成的組中所選取的至少一 =驟L在喊單分子層之前,對由透光基板、相移膜、 〜且止膜和抗反射膜所構成的組中所選取的至少一膜進行 淨化或熱處理。 法,=如申請,範圍第3項所述之光罩基底之製造方 其中更包含以下各步驟所構成的組中所選取的至少一 26 1297103 19453pif 為第95107371號中文專利範圍無劃線修正本 修正曰期: 九年&quot;月2¾ 王替換頁 個步驟:在形成單分子層之後,對由透光基板、相移膜、 光阻止膜和抗反射膜所構成的組中所選取的至少一膜進行 淨化或熱處理。 5· —種相移光罩基底之製造方法,其包含以下各步驟·· 製備一透光基板; 在透光基板上形成一種相移膜; 淨化此相移膜; 修 對已淨化的相移膜進行熱處理; 在已熱處理的相移膜上形成光阻止膜; 在光阻止膜上形成一種抗反射膜; 淨化此抗反射膜; 對已淨化的抗反射膜進行熱處理; 在已熱處理的抗反射膜上進行表面處理;以及 在已進行表面處理的抗反射膜上塗佈光阻。 # 6.-種光罩的製造方法,其特徵為藉由申請專利範圍 擊 ^ 2至5項中任—項所述之製造方法所製成的光罩基底來 形成光罩圖樣。 7·如申請專利範圍第6項所述之光罩的製造方法,其 中更包含以下各步驟所構成的組中所選取的至少一個步 ,:在光罩陳形成之後,以切的有機材·對已形成 勺臈進行淨化、熱處理和表面處理。 沾制8._種光罩’其特徵為以申請專利範圍第6或7項所進行 ^造方絲對-麵進行表面處_製成此光罩。 27!297l〇3月&amp;曰修(more)本本19453pif is the Chinese patent scope of No. 95107371 without a slash correction. Ten, the scope of application: 1. A reticle substrate comprising: a transparent substrate; at least - formed What are the selected ones in the group formed by the phase shift film and the light blocking film reflective film on the light-transmitting substrate? a resist film 'which is formed on at least one film; and a scorpion layer which is formed by a surface-treated organic material containing a dream material, which is formed by a surface treatment, a first blocking film, and an anti-reflection film. Between the selected membranes. The manufacturing process of the H-mask substrate comprises at least one step selected from the steps of the town: preparing a transparent substrate, forming a phase shifting film on the first J plate, on the phase shift film Forming a kind of light to prevent the formation of the photoresist on the photoresist - the residual reflection film and the photoresist on the anti-reflection film, and at least 2 selected from the light-transmitting substrate, the phase shift film, the light blocking film and the anti-reflection film - The film is surface treated with an organic material containing Shi Xi to form a monomolecular layer. [3] The manufacturer of the reticle substrate described in claim 2, wherein at least one selected from the group consisting of the following steps is preceded by a light-transmissive substrate. At least one film selected from the group consisting of a phase shift film, a stop film, and an anti-reflection film is subjected to purification or heat treatment. Method, if the application, the manufacturer of the reticle base described in the third item, further comprises at least one selected from the group consisting of the following steps: 1 1 297 103 19453 pif is the Chinese patent range No. 95107371 Correction period: nine years &quot; month 23⁄4 king replacement page step: after forming a monolayer, at least one selected from the group consisting of a light-transmitting substrate, a phase shift film, a light blocking film, and an anti-reflection film The membrane is subjected to purification or heat treatment. 5· a method for manufacturing a phase shift mask substrate, comprising the following steps: preparing a light transmissive substrate; forming a phase shift film on the light transmissive substrate; purifying the phase shift film; repairing the purified phase shift The film is subjected to heat treatment; a light blocking film is formed on the heat treated phase shift film; an antireflection film is formed on the light blocking film; the antireflection film is purified; the purified antireflection film is heat treated; and the heat treated antireflection is performed The surface treatment is performed on the film; and the photoresist is coated on the surface-treated anti-reflection film. #6- A method of manufacturing a reticle, which is characterized in that a reticle pattern is formed by a reticle substrate produced by the manufacturing method described in any one of the above claims. 7. The method of manufacturing a reticle according to claim 6, further comprising at least one step selected from the group consisting of: after the reticle is formed, the organic material is cut. Purification, heat treatment and surface treatment of the formed scoop. The etched 8._type reticle </ RTI> is characterized in that the reticle is made on the surface of the square wire of the patent application No. 6 or 7. 27
TW095107371A 2005-05-13 2006-03-06 Surface treatment method and mask blank and photomask therefrom TWI297103B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050040185 2005-05-13
KR1020050099596A KR100757537B1 (en) 2005-05-13 2005-10-21 Surface treatment method and blankmask and photomask thereof

Publications (2)

Publication Number Publication Date
TW200639579A TW200639579A (en) 2006-11-16
TWI297103B true TWI297103B (en) 2008-05-21

Family

ID=37704816

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095107371A TWI297103B (en) 2005-05-13 2006-03-06 Surface treatment method and mask blank and photomask therefrom

Country Status (2)

Country Link
KR (1) KR100757537B1 (en)
TW (1) TWI297103B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899396B1 (en) * 2008-01-29 2009-05-27 주식회사 하이닉스반도체 Blank mask and method for fabricating in the same and surface treatment method
KR101579848B1 (en) * 2014-08-29 2015-12-23 주식회사 에스앤에스텍 Phase Shift Blankmask and Photomask
KR101617727B1 (en) * 2015-07-24 2016-05-03 주식회사 에스앤에스텍 Blankmask and Photomask using the same
KR102392332B1 (en) * 2021-06-08 2022-04-28 에스케이씨솔믹스 주식회사 Blank mask and photomask using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138282B2 (en) 2001-09-14 2008-08-27 シャープ株式会社 Method for manufacturing organic electroluminescence element

Also Published As

Publication number Publication date
KR100757537B1 (en) 2007-09-11
KR20060117162A (en) 2006-11-16
TW200639579A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
KR101485754B1 (en) Blank mask for euv and photomask manufactured thereof
KR100948770B1 (en) Blankmask, Photomask and it&#39;s Manufacturing Method
TWI409580B (en) Blankmask, photomask and method for manufacturing the same
TWI484286B (en) A mask substrate and a transfer mask, and a method for manufacturing the transfer mask
JP7193344B2 (en) Reflective mask blank, method for manufacturing reflective mask, and method for manufacturing semiconductor device
TWI380127B (en) Half-tone phase shift blankmask, half-tone phase shift photomask and its manufacturing method
TW201527868A (en) Photomask blank and method for manufacturing photomask blank
KR100720334B1 (en) Half-tone type phase shift blank mask and manufacturing method of the same
CN110554563A (en) Photomask blank, method of manufacturing photomask, and photomask
CN111758071A (en) Mask blank, phase shift mask and method for manufacturing semiconductor device
TWI297103B (en) Surface treatment method and mask blank and photomask therefrom
TWI453532B (en) Blankmask, photomask, and method for manufacturing the same
JP4478568B2 (en) Method of using an amorphous carbon layer for the production of an improved reticle
EP3979001A1 (en) Photomask blank, method for producing photomask, and photomask
KR100635019B1 (en) Blank Mask and Photo Mask and Method for Manufacturing thereof
JP4923465B2 (en) Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, manufacturing method thereof, and pattern transfer method
US20240069431A1 (en) Method of manufacturing photo masks
JP6523873B2 (en) Method of manufacturing mask blank, method of manufacturing transfer mask, and mask blank
JPWO2020066590A1 (en) Manufacturing method for mask blanks, transfer masks and semiconductor devices
KR101593390B1 (en) Blank mask and photo mask and method for manufacturing thereof
JPWO2020066591A1 (en) Manufacturing method for mask blanks, transfer masks and semiconductor devices
US7300880B2 (en) Methods for forming fine photoresist patterns
KR20110016732A (en) Process method of blankmask and photomask
KR20070072337A (en) Half-tone phase shift blankmask, photomask and manufacturing method thereof
KR20110016737A (en) Blank mask and photo mask and method for manufacturing thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees