TWI295878B - Ac servo drive without current sensor - Google Patents

Ac servo drive without current sensor Download PDF

Info

Publication number
TWI295878B
TWI295878B TW94133691A TW94133691A TWI295878B TW I295878 B TWI295878 B TW I295878B TW 94133691 A TW94133691 A TW 94133691A TW 94133691 A TW94133691 A TW 94133691A TW I295878 B TWI295878 B TW I295878B
Authority
TW
Taiwan
Prior art keywords
signal
current
servo
speed
controller
Prior art date
Application number
TW94133691A
Other languages
Chinese (zh)
Other versions
TW200713790A (en
Inventor
Ching Hsiung Tsai
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to TW94133691A priority Critical patent/TWI295878B/en
Publication of TW200713790A publication Critical patent/TW200713790A/en
Application granted granted Critical
Publication of TWI295878B publication Critical patent/TWI295878B/en

Links

Description

1205878 九、發明說明: 【發明所屬之技術領域】 本發明之一種免電流感測器的交流伺服驅動器,尤指 一種直接以開迴路控制,藉由伺服馬達之編碼器接受之電 流指令信號作為解耦合所需之迴授電流信號,具有應用於 交,伺服模組中呈線性行為控制舰馬達動作之免電流感 測器的交流伺服驅動器。 【先前技術】1205878 IX. Description of the Invention: [Technical Field] The present invention relates to an AC servo driver for a current-free sensor, in particular, a direct current loop control, and a current command signal received by an encoder of a servo motor as a solution The feedback current signal required for coupling has an AC servo driver for the current-free sensor that is used in the servo module and has a linear behavior to control the motion of the ship motor. [Prior Art]

請參閱第-圖所示,習知交流伺服模組包括:交流祠 服驅動A 1連接-伺服馬達2組成,伺服馬達2内含一個 編碼器(目巾未㈣)’該以速度模式控制架構之交流伺 服驅動益1 ’包含·—第一比例積分⑽控制器1 1, d q軸之第—、二比例積分(PI)控制器1 2、1 3,-第一座㈣換ϋ14,—脈波寬度讀器15,三相連結 之多數電流感測器16,一第二座標變換器17,一解麵 =器18,-計數器19及一速度估側器2〇所構成。 ,、中該伺服馬達2之線圈轉移函數(s )=丄/ (l s屮 ) 代表%組電感值,R代表一繞組電阻值,在 土述習知的交流飼服驅動器1電流迴路架構下,該解耦補 ^與激^電流Id、轉矩電流㈣角速度W有關,解耦補 :1 8 Ik時保持作用,該定子系統即可簡化如第二圖所 示,一 d軸或q軸的筮一 I , 弟一或弟三比例積分(PI)控制器1 、1 3與伺服馬達2之線圈轉移函數(s ) = 1 / ( L s + R) Μ之_木構’並由飼服馬達2取得定子電流, 6 1295878 包含激磁電流id、轉矩雷泠Τη、π p : 令信經與‘*作=了:以解耦合補_ 作為d軸或q軸之第二或第三比例積 为()控制器12、13之輸入電流指令信號。、 再,月參閱第二圖所不,係為上述第一圖所示習知 流伺服模組的模組系統響應曲線示意圖,並以猶,纖 _ 2馬達傳動5倍慣量負載為例所獲得之響應曲線,其 中該第三圖上部份曲線圖中的八線為速度命令,b線為實 IV、的輸出速度’第二圖下部份曲線圖中的c線為對應的 iq :p令,d線為回授的電流。由於有電流感測器感測回 授電流’所以第三圖下部份曲線圖中的C、D兩線非常重 合為一。 心上速習知交流伺服模組中,該伺服馬達2利用編碼器 接文電流指令信號,提供轉子初始角度以便交流伺服驅動 器1產生與轉子磁場垂直之定子電流,但因永磁式伺服馬 達2之輸入電壓、電流及轉速間非為線性關係,必需利用 φ電流感測器1 6以取得祠服馬達2三相之定子電流並迴授 至電流迴路以進行解轉合(D麵Pling ),使得電流迴路 王線線性關係行為’此迴授電流以解麵合架構,在高性能 的交流伺服驅動控制架構中是非常重要,X,已知一般電 流感測器應用於大功率之交流祠服驅動控制架構時,只能 採用霍爾效應(Hall_effect )感測元件(下簡稱霍爾元b 件)配置以測取定子電流迴授,⑮,霍爾元件具有對溫度 產生溫飄現象之特性,即容易因高溫而產生感測值升高之 特性問題,並無法解決或改善該問題,再者,為獲得上述 7 1205878 測取三相定子電流作迴授,在習知架構下必需配置多數個 電流感測器,所測取得之迴授電流信號又需經一 轉換器17作轉換方適於匹配為迴授信號,當然在元件: 本及未來維修等都需較高的成本,並無法獲得成本降低 (cost down ) 〇 【發明内容】 本發明之主要目的,在於解決上述傳統缺失,避免缺 失存在,本發明以開迴路控制架構設計,藉由伺服馬達之 編碼器所接受之電流指令訊號,直接作為解麵合所需之迴 ^電號|得電流迴路系統在除去電流感測器後,依 然具有解搞合功能,改善電流感測器溫飄特性惡化飼服馬 成本問題,以提供低廉但高實用性之免電流感測 為的父流伺服驅動器。 服赃i?上述之目㈣’本發明之不需電流感測器的交流伺 包^有益,以連接飼服馬達組成交流飼服模組,該驅動器 一伺服馬達,其内具有一編碼器; 轴的令與編碼器所產生迴受速度相減後而產生q 复電机°卩々,而d軸電流在永磁馬達應用是設為零,但 二%、用疋可叹其他值;經由兩個一階控 =可得輸出至馬達的d、。轴的未含解麵合的輪= 為艇i =麵補j員裔’其利用該飼服模組之電流指令信號作 為解輕合所需之迴授電流,並與上述輸出電壓指令信號形 以5878 成一經解耦補償之控制信號; 標轉換器,係將上述該控制信號進行“心座 卞—脈波寬度調變器,將上述經座標轉換 就,調變產生脈波宽产力 ^fJis 生旋轉轉矩; 伺服馬達,使其產 —計數器,連接上述飼服馬達之編石馬器, 又Ί k號’作為上述座標轉換器變 = 發時序信號,及速度估測錢;讀…之觸 —速度估測器,根據計數哭輪 測伺服馬隸、# ηΓ 角速度感測信號估 償速,並輸出一角速度迴授信號至上述解麵補 :4同日寸與伺服模組一角速度指令信號w形成一輸入 於比例積分(ΡΙ)控制器之指令信號。 ' 【實施方式】 明如^有關本發明之技術内容及詳細說明,現配合圖式說 請參閱第四圖所示,係本發明之不需電流感測器的交 “服驅動器於速度模式控制架構下之方塊示意圖。如圖 所不·本發明之交流舰模組包括有:—伺服馬達3及一 連接於伺服馬達3之交流伺服驅動器4,以及前述之交流 飼服驅動器4具有比例積分(ΡΙ)控制器4 i,第—、二二 階控制器42、43’ -解耦補償器44,一座標_哭 45 ’ -脈波寬度調變器46,一速度估測器以及一計 數器4 8,以構成-開迴路控制之驅動器電流迴路,利用 1205878 速度命令與飼服馬達3内含之編碼器(圖中未示)產生迴 授速度而生成速度誤差,經由比例積分⑽控制器4工而 產生電流指令信號’直接作為解勒合所需之迴授電奸 號,使得電流迴路系統在除去電流感測器後,依然且有° ,合:力能,具有改善電流感應器溫飄特性惡化伺服馬達控 制及成本問題,以提供低廉但高實用性之免電流 交流伺服驅動器。 心、„令 上述所提飼服馬達3内含之編碼器,係為—角声 益’如解角器(resolver )、光電編碼器(又” 等之其—’以量_子絕對位置或轉子旋 :位置’並產生—角速度感測信號迴授至驅動器速度迴 上述所提之比例積分(PI)控制器4 1, 、 換:功能,接受伺服模組一角速度指令信號與I述::欠 測為4 7迴授之轉速迴授信號所形成—指令;;了又估 積,)控制器4 1變換並輸出一由伺服馬虎之:比:j 迴授導出之q軸轉矩電流指令信號iq *。 、,碼益 該第-、二一階控制器42、43,係為 d、q轴之電壓變換器功能,其中該d轴之第〜 器4 2直接接受由伺服模組之一的電流指令-階控制 馬達3所内含的編碼器產生電流迴授信號^由伺服 磁電流指令信_*,並產生輸出電壓指=入之激 該α鈾夕笛- 7丨°現Vd、να, 制器“::=_43則接受上述、 4丄镧出之轉矩電流指令Iq *。 ”工 1295878 該解摩馬補償器4 /1,4 , , 、4 4 其利用該伺服模組之一的電湳# 令信號於伺服馬達3所肉人从&amp;押女^ L ^ ^ 、 斤内含的編碼裔產生解耦電流信號迴 授’作為解麵合所需之迴# ^ 而 &lt; 纪杈電流,並包括激磁電流Id與轉 矩電流Iq,並與上述由d^筮 — 一 ^ α Q軸之弟一、二一階控制器4 2、4 3分別輸出之雷题扣人^α 〇&gt;少一 电/^ 1曰令k 5虎,升少成一經解耦補償 控制信號輸出; 該座標轉換器4 5,係將上述該經解编補償器之d、 q軸I制&lt;口说’進行d、q軸座標轉換為三相電壓指令, 並輸出.至脈波寬度調變||46,將上述經座標轉換後之三 相電壓指令控制信號,調變產生脈波寬度調變信號輸出至 伺服馬達3,使其產生旋轉轉矩; 該計數器4 8,連接上述飼服馬達3之編碼器,以輸 出角速度感測信號,作為上述座標轉換器4 5、脈波寬度 調變器1 6之觸發時序信;虎,及速度估測器4 7之輸入信 號; 該速度估測器4 7,根據計數器4 8輸出之角速度感 測信號估測伺服馬達速度,並輸出一角速度迴授信號至上 述解耦補償器4 4,同時與該伺服模組之角速度措令信號 w形成一輸入於pi控制器4 1之指令信號。 請參閱第五圖所示,係本發明之不需電流感測器的交 流伺服驅動器於電流模式控制架構下之方塊示意圖。如圖 所示··本發明之交流伺服模組包括有··一伺服馬達3及一 連接於飼服馬達3之父流飼服驅動器4,該交流飼服驅動 器4具有第一、二一階控制器4 2、4 3,一解耦補償器 1295878 4 4,一座標轉換器4 5,一脈波寬度調變器4 6,一計 數器4 8及一速度估測器47,以構成一開迴路控制之驅 動器電流迴路,同樣直接利用伺服模組之一的電流指令信 號於伺服馬達3所内含之編碼器產生解耦電流信號迴授, 並包括激磁電流Id與轉矩電流Iq,作為解耦合所需之迴授 電流,以及速度估測器4 7迴授之角速度迴授信號,產生 解耦合電流信號與第一、二一階控制器42、43產生之 輸出電壓指令信號Vd、VQ’形成一經解搞補償之控制信號 輸出至座標轉換器4 5,轉換為三相電壓指令後經脈波寬 度調變器46調變產生脈波寬度調變信號,輸出至饲服馬 達3使其產生旋轉轉矩。 由於上述第四、五圖所示之交流伺服驅動器之電流迴 路已不需電流感測器迴授定子電流信號,而以開迴路架構 直接控制,並由舰馬達3时之編碼驗程式控制產生 迴授電流。當第-圖之電流迴路被要求BW (Hz)的開迴路頻 寬(open loop bandwidth),則上述二d、q軸之第二、三比 例積分(PI)控制器1 2、1 3可設為27tW(Ls+r)/s,則可 將第二圖所示習知架構之簡化方塊圖等效於第六圖所示之 架構,設為2錢洲)/s之d轴與q軸的第二、三比例積 刀(PI) &amp;制◎ 1 2、1 3 ’與飼服馬達3之線圈轉移函數 (S 1 ’(L S + R)間之關係架構;同時,因已無 電流感測器配置’而永磁式伺服馬達3定子的電感[愈電 阻R隨著溫度升高的增加比例不大,所以心、丨軸的第 -、二-P皆控制器4 2、4 3可等效於271*鐵_)/(3 + 1295878 咖,進而將其架構簡化等效如第七圖所示架構 效設為hWtts+R)/(s + 2π*Μ)之d轴與q軸的第一、二一 階控制器4 2、4 3,與飼服馬達3之線圈轉移函數 (s) =1/ (Ls+r)間無定子電流迴授之關係架 構。 再,請參閲第八圖所示,係為上述第四、五圖所示本 發明之交流飼服模組的模組系統響應曲線示意圖,同樣係 以在篇,細rpm㈤馬達傳動5倍慣量賴為例所獲得之 響應曲線,其中該第八圖下部份曲線圖中的㈣,(^為 對應的Iq命令,Η線為回授的電流,可知,因應產生的 W命令與實際的電流輸出有少許差異。但是第八圖上部 伤曲線圖中,E線為速度命令,卜線為實際的輸出速度, _線的速度響應顯示,卻與第三圖之習知由電流感測 益回疋子電流架構幾乎完全相同。儘管各祠服馬達定子 電阻及電感會存在-些少許差異,但是速度迴路環是可以 輕易補償。 上述僅為本發明之較佳實施例而已,並非用來限定本 發明實施範圍。即凡依本發明申請專利範圍所做的均等變 化與修飾,皆為本發明專利範圍所涵蓋。 【圖式簡單說明】 第一圖係習知架構之電流迴路方塊示意圖。 第一圖係習知架構簡化後之電流迴路方塊示意圖。 第二圖係習知架橋之模組系統響應曲線示意圖。 第四圖係本發明於速度模式控制架構之電流迴路方塊示意 13 1295878 圖。 ^五圖係本發㈣電流模式控制架構之钱迴路方塊示意 二圖係本發明於開迴路要求τ由該習知簡 電流迴路方塊示意圖。 疋間化 ί七圖係本發明第六圖等效之簡化電流迴路方塊示意圖。 弟八圖係本發明之模組系統響應曲線示意圖。 ” 【主要元件符號說明】 本發明主要元件符號說明 祠服馬達 β 比例積分(PI)控制器 41 解耦補償器 44 脈波寬度調變器4 6 速度估測器 47 習知主要元件符號說明 交流飼服驅動器 1 第一比例積分(PI)控制器1 第二比例積分(PI)控制器1 第二比例積分(PI)控制器1 第一座標轉換器 1 4 電流感測器 1 a 交流伺服驅動器 第—階控制器 座標轉換器 計數器 第二一階控制器 伺服馬達 4 4444 解耦補償器 速度估側器 脈波寬度調變器 6 弟二座標變換 8 計數器 2 0 器 79 14Referring to the figure, the conventional AC servo module includes: an AC servo drive A 1 connection-servo motor 2, and the servo motor 2 includes an encoder (the eyepiece is not (4)). The speed mode control architecture AC servo drive benefit 1 'includes · first proportional integral (10) controller 1 1, dq axis first -, two proportional integral (PI) controller 1 2, 1 3, - first seat (four) change ϋ 14, pulse The wave width reader 15, the three-phase connected majority current sensor 16, a second coordinate converter 17, a solution surface = 18, a counter 19 and a speed estimator 2 are formed. , the coil transfer function of the servo motor 2 (s) = 丄 / (ls 屮) represents the % group inductance value, and R represents a winding resistance value, under the well-known AC feed drive 1 current loop architecture, The decoupling compensation is related to the excitation current Id and the torque current (four) angular velocity W. The decoupling compensation is maintained at 18 Ik, and the stator system can be simplified as shown in the second figure, a d-axis or a q-axis.筮一I, brother one or younger three proportional integral (PI) controller 1, 1, 3 and servo motor 2 coil transfer function (s) = 1 / (L s + R) Μ _ wood structure 'and by serving Motor 2 takes the stator current, 6 1295878 contains the excitation current id, torque Thunder η, π p : Let the creed and '* do =: decouple the complement _ as the second or third ratio of the d-axis or q-axis The product is the input current command signal of the controllers 12 and 13. And then, refer to the second figure, which is the schematic diagram of the response curve of the module system of the conventional flow servo module shown in the first figure above, and takes the example of the 5 times inertia load of the _ 2 motor drive. The response curve, wherein the eight lines in the partial graph on the third graph are the speed command, the b line is the output speed of the real IV, and the c line in the partial graph in the second graph is the corresponding iq :p Let d line be the current of feedback. Since the current sensor senses the feedback current', the C and D lines in the lower part of the graph in the third figure are very coincident. In the heart-speed learning AC servo module, the servo motor 2 uses the encoder to receive the current command signal to provide the initial angle of the rotor so that the AC servo driver 1 generates a stator current perpendicular to the rotor magnetic field, but the permanent magnet servo motor 2 The input voltage, current and speed are not linear. It is necessary to use the φ current sensor 16 to obtain the stator current of the three phases of the motor 2 and return it to the current loop for decoupling (D-face Pling). This makes the current loop king line linear relationship behavior 'this feedback current to solve the surface structure, is very important in the high performance AC servo drive control architecture, X, the general current sensor is known to be applied to high power AC service When driving the control architecture, only the Hall effect (Hall_effect) sensing component (hereinafter referred to as Hall element b) configuration can be used to measure the stator current feedback. 15. The Hall element has the characteristic of temperature drift to the temperature. That is, it is easy to cause the characteristic value of the rising of the sensing value due to the high temperature, and the problem cannot be solved or improved. Furthermore, in order to obtain the three-phase stator current of the above 7 1205878, it is returned. In the conventional architecture, it is necessary to configure a plurality of current sensors, and the feedback current signal obtained by the measurement needs to be converted by a converter 17 to be matched as a feedback signal, of course, in components: this and future maintenance. The invention requires a relatively high cost and cannot obtain a cost down. [Invention] The main object of the present invention is to solve the above-mentioned conventional deficiencies and avoid the existence of a defect. The present invention is designed with an open loop control architecture, and is provided by a servo. The current command signal received by the encoder of the motor is directly used as the returning electric number required for the solution surface. The current loop system still has the function of decomposing after removing the current sensor, improving the temperature of the current sensor. The characteristic deteriorates the cost of feeding horses to provide a low-cost but highly practical current-free sensing for the parent-stream servo drive. The above-mentioned purpose (4) 'The present invention does not require a current sensor for the AC servo package ^ beneficial to connect the feeding motor to form an AC feeding device module, the driver is a servo motor, which has an encoder therein; The rotation of the shaft is subtracted from the speed of the encoder, and the q-complex motor is generated. The d-axis current is set to zero in the permanent magnet motor application, but the second value is sighed by other values; Two first-order controls = d, which can be output to the motor. The wheel of the shaft without the solution surface = for the boat i = face complement j member's use of the current command signal of the feeding suit module as the feedback current required for the decoupling, and the output voltage command signal shape The control signal is decoupled and compensated by 5878; the standard converter performs the above-mentioned control signal on the "heart-sink-pulse width modulator", and the above-mentioned coordinate conversion is performed, and the pulse width is generated by modulation. fJis raw rotation torque; servo motor, its production-counter, connected to the above-mentioned feeding machine motor stone machine, and Ί k number ' as the above coordinate converter change = timing signal, and speed estimation money; read... Touch-speed estimator, according to the counting crying wheel test servo Ma Li, # ηΓ angular velocity sensing signal to estimate the speed, and output a corner speed feedback signal to the above solution surface compensation: 4 same day and the servo module corner speed command The signal w forms a command signal input to the proportional-integral (ΡΙ) controller. 'Embodiment </ RTI> The technical content and detailed description of the present invention are as shown in the fourth figure. Invention does not require current Cross detector "server driver block diagram of the control mode to the speed under the framework. The AC ship module of the present invention includes: a servo motor 3 and an AC servo drive 4 connected to the servo motor 3, and the aforementioned AC feeder drive 4 has a proportional integral (ΡΙ) controller 4 i , the first, second and second order controllers 42, 43' - decoupling compensator 44, a standard _ cry 45 ' - pulse width modulator 46, a speed estimator and a counter 4 8 to constitute - open The drive current loop of the loop control generates a speed error by using a 1205878 speed command and an encoder (not shown) included in the feeding motor 3 to generate a speed error, and generates a current command signal through a proportional integral (10) controller. Directly used as the feedback rapper number required for the decoupling, so that the current loop system still has the °, the combination of the force energy after the current sensor is removed, and the improved temperature sensor characteristic of the current sensor deteriorates the servo motor control and cost. The problem is to provide a low-cost but highly practical, current-free AC servo drive. The heart, the encoder contained in the motor 3 of the above-mentioned feeding machine is a horn sound benefit, such as a resolver, a photoelectric encoder (also known as "a" or "absolute position" Rotor rotation: position 'and generates - angular velocity sensing signal feedback to the drive speed back to the above mentioned proportional integral (PI) controller 4 1, change: function, accept the servo module corner speed command signal and I:: The under-test is formed by the feedback feedback signal of 4 7 feedbacks; the instruction is estimated; the controller 4 1 transforms and outputs a servo sloppy: ratio: j feedback derived q-axis torque current command Signal iq *. The first and second-order controllers 42, 43 are the voltage converter functions of the d and q axes, wherein the d-axis of the fourth unit directly receives the current command from one of the servo modules. The encoder contained in the -step control motor 3 generates a current feedback signal ^ by the servo magnetic current command signal _*, and generates an output voltage finger = the excitation of the alpha uranium whistle - 7 丨 ° Vd, να, The device "::=_43 accepts the above-mentioned, 4 output torque current command Iq *." 1295878 The solution of the horse compensation device 4 / 1, 4, , , 4 4 using one of the servo modules Electric 湳# causes the signal to be generated by the decoupling current signal from the coded person contained in the servo motor 3 and the amp; ^ ^ ^ ^, the code contained in the jin, as the back of the solution ^ ^ and < 纪杈 current, and includes the excitation current Id and the torque current Iq, and the above-mentioned output of the first and second-order controllers 4 2, 4 3 by the d^筮-一^ α Q axis respectively 〇> Less one electric / ^ 1 曰 k k 5 tiger, 少 成 一 一 一 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解 解;mouth 'The d and q axis coordinates are converted into three-phase voltage commands, and output. To the pulse width modulation||46, the above-mentioned coordinate-converted three-phase voltage command control signal is modulated to generate a pulse width modulation signal. Output to the servo motor 3 to generate a rotational torque; the counter 4 8 is connected to the encoder of the feeding motor 3 to output an angular velocity sensing signal as the coordinate converter 45 and the pulse width modulator 1 The trigger timing signal of 6; the input signal of the tiger and the speed estimator 47; the speed estimator 47 7, estimating the servo motor speed according to the angular velocity sensing signal output by the counter 48, and outputting an angular velocity feedback signal To the above-described decoupling compensator 44, a command signal input to the pi controller 41 is formed simultaneously with the angular velocity command signal w of the servo module. Please refer to the fifth figure, which is a block diagram of the AC servo driver of the present invention without current sensor under the current mode control architecture. As shown in the figure, the AC servo module of the present invention includes a servo motor 3 and a parent feeding device driver 4 connected to the feeding motor 3, and the AC feeding device 4 has first and second steps. Controllers 4, 4 3, a decoupling compensator 1295878 4 4, a standard converter 4 5, a pulse width modulator 4 6, a counter 4 8 and a speed estimator 47 to form an open The drive current loop of the loop control also directly uses the current command signal of one of the servo modules to generate a decoupling current signal feedback to the encoder included in the servo motor 3, and includes the excitation current Id and the torque current Iq as a solution. The feedback current required for coupling, and the angular velocity feedback signal fed back by the speed estimator 47, generate the decoupling current signal and the output voltage command signals Vd, VQ' generated by the first and second-order controllers 42, 43 The control signal outputted to the compensation is output to the coordinate converter 45, converted into a three-phase voltage command, and modulated by the pulse width modulator 46 to generate a pulse width modulation signal, which is output to the feeding motor 3 for rotation. Torque. Since the current loop of the AC servo drive shown in the above fourth and fifth figures does not require the current sensor to feedback the stator current signal, it is directly controlled by the open circuit architecture, and is generated by the code motor control of the ship motor 3 Give current. When the current loop of the first graph is required to open loop bandwidth of BW (Hz), the second and third proportional integral (PI) controllers 1 2, 1 3 of the above two d, q axes may be set. For 27tW(Ls+r)/s, the simplified block diagram of the conventional architecture shown in the second figure can be equivalent to the architecture shown in the sixth figure, and it is set to the d-axis and q-axis of 2 Qianzhou)/s. The relationship between the second and third proportional product knives (PI) &amp; ◎ 1 2, 1 3 ' and the coil transfer function of the feeding motor 3 (S 1 '(LS + R); at the same time, because there is no current The sensor configuration 'and the inductance of the stator of the permanent magnet servo motor 3 [the resistance R increases little with the increase of temperature, so the first and second-P of the heart and the shaft are both controllers 4 2, 4 3 Can be equivalent to 271 * iron _) / (3 + 1295878 coffee, and then its architecture is simplified equivalent as the architecture shown in Figure 7 is set to hWtts + R) / (s + 2π * Μ) d-axis and q The first and second-order controllers 4, 4 3 of the shaft have no relationship with the stator current feedback between the coil transfer function (s) =1/(Ls+r) of the feeding motor 3. Further, please refer to the eighth figure, which is a schematic diagram of the response curve of the module system of the AC feeding suit module of the present invention shown in the above fourth and fifth figures, which is also in the article, fine rpm (5) motor drive 5 times inertia The response curve obtained by the example is the (4) in the part of the graph in the eighth figure, (^ is the corresponding Iq command, and the Η line is the feedback current. It can be seen that the W command and the actual current are generated. There is a slight difference in the output. However, in the upper damage graph of the eighth figure, the E line is the speed command, the line is the actual output speed, the speed response of the _ line is displayed, but the conventional knowledge of the third figure is benefited by the current sensing. The scorpion current architecture is almost identical. Although there are some differences in the stator resistance and inductance of each motor, the speed loop can be easily compensated. The above is only a preferred embodiment of the present invention, and is not intended to limit the present invention. The scope of the invention, that is, the equivalent changes and modifications made by the scope of the present invention are covered by the scope of the invention. [The simple description of the figure] The first figure is the current circuit block of the conventional architecture. The first figure is a simplified schematic diagram of the current circuit block of the conventional architecture. The second figure is a schematic diagram of the module system response curve of the conventional bridge. The fourth figure is the current circuit block diagram of the speed mode control architecture of the present invention 13 1295878 Fig. ^五图系本发(4) The current circuit control architecture of the money circuit block diagram 2 is the schematic diagram of the present invention in the open loop requirement τ from the conventional simplified current loop block diagram. Schematic diagram of the equivalent simplified current loop block diagram. The eighth diagram is a schematic diagram of the response curve of the module system of the present invention. ” [Main component symbol description] The main component symbol of the present invention describes the motor β proportional integral (PI) controller 41 decoupling Compensator 44 Pulse Width Modulator 4 6 Speed Estimator 47 Conventional Main Components Symbol Description AC Feeding Driver 1 First Proportional Integral (PI) Controller 1 Second Proportional (PI) Controller 1 Second Proportion Integral (PI) controller 1 first standard converter 1 4 current sensor 1 a AC servo driver first-order controller coordinate converter counter second one The controller 44444 servomotor velocity estimation decoupling compensator-side pulse width modulation controller 6 brother two coordinate transformation unit 8 counter 20 7914

Claims (1)

1295878 十、申請專利範圍: 1、一種不需電流威、 服馬達及一連接於伺:^冽器的交流伺服驅動器,係由伺 服驅動器包括有:比稽=之交流伺服驅動器,該交流伺 制器、一解轉補償p、」(I) #工制器、至少二個一卩皆控 器、-計數器及一:度估=轉換器、、-脈波寬度調變 流伺服驅動器電流迴路;、裔以構成一開迴路控制之交 ,電流指:信含編瑪器所接受飼服模組之-信號,配合速度估測二;解麵合所需之電流迴授 號,產生解輕合電流信號,藉2=迴1角速度迴授信 產生之輸出電壓指令信、一d、q軸之一階控制器 制信號輸出至座標轉換器補償之控 寬度調變器調變產生脈波寬度調變 使其產生旋轉轉矩。 又巧“號,輸出至伺服馬達 於六種不需電流感測器的交流飼服驅動器’以應用 制,包括: 進灯具合功能之飼服馬達向量控 一伺服馬達,内含設一編碼器; 一比例積分⑽控制器,接受飼服模、组一角速 信號與速度估測器迴授之轉速迴授信號所形成之指 號,並變換輪出一轉矩電流指令信號Iq * ; 二至少二個一階控制器,其利用該伺服模組之電流指入 信號於編W產生電流迴授錢,作為d、q軸之一 ^ 15 1295878 制器的輸入電流指令信號,並產生—輪出 、 Vd - VQ ; ^ ^ 一解耦補償器,其利用談伺服模組之 人 編碼器產生解耦電流信號迴授’作為解耦合工: 】號並與上述輸出電壓指令信號形成一經解麵補償之= -座標轉換器,係將上述該控制錢進行d 紅 標轉換並輸出; q轴座 -脈波寬度調變器’將上述經座標轉換後之控 號’调變產生脈波寬度調變信號輸出至飼服: 生旋轉轉矩;便具產 、-計數器,連接上述伺服馬達之編媽器,以輪 度感測=號,作為上述座標轉換器、脈波寬度調變器之觸 發時序#號,及速度估測器之輸入信號; -速度估測器’根據計數器輸出之角速 測飼服馬㈣速’錢㈣度迴授迴授信號至上述解 麵補償器,同時與飼服模組一角速度指令信號W形成-輸 入於比例積分(PI)控制器之指令信號。 3、如申請專利範圍第2項料的不需電流感測器的 交流龍驅動器’其中,該飼服馬達内含之編碼器,係為 -角度編石馬器,如解角器(res〇lver )、光電編碼器 (photo encoder )等之其_,並產生角速度感測信號迴授 至驅動器電流迴路。 1 ' ' · . 4 種*需電流感測器的交流飼服驅動器,以應用 1295878 於父流飼服模組中 制,包括: 進行具解搞合功能之伺服 焉達向量控 編碼器 一伺服馬達,内含設 至&gt;、—個一階控制器,其利用該伺服模纟且 令信號於編碼n產生㈣迴授錢,作為d 電流指 控制器的輸入電流指令芦泸,4 之一階 號; L?“1“虎並產生-輪出電壓指令信 一解_償器’利用該舰模組之—電流指 碼=生咖流信號迴授,作為解轉合所二 ㈣i:號 述輸出電壓指令信號形成一經解輕補償之 係將上述該控制信號進行d、q軸座 一座標轉換器 標轉換並輸出; 丄一脈波寬頻調變控制器,將上述經座標轉換後之控制 信號,調變產生脈波寬頻調變信號輸出至祠服馬達,^ 產生旋轉轉矩; /、 、一計數器,連接上述伺服馬達之編碼器,以輸出角速 度感測信號,作為上述座標轉換器、脈波寬頻調變控制器 之觸發呤序信號,及速度估測器之輸入信號; 一速度估測器,根據計數器輸出之角速度感測信號估 測伺服馬達轉速,並輸出一角速度迴授信號至上述解耦 償器。 171295878 X. The scope of application for patents: 1. An AC servo drive that does not require current, a motor, and an AC servo connected to the servo: the servo drive includes: an AC servo drive that is: , a solution to compensate p, "(I) #工制器, at least two controllers, - counter and one: degree estimation = converter, - pulse width modulation stream servo drive current loop; The genus constitutes an open circuit control, and the current refers to: the letter containing the feeding device module of the coder, the speed estimation 2; the current feedback number required to solve the surface, resulting in the solution Current signal, output signal command signal generated by 2=back 1 angular velocity feedback, 1st, q-axis one-step controller system signal output to coordinate converter compensation control width modulator modulation to generate pulse width modulation It produces a rotational torque. Also, the "number, output to the servo motor in six kinds of AC feed driver without current sensor" is applied, including: the feeding motor motor vector control servo motor with the function of the lamp, including an encoder A proportional integral (10) controller receives the indication formed by the feeding service mode, the group angular velocity signal and the speed feedback signal fed back by the speed estimator, and converts a torque current command signal Iq*; Two first-order controllers, which use the current input signal of the servo module to generate current back to the code, as an input current command signal of one of the d and q axes, and generate a round-out , Vd - VQ ; ^ ^ A decoupling compensator, which uses the human encoder of the servo module to generate the decoupling current signal feedback 'as the decoupling work: 】 number and forms a solution surface compensation with the above output voltage command signal = - coordinate converter, the above control money is converted into red mark and output; q-axis seat - pulse width modulator 'transforms the above-mentioned coordinate-converted control number to generate pulse width modulation Signal output Feeding suit: raw rotating torque; stool production, - counter, connected to the servo motor of the above-mentioned servo motor, with the rotation sensing = number, as the above-mentioned coordinate converter, pulse width modulator trigger timing #, And the speed estimator input signal; - the speed estimator 'according to the counter output angle of the feeding service horse (four) speed 'money (four) degree feedback feedback signal to the above-mentioned solution compensator, and one with the feeding module The angular velocity command signal W is formed and input to a command signal of a proportional integral (PI) controller. 3. An AC dragon driver that does not require a current sensor as in the second item of the patent application, wherein the feed motor includes The encoder is an angle-angled stone machine, such as a resolver (res〇lver), a photo encoder, etc., and generates an angular velocity sensing signal to be fed back to the driver current loop. · 4 kinds of AC feed drive drivers for current sensors, used in the application of 1295878 in the parent feeding device module, including: Servo motor vector encoder with a decoupling function, a servo motor, Included to &gt;, - A first-order controller that utilizes the servo module and causes the signal to generate (four) return money in the code n, as the input current command of the d current finger controller, the reed, 4 one-order number; L? "1" - The output voltage command letter is solved. The compensation module uses the ship module - current finger code = raw coffee stream signal feedback, as the solution transfer two (four) i: the output voltage command signal forms a light compensation The control signal is converted into a standard index converter of d and q axis, and outputted; a pulse width modulation controller converts the control signal converted by the coordinate to generate a pulse width modulation signal. Output to the servo motor, ^ generates a rotational torque; /, a counter, connected to the encoder of the servo motor to output an angular velocity sensing signal, as a trigger sequence of the coordinate converter and the pulse width modulation controller a signal and an input signal of the speed estimator; a speed estimator estimating the servo motor speed according to the angular speed sensing signal output by the counter, and outputting an angular speed feedback signal to the decoupling17 1295878 七、指定代表圓: (一)本案指定代表圖為:第(四)圖。 (二)本代表圖之 伺服馬達 比例積分(PI)控制器 解耦補償器 脈波寬度調變器 元件符號簡單說明: ^ 交流伺服驅動器 4 1 第--階控制器 4 4 座標轉換器 4 6計數器 速度估測器 4 7 第二一階控制器 4 4 2 4 5 4 8 4 3 請揭示最能顯示發明特徵的化 八、本案若有化學式時, 學式: 51295878 VII. Designated representative circle: (1) The representative representative of the case is: (4). (2) Servo motor proportional integral (PI) controller decoupling compensator pulse width modulator component symbol description: ^ AC servo drive 4 1 first-order controller 4 4 coordinate converter 4 6 Counter speed estimator 4 7 Second-order controller 4 4 2 4 5 4 8 4 3 Please reveal the best indication of the characteristics of the invention. 8. If there is a chemical formula in this case, the formula: 5
TW94133691A 2005-09-28 2005-09-28 Ac servo drive without current sensor TWI295878B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94133691A TWI295878B (en) 2005-09-28 2005-09-28 Ac servo drive without current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94133691A TWI295878B (en) 2005-09-28 2005-09-28 Ac servo drive without current sensor

Publications (2)

Publication Number Publication Date
TW200713790A TW200713790A (en) 2007-04-01
TWI295878B true TWI295878B (en) 2008-04-11

Family

ID=45068565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94133691A TWI295878B (en) 2005-09-28 2005-09-28 Ac servo drive without current sensor

Country Status (1)

Country Link
TW (1) TWI295878B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510526A (en) * 2018-10-16 2019-03-22 汤秉辉 For controlling the starting control system and starting control method of motor starting

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521368B2 (en) * 2009-03-23 2014-06-11 シンフォニアテクノロジー株式会社 Motor rotation control system
TWI403083B (en) * 2010-04-16 2013-07-21 Teco Elec & Machinery Co Ltd Servo driver and controlling method thereof
CN103064021B (en) 2011-10-18 2015-12-09 台达电子企业管理(上海)有限公司 The measurement mechanism of induction motor excitation parameter and method
CN103185839B (en) * 2011-12-30 2015-07-08 台达电子企业管理(上海)有限公司 Permanent magnet motor inductance parameter measurement device and permanent magnet motor inductance parameter measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510526A (en) * 2018-10-16 2019-03-22 汤秉辉 For controlling the starting control system and starting control method of motor starting

Also Published As

Publication number Publication date
TW200713790A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
TWI295878B (en) Ac servo drive without current sensor
CN104022708B (en) Electric variable-pitch driving system by speed sensorless technology and method thereof
US7187152B1 (en) AC servo drive without current sensor
TW200929837A (en) Apparatus and method for sensorless control of induction motor
CN108134550A (en) For the fault-tolerant current phasor measurement of electric machine control system
JPS5980186A (en) Rotor position detecting circuit for motor
TW200937830A (en) Method and PWM system of adjusting the width of pulses through collecting information of a three-phase current
CN103414425B (en) A kind of torque direction of brshless DC motor and the detection method of amplitude
Hoseinnezhad Position sensing in brake-by-wire callipers using resolvers
CN109716644A (en) Transducer-fault Detecting Method, motor-driven system and electric boosting steering system
CN109792226A (en) Rotary electric machine controller and the electric power steering apparatus for using it
JPS59501571A (en) Improved induction motor control device
CN107276481B (en) Vector control method, system and electric system based on rotary transformer
JPH11337373A (en) Rotation sensor, abnormality diagnostic method thereof, and motor control system employing it
CN106411192A (en) Method for realizing motor accurate control by using linear Hall sensors
Ho et al. The design and implementation of a sensorless power tool based on a microcontroller
CN102497149A (en) Direct decoupling control method of permanent magnet linear synchronous motor-driven suspension platform
RU2007105462A (en) STAND FOR MEASURING ANGULAR SPEED CONTROL
CN110336495A (en) A kind of two-way low-voltage alternating-current servo-driver control system and method
JP2012110079A (en) Position/speed sensorless control device
Gomes et al. Speed Control with Indirect Field Orientation for Low Power Three-Phase Induction Machine with Squirrel Cage Rotor
CN113370196A (en) Force-controlled joint motor driving module
TWI261409B (en) Accelerating current servo driving method without phase-changing signals and accelerating current servo driver thereof
JP4704182B2 (en) Current sensorless AC servo drive device
TW200521461A (en) Measuring method of induced electromotive force constant of motor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees