TWI294717B - Motor driver, motor controller and controlling method for electric motor - Google Patents

Motor driver, motor controller and controlling method for electric motor Download PDF

Info

Publication number
TWI294717B
TWI294717B TW94103253A TW94103253A TWI294717B TW I294717 B TWI294717 B TW I294717B TW 94103253 A TW94103253 A TW 94103253A TW 94103253 A TW94103253 A TW 94103253A TW I294717 B TWI294717 B TW I294717B
Authority
TW
Taiwan
Prior art keywords
signal
phase
current
current command
generating
Prior art date
Application number
TW94103253A
Other languages
Chinese (zh)
Other versions
TW200629708A (en
Inventor
Kuang Yao Cheng
Original Assignee
Prolific Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prolific Technology Inc filed Critical Prolific Technology Inc
Priority to TW94103253A priority Critical patent/TWI294717B/en
Publication of TW200629708A publication Critical patent/TW200629708A/en
Application granted granted Critical
Publication of TWI294717B publication Critical patent/TWI294717B/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Description

1294717 22134twfl .doc/006 95-11-20 九、發明說明: 【發明所屬之技術領域】 本發明係關於一馬達驅動技術,尤指應用於馬達控制之 . 一電流向量控制脈寬調變逆變器。 【先前技術】 % 永磁式交流(AC)馬達(PMACM)因為具有下述符合需 求之特點,已廣泛地應用於高效能伺服中:與直流(DC) 鲁馬達相比下顯現之高效率、高轉矩對慣性比、低維護費用 及精簡結構。使用永久磁鐵以產生實質上空氣間隙磁通量 而無磁激,使其可用極佳之效率特徵設計永磁式交流(AC) 馬達。此效率優勢在舉世許多應用中已漸形珍貴。因為所 有永磁式交流(AC)馬達都是同步機器,只有當磁激能精 確地與轉子速度及瞬間位置同步時才能夠產生平均轉矩。 確保同步的最直接及有力方式是用已安裝的位置感測器 (例如霍爾(Hall)效應感測器)連續地測量轉子的絕對角位 鲁置’才月b精確地在永磁式父流(AC )馬達相位中同步切換 磁激。 達成同步的一習知方法是使用一六步方波(six step)電 壓逆變器。六步方波電壓逆變器的基本操作可藉由將逆變 器視為六個理想開關而瞭解。線間和線間電壓及相位和線 間電壓則具有圖1所示之波形。該線對線電壓含有一均方 根基本分量,如: ^ ll{rms fund) TVcc (1) 請參考J· Holtz之「脈衝寬度調變之調查」,IEEE Trans. 1294717 95-11-20 22134twfl.doc/0061294717 22134twfl .doc/006 95-11-20 IX. Description of the invention: [Technical field of the invention] The present invention relates to a motor drive technology, especially to motor control. A current vector control pulse width modulation inverter Device. [Prior Art] % Permanent magnet AC (AC) motor (PMACM) has been widely used in high-performance servos because of the following characteristics: high efficiency compared with direct current (DC) Lu motor. High torque to inertia ratio, low maintenance cost and streamlined construction. Permanent magnets are used to create substantially air gap flux without magnetic excitation, allowing them to design permanent magnet AC (AC) motors with excellent efficiency characteristics. This efficiency advantage has become increasingly valuable in many applications around the world. Because all permanent magnet AC (AC) motors are synchronous machines, the average torque can only be generated when the magnetic energy is accurately synchronized with the rotor speed and instantaneous position. The most straightforward and powerful way to ensure synchronization is to continuously measure the absolute angular position of the rotor with an installed position sensor (such as a Hall effect sensor). The magnetic (AC) motor phase synchronously switches the magnetic flux. One conventional method of achieving synchronization is to use a six-step six step voltage inverter. The basic operation of a six-step square wave voltage inverter can be understood by considering the inverter as six ideal switches. The line-to-line and line-to-line voltage and phase and line voltages have the waveforms shown in Figure 1. The line-to-line voltage contains a root mean square component, such as: ^ ll{rms fund) TVcc (1) Please refer to J. Holtz's "Pulse Width Modulation Survey", IEEE Trans. 1294717 95-11-20 22134twfl .doc/006

Ind. Electron·,卷 39,編號 5 ’ 弟 410-420 頁 ’ 1992 年 12 月。該文獻中,脈衝寬度調變(PWM)逆變器維持幾乎固定 的DC連結電壓,且於逆變器内包含了電壓控制及頻率控 制。運作時,該逆變器中的電源開關係在高頻切換,因此 實際操作上可視為一截斷器。一般而言,調變技術分為二 類:以一固定之切換比例於基本切換頻率下操作者,以及 一切換比例係連續改變以同步化一更接近正弦的馬達電流 (稱為正弦PWM)者。在第一類中,區塊調變是調變的最簡 型式,且最靠近簡單六步方波操作。與藉由變化DC連結 電壓以變化馬達電壓波形之振幅者不同的是,其係於一固 定之切換比例下,藉由切換該逆變器開關中之一或二者以Ind. Electron·, Vol. 39, No. 5 ’Dan 410-420 pp.’ December 1992. In this document, a pulse width modulation (PWM) inverter maintains a nearly constant DC link voltage and includes voltage control and frequency control in the inverter. In operation, the power-on relationship in the inverter is switched at high frequency, so the actual operation can be regarded as a cut-off. In general, modulation techniques fall into two categories: operators with a fixed switching ratio at the basic switching frequency, and a switching ratio that continuously changes to synchronize a motor current closer to a sinusoid (called sinusoidal PWM). . In the first category, block modulation is the simplest of modulation and is closest to a simple six-step square wave operation. Different from changing the amplitude of the motor voltage waveform by changing the DC voltage, it is tied to a fixed switching ratio by switching one or both of the inverter switches.

適合該速度。第2圖中所示為區塊調變之簡單形式,其亏 該截斷係限於各元件傳導週期的中間6〇電角度,導致半_ 體開關的最小切換週期。不論區塊調變模式及六步方波指 式間的相似性,在低轉速狀態下的轉矩脈波(t〇rqu pulsatums)情形遠不如六步進逆變器嚴重。缺而,六步过 縣器的·情形也出現於區塊婦,但尚有更高譜波之 塊調變模式的截斷頻率有關。因此,與更簡潘 圖ϋ::,比較’該模組之馬達損耗及雜訊相當顯著。 :角;、二:ί電壓及電流波形。即使開關ΤΑ+及ΤΑ-於18( 功率因子,其等d :)狀恶上,由於負載的遲延 際之傳導間隔小於_電角度。 電流,二弦脈寬調變(SPWM),其係用來合成馬達 錢其儘可能的接近正弦波形。這㈣作法能使低 1294717 22134twfl.doc/006 95-11-20 電壓諳波大幅衰減,通常只留下實質上振幅接近截斷或 波頻率之二次諧波或四次諧波。與六步方波馬達操^相 比,該馬達能以低速更平順地旋轉並實質消除轉矩脈動, 且由逆變器產生的額外馬達損耗會隨正弦脈寬調變 • (SPWM)操作而使效率實質上減少。然而,要平衡此^ 優勢,正弦脈寬調變(SPWM)逆變器控制較複雜,'且截 斷頻率較高,造成比六步方波操作更高之切換損耗。為趨 近正弦波,高頻三角形波與基頻正弦波之比較顯示於第4 •圖。 電流控制技術在電流控制脈寬調變(PWM)逆變器擔 負最重要的作用’其已廣泛應用於南效能馬達驅動器中。 在以下文獻[1 ]- [7]中已描述電流控制器的各種技術: [1] M· Lajoie-Mazenc、C· Villanueva 及 J· Hector 之「永 久磁鐵同步機器上的遲滯控制逆變器之研究及實 作(Study and implementation of hysteresis controlled _ inverter on a permanent magnet synchronous machine·)」,IEEE Trans. Ind. Applicat·,卷 IA-21, 編號2,第408-413頁,1985年3月/4月。 [2] D· M· Brod 及 D· W· Novotny 之「VSI-PWM 逆變器 的電流控制(Current control of VSI-PWM inverters·)」,IEEE Trans· Ind. Applicat·,卷 IA-21, 編號3,第562-570頁,1985年5月/6月。 [3] Τ· M. Rowan及R· J· Kerkman之「新穎同步電流調 整器及電流調整PWM逆變器的分析(A new 7 1294717 22134twfl.doc/006 95-11-20 synchronous current regulator and an analysis of current-regulated PWM inverters·)」,IEEE Trans. Ind. Applicat·卷 IA-22,編號 4,第 678-690 頁,1986 年7月/8月。 [4] M. P· Kazmierkowski、M. A. Dzieniakowski 及 W· Sulkowski之「脈寬調變(PWM)逆變器之新穎空 間向量電流控制器(Novel space vector based current controllers for PWM-inverters·)」,IEEE Trans. Power Electron·,卷 6,編號 1,第 158-166 頁,1991 年 1 月。 [5] C.T· Pan及Τ·Υ· Chang之「減少切換頻率的改進遲 滯電流控制器(An improved hysteresis current controller for reducing switching frequency·)」IEEE Trans· Power Electron·,卷 9,編號 1,第 97-104 頁,1994年。 [6] L· Malesani及R Tenti之「具有固定調變頻率之電 流控制電壓源脈寬調變(PWM)逆變器的新穎遲滯 控制方法(A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency)」,IEEE Trans· Ind· Applicat·,卷 26,編號 1,第 88-92 頁,1990 年1月/2月。 [7] S· Buso、S· Fasolo、L. Malesani 及 P· Mattavelli 之 「一種無不擺適應性遲滯電流控制(A dead-beat 1294717 95-11-20 22134twfl.doc/006 adaptive hysteresis current control·)」,IEEE Trans· Ind· Applicat·,卷 36,編號 4,第 1174-1180 頁, 2000年7月/8月。 然而,上述習知技術中,遲滯電流控制器(HCC)因為 其容易實施、快速動態回應、最大電流限制及對負載參數 鉍化不靈敏之特性而相當流行。但是取決於負載條件,切 換頻率在基本週期間可能大振幅地變化,導致不規則之逆 、交裔操作特性。此主要係由於三相位變換間的相互干擾, 因為各相位電流不僅取決於對應的相位電壓,而且也受另 外二相位之電壓影響。因此,實際電流波形不僅由遲滯控 制决疋,而且也取決於操作條件。電流斜率可能變化相當 大,且電流峰值可能明顯超過遲滯頻帶的 = 率,得比需求更高許多,以符合連波及雜4;:: =㈣關必須據以調整。此外,高頻及電鱗值增加功 拖ίί且可能影響系統可靠性。—些應用零向量以減少切 知夂、丈的遲滞電流控制技術近來已被提出[4]·[5]。另-習 法的戶位:之干擾效應減到最少,同時維持遲滯方 位鎖定迴路(Ρ·制二1—所以允梅振幅的相 [q-mn k在週期内之固定切換頻率 要二,;單)該控制演紐^ %L方面’空間向量調變(SVM)_具二優里特 匕,八在相同载波頻率時 1294717 22134twfl .doc/006 95-11-20 最大輸出電壓高15.4%,且切換數目少大約30%。 [8] K. Zhou及D. Wang之「空間向量調變及三相位載 波PWM間的關係:全面分析(Relationship between space-vector modulation and three-phase carrier-based PWM * A comprehensive analysis)」, IEEE Trans· Ind· Electron·,卷 49,編號 1,第 186-196 頁,2002年2月。 [9] V.Blasko之「以已修正空間向量及三角形比較方法Suitable for this speed. Figure 2 shows a simple form of block modulation, which is limited to the middle 6 〇 electrical angle of each component conduction period, resulting in a minimum switching period for the half-body switch. Regardless of the similarity between the block modulation mode and the six-step square-wave mode, the torque ripple (t〇rqu pulsatums) in the low-speed state is far less severe than the six-step inverter. In the absence of six steps, the situation of the county is also present in the block, but there is still a truncation frequency of the block modulation mode of higher spectral waves. Therefore, compared with the simpler Pantu::, the motor loss and noise of the module are quite significant. : angle;, two: ί voltage and current waveform. Even if the switches ΤΑ+ and ΤΑ- are at 18 (power factor, etc. d:), the conduction interval due to the delay of the load is less than the _ electrical angle. Current, two-string pulse width modulation (SPWM), which is used to synthesize the motor as close as possible to the sinusoidal waveform. This (4) method can greatly attenuate the voltage chopping of the low 1294717 22134twfl.doc/006 95-11-20, usually leaving only the second harmonic or the fourth harmonic whose amplitude is close to the truncation or wave frequency. Compared with the six-step square wave motor, the motor can rotate more smoothly at a lower speed and substantially eliminate torque ripple, and the extra motor loss generated by the inverter varies with sinusoidal pulse width modulation (SPWM) operation. The efficiency is substantially reduced. However, to balance this advantage, sinusoidal pulse width modulation (SPWM) inverter control is more complex, 'and the cutoff frequency is higher, resulting in higher switching losses than the six-step square wave operation. To approximate a sine wave, a comparison of a high frequency triangular wave with a fundamental frequency sine wave is shown in Figure 4. Current control technology plays the most important role in current-controlled pulse width modulation (PWM) inverters, which have been widely used in south performance motor drives. The various techniques of the current controller have been described in the following documents [1]-[7]: [1] M. Lajoie-Mazenc, C. Villanueva and J. Hector "The Hysteresis Control Inverter on Permanent Magnet Synchronous Machines Study and implementation of hysteresis controlled _ inverter on a permanent magnet synchronous machine·, IEEE Trans. Ind. Applicat, IA-21, No. 2, pp. 408-413, March 1985/ April. [2] D. M. Brod and D. W. Novotny, "Current control of VSI-PWM inverters", IEEE Trans·Ind. Applicat, Volume IA-21, No. 3, pp. 562-570, May/June 1985. [3] Τ·M. Rowan and R.J. Kerkman's analysis of novel synchronous current regulators and current-regulated PWM inverters (A new 7 1294717 22134twfl.doc/006 95-11-20 synchronous current regulator and an Analysis of current-regulated PWM inverters·)", IEEE Trans. Ind. Applicat, Volume IA-22, No. 4, pp. 678-690, July/August 1986. [4] M. P. Kazmierkowski, MA Dzieniakowski and W. Sulkowski, "Novel space vector based current controllers for PWM-inverters", IEEE Trans. Power Electron, Vol. 6, No. 1, pp. 158-166, January 1991. [5] CT · Pan and Τ·Υ· Chang "An improved hysteresis current controller for reducing switching frequency" IEEE Trans Power Electron, Volume 9, No. 1, Pages 97-104, 1994. [6] L. Malesani and R Tenti's "A novel hysteresis control method for current-controlled voltage-source PWM with a fixed frequency modulation current-controlled voltage source pulse width modulation (PWM) inverter Inverters with constant modulation frequency)", IEEE Trans. Ind. Applicat, Vol. 26, No. 1, pp. 88-92, January/February 1990. [7] S. Buso, S. Fasolo, L. Malesani, and P. Mattavelli, “A type of adaptive hysteresis current control (A dead-beat 1294717 95-11-20 22134twfl.doc/006 adaptive hysteresis current control· ), IEEE Trans. Ind. Applicat, Vol. 36, No. 4, pp. 1174-1180, July/August 2000. However, in the above-mentioned prior art, the hysteresis current controller (HCC) is quite popular because of its easy implementation, fast dynamic response, maximum current limit, and insensitivity to load parameter degeneration. However, depending on the load conditions, the switching frequency may vary greatly in amplitude during the basic period, resulting in irregular inverse and cross-talking characteristics. This is mainly due to mutual interference between the three phase transitions, since each phase current depends not only on the corresponding phase voltage but also on the voltage of the other two phases. Therefore, the actual current waveform is not only determined by the hysteresis control, but also depends on the operating conditions. The current slope may vary considerably, and the current peak may significantly exceed the = rate of the hysteresis band, which is much higher than the demand to meet the continuous wave and the miscellaneous 4;:: = (4) must be adjusted accordingly. In addition, high frequency and scale values are added and may affect system reliability. Some techniques for applying zero vectors to reduce the lag and lag current control techniques have recently been proposed [4]·[5]. In addition, the household level of the customary method: the interference effect is minimized, and the hysteresis azimuth locking loop is maintained (Ρ·2:1—the phase of the Yunmei amplitude [q-mn k has a fixed switching frequency in the cycle; Single) The control of the function ^ %L aspect 'space vector modulation (SVM) _ with two excellent 匕 匕, eight at the same carrier frequency 1294717 22134twfl .doc / 006 95-11-20 maximum output voltage is 15.4% high, and The number of switches is about 30% less. [8] K. Zhou and D. Wang, "Relationship between space-vector modulation and three-phase carrier-based PWM * A comprehensive analysis", IEEE Trans·Ind· Electron·, Vol. 49, No. 1, pp. 186-196, February 2002. [9] V.Blasko's "Modified Space Vector and Triangle Comparison Method"

® 為基礎之混合 PWM 分析(Analysis of a hybrid PWM based on modified space-vector and triangle-comparison method)」,IEEE Trans· Ind. Applicat·,卷 33,第 756-764 頁,1997 年 5 月 /6 月。 [10] X· Xu及D· Deng之「自SVPWM到六步方波操作 的已改進轉換之三相位逆變器電路(Three phase inverter circuit with improved transition from • SVPWM to six step operation·)」,1996 年 9 月 3 日 福特汽車公司之美國專利第5,552,977號。 [11] V.Blasko之「混合脈衝寬度調變方法及裝置),1998 年1月6日Allen-Bradley公司之美國專利第 5,706,186 號。 [12] Β· H· Kwon\T· W· Kim 及 J· H· Youm 之「新穎 SVM 遲滯電流控制器(A novel SVM-based hysteresis current controller·)」,IEEE Trans· Power Electron· 卷13,編號2,第297-307頁,1998年3月。 1294717 22134twfl .doc/006 95-11-20 SVM技術根據輸出電壓向量所在之區域,用以限制待 應用的空間向量。然而,為獲得零輸出電流誤差,SVm技 術需要一不實際的反電動勢向量的測量值。HCC可使輸出 電流向量用幾乎可忽略的回應時間、對線電壓及不靈敏的 負載芩數變化跟循命令向量。然而,除了所需空間向量外, HCC根據SVM技術中的區域亦產生其他的向量。如果應 用零向量以減少輸出電流向量的電流值,線電流會隨著平 缓斜率降低並且降低切換頻率。使用HCC及SVM技術之 所有特點的SVM-HCC已在[12]中被揭露。 為控制馬達的三相電流,一有效方法是藉由三個低值 電阻器或霍爾(Hall)效應電流感測器直接加以測量。然 而,此方法並不經濟。如果馬達繞組是星形連接,則能把 三相馬達驅動之感測器數目減少成二。然而,因為在增益 常數中之差異及另二電流感測器的之DC偏移,此方法在 第三相位電流的估計中會引入誤差。一替代性方法是根據 鲁已測量到之DC連結電流及脈寬調變(PWM)信號重建三 相位電流,如以下文獻及專利[13]-[21]中所述。Analysis of a hybrid PWM based on modified space-vector and triangle-comparison method, IEEE Trans·Ind. Applicat, Vol. 33, pp. 756-764, May/6, 1997 month. [10] X. Xu and D. Deng, "Three phase inverter circuit with improved transition from SVPWM to six step operation", U.S. Patent No. 5,552,977, issued to Ford Motor Company, September 3, 1996. [11] V. Blasko, "Mixed Pulse Width Modulation Method and Apparatus", US Patent No. 5,706,186, Allen-Bradley, January 6, 1998. [12] Β·H· Kwon\T·W· Kim and J. H. Youm, "A novel SVM-based hysteresis current controller", IEEE Trans Power Electron, Vol. 13, No. 2, pp. 297-307, March 1998 . 1294717 22134twfl .doc/006 95-11-20 The SVM technique is used to limit the space vector to be applied based on the region of the output voltage vector. However, to achieve zero output current error, SVm technology requires an unrealistic back EMF vector measurement. HCC allows the output current vector to follow the command vector with almost negligible response time, line voltage, and insensitive load factor changes. However, in addition to the required space vector, HCC also generates other vectors depending on the region in the SVM technique. If a zero vector is applied to reduce the current value of the output current vector, the line current will decrease with a gentle slope and reduce the switching frequency. SVM-HCC using all the features of HCC and SVM technology has been exposed in [12]. To control the three-phase current of the motor, an effective method is directly measured by three low-value resistors or a Hall effect current sensor. However, this method is not economical. If the motor windings are star-connected, the number of sensors driven by the three-phase motor can be reduced to two. However, this method introduces an error in the estimation of the third phase current because of the difference in gain constants and the DC offset of the other current sensors. An alternative approach is to reconstruct the three phase currents based on the measured DC link current and pulse width modulation (PWM) signals, as described in the following literature and patents [13]-[21].

[13] Ρ· P· Acarnley之「用於三相無刷DC驅動菇中繞組 電流的可觀察性標準(Observability criteria for winding currents in three-phase brushless DC drives)」,IEEE Trans. Power Electro·,卷 8 ’ 編號 3 ’ 第 264-270 頁,1993 年 7 月。 [14] C· D· French、P· P· Acarnley 及 A· G· Jack 之使用 一單一 DC連結電流感測器的無刷驅動器中之 11 1294717 22134twfl.doc/006 95-11-20 即時電流估計(Real-time current estimation in brushless DC drives using a single DC-link current sensor·)」,EPE Conf· Rec·,1993 年,第 445-450 頁。 [15] J· F· Moynihan、S· Bolognani、R. C. Kavanagh、Μ· G· Egan及J· M. D· Murphy之「使用數位信號處理 器的AC伺服驅動器之單一感測器電流控制(Single sensor current control of AC servo drives using digital signal processors·)」,EPE Conf· Rec·,1993 _ 年,第 415-421 頁。 [16] J· Zhang及M. Schroff之「具有DC連結電流測量 之三相無刷DC驅動器的電流控制(Current control of three-phase brushless DC drives with DC-link current measurement·)」,Power Conv. Intell. Motion (PCIM) Conf·,第 141-148 頁,1997 年 6 月。[13] O·P· Acarnley's "Observability criteria for winding currents in three-phase brushless DC drives", IEEE Trans. Power Electro·, Volume 8 'No. 3', pp. 264-270, July 1993. [14] C·D·French, P·P·Acarnley and A·G· Jack in a brushless driver using a single DC-connected current sensor 11 1294717 22134twfl.doc/006 95-11-20 Instant current Real-time current estimation in brushless DC drives using a single DC-link current sensor·), EPE Conf· Rec., 1993, pp. 445-450. [15] J. F. Moynihan, S. Bolognani, RC Kavanagh, Μ·G·Egan, and J.M. D. Murphy “Single sensor current control for AC servo drives using digital signal processors (Single sensor) Current control of AC servo drives using digital signal processors·)”, EPE Conf· Rec·, 1993 _, pp. 415-421. [16] J. Zhang and M. Schroff, "Current control of three-phase brushless DC drives with DC-link current measurement", Power Conv. Intell. Motion (PCIM) Conf·, pp. 141-148, June 1997.

[17] F. Blaabjerg、J. K. Pedersen、IL Jaeger 及 R _ Thoegersen之「三相位PWM-VS逆變器的DC連結 中之單一電流感測器技術:回顧及新穎解決方案 (Single current sensor technique in the DC link of three-phase PWM-VS inverters:A review and a novel solution·)」,IEEE Trans· Ind· Applicat·,卷 33,編 號 5,第 1241-1253 頁,1997 年 9 月 /10 月。[17] F. Blaabjerg, JK Pedersen, IL Jaeger and R _ Thoegersen "Single current sensor technique in the DC link of a three-phase PWM-VS inverter: a single current sensor technique in the DC link of three-phase PWM-VS inverters: A review and a novel solution·)", IEEE Trans. Ind. Applicat, Vol. 33, No. 5, pp. 1241-1253, September/October 1997.

[18] H· Tan及S· L· Ho之「適於BLDCM驅動器之新穎 單一電流感測器技術(A novel single current sensor technique suitable for BLDCM drives·)」,IEEE-PEDS <:s > 12 1294717 22134twfl.doc/006 95-11-20[18] H. Tan and S. L. Ho, "A novel single current sensor teaching suitable for BLDCM drives", IEEE-PEDS <:s > 12 1294717 22134twfl.doc/006 95-11-20

Conf·,1999 年,第 133-138 頁。 [19] L· Ying及Ν· Ertugrul之「來自永久磁鐵AC馬達的 DC連結之相位電流的新穎估計(A novel estimation of phase currents from DC link for permanent magnet AC motors·)」,Conf· Rec·,第 606-612 頁,2001 年。 [20] Τ· Μ· Wolbank 及 R Macheiner 之「具有單一 DC 連 結電流測量之逆變器饋送AC機器的已改進觀察電 流控制器(An improved observer-based current controller for inverter fed AC machines with single DC_link current measurement·)」,IEEE_PESC Conf· in Proc·,2002 年,第 1003-1008 頁。 [21] Ζ· Yu之「使用逆變器接腳分路電阻器的相位電流 感測器(Phase current sensor using inverter leg shunt resistor·)」,德州儀器公司2003年3月4日之 美國專利第6,529,393號。 根據SVM的概念,饋送馬達的逆變器只有八種可能的 切換狀悲’係由二種零狀悲及六種作用狀態表示。在六種 作用狀態期間,只有三相位電流中之一流經DC連結。然 而,在二種零狀態中,相位電流透過二極體在逆變器橋接 中循環,不經過DC連結。在脈寬調變(PWM)電流控制 模式下,每一調變週期中有二種可能之作用狀態。因此能 從DC連結電流導出二相電流。然而,在脈寬調變(pWM) 控制的某些操作條件下,二種作用狀態中任一者均可能持 續極短時間週期。因此,由於功率元件之有限切換時間、 13 ^ .£ ί 1294717 22134twfl.doc/006 95-11-20 無效時間以及電子電路中的延遲,實際相位電流在DC連 結測量上也許無法量測。 第5圖係習知六步方波馬達驅動器之方塊圖,其中該 _ 馬達驅動器包括A相位、B相位及C相位上侧驅動電晶體 101、103及105,U相位、V相位及W相位下侧驅動電晶 體 102、104 及 106,二極體 101D、102D、103D、104D、 105D及106D,一霍爾(Hall)感測器電路201、一習知六 步方波控制電路202、一前驅動電路203及一電流價測電 春阻器204。一馬達包括A相位線圈301、一 B相位線圈302 及一 C相位線圈303。 在此具體實施例中,N型金屬氧化物半導體(nm〇S) 電晶體係用以驅動電晶體101-106。二極體i〇id之陽極端 及陰極端分別連接到驅動電晶體101的源極終端及汲極終 。同樣地’二極體102D-106D的陽極端及陰極端係以相 同方式分別連接到驅動電晶體102-106之源極終端及汲極 參終端。驅動電晶體10卜103及105的汲極終端係連接到電 源供應Vcc,而驅動電晶體102、104及1〇6的源極終端係 連接到電流偵測電阻器204的一端。電流偵測電阻器2〇4 的其他端係接地。驅動電晶體101_102的二極體1〇lD_i〇2D 係操作為一 A相位輸出電路,驅動電晶體1〇3_ι〇4的二極 體103D-104D係操作為一 B相位輸出電路,且驅動電晶體 105-106的臂及二極體麵-臓係操作為一 c相位輸出 電路二電晶體ι〇1之源極終端及電晶體1〇2的沒極終端之 共同節點係連接在A相位線圈3〇1的—終端。同樣地,電 14 < £ 1294717 22134twfl.doc/006 95-11-20 晶體103的源極終端及電晶體i〇4之汲極終端的共同節點 係連接在B相位線圈302的一終端,並且電晶體1〇5的源 極終端及電晶體106之汲極終端的共同節點係連接在c相 位線圈303的一終端。A相位線圈3〇1、b相位線圈302、 及C相位線圈303的其他端係彼此相連。 自驅動電晶體10M02流向A相位線圈301的電流係 稱為A相位電流IA。同樣地,自驅動電晶體i〇3-1〇4流向 B相位線圈302的電流叫作B相位電流IB,且自驅動電晶 ® 體105-106流向C相位線圈303的電流叫作C相位電流 1C。自驅動電晶體10M06流向線圈301-303的所有相位 電流ΙΑ、IB及1C的方向,對於所有相位電流係假設為正 方向。馬達300的線圈301-303係在Y中連接。因此,各 自的相位電流係等於流經對應線圈的電流。 該霍爾(Hall)感測器電路201包括霍爾(Hall)感測 器201A、201B及201C,其等偵測馬達300轉子之位置, 並且輸出偵測結果至位置偵測電路及電流命令產生電路 22,如霍爾(Hall)感測器201A、201B及201C輸出H1+、 Η1-、Η2+、Η2-、Η3+及H3_。習知六步方波控制電路202(其 接收霍爾(Hall)感測器輸出H1+、H1_、H2+、H2-、H3+ 及H3-、一轉矩命令信號Tc及一回授電流信號Ifb)產生切 換控制信號S11-S16,以選擇使任何驅動電晶體101-106為 開啟或關閉,且傳送指令到前驅動電路203。前驅動電路 203根據習知六步方波控制電路202的輸出來輸出信號到 驅動電晶體101-106的閘極’以控制驅動電晶體101-106 15 1294717 22134twfl .doc/006 95-11-20 之開/關狀態。 第6圖是習知六步方波控制電路之方塊圖,其中該六 步方波控制電路包括差分放大器401A、401B及401C,自 動增益控制電路402A、402B及402C,加法器403A、403B 及 403C,乘法器 404A、404B 及 404C,比較器 405A、405B、 405C、412A、412B 及 412C,一低通濾波器 406A,一峰值 偵測電路407,一加法器408,控制器409,一載波信號產 生器410及一無效時間控制電路411。差分放大器4〇1 a、 401B及401C分别接收霍爾(Han)感測器輸出H1+、H1_、 Η2+、Η2·、Η3+及H3-,根據霍爾(Hall)感測器輸出H1+、 HI-、H2+、H2-、H3+及 H3-決定位置信號 Ha、Hb 及 He, 且輸出位置信號Ha、Hb及He到自動增益電路402A、402B 及4020自動增益電路4〇2A、402B及402C調整位置信 號Ha、Hb及He的電流值,然後產生信號Hll、H21及 H31。加法器接收到信號ml、h21及H31後,分別產生 信號H13、H23及H33到比較器412A、412B及412C。接 收一電流回授信號Ifb之低通濾波器406輸出信號到峰值 债測電路407。加法器4〇8接收到轉矩命令信號tc及峰值 4貞測電路407產生之偵測結果,輸出誤差信號至控制器 4〇9 °分別接收到控制器4〇9之輸出信號及比較器412a、 412B及412C之輸出信號之乘法器4〇4a、404B及404C, 會为别輸出結果到比較器4〇5A、4〇5b及405C。無效時間 控制電路411根據比較器405A、405B及405C的輸出決定 切換控制信號S11-S16。 16 1294717 22134twfl .doc/006 95-11-20 第6圖顯不習知轉軸馬達之電流控制架構的控制方塊 圖。此控制佈局的基礎與開放迴路電壓/頻率控制類似。電 壓的振幅及相位係單獨地被控制。此控制佈局有二限制, 由於DC連結電流取決於脈寬調變(pWM )信號,一中止 電流係如第7圖所示被測量成電流回授。在偵測到Dc連 結電流的峰值後,能如第7圖所示產生一連續電流回授。 然而,其所產生之電流回授含有大漣波,即使在穩態操作 中也可能造成不良的電流控制效能。此外,第6圖所示之 •電流控制器409的控制參數,當應用於不同馬達時需要調 整以改進控制效能。第8圖顯示用習知六步方波控制架構 之電流控制效能的模擬結果。 第9圖顯示已修改之六步方波控制電路的控制方塊 圖。三比較器412A、412B及412C係從圖6中省略。第 10圖顯示已修改之六步方波控制架構的電流控制效能模擬 波形。由於只控制最大相位電流的振幅,已控制的相位電 _流類似第10圖所示之梯形波形。此外,由於非正弦的相位 電流所產生的轉矩含有一轉矩漣波,其可能造成馬達振盪 而可能使效率劣化。 習知方法中,不管是區塊調變或正弦脈寬調變 (SPWM) ’均會遭遇只能控制最大電流之振幅的問題。因 此,無法控制相位電流的形狀。在美國專利第6,674,258號 中,Matsushita Electric工業公司已提出能在一脈寬調變 (PWM)切換週期内控制二相位電流之電流控制架構。第 11圖顯示Matsushita方法的整體控制方塊圖。為求簡單, 17 1294717 22134twfl.doc/006 95-11-20 二個梯形電流命令如第1 2圖所示而產生。 採用第12圖中之時間間隔TU1作為實例,以解釋此 控制方法的基本原理。在此時間間隔中,用於相位a的終 端電壓係被限制為第13(a)圖所示的Vcc,且相位電流ia需 依轉矩電流命令TI控制。由於只能從DC連結電流中感測 到一相位電流,其他二終端電壓被切換成接地,用於如第 13(a)圖所示之一脈寬調變(PWM)切換週期的開始感測相 鲁位電流ia。當ia達到轉矩電流命令,相位b的較低開關藉 由控制信號F1關閉,並且相位電流ib如第丨^…圖所示流 經上開關的二極體3D。在F1關閉後,能從DC連結電流 感測到相位電流ie的負值,且其係受控制以跟隨斜坡電流 命令TP ’如第14(a) -14(b)圖所示。當負ic達到斜坡電流命 令TP後,相位3的較低開關由控制信號F2關閉,且相位 電流ic如第13(c)圖所示流經上開關的二極體5D。理論上, 此方法不僅能控制最大相位電流的振幅,而且也能在一脈 鲁寬調變(PWM)切換週期間控制其他二相位電流中之一的 形狀。第15圖顯示Matsushita方法之模擬結果。從此圖中, 由於該等非正弦電流波形,所產生轉矩含有一大轉矩漣 波。應注意的是受控制的相位電流並非第12圖中顯示的需 求理想梯形波形。在下文中將解釋原因。 實際上,此方法對於在一脈寬調變(PWM)切換週期 内控制二相位電流存在一基本問題。再次,採用第12圖中 之時間間隔TU1作為實例。在脈寬調變(Pwm)切換週期 的開始,相位電流ia受控制朝向轉矩電流命令TI。然而, 1294717 22134twfl.doc/006 95-11-20Conf·, 1999, pp. 133-138. [19] L. Ying and Ν Ertugrul, "A novel estimation of phase currents from DC link for permanent magnet AC motors.", Conf· Rec·, Pp. 606-612, 2001. [20] improved· Μ · Wolbank and R Macheiner "An improved observer-based current controller for inverter fed AC machines with single DC_link current Measurement·)", IEEE_PESC Conf. in Proc., 2002, pp. 1003-1008. [21] P·Yu's "Phase current sensor using inverter leg shunt resistor", Texas Instruments, US Patent No. 3, 2003 6,529,393. According to the concept of SVM, the inverters feeding the motor have only eight possible switching patterns, which are represented by two kinds of zero-sorrow and six action states. During the six states of operation, only one of the three phase currents flows through the DC link. However, in the two zero states, the phase current circulates through the diode in the inverter bridge without DC connection. In the pulse width modulation (PWM) current control mode, there are two possible states of action in each modulation cycle. Therefore, the two-phase current can be derived from the DC link current. However, under certain operating conditions of pulse width modulation (pWM) control, either of the two modes of action may last for a very short period of time. Therefore, due to the limited switching time of the power components, the dead time of the electronic components, and the delay in the electronic circuit, the actual phase current may not be measured on the DC connection measurement. Figure 5 is a block diagram of a conventional six-step square wave motor driver, wherein the motor driver includes A phase, B phase, and C phase upper side driving transistors 101, 103, and 105, U phase, V phase, and W phase. Side drive transistors 102, 104 and 106, diodes 101D, 102D, 103D, 104D, 105D and 106D, a Hall sensor circuit 201, a conventional six-step square wave control circuit 202, a front The driving circuit 203 and a current price measuring resistor 204 are provided. A motor includes an A phase coil 301, a B phase coil 302, and a C phase coil 303. In this embodiment, an N-type metal oxide semiconductor (nm〇S) electro-crystalline system is used to drive the transistors 101-106. The anode terminal and the cathode terminal of the diode i〇id are respectively connected to the source terminal and the drain terminal of the driving transistor 101. Similarly, the anode and cathode ends of the diodes 102D-106D are connected to the source terminals and the gate terminals of the drive transistors 102-106, respectively, in the same manner. The drain terminals of the driving transistors 10, 103 and 105 are connected to the power supply Vcc, and the source terminals of the driving transistors 102, 104 and 1 are connected to one end of the current detecting resistor 204. The other ends of the current detecting resistor 2〇4 are grounded. The diode 1〇1D_i〇2D of the driving transistor 101_102 operates as an A phase output circuit, and the diode 103D-104D of the driving transistor 1〇3_ι〇4 operates as a B phase output circuit and drives the transistor. The arm and the diode face of the 105-106 are operated as a c-phase output circuit. The source terminal of the transistor ι〇1 and the common terminal of the transistor of the transistor 1〇2 are connected to the A-phase coil 3. 〇1's terminal. Similarly, the common terminal of the source terminal of the crystal 103 and the drain terminal of the transistor i〇4 is connected to a terminal of the B phase coil 302, and the electric terminal 14 < £ 1294717 22134 twfl. doc / 006 95-11-20 A common terminal of the source terminal of the transistor 1〇5 and the drain terminal of the transistor 106 is connected to a terminal of the c-phase coil 303. The A phase coils 3〇1, b phase coil 302, and the other ends of the C phase coil 303 are connected to each other. The current flowing from the driving transistor 10M02 to the A-phase coil 301 is referred to as the A-phase current IA. Similarly, the current flowing from the driving transistor i〇3-1〇4 to the B phase coil 302 is referred to as the B phase current IB, and the current flowing from the driving transistor® 105-106 to the C phase coil 303 is referred to as the C phase current. 1C. The direction of all phase currents ΙΑ, IB, and 1C flowing from the driving transistor 10M06 to the coils 301-303 is assumed to be a positive direction for all phase current systems. The coils 301-303 of the motor 300 are connected in Y. Therefore, each phase current is equal to the current flowing through the corresponding coil. The Hall sensor circuit 201 includes Hall sensors 201A, 201B, and 201C that detect the position of the motor 300 rotor and output detection results to the position detection circuit and current command generation. Circuits 22, such as Hall sensors 201A, 201B, and 201C, output H1+, Η1-, Η2+, Η2-, Η3+, and H3_. A conventional six-step square wave control circuit 202 (which receives Hall sensor outputs H1+, H1_, H2+, H2-, H3+, and H3-, a torque command signal Tc, and a feedback current signal Ifb) The control signals S11-S16 are switched to select to turn any of the drive transistors 101-106 on or off and to transmit an instruction to the front drive circuit 203. The front drive circuit 203 outputs a signal to the gate of the drive transistor 101-106 according to the output of the conventional six-step square wave control circuit 202 to control the drive transistor 101-106 15 1294717 22134 twfl .doc/006 95-11-20 On/off status. Figure 6 is a block diagram of a conventional six-step square wave control circuit including differential amplifiers 401A, 401B, and 401C, automatic gain control circuits 402A, 402B, and 402C, adders 403A, 403B, and 403C. Multipliers 404A, 404B and 404C, comparators 405A, 405B, 405C, 412A, 412B and 412C, a low pass filter 406A, a peak detection circuit 407, an adder 408, a controller 409, a carrier signal generation The device 410 and an invalid time control circuit 411. The differential amplifiers 4〇1 a, 401B, and 401C receive Hall sensor outputs H1+, H1_, Η2+, Η2·, Η3+, and H3-, respectively, according to Hall sensor outputs H1+, HI-, H2+, H2-, H3+, and H3- determine position signals Ha, Hb, and He, and output position signals Ha, Hb, and He to automatic gain circuits 402A, 402B, and 4020. Automatic gain circuits 4〇2A, 402B, and 402C adjust position signals Ha. The current values of Hb and He then generate signals H11, H21 and H31. After receiving the signals ml, h21, and H31, the adder generates signals H13, H23, and H33 to comparators 412A, 412B, and 412C, respectively. The low pass filter 406, which receives a current feedback signal Ifb, outputs a signal to the peak debt measuring circuit 407. The adder 4〇8 receives the detection result generated by the torque command signal tc and the peak 4 detection circuit 407, and outputs the error signal to the controller 4〇9° to receive the output signal of the controller 4〇9 and the comparator 412a, respectively. The multipliers 4〇4a, 404B and 404C of the output signals of 412B and 412C will output the results to the comparators 4〇5A, 4〇5b and 405C. The invalid time control circuit 411 determines the switching control signals S11-S16 based on the outputs of the comparators 405A, 405B, and 405C. 16 1294717 22134twfl .doc/006 95-11-20 Figure 6 shows the control block diagram of the current control architecture of the spindle motor. The basis of this control layout is similar to open loop voltage/frequency control. The amplitude and phase of the voltage are individually controlled. This control layout has two limitations. Since the DC link current is dependent on the Pulse Width Modulation (pWM) signal, a stop current is measured as current feedback as shown in Figure 7. After detecting the peak value of the Dc junction current, a continuous current feedback can be generated as shown in Fig. 7. However, the current feedback generated by it contains large ripples, which may cause poor current control performance even in steady state operation. In addition, the control parameters of the current controller 409 shown in Fig. 6 need to be adjusted to improve the control efficiency when applied to different motors. Figure 8 shows the simulation results of the current control performance using the conventional six-step square wave control architecture. Figure 9 shows the control block diagram of the modified six-step square wave control circuit. The three comparators 412A, 412B, and 412C are omitted from FIG. Figure 10 shows the current control performance simulation waveform of the modified six-step square wave control architecture. Since only the amplitude of the maximum phase current is controlled, the controlled phase current is similar to the trapezoidal waveform shown in Fig. 10. In addition, since the torque generated by the non-sinusoidal phase current contains a torque ripple, it may cause the motor to oscillate and may deteriorate the efficiency. In the conventional method, whether it is block modulation or sinusoidal pulse width modulation (SPWM), there is a problem that only the amplitude of the maximum current can be controlled. Therefore, the shape of the phase current cannot be controlled. In U.S. Patent No. 6,674,258, Matsushita Electric Industrial Co., Ltd. has proposed a current control architecture capable of controlling two phase currents in a pulse width modulation (PWM) switching cycle. Figure 11 shows the overall control block diagram of the Matsushita method. For simplicity, 17 1294717 22134twfl.doc/006 95-11-20 Two trapezoidal current commands are generated as shown in Figure 12. The time interval TU1 in Fig. 12 is taken as an example to explain the basic principle of this control method. During this time interval, the terminal voltage for phase a is limited to Vcc as shown in Fig. 13(a), and the phase current ia is controlled according to the torque current command TI. Since only one phase current can be sensed from the DC link current, the other two terminal voltages are switched to ground for the start of the pulse width modulation (PWM) switching cycle as shown in Figure 13(a). Phase Lu potential current ia. When ia reaches the torque current command, the lower switch of phase b is turned off by the control signal F1, and the phase current ib flows through the diode 3D of the upper switch as shown in the figure 。. After F1 is turned off, a negative value of the phase current ie can be sensed from the DC link current, and it is controlled to follow the ramp current command TP ' as shown in Fig. 14(a) - 14(b). When the negative ic reaches the ramp current command TP, the lower switch of phase 3 is turned off by the control signal F2, and the phase current ic flows through the diode 5D of the upper switch as shown in Fig. 13(c). In theory, this method not only controls the amplitude of the maximum phase current, but also controls the shape of one of the other two phase currents during a pulse width modulation (PWM) switching period. Figure 15 shows the simulation results of the Matsushita method. From this figure, due to the non-sinusoidal current waveforms, the generated torque contains a large torque ripple. It should be noted that the controlled phase current is not the ideal trapezoidal waveform required in Figure 12. The reason will be explained below. In fact, this method has a fundamental problem for controlling two phase currents in a pulse width modulation (PWM) switching period. Again, the time interval TU1 in Fig. 12 is taken as an example. At the beginning of the pulse width modulation (Pwm) switching period, the phase current ia is controlled toward the torque current command TI. However, 1294717 22134twfl.doc/006 95-11-20

相位電流ic的負值也如第16圖顯示同時增加。當相位電流 ia達到該命令需求時,相位電流ic可能如第16圖所示已經 超過斜坡電流命令。因此無法控制相位電流ic的形狀,直 到斜坡電流命令超過相位電流ic的負值。第17圖(a)指出即 使電流命令是三正弦波形,此基本問題仍可能發生。第17 圖(b)中之另一觀察結果係如可控制之電流形狀是ib而非 ic,可控制相位電流ib直到電流命令低於相位電流ib的負 值。因此,對於此基本問題之合理解答是要在TU1的前一 半中控制ia及ib,而在TU1的後一半中控制ia及ic。將於 以下章節中提供數學分析以解釋此方法的基本問題。 從第13(a)圖中,可推導出如下的三相位電壓方程式:The negative value of the phase current ic is also increased as shown in Fig. 16. When the phase current ia reaches the command demand, the phase current ic may have exceeded the ramp current command as shown in Figure 16. Therefore, the shape of the phase current ic cannot be controlled until the ramp current command exceeds the negative value of the phase current ic. Figure 17 (a) shows that even if the current command is a three-sine waveform, this basic problem can still occur. Another observation in Fig. 17(b) is that if the shape of the controllable current is ib instead of ic, the phase current ib can be controlled until the current command is lower than the negative value of the phase current ib. Therefore, a reasonable answer to this basic problem is to control ia and ib in the first half of TU1 and ia and ic in the second half of TU1. Mathematical analysis will be provided in the following sections to explain the basic issues of this method. From the 13th (a) diagram, the following three-phase voltage equation can be derived:

Van = Va~Vn = + 0 + °) = + + (^) vbn =vb^vn =^-~(Kc + 〇 + 〇) = ibR + L~^ + eb (3)Van = Va~Vn = + 0 + °) = + + (^) vbn =vb^vn =^-~(Kc + 〇 + 〇) = ibR + L~^ + eb (3)

Vcn =Vc -Vn =Q--(Kc+^ + Q) = hR + L-^ + ec (^) 其中Van、Vbn、Vcn是三相位電壓,Va、Vb、Vc是三終端電壓, vcc是DC連結供應電壓,ia、ib、ic是三相位電流,ea、eb、 ec、是三後電動勢電壓,R及L是定子電阻及電感。從以 上方程式中,相位電流的變化可估計為:Vcn =Vc -Vn =Q--(Kc+^ + Q) = hR + L-^ + ec (^) where Van, Vbn, Vcn are three-phase voltages, Va, Vb, Vc are three terminal voltages, and vcc is DC Connect the supply voltage, ia, ib, ic are three-phase current, ea, eb, ec, three post-electromotive voltage, R and L are stator resistance and inductance. From the above equation, the change in phase current can be estimated as:

Aial=j(^Vcc^ea-iaR] (5) ^=\[-\vcc-eb-ibR\ (6)Aial=j(^Vcc^ea-iaR] (5) ^=\[-\vcc-eb-ibR\ (6)

L\ 0 J ^=\[-\vcc-ec-icRj (7) 類似分析可針對第13(b)圖進行,成為: K2=\i\Kc-ea-iaR\ ⑻L\ 0 J ^=\[-\vcc-ec-icRj (7) A similar analysis can be performed for Figure 13(b), which becomes: K2=\i\Kc-ea-iaR\ (8)

Aib2=y -vcc~eb-hR (9) 19 1294717 22134twfl.doc/006 95-11-20 . 1 ( 2 > Alc2 =7[~3FcC_eC""/ci? (10) )圖為: Aia〇=j{-ea-^iaR) (11) 1 ^h〇=j(-eb-ibR) (12) Aic〇 =J^{-ec-icR) (13) -r蚵弟u⑻至⑻圖疋義時間間隔為岣、A及△&,其中η 指在時間間隔TU1中之第η切換週期。可推導出在第 換瞬間的相位電流ic如: k (14) 從(7)、(10)及(13),(14)可推導成: —1 灸 _ 1 (15) 了Σ /d +2Δ,„2)+〜Δ7Ά ^ n=\LJ n x sm 其中…旨切換週期’其也是<、^及^的加總。以圖i2 顯示的梯形電流波形,可推導第k個切換瞬間的相位電流 命令,·:如下: 令 A (16) 則會有 其中分别由P指示轉軸馬達的磁極,且ω。指在第一切換瞬 間之旋轉速度’而r指電流命令的振幅。如前述,如果希望 控制相位電流ic以在τυι的時間間隔内彳盾著電流命人广, hk — hk 藉由將重寫為: (17)Aib2=y -vcc~eb-hR (9) 19 1294717 22134twfl.doc/006 95-11-20 . 1 ( 2 > Alc2 =7[~3FcC_eC""/ci? (10) ) Pictured: Aia 〇=j{-ea-^iaR) (11) 1 ^h〇=j(-eb-ibR) (12) Aic〇=J^{-ec-icR) (13) -r蚵弟u(8) to (8) The ambiguous time intervals are 岣, A, and Δ&, where η refers to the ηth switching period in the time interval TU1. It can be deduced that the phase current ic at the moment of the change is as follows: k (14) From (7), (10) and (13), (14) can be derived as: -1 moxibustion _ 1 (15) Σ /d + 2Δ, „2)+〜Δ7Ά ^ n=\LJ nx sm where ... the switching period 'is also the sum of <, ^ and ^. With the trapezoidal current waveform shown in Figure i2, the kth switching instant can be derived Phase current command, ·:: Let A (16) have a magnetic pole in which the rotary shaft motor is indicated by P, respectively, and ω means the rotational speed at the first switching instant ' and r refers to the amplitude of the current command. As mentioned above, If you want to control the phase current ic to cover the current in a time interval of τυι, hk — hk will be rewritten as: (17)

Ko △Κ (18) 結果方程式(18)在第k切換瞬間成立 ’ _ ^ ’則可控制相位M ieH TU1 _ k切換瞬間後跟隨電流命 20 1294717 95-11-20 22134twfl.doc/006 令,·:。因此方程式(18)是決定相位電流ie的形狀是否可控制 的條件。可從方程式(18)中獲得一些以下的觀察結果。在 TU1時間間隔之内,方程式(18)中左侧的第—項是正值, 且第二項是負值,即: 〇&lt;-Kc (19) ecn + icnR〈 Q (2 〇 ) 方程式(18)之右侧係與旋轉速度ω。及相位電流的振幅广Ko △Κ (18) The result equation (18) holds ' _ ^ ' at the kth switching instant to control the phase M ieH TU1 _ k switching instant followed by current life 20 1294717 95-11-20 22134twfl.doc/006 order, ·:. Therefore, equation (18) is a condition that determines whether the shape of the phase current ie is controllable. Some of the following observations can be obtained from equation (18). Within the TU1 time interval, the first term on the left side of equation (18) is a positive value, and the second term is a negative value, ie: 〇&lt;-Kc (19) ecn + icnR< Q (2 〇) The right side of (18) is the rotation speed ω. And a wide range of phase currents

直接成正比。因此,如圖18(a)-18(b)所示,在較高速度時 比在較低速度時更容易滿足方程式(18)。假設後電動勢電 壓及相位電流均為正弦形狀,且可在時間間隔Τϋι推導如 下: / 、 ecn = -ΚΕωη sin 20 -ΚΕωη sin(3Pco0«A7^) 4 =^Ψ^ΪΏ{3Ρω0ηΑΤ^) (21)(22) 在低速度時’方程式(18)的右侧大約是零。因此對於 在方程式(18)之左側的負加總而言,可得到:Directly proportional. Therefore, as shown in Figs. 18(a)-18(b), equation (18) is more easily satisfied at a higher speed than at a lower speed. It is assumed that the back electromotive voltage and the phase current are both sinusoidal and can be derived as follows at the time interval: /, ecn = -ΚΕωη sin 20 -ΚΕωη sin(3Pco0«A7^) 4 =^Ψ^ΪΏ{3Ρω0ηΑΤ^) (21 (22) At low speeds, the right side of equation (18) is approximately zero. So for the negative summation to the left of equation (18), you get:

fcco” + , )sin(3 尸 ω0πΔ7^ )之备 Fcc 1 + △’《2Fcco" + , )sin(3 corpse ω0πΔ7^ ) prepared by Fcc 1 + △’2

AT (23) 從方程式(23)的條件中可得到一結l,即方程式(23) 只有在低速操作而具有充分大的η時才能滿足,即在低速 操作時,無法在TU1的整個時間間隔内控制相位電流ic之 形狀。請參照第18(a)-18(b)圖,此現象可能弓丨起轉矩漣波, 而影響整體控制效能。 從以上分析,Matsushita方法的概念有幾項優勢。首 先’不只可控制振幅,而且可控制相位電流的形狀以減少 轉矩漣波。第二,不需要調整任何控制參數。第三,在任 21 1294717 22134twfl.doc/006 95-11-20 何1間只有二相位需要切換,因此能減少功率電晶體的切 換f耗。然而,Matsushita的方法有控制電流形狀之基本 問題。因此’提出新控制架構以保留Matsushita方法的優 勢且改進其缺點。 【發明内容】 以本么明的主要目的係提供一種空間向量電流控制脈寬 =艾(PWM)系統之馬達驅動技術,該驅動技術係能控制 鲁複數個相位電流不隨一Dc連結電流回授而強烈地改變。 扣=發明的另一目的係提供一種以空間向量電流控制脈 見調雙(PWM)技術為基礎之馬達驅動器。該馬達驅動器 中,可控制相位電流的振幅及其形狀以減少轉矩漣波。 本發明的另一目的係提供一以空間向量電流控制脈寬 凋艾(PWM)技術為基礎的馬達驅動器。在該馬達驅動器 中,任何瞬間只需要切換二相位。因此能減少功率電晶體 的切換損耗。 藝因此,為達成以上目的,本發明提供一馬達驅動器, 用以驅動-馬達’此馬達包括多個定子線圈,每—定子線 圈的一端共同麵接到一共同節點,此馬達驅動器包括··多 個輸出電路,每一輸出電路均包含一上臂開關及一下臂開 關,第i個輸出電路的該上臂開關與下臂開關間之連接^ 柄接到第i個定子線圈;電流谓測電阻轉接上述多個輸出 電路;位置偵測電路用於輸出與馬達轉子之位置相關的〜 位置信號;電流命令產生電路用以根據位置信號及預定相 位角產生多個預定電流命令信號,以對應上述定子線圈· 22 &lt;.s 1294717 22134twfl.doc/006 95-11-20 空間向量調變控制電路,接收上述預定電流命令信號以及 搞接電流2測電阻,當第k個預定電流命令信號的相u位在 正負一預設相位時,控制上述輸出電路的上臂開關及下臂 開關以接收電流偵測電阻所擷取之第k定子線圈之電流, 比較第k定子線圈之電流與第k個預定電流命令信號^大 小,以從上述定子線圈選擇其一,並控制其電流大小u,其 中i與k為自然數。 ’ _ 藉由單純示範最適於實施本發明的模式中之一,熟習 此項技術人士將可自以下說明瞭解本發明的特點及優勢中 之一或部分或全部,其中該說明顯示及描述本發明的較佳 具體實施例。如應可瞭解到,本發明能有不同具體實施例, 並且其數個細節係能在各種明顯方面中修改,且全部不脫 離本發明。因此,附圖及說明書基本上可視為範例性而非 限制性。 【實施方式】 藝請麥考第19圖,係為一根據本發明之較佳實施例的馬 達驅動器之方塊圖,其中該馬達驅動器包含一霍爾(Hall) 感測器電路501、一位置偵測電路及電流命令產生電路 502、一空間向量調變(SVM)控制電路503、一前置驅動電 路504、一電流偵測電阻器505、U相位、V相位及W相 位上側驅動電晶體601、603以及605、U相位、V相位以 及W相位下侧驅動電晶體602、604以及606、複數二極體 601D、602D、603D、604D、605D 以及 606D。一馬達包括 一 U相位線圈701、一 V相位線圈702以及一 W相位線圈 23 1294717 22134twfl .doc/006 95-11-20 703 〇 本實施例中,N型金屬氧化物半導體(NM〇s)電晶體係 用於驅動該電晶體601-606。該二極體601D之陽極端以及 .陰極端分別連接到該驅動電晶體601的源極終端以及汲極 終端。同樣地,該二極體002D_606D的陽極端及陰極端係 以相同方式分別連接到該驅動電晶體6〇2_6〇6之源極終端 及汲極終端。該驅動電晶體6〇卜6〇3及6〇5的汲極終端係 連接到電源供應Vcc,而該驅動電晶體6〇2、6〇4及6〇6的 源極終端係連接到該電流偵測電阻器5〇5的一端。該電流 偵測電阻益505的其他端係接地。該驅動電晶體6〇1_6〇2 的臂及二極體601D-602D係操作為一 u相位輸出電路,該 驅動電晶體603-604的臂及二極體603D_604D係操作為一 v相位輸出電路,且該驅動電晶體605-606的臂及二極體 605D-606D係操作為一 w相位輸出電路。該電晶體之 源極終端及該電晶體602的汲極終端之共同節點係連接在 φ U相位線圈701的一終端。同樣地,該電晶體6〇3的源極 終端及該電晶體604之汲極終端的共同節點係連接在v相 位線圈702的一終端,並且該電晶體6〇5的源極終端及該 電晶體606之汲極終端的共同節點係連接在該貨相位線圈 703的一終端。該U相位線圈701、該V相位線圈702、以 及該W相位線圈703的其他終端係彼此相連。 自該驅動電晶體601-602流向該U相位線圈701的電 流係稱為U相位電流Ιι;。同樣地,自該驅動電晶體6〇3_6〇4 流向該V相位線圈7〇2的電流叫作v相位電流Iv,且從該 24 1294717 22134twfl .doc/006 95-11-20 驅動電晶體605-606流向該W相位線圈703的電流叫作該 W相位電流Iw。自該驅動電晶體601-606流向該線圈 701-703的所有相位電流Iu、1¥及lw的方向,對於所有相 位電流係假設為正方向。該馬達700的線圈701-703係為Y 型連接。因此,各自的相位電流係等於流經對應線圈的電 流。 該霍爾(Hall)感測器電路501包括霍爾(Hall)感測 器501A、501B及501C,用以偵測馬達700轉子之位置, * 並且輸出偵測結果至位置偵測電路及電流命令產生電路 502,例如霍爾(Hall)感測器501A、501B及501C輸出 H1+、HI-、H2+、H2-、H3+及H3-。位置偵測電路及電流 命令產生電路502根據霍爾(Hall)感測器輸出H1+、H1-、 H2+、H2_、H3+及H3_決定位置信號Hu、1^及Hw,且輸 出該位置信號Hu、Hv及Hw至SVM控制電路503。該位 置信號Hu、Hv及Hw係數位信號。該位置偵測電路及該電 I 流命令產生電路502根據一轉矩命令信號Tc、一需求相位 偏移角0及霍爾(Hall)感測器輸出H1+、HI -、H2+、H2-、 H3+及H3-,決定U相位電流命令信號/;;、V相位電流命令 信號/;,以及W相位電流命令信號4。該位置偵測電路以 及該電流命令產生電路502輸出U相位電流命令信號&amp;、 V相位電流命令信號 &lt; 及W相位電流命令信號砧到該svm 控制電路503。該SVM控制電路503接收位置信號Hu、 私及HW、U相位電流命令信號4、V相位電流命令信號&lt;及 W相位電流命令信號4及一回授電流信號Ifb,產生切換控AT (23) From the condition of equation (23), a knot l can be obtained, that is, equation (23) can only be satisfied when operating at low speed and having a sufficiently large η, that is, at low speed operation, the entire time interval of TU1 cannot be achieved. The shape of the phase current ic is controlled internally. Please refer to Figure 18(a)-18(b). This phenomenon may cause torque ripple to affect the overall control efficiency. From the above analysis, the concept of the Matsushita method has several advantages. First, not only can the amplitude be controlled, but the shape of the phase current can be controlled to reduce torque ripple. Second, there is no need to adjust any control parameters. Third, in the 21 1294717 22134twfl.doc/006 95-11-20, only two phases need to be switched, so the switching cost of the power transistor can be reduced. However, Matsushita's method has fundamental problems in controlling the shape of current. Therefore, a new control architecture was proposed to preserve the advantages of the Matsushita method and to improve its shortcomings. SUMMARY OF THE INVENTION The main purpose of the present invention is to provide a space vector current control pulse width = Ai (PWM) system motor drive technology, the drive technology can control a plurality of phase currents do not follow a DC link current feedback And changed strongly. Another object of the invention is to provide a motor driver based on space vector current control pulse-modulated dual (PWM) technology. In the motor driver, the amplitude of the phase current and its shape can be controlled to reduce torque ripple. Another object of the present invention is to provide a motor driver based on space vector current controlled pulse width (PWM) technology. In this motor drive, only two phases need to be switched at any instant. Therefore, the switching loss of the power transistor can be reduced. Therefore, in order to achieve the above object, the present invention provides a motor driver for driving a motor. The motor includes a plurality of stator coils, and one end of each stator coil is commonly connected to a common node, and the motor driver includes a plurality of An output circuit, each output circuit includes an upper arm switch and a lower arm switch, wherein the connection between the upper arm switch and the lower arm switch of the i-th output circuit is connected to the i-th stator coil; the current sense resistor is switched The plurality of output circuits; the position detecting circuit is configured to output a ~ position signal related to the position of the motor rotor; and the current command generating circuit is configured to generate a plurality of predetermined current command signals according to the position signal and the predetermined phase angle to correspond to the stator coil · 22 &lt;.s 1294717 22134twfl.doc/006 95-11-20 Space vector modulation control circuit, receiving the above predetermined current command signal and engaging current 2 resistance, when the phase k of the kth predetermined current command signal When the positive and negative preset phases are controlled, the upper arm switch and the lower arm switch of the output circuit are controlled to receive the kth stator captured by the current detecting resistor Current loops, the current in the stator winding comparison of the k-th and the k th predetermined size ^ current command signal to select one from the stator coil, and to control the magnitude of the current u, wherein i and k is a natural number. ' _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A preferred embodiment of the invention. It is to be understood that the invention may be embodied in various embodiments and the various details may be modified in various obvious aspects and all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative rather [Embodiment] FIG. 19 is a block diagram of a motor driver according to a preferred embodiment of the present invention, wherein the motor driver includes a Hall sensor circuit 501 and a position detector. Measuring circuit and current command generating circuit 502, a space vector modulation (SVM) control circuit 503, a pre-drive circuit 504, a current detecting resistor 505, a U-phase, a V-phase, and a W-phase upper driving transistor 601, 603 and 605, U-phase, V-phase, and W-phase lower side drive transistors 602, 604, and 606, and complex diodes 601D, 602D, 603D, 604D, 605D, and 606D. A motor includes a U-phase coil 701, a V-phase coil 702, and a W-phase coil 23 1294717 22134 twfl .doc/006 95-11-20 703 In this embodiment, an N-type metal oxide semiconductor (NM〇s) A crystal system is used to drive the transistors 601-606. The anode terminal and the cathode terminal of the diode 601D are respectively connected to the source terminal of the driving transistor 601 and the drain terminal. Similarly, the anode terminal and the cathode terminal of the diode 002D_606D are respectively connected to the source terminal and the drain terminal of the driving transistor 6〇2_6〇6 in the same manner. The driving terminals of the driving transistors 6〇6〇3 and 6〇5 are connected to the power supply Vcc, and the source terminals of the driving transistors 6〇2, 6〇4 and 6〇6 are connected to the current. One end of the resistor 5〇5 is detected. The other ends of the current detection resistor 505 are grounded. The arm of the driving transistor 6〇1_6〇2 and the diode 601D-602D operate as a u-phase output circuit, and the arm of the driving transistor 603-604 and the diode 603D_604D operate as a v-phase output circuit. The arms of the drive transistors 605-606 and the diodes 605D-606D operate as a w-phase output circuit. The common terminal of the source terminal of the transistor and the drain terminal of the transistor 602 is connected to a terminal of the φ U phase coil 701. Similarly, the source terminal of the transistor 6〇3 and the common node of the drain terminal of the transistor 604 are connected to a terminal of the v-phase coil 702, and the source terminal of the transistor 6〇5 and the battery The common node of the drain terminal of crystal 606 is coupled to a terminal of the cargo phase coil 703. The U-phase coil 701, the V-phase coil 702, and the other terminals of the W-phase coil 703 are connected to each other. The current flowing from the driving transistors 601-602 to the U-phase coil 701 is referred to as U-phase current ;; Similarly, the current flowing from the driving transistor 6〇3_6〇4 to the V-phase coil 7〇2 is referred to as a v-phase current Iv, and from the 24 1294717 22134 twfl .doc/006 95-11-20 driving transistor 605- The current flowing to the W phase coil 703 is referred to as the W phase current Iw. The directions of all the phase currents Iu, 1¥, and lw flowing from the driving transistors 601-606 to the coils 701-703 are assumed to be positive directions for all phase current systems. The coils 701-703 of the motor 700 are Y-connected. Therefore, the respective phase currents are equal to the current flowing through the corresponding coils. The Hall sensor circuit 501 includes Hall sensors 501A, 501B, and 501C for detecting the position of the motor 700 rotor, and outputting the detection result to the position detecting circuit and the current command. A generating circuit 502, such as Hall sensors 501A, 501B, and 501C, outputs H1+, HI-, H2+, H2-, H3+, and H3-. The position detecting circuit and the current command generating circuit 502 determine the position signals Hu, 1^ and Hw according to the Hall sensor outputs H1+, H1-, H2+, H2_, H3+ and H3_, and output the position signal Hu, Hv and Hw to SVM control circuit 503. The position signals Hu, Hv and Hw are coefficient bit signals. The position detecting circuit and the electric current command generating circuit 502 are based on a torque command signal Tc, a required phase offset angle 0, and a Hall sensor output H1+, HI-, H2+, H2-, H3+. And H3-, determining the U phase current command signal /;;, the V phase current command signal /;, and the W phase current command signal 4. The position detecting circuit and the current command generating circuit 502 output a U phase current command signal &, a V phase current command signal &lt; and a W phase current command signal anvil to the svm control circuit 503. The SVM control circuit 503 receives the position signal Hu, the private and HW, the U phase current command signal 4, the V phase current command signal &lt; and the W phase current command signal 4 and a feedback current signal Ifb to generate a switching control.

&lt; S 25 1294717 22134twfl .doc/006 95-11-20 制信號S21-S26以選擇使任何驅動電晶體6〇1-6〇6成開啟 或關閉,且傳送指令到前置驅動電路504。前置驅動電路 504根據SVM控制電路503的輸出來輪出信號到驅動電晶&lt; S 25 1294717 22134 twfl .doc/006 95-11-20 Signals S21-S26 are selected to turn any of the drive transistors 6〇1-6〇6 on or off and transmit commands to the pre-driver circuit 504. The pre-driver circuit 504 rotates the signal to the drive transistor according to the output of the SVM control circuit 503.

„ 體601_606的閘極,以控制驅動電晶體601-606之ON/OFF 狀態。 凊筝考第20圖(a)-(b),第20圖(a)顯示空間向量及開 關狀恶模式的疋義,而弟20圖(b)是根據本發明一較佳實 施例,用於各自相位電流之預定波形。空間向量調變將第 19圖中的驅動電晶體601-606視為一單元,該單元能被驅 動為八種獨特狀悲,該複數狀態各產生一個別電壓向量。 此等狀態顯示於第20(a)圖,其中向量以i表示係指一上侧 面驅動電晶體(如,第19圖的上侧驅動電晶體6〇1、6〇3或 605)係開啟,而〇指一下侧驅動電晶體(即,第19圖的下 侧驅動電晶體602、604、或606)係開啟。在第2〇(a)圖中, 一電晶體關閉之條件係由從一上供應電壓或一下供應電壓 延伸出的短線表示。相反地,一電晶體開啟之條件係由延 伸向下及向右(即,朝定子繞組)延伸的較長線表示。電壓 向量V0 ’舉例來說,係藉由打開所有下侧驅動電晶體使定 子繞組短路。«向量V7,也藉由打開所有上側驅動電晶 體使定子繞組短路。因此,該電壓向量V〇及V7由於其等 對應於定子繞組中的零電壓而稱為空(null)或零向量。 -電塵向量VI透過-上侧驅動電晶體輕合一電流至 其各自的定子繞、組,且接著將電流分開以通過其他二定子 繞組及其等各自的下侧驅動電晶體。一電壓向量V2從二 26 1294717 22134twfl.doc/006 95-11-20 上侧電晶體使電流通過其等各自的定子繞組,然後結合此 等電流成為一電流,通過剩餘的定子繞組及其各自的下侧 電晶體。從此等實例中,其他電壓向量的開關狀態可從檢 查第20(a)圖瞭解。 第20(a)圖顯示八種開關狀態及表示此等狀態的電壓 向量。此外,第20(b)圖顯示根據本發明的空間向量定義為 正弦電流命令的區域。在第20(b)圖中,此等電壓向量係映 射至一狀態圖之轴。該空向量V0及V7係定位在座標 ® 中心,該電壓向量VI係沿α軸置放,而電壓向量V2-V6 自該電壓向量VI開始連續分隔60度。因此,能夠把狀態 圖的轴分成六區域。應注意到本發明與美國專利第 6,674,258號以及美國專利公告號2004/0000884中所示之 Matsushita方法的區域定義是不同的,如圖20(b)所示。此 區域差別係有助於改進如前文中所述Matsushita方法之型 態追循能力的弱點。 ^ 參考圖式中之第21圖,第21圖顯示根據本發明一較 佳實施例之位置偵測電路及電流命令產生電路的示意圖。 位置偵測電路包括差分放大器801U、801V及801W,自動 增益控制電路802U、802V及802W,位準偏移電路803U、 803V及803W,比較器804U、804V及804W。位置偵測電 路根據霍爾(Hall)感測器輸出H1+、Η1_、H2+、H2-、 H3+及H3-決定指出馬達700轉子位置之位置信號Hu、Hv 及Hw。該差分放大器801U的輸出表示霍爾(Hall)感測 器輸出H1+及H1-間的差。同樣地,該差分放大器801V的 27 1294717 22134twfl.doc/006 95-11-20 輸出表示霍爾(Hall)感測器輸出H2+及H2-間的差。該差 分放大器801W的輸出表示霍爾(Hall)感測器輸出H3+ 及H3-間的差。自動增益控制電路802U、802V及802W接 收到該差分放大器801U、801V及801W的輸出,以調整 差異放大器的輸出使其具有相同的峰值。因此,該自動增 益控制電路802U、802V及802W的輸出HH、H12及H13 具有相同振幅。因為霍爾(Hall)感測器輸出H1+、H1-、 φ H2+、H2_、H3+及H3_是近似正弦波,所以信號HH、H12 及H13也是近似正弦波。信號H11之相位比信號H12相位 提前120度。同樣地,信號H12的相位比信號H13之信號 提前120度。 用以偏移自動增益控制電路8〇2U、802V及802W之 輸出Hll、H12及H13的電壓位準的位準偏移電路803U、„ The gate of body 601_606 to control the ON/OFF state of the drive transistor 601-606. Fig. 20 (a)-(b), Fig. 20(a) shows the space vector and the switch mode Figure (b) is a predetermined waveform for the respective phase currents according to a preferred embodiment of the present invention. The space vector modulation treats the driving transistors 601-606 in Figure 19 as a unit. The unit can be driven into eight unique states, each of which produces a different voltage vector. These states are shown in Figure 20(a), where the vector is represented by i, which refers to an upper side drive transistor (eg, The upper side driving transistor 6〇1, 6〇3 or 605) of Fig. 19 is turned on, and the lower side driving transistor (i.e., the lower side driving transistor 602, 604, or 606 of Fig. 19) is turned on. In the second diagram (a), the condition of a transistor off is indicated by a short line extending from an upper supply voltage or a lower supply voltage. Conversely, a transistor is turned on by extending downward and The longer line extending to the right (ie towards the stator winding) is indicated. The voltage vector V0' is for example All lower drive transistors are opened to short-circuit the stator windings. «Vector V7, also shorts the stator windings by opening all upper drive transistors. Therefore, the voltage vectors V〇 and V7 correspond to zero voltage in the stator windings due to their It is called a null or zero vector. - The electric dust vector VI transmits the current through the upper-side driving transistor to its respective stator winding, group, and then separates the current to pass the other two stator windings and the like. The respective lower side drive transistors. A voltage vector V2 from two 26 1294717 22134twfl.doc/006 95-11-20 upper side of the transistor allows current to pass through its respective stator windings, and then combines these currents into a current through Remaining stator windings and their respective underside transistors. From these examples, the switching states of other voltage vectors can be seen from examining Figure 20(a). Figure 20(a) shows eight switching states and indicates these The voltage vector of the state. Further, Fig. 20(b) shows a region in which the space vector according to the present invention is defined as a sinusoidal current command. In the 20th (b)th diagram, the voltage vectors are mapped to the axis of a state diagram. The The empty vectors V0 and V7 are positioned at the center of the coordinate, the voltage vector VI is placed along the α-axis, and the voltage vector V2-V6 is continuously separated by 60 degrees from the voltage vector VI. Therefore, the axis of the state diagram can be divided into six. It is to be noted that the present invention differs from the regional definition of the Matsushita method shown in U.S. Patent No. 6,674,258 and U.S. Patent Publication No. 2004/0000884, as shown in Fig. 20(b). Improving the weakness of the pattern tracking ability of the Matsushita method as described in the foregoing. ^ Referring to Figure 21 of the drawings, Figure 21 shows a position detecting circuit and a current command generating circuit according to a preferred embodiment of the present invention. schematic diagram. The position detecting circuit includes differential amplifiers 801U, 801V, and 801W, automatic gain control circuits 802U, 802V, and 802W, level shift circuits 803U, 803V, and 803W, and comparators 804U, 804V, and 804W. The position detecting circuit determines the position signals Hu, Hv, and Hw indicating the rotor position of the motor 700 based on the Hall sensor outputs H1+, Η1_, H2+, H2-, H3+, and H3-. The output of the differential amplifier 801U represents the difference between the Hall sensor outputs H1+ and H1-. Similarly, the 27 1294717 22134 twfl.doc/006 95-11-20 output of the differential amplifier 801V represents the difference between the Hall sensor outputs H2+ and H2-. The output of the differential amplifier 801W represents the difference between the Hall sensor outputs H3+ and H3-. The automatic gain control circuits 802U, 802V, and 802W receive the outputs of the differential amplifiers 801U, 801V, and 801W to adjust the outputs of the difference amplifiers to have the same peak value. Therefore, the outputs HH, H12, and H13 of the automatic gain control circuits 802U, 802V, and 802W have the same amplitude. Since the Hall sensor outputs H1+, H1-, φ H2+, H2_, H3+, and H3_ are approximately sinusoidal, the signals HH, H12, and H13 are also approximately sinusoidal. The phase of the signal H11 is 120 degrees ahead of the phase of the signal H12. Similarly, the phase of signal H12 is 120 degrees ahead of the signal of signal H13. a level shifting circuit 803U for shifting the voltage levels of the outputs H11, H12, and H13 of the automatic gain control circuits 8〇2U, 802V, and 802W,

803V及803U’係分別輸出該等結果到比較器8〇4U、804V 及8〇4W。該比較器804U、804V及804W用一電壓參考 # Vref比較位準偏移電路803U、803V及803W之輸出,且 分別產生位置信號Hu、Hv&amp;Hw。 該電流命令產生電路包括乘法器 805a-805f,加法器 8〇6U、806V 及 806|,乘法器 8〇7U、8〇7V 及 8〇7W,一 相位偏移表808,及一轉矩振幅比例增益控制電路8〇9。相 位偏移表808根據需求相位偏移角0決定&amp;及&amp;的值。位 置^則b虎mi係來自Κι*Η11_Κ2*Ηΐ2。同樣地,位置債 ,遽Η22來自位置制信號Η23來自 1 ίί13_Κ2 H11。假設Κι=Κ2=1。因此,位置债測信號冊 28 1294717 22134twfl .doc/006 v 95-11-20 的相位係比信號H11提前3〇度。換句 號H21提前信號Ή11 μ位置偵測信 的相位係由心及κ之值決 求相位偏移角θ。同楛 值决疋,即需 HU的相位係由K f也,繼偵娜信號_提前信號 m附曰1你由Κι及〖2之值決定 該位置_錢H23提前㈣H13的相位 值決定,即需求相位偏相位電流命1及;^ 由該信號肪及轉矩命令信號TC決定。轉矩^^糸猎The 803V and 803U' outputs the results to the comparators 8〇4U, 804V and 8〇4W, respectively. The comparators 804U, 804V, and 804W compare the outputs of the level shift circuits 803U, 803V, and 803W with a voltage reference #Vref, and generate position signals Hu, Hv &amp; Hw, respectively. The current command generating circuit includes multipliers 805a-805f, adders 8〇6U, 806V and 806|, multipliers 8〇7U, 8〇7V and 8〇7W, a phase shift table 808, and a torque amplitude ratio Gain control circuit 8〇9. The phase offset table 808 determines the values of &amp;&amp;&amp; based on the required phase offset angle 0. Position ^ then b tiger mi is from Κι*Η11_Κ2*Ηΐ2. Similarly, the location debt, 遽Η22 comes from the position signal Η23 from 1 ίί13_Κ2 H11. Suppose Κι=Κ2=1. Therefore, the phase of the positional debt signal book 28 1294717 22134twfl .doc/006 v 95-11-20 is 3 degrees ahead of the signal H11. In other words, the phase of the H21 advance signal Ή 11 μ position detection signal determines the phase offset angle θ from the values of the heart and κ. The same value, that is, the phase of the HU is required by K f, and the signal of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The demand phase bias phase currents 1 and ; ^ are determined by the signal and the torque command signal TC. Torque ^^糸 hunting

之值係藉由轉矩振^卜 ^ P ^ C 比例增扭控制電路8〇9 地,V相位電流命令传轳 &quot;|』樣 山W _ 叙及相位電流命令信號4係藉 由該㈣H22與肋及轉矩命令信號Tc決定。結果,口 相位電流命令信號/;、v ^目位電流命令信心及w相位電 流命^信號/;根據-轉矩命令信號Tc、—需求相位偏移角 0及霍爾(Hall)感測器輸出 H1+、H1_、H2+、H2、H3+ 及H3-。顯示於圖22、圖23中之相位偏移表8〇8,顯示根 據本發明一較佳具體實施例之位置偵測及電流命令產生電 路的輸出。 參考圖式中之第24圖至第26圖,第24圖顯示一根據 本發明一較佳實施例之SVM控制電路的示意圖。第25圖 顯示根據本發明一第一較佳具體實施例之SVM控制電路 的時序圖。第26圖顯示根據本發明一第一較佳實施例之 SVM控制電路的查找表。該SVM控制電路503包括一多 工處理器901、一逆變電路902、一位準偏移電路903、一 低通濾波器904、一位準偏移及放大器905、一比較器906、 一空間向量調變907、一參考時脈產生器9〇8、1)型正反器 c s 29 1294717 22134twfl.doc/006 95 11 20 909與911、一延遲910、一下落緣延遲912、逆變器9i3 與916、NAND閘914、及一查找表917。該查找表917根 據位置信號Hu、Hv及Hw、偵測狀態信號DS、控制狀態 信號CS以及狀態信號SS決定多工處理器901的傳導狀態 及空間向量調變907的輸出。該查找表917也決定了逆變 電路902的狀態。例如,假設SS=〇、DS=1、CS==〇、η =1、 Ην=0 ’ 及 Hw=〇。因此,Μ1=0,M2=q,Μ3=0,且電壓向 _ 1—V3。V相位電流命令信號係透過多工處理器傳給 逆變電路902,且由於M3=0而旁通逆變電路9〇2。該電^ 向量V3被傳送到該空間向量調變9〇7。該空間向量 907產生切換控制信號S2丨_S26,用以選擇使任何驅動電晶 體601-606成開啟或關閉,且傳送指令到前置驅動電路 5〇4。前置驅動電路504根據SVM控制電路5〇3的輸出, 來輸出信號到驅動電晶體601-606的閘極,以控制^動電 晶體601-606之〇n/〇FF狀態。 • 參考第25圖,第25圖顯示根據本發明一較佳實施例 之SVM控制電路之一脈寬調變(PWM)切換週期時序圖。 本發明將一脈寬調變(PWM)切換週期分成三種狀態:一 偵測狀態、一控制狀態及一零狀態,如第25圖所示:在偵 測狀態中,一测試電壓向量會被施加達一小段時間間隔 必,用以在不同區域中偵測關鍵相位電流誤差。根據偵測 到的相位電流誤差,選擇一適合之電壓向量供控制對應的 相位電流。例如,當於偵測狀態必下,需求輸出電壓^量 係位於區域I時,電壓向量V3被傳送到空間向量調變模組 30 1294717 22134twfl.doc/006 95-11-20 907而產生切換控制信號S21_S26,該切換控制信號 S21-S26用以選擇使任何驅動電晶體6〇1-6〇6開啟或關閉。 當SVM控制電路503在控制狀態軟下接收到回授電流信號 Ifb(即Ifb=iv),如果V相位電流命令信號 &lt;係大於或等於回 ,授電流信號Ifb時’電壓向量V2被傳到空間向量調變907 而產生切換控制信號S21-S26,用以選擇使任何驅動電晶 體601-606開啟或關閉;或者,如果v相位電流命令信號4 φ係小於回授電流信號Ifb時,電壓向量VI被傳到空間向量 調變模組907而產生切換控制信號S2l—S26,用以選擇使 任何驅動電晶體601-606開啟或關閉。當v相位電流命令 4吕號八係小於回授電流信號Ifb時,一旦U相位電流命令信 號4等於回授電流信號Ifb,SVM控制電路503進入零狀 態,即電壓向量vo被傳送至空間向量調變模組907而產 生切換控制信號S21-S26,用以關閉任何驅動電晶體 601-606。同樣地,當V相位電流命令信號&lt;係大於或等於 _ 回授電流信號Ifb時,一旦W相位電流命令信號‘等於回 授電流信號Ifb,SVM控制電路503進入零狀態,即v〇信 號被傳送至空間向量調變模組907而產生切換控制信號 S21-S26,用以關閉任何驅動電晶體601-606。請參考圖27, 其係根據本發明一第一較佳實施例之SVM邏輯控制波 形。該誤差信號Ie係比較器906比較相位電流命令信號與 回授電流信號Ifb之輸出。該回授電流信號Ifb係經由一分 路電阻器505回授的一 DC連結電流。因此,根據以上描 述,自DC連結電流感測到之相位電流取決於所應用的空 1294717 22134twfl.doc/006 95-Π.2〇 間向量,該電流命令必須根據該空間向量進行多工處理, 且回授電流的符號必須被決疋以计鼻電流誤差。第2 8圖晨貝 示根據本發明一第一較佳實施例於區域I之SVM邏輯控制 • 電路之電流控制波形。第29圖顯示根據本發明一較佳實施 _ 例說明之模擬結果。The value is obtained by the torque vibration ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Determined with the rib and torque command signal Tc. As a result, the port phase current command signal /;, v ^ eye current command confidence and w phase current life signal /; according to the - torque command signal Tc, - demand phase offset angle 0 and Hall (Hall) sensor Outputs H1+, H1_, H2+, H2, H3+, and H3-. The phase shift table 8〇8 shown in Figs. 22 and 23 shows the output of the position detecting and current command generating circuit in accordance with a preferred embodiment of the present invention. Referring to Figures 24 through 26 of the drawings, Figure 24 shows a schematic diagram of an SVM control circuit in accordance with a preferred embodiment of the present invention. Figure 25 is a timing chart showing an SVM control circuit in accordance with a first preferred embodiment of the present invention. Figure 26 is a diagram showing a look-up table of an SVM control circuit in accordance with a first preferred embodiment of the present invention. The SVM control circuit 503 includes a multiplexer 901, an inverter circuit 902, a quasi-offset circuit 903, a low pass filter 904, a quasi-offset and amplifier 905, a comparator 906, and a space. Vector modulation 907, a reference clock generator 9〇8, 1) type flip-flop cs 29 1294717 22134twfl.doc/006 95 11 20 909 and 911, a delay 910, a falling edge delay 912, the inverter 9i3 And 916, NAND gate 914, and a lookup table 917. The lookup table 917 determines the conduction state of the multiplexer 901 and the output of the space vector modulation 907 based on the position signals Hu, Hv, and Hw, the detection state signal DS, the control state signal CS, and the state signal SS. The lookup table 917 also determines the state of the inverter circuit 902. For example, suppose SS = 〇, DS = 1, CS = = 〇, η = 1, Ην = 0', and Hw = 〇. Therefore, Μ1=0, M2=q, Μ3=0, and the voltage is _1-V3. The V phase current command signal is transmitted to the inverter circuit 902 through the multiplex processor, and the inverter circuit 9〇2 is bypassed due to M3=0. The electric vector V3 is transmitted to the space vector modulation 9〇7. The space vector 907 generates a switching control signal S2丨_S26 for selecting to turn any of the driving transistors 601-606 on or off and to transmit an instruction to the pre-driver circuit 5〇4. The pre-driver circuit 504 outputs a signal to the gates of the drive transistors 601-606 in accordance with the output of the SVM control circuit 5〇3 to control the 〇n/〇FF states of the transistors 601-606. Referring to Fig. 25, Fig. 25 is a timing chart showing a pulse width modulation (PWM) switching cycle of an SVM control circuit in accordance with a preferred embodiment of the present invention. The present invention divides a pulse width modulation (PWM) switching period into three states: a detection state, a control state, and a zero state, as shown in FIG. 25: in the detection state, a test voltage vector is Apply for a short period of time to detect critical phase current errors in different areas. Based on the detected phase current error, a suitable voltage vector is selected to control the corresponding phase current. For example, when the detection state is necessary, when the demand output voltage is located in the region I, the voltage vector V3 is transmitted to the space vector modulation module 30 1294717 22134twfl.doc/006 95-11-20 907 to generate switching control. Signal S21_S26, the switching control signals S21-S26 are used to select to turn any of the driving transistors 6〇1-6〇6 on or off. When the SVM control circuit 503 receives the feedback current signal Ifb (ie, Ifb=iv) in the control state soft state, if the V phase current command signal &lt; is greater than or equal to the return, the voltage vector V2 is transmitted to the current signal Ifb. The space vector is modulated 907 to generate switching control signals S21-S26 for selecting to turn any of the driving transistors 601-606 on or off; or, if the v-phase current command signal 4 φ is less than the feedback current signal Ifb, the voltage vector The VI is passed to the spatial vector modulation module 907 to generate switching control signals S2-1-S26 for selecting to turn any of the drive transistors 601-606 on or off. When the v-phase current command 4 is less than the feedback current signal Ifb, once the U-phase current command signal 4 is equal to the feedback current signal Ifb, the SVM control circuit 503 enters a zero state, that is, the voltage vector vo is transmitted to the space vector tone. The change module 907 generates switching control signals S21-S26 for turning off any of the drive transistors 601-606. Similarly, when the V phase current command signal &lt; is greater than or equal to the feedback current signal Ifb, once the W phase current command signal 'equal to the feedback current signal Ifb, the SVM control circuit 503 enters a zero state, that is, the v〇 signal is The transfer to spatial vector modulation module 907 generates switching control signals S21-S26 for turning off any of drive crystals 601-606. Referring to Figure 27, the SVM logic controls the waveform in accordance with a first preferred embodiment of the present invention. The error signal Ie is a comparator 906 that compares the output of the phase current command signal and the feedback current signal Ifb. The feedback current signal Ifb is a DC connection current fed back via a shunt resistor 505. Therefore, according to the above description, the phase current sensed from the DC link current depends on the applied space 1294717 22134twfl.doc/006 95-Π.2 inter-turn vector, which must be multiplexed according to the space vector. And the sign of the feedback current must be determined to account for the nose current error. Figure 28 is a diagram showing the current control waveform of the SVM logic control of the area I in accordance with a first preferred embodiment of the present invention. Figure 29 is a view showing simulation results in accordance with a preferred embodiment of the present invention.

第30圖顯示本發明以上較佳實施例之一變化實施 例,與第19圖之實施例在於位置偵測電路增加了一個 輸出Hk ’而Hk的產生係根據第21圖自動增益控制電路 802U、802V、802W 的輸出 Hll、H12、H13 經過一個 x〇R 閘所得到的訊號,如第31圖所顯示。第32圖為根據本發 明之變化實施例之SVM控制電路示意圖,參考第24圖, 其主要差異在於查詢表不只根據位置信號Hu、Hv、Hw、侦 測狀態訊號DS、控制狀態訊號CS及狀態訊號SS,同時也 根據Hk信號決定多工處理器的傳導狀態及空間向量調變 的輸出,第33圖顯示本實施例之SVM控制電路之一個脈 0 寬調變週期時序圖,參考第25圖,本實施例將偵測狀態分 為12種狀態,同時零狀態也變為2種狀態,第34圖為此 實施例SVM控制電路之查詢表定義,第35圖顯示本發明 以上較佳實施例之替代性模式的模擬結果,玎觀察得知透 過本發明之技術,習知六步馬達驅動技術所造成的換相扭 矩漣波可被有效減小。 此外,因為在上述實施例中只以一分路電阻器505回 授DC連結電流,所以僅需要一遲滯比較器。根據偵測到 的相位電流鴿差,會選擇一適合之空間向量,用於以該遲 32 1294717 22134twfl .doc/006 95-11-20 了控制對應的相位電流。因此,藉由-脈寬調變 刀換週期中之預定遲滯頻帶控制,可選擇一適當 之向量用叫制-相位電流。 熟知此項技術人士應瞭解上述圖式及說明中所示之本 舍明具體實施例只是範例性且非限制。 目、本=月車又佳具體實施例的前述說明係用於示範及說明 目ϋ。其非旨於徹底或使本發3錄於該精確形式或已揭示 性具體實施例。因此’先前說明應視為示範性而非 卞HH f ΑΑ摘許多修正及變化對於熟習此項技術人士將是 明、具體實施例之選擇及描述是為了更佳解釋本發 t人=其實際應用之最佳模式,從而允許熟f此項技 於各種具體實施例之本發明,且具有適合於 ttr蓋實作之各種修改。本發明意於使其範轉 2在此所附之申請專職岐其料者定義, 斤有請求項均包含其最廣泛之合理範圍。應 ^解到’可由熟習此項技術者對於具體實施例進行改變, :不下申請專利範圍所定義之本發明的範•。再 ^,本揭路書中沒有任何元件及組件係意以用於公不 或組件是否在以下申請專利範圍 本揭露書的摘要係提供用簡應摘要規則之=, 八允终搜尋者迅速地私從此減書發布的 :揭露主題。應要瞭解到其非用於解釋=技 圍的範疇或意涵。 T哨專利粑 【圖式簡單說明】 33 1294717 22134twfl.doc/006 95-11-20 第1圖係一配合六步進電壓源逆變器使用的線間和線 間電壓及相位和線間電壓的波形。 第2圖係區塊調變之一典塑電壓波形。 第3圖顯示六步進電壓源逆變器的相位電壓及電流波 形。 第4圖顯示一正弦脈寬調變(SPWM)技術。 第5圖係一習知六步進馬達驅動器的方塊圖。 g 第6圖係一習知六步進控制電路的方塊圖。 弟7圖顯示一 DC連結電流及峰值4貞測輸出電流的模 擬波形。 第8圖顯示一具有習知六步進控制架構之電流控制效 能的模擬波形。 弟9圖係一已修改之六步進控制電路的方塊圖。 第1〇圖顯示一具有已修改之六步進控制架構之電流 控制效能的模擬波形。 • 弟Π圖顯示一 Matsushita方法的整體控制方塊圖。 苐12圖顯示一 Matsushita方法的三梯形電流命令。 弟13(a)〜(c)圖顯示一流經Matsushita方法之馬達的電 流路線。 苐14(a)〜(b)圖顯示一 Matsushita方法的波形。 弟15圖顯示一具有Matsushita方法之電流控制效能的 模擬結果。 第16圖顯示一具有梯形電流波形之Matsushita方法的 基本問題。 ι·- S y 34 1294717 22134twfl.doc/006 95-11-20 弟17圖顯示具有正弦電流波形之Matsushita方法的 基本問題。 第18圖顯示一在(a)低速操作、(b)高速操作下之 Matsushita方法之實驗結果。 第19圖係一根據本發明較佳實施例之馬達驅動器的 方塊圖。 第20(a)圖顯示空間向量及開關狀態模式的定義。 φ 第20(b)圖係根據本發明一較佳具體實施例用於各自 的相位電流之一預定波形。 第21圖顯示根據本發明一較佳具體實施例之位置偵 測電路及電流命令產生電路的示意圖。 第22圖係顯示一相位偏移表。 第23圖係顯示根據本發明一較佳實施例之位置偵測 及電流命令產生電路之輸出波形。 第24圖顯示一根據本發明一較佳實施例的SVM控制 φ 電路的示意圖。 第25圖顯示一根據本發明一第一較佳實施例之SVM 控制電路的時序圖。 第26圖顯示一根據本發明一第一較佳實施例之SVM 控制電路的查詢表。 第27圖係一根據本發明一第一較佳實施例之SVM邏 輯控制波形。 第28圖顯示一根據本發明一第一較佳實施例在區域【 之SVM控制電路的電流控制波形。 35 1294717 22134twfl.doc/006 95-11-20 第29圖顯示一根據本發明一較佳實施例之模擬結果。 第30-35圖顯示本發明以上較佳具體實施例之變化實 施例。 【主要元件符號說明】 101、 103、105、601、603、605 :上側驅動電晶體 102、 104、106、602、604、606 :下侧驅動電晶體 101D、102D、103D、104D、105D、106D、3D、5D、 鲁 601D、602D、603D、604D、605D、606D :二極體 201、501 :霍爾感測器電路 202 :六步方波控制電路 203 :前置驅動電路 204 :電流偵測電阻器 300 ' 700 :馬達 301、302、303 :相位線圈 IA、IB、1C、ia、ib、ic :相位電流 藝 201A、201B.、201C、501A、501B、501C :霍爾感測 器 H1+、HI-、H2+、Η2·、H3+及H3-:霍爾感測器輪出Figure 30 is a diagram showing a variant embodiment of the above preferred embodiment of the present invention. The embodiment of Figure 19 is characterized in that the position detecting circuit adds an output Hk' and the Hk is generated according to the automatic gain control circuit 802U of Fig. 21. The signals of the 802V, 802W outputs H11, H12, and H13 are passed through an x〇R gate, as shown in Figure 31. Figure 32 is a schematic diagram of an SVM control circuit according to a variant embodiment of the present invention. Referring to Figure 24, the main difference is that the lookup table is based not only on the position signals Hu, Hv, Hw, the detection status signal DS, the control status signal CS, and the status. The signal SS also determines the conduction state of the multiplex processor and the output of the spatial vector modulation according to the Hk signal. FIG. 33 shows a pulse width modulation period timing diagram of the SVM control circuit of the embodiment, refer to FIG. In this embodiment, the detection state is divided into 12 states, and the zero state also becomes 2 states. FIG. 34 is a lookup table definition of the SVM control circuit of this embodiment, and FIG. 35 shows the above preferred embodiment of the present invention. As a result of the simulation of the alternative mode, it has been observed that the commutation torque chopping caused by the conventional six-step motor driving technique can be effectively reduced by the technique of the present invention. Furthermore, since only the DC link current is returned by a shunt resistor 505 in the above embodiment, only one hysteresis comparator is required. Based on the detected phase current difference, a suitable space vector is selected for controlling the corresponding phase current with the delay 32 1294717 22134twfl .doc/006 95-11-20. Therefore, by using the predetermined hysteresis band control in the pulse width modulation cycle, an appropriate vector can be selected to use the phase-phase current. Those skilled in the art should understand that the specific embodiments shown in the above drawings and description are merely exemplary and not limiting. The foregoing description of the specific embodiments of the present invention is intended to be exemplary and illustrative. It is not intended to be exhaustive or to enable the present invention in the precise form or the disclosed embodiments. Therefore, the 'previous descriptions should be regarded as exemplary rather than 卞HH f. Many modifications and variations will be apparent to those skilled in the art, and the selection and description of specific embodiments is intended to better explain the present application. The best mode, thus allowing the invention to be practiced in various specific embodiments, and having various modifications suitable for ttr cover implementation. The present invention is intended to be used in the context of the application of the application, and the claims are intended to cover the broadest reasonable scope. It should be understood that changes may be made to the specific embodiments by those skilled in the art, and the scope of the invention as defined in the scope of the claims is not limited. Further, there are no components or components in this disclosure that are intended to be used in the public or whether the components are in the following patent application. The summary of the disclosure is provided by the summary rule of the summary, and the eight final searchers quickly Privately released from this book: reveal the theme. It should be understood that it is not used to explain the scope or meaning of the technology. T-whistle patent 粑 [schematic description] 33 1294717 22134twfl.doc/006 95-11-20 Figure 1 is a line-to-line and line-to-line voltage and phase and line-to-line voltage used with a six-step voltage source inverter Waveform. The second picture shows the voltage waveform of one of the block modulations. Figure 3 shows the phase voltage and current waveform of a six-step voltage source inverter. Figure 4 shows a sinusoidal pulse width modulation (SPWM) technique. Figure 5 is a block diagram of a conventional six stepper motor driver. g Figure 6 is a block diagram of a conventional six step control circuit. Figure 7 shows an analog waveform of a DC link current and a peak 4 sense output current. Figure 8 shows an analog waveform with the current control effect of a conventional six step control architecture. The brother 9 is a block diagram of a modified six step control circuit. Figure 1 shows an analog waveform with the current control performance of the modified six-step control architecture. • The brother map shows the overall control block diagram of a Matsushita method. Figure 12 shows a three-trapezoidal current command for the Matsushita method. The brothers 13(a) to (c) show the current flow of the motor of the first-class Matsushita method.苐14(a) to (b) show the waveform of a Matsushita method. Figure 15 shows a simulation result with the current control performance of the Matsushita method. Figure 16 shows the basic problem of a Matsushita method with a trapezoidal current waveform. ι·- S y 34 1294717 22134twfl.doc/006 95-11-20 Figure 17 shows the basic problem of the Matsushita method with sinusoidal current waveforms. Figure 18 shows the experimental results of the Matsushita method under (a) low speed operation and (b) high speed operation. Figure 19 is a block diagram of a motor driver in accordance with a preferred embodiment of the present invention. Figure 20(a) shows the definition of the space vector and the switch state mode. φ 20(b) is a predetermined waveform for one of the phase currents in accordance with a preferred embodiment of the present invention. Figure 21 is a diagram showing a position detecting circuit and a current command generating circuit in accordance with a preferred embodiment of the present invention. Figure 22 shows a phase offset table. Figure 23 is a diagram showing the output waveform of the position detecting and current command generating circuit in accordance with a preferred embodiment of the present invention. Figure 24 shows a schematic diagram of an SVM control φ circuit in accordance with a preferred embodiment of the present invention. Figure 25 is a timing chart showing an SVM control circuit in accordance with a first preferred embodiment of the present invention. Figure 26 shows a look-up table of an SVM control circuit in accordance with a first preferred embodiment of the present invention. Figure 27 is a diagram showing an SVM logic control waveform in accordance with a first preferred embodiment of the present invention. Figure 28 is a diagram showing the current control waveform of the SVM control circuit in the area according to a first preferred embodiment of the present invention. 35 1294717 22134twfl.doc/006 95-11-20 Figure 29 shows a simulation result in accordance with a preferred embodiment of the present invention. Figures 30-35 show a variation of the above preferred embodiment of the invention. [Main component symbol description] 101, 103, 105, 601, 603, 605: upper side driving transistors 102, 104, 106, 602, 604, 606: lower side driving transistors 101D, 102D, 103D, 104D, 105D, 106D , 3D, 5D, Lu 601D, 602D, 603D, 604D, 605D, 606D: diode 201, 501: Hall sensor circuit 202: six-step square wave control circuit 203: pre-drive circuit 204: current detection Resistor 300 '700 : motor 301, 302, 303: phase coil IA, IB, 1C, ia, ib, ic: phase current art 201A, 201B., 201C, 501A, 501B, 501C: Hall sensor H1+, HI-, H2+, Η2·, H3+ and H3-: Hall sensor wheeled

Tc :轉矩命令信號Tc: torque command signal

Ifb :回授電流信號 S11-S16、S21-S26 :切換控制信號 401A、401B、401C、801U、801V、801W :差分放大 器 402A、402B、402C、802U、802V、802W :自動择只 36 1294717 22134twfl .doc/006 95-11-20 控制電路 403A、403B 及 403C、408、806U、806V、806W ··加 法器 404A、404B 及 404C、805a-805f、807U、807V、807W : 乘法器 405A、405B、405C、412A、412B、412C、804U、804V、 804W、906 :比較器 0 406A、904 :低通濾波器 407 :峰值偵測電路 409 :控制器 410 :載波信號產生器 411 :無效時間控制電路 FI、F2 :控制信號 TP :斜坡電流命令 TU1 :時間間隔 g 502 :位置偵測電路及電流命令產生電路 503 :空間向量調變控制電路 504 :前置驅動電路 505 :電流偵測電阻器 701 : U相位線圈 702 : V相位線圈 703 : W相位線圈 Vcc :電源供應 Iu : U相位電流 C S &gt; 37 1294717 95-11-20 22134twfl.doc/006 Ιγ · v相位電流 Iw · 相位電流 Hu、Hv、Hw :位置信號 /\ : U相位電流命令信號 : V相位電流命令信號 : W相位電流命令信號 V0〜V7 :電壓向量 803U、803V、803W :位準偏移電路 ® Hll、H12、H13 :信號 808 :相位偏移表 809 :轉矩振幅比例增益控制電路 I、K2 :值 901 :多工處理器 902 :逆變電路 903 :位準偏移電路 _ 905 :位準偏移及放大器 907 :空間向量調變 908 :參考時脈產生器 909、911 : D型正反器 910 :延遲 912 :下落緣延遲 913、916 :逆變器 914 : NAND 閘 917 :查找表 38 1294717 95-11-20 22134twfl.doc/006 DS :偵測狀態信號 CS :控制狀態信號 SS :狀態信號 S21-S26 :切換控制信號 I〜VI :區域Ifb: feedback current signals S11-S16, S21-S26: switching control signals 401A, 401B, 401C, 801U, 801V, 801W: differential amplifiers 402A, 402B, 402C, 802U, 802V, 802W: automatically select only 36 1294717 22134twfl. Doc/006 95-11-20 Control circuits 403A, 403B and 403C, 408, 806U, 806V, 806W · Adders 404A, 404B and 404C, 805a-805f, 807U, 807V, 807W: Multipliers 405A, 405B, 405C 412A, 412B, 412C, 804U, 804V, 804W, 906: Comparator 0 406A, 904: Low pass filter 407: Peak detection circuit 409: Controller 410: Carrier signal generator 411: Invalid time control circuit FI, F2: control signal TP: ramp current command TU1: time interval g 502: position detecting circuit and current command generating circuit 503: space vector modulation control circuit 504: pre-drive circuit 505: current detecting resistor 701: U phase Coil 702: V-phase coil 703: W-phase coil Vcc: Power supply Iu: U-phase current CS &gt; 37 1294717 95-11-20 22134twfl.doc/006 Ιγ · v phase current Iw · Phase current Hu, Hv, Hw: Position signal /\ : U phase current command No.: V phase current command signal: W phase current command signal V0~V7: voltage vector 803U, 803V, 803W: level offset circuit ® H11, H12, H13: signal 808: phase offset table 809: torque amplitude ratio Gain control circuit I, K2: value 901: multiplex processor 902: inverter circuit 903: level shift circuit _905: level shift and amplifier 907: space vector modulation 908: reference clock generator 909, 911: D-type flip-flop 910: delay 912: falling edge delay 913, 916: inverter 914: NAND gate 917: look-up table 38 1294717 95-11-20 22134twfl.doc/006 DS: detection status signal CS: Control status signal SS: status signal S21-S26: switching control signal I~VI: area

3939

Claims (1)

96-11-15 1294717 22134twf2.doc/006 十、申請專利範圍: 1. 一種馬達驅動器,用以驅動一馬達,該馬達包括多個 定子線圈,每一定子線圈的一端共同耦接到一共同節 點,該馬達驅動器包含: 多個輸出電路,每一輸出電路均包含一上臂開關及一 下臂開關,第i個輸出電路的該上臂開關與下臂開關間之 連接點耦接到第i個定子線圈; 一電流偵測電阻,耦接上述多個輸出電路; 馨 一位置偵測電路,用於輸出與馬達轉子之位置相關的 一位置信號; 一電流命令產生電路,用以根據該位置信號及一預定 相位角產生多個預定電流命令信號,以對應該些定子線 圈;及 一空間向量調變控制電路,接收該些預定電流命令信 號以及耦接該電流偵測電阻,當第k個預定電流命令信號 的相位在正負一預設相位時,控制該些輸出電路的該上臂 * 開關及該下臂開關以接收該電流偵測電阻所擷取之第k定 子線圈之電流,比較第k定子線圈之電流與第k個預定電 流命令信號之大小,以從該些定子線圈選擇其一,並控制 其電流大小,其中i與k為自然數。 2. 如申請專利範圍第1項所述之馬達驅動器,其中該位 置偵測電路具有三位置偵測電路,其各包含: 一差分放大器,接收一霍爾(Hall)感測器之複數 1294717 22134twf2.doc/006 年月日修(更)正替換頁 96· 11,1 5 _________________ 96-11-15 輸出,用以獲得該等霍爾(Hall)感測器複數輸出的一 差分輸出; 一位準偏移電路,用以偏移該差分輸出的一電壓位 準;及 一比較器,用以輸出一位置信號。 3. 如申請專利範圍第2項所述之馬達驅動器,其中該位 置偵測電路更包含至少一自動增益控制電路,用以調 整該差分放大器的該輸出,使其具有該相同峰值。 • 4. 如申請專利範圍第2項所述之馬達驅動器,其中該電 流命令產生電路包含·· 一相位偏移表,接收該預定相位角,用於決定一第 一增益值及一第二增益值; 一第一電流命令產生電路,包含: 一第一乘法器,接收該霍爾(Hall)感測器輸出的 一第一差分輸出及該第一增益值,用於產生一第一信 號;及 ^ 一第二乘法器,其接收該霍爾(Hall)感測器輸出 的一第一差分輸出及該第二增益值,用於產生一第二信 號; 一第二電流命令產生電路,包含: 一第三乘法器,接收該霍爾(Hall)感測器輸出的 一第二差分輸出及該第一增益值,用於產生一第三信 號;及 一第四乘法器,接收該霍爾(Hall)感測器輸出的 41 1294717 22134twS.doc/006 年月日修(更)正替換頁 QfV H LS_--— 96-11-15 一第二差分輸出及該第二增益值,用於產生一第四信 號; 一第三電流命令產生電路,其包含: 一第五乘法器,接收該霍爾(Hall)感測器輸出的 一第三差分輸出及該第一增益值,用於產生一第五信 號; 一第六乘法器,接收該霍爾(Hall)感測器輸出的 一第三差分輸出及該第二增益值,用於產生一第六信 號; 一第一加法器,接收該第五信號及該第二信號,用 於產生一第一相位角信號; 一第二加法器,接收該第一信號及該第四信號,用 於產生一第二相位角信號; 一第三加法器,接收該第三信號及該第六信號,用 於產生一第三相位角信號; 一第七乘法器,接收一轉矩命令信號及該第一相位 角信號,用於產生一第一預定電流命令信號; 一第八乘法器,接收該轉矩命令信號及該第二相位 角信號,用於產生一第二預定電流命令信號;及 一第九乘法器,接收該轉矩命令信號及該第三相位 角信號,用於產生一第三預定電流命令信號。 5. 如申請專利範圍第4項所述之馬達驅動器,其中該電 流命令產生電路更包含一轉矩振幅比例增益控制電 路,其係用於調整該轉矩命令信號之值。 42 1294717 22134twf2.doc/006 年月曰:A更)正替換頁 關」1」巧-- 96-11-15 6. —種馬達的控制器,控制多個輸出電路,每一輸出電路 包含一上臂開關及一下臂開關,第i個輸出電路的該上 臂開關與該下臂開關間之一連接點耦接到第i個定子線 圈,該控制器包括: 一電流偵測電阻器,耦接上述多個輸出電路; 一位置偵測電路,用於輸出與馬達轉子之位置相關 的一位置信號; 一電流命令產生電路,用以根據該位置信號及一預 定相位角產生多個預定電流命令信號,以對應該些定子 線圈;及 一空間向量調變控制電路,接收該些預定電流命令 信號以及耦接該電流偵測電阻,當第k個預定電流命令 信號的相位在正負一預設相位時,控制該些輸出電路的 該上臂開關及該下臂開關以接收該電流偵測電阻所擷取 之第k定子線圈之電流,比較第k定子線圈之電流與第 k個預定電流命令信號之大小,以從該些定子線圈選擇 其一,並控制其電流大小,其中i與k為自然數。 7. 如申請專利範圍第6項所述之控制器,其中該位置偵 測電路具有三位置偵測電路,各包含: 一差分放大器,接收一霍爾(Hall)感測器之複數 輸出,用於獲得該等霍爾(Hall)感測器複數輸出的一 差分輸出; 一位準偏移電路,用以偏移該差分輸出的一電壓位 43 1294717 22134twf2.doc/006 年月日修(更)止替换頁^11·15 an 1 5 準;及 一比較器,用以輸出一位置信號。 8. 如申請專利範圍第7項所述之控制器,其中該位置偵 測電路更包含至少一自動增益控制電路,以調整該等 差分放大器的該等輸出,使之具有該相同峰值。 9. 如申請專利範圍第6項所述之控制器,其中該電流命 令產生電路包含: 一相位偏移裝置,接收該預定相位角,用於決定一 第一增益值及一第二增益值; 一第一電流命令產生電路,包含: 一第一乘法器,接收該霍爾(Hall)感測器輸出的 一第一差分輸出及該第一增益值,用於產生一第一信 號;及 一第二乘法器,其接收該霍爾(Hall)感測器輸出 的一第一差分輸出及該第二增益值,用於產生一第二信 號; 一第二電流命令產生電路,包含: 一第三乘法器,接收該霍爾(Hall)感測器輸出的 一第二差分輸出及該第一增益值,用於產生一第三信 號;及 一第四乘法器,接收該霍爾(Hall)感測器輸出的 一第二差分輸出及該第二增益值,用於產生一第四信 號; 一第三電流命令產生電路,其包含: 44 1294717 22134twG.doc/006 一第五乘法器 ΆΑ严(更)正替換頁丨96·η_15 接收該霍爾(Hall)感測器輸出的 一第三差分輸出及該第一增益值,用於產生一第五信96-11-15 1294717 22134twf2.doc/006 X. Patent application scope: 1. A motor driver for driving a motor, the motor comprising a plurality of stator coils, one end of each stator coil being commonly coupled to a common node The motor driver comprises: a plurality of output circuits, each output circuit comprising an upper arm switch and a lower arm switch, wherein a connection point between the upper arm switch and the lower arm switch of the i-th output circuit is coupled to the i-th stator coil a current detecting resistor coupled to the plurality of output circuits; a position detecting circuit for outputting a position signal related to a position of the motor rotor; and a current command generating circuit for determining the position signal and the The predetermined phase angle generates a plurality of predetermined current command signals to correspond to the stator coils; and a space vector modulation control circuit receives the predetermined current command signals and couples the current detecting resistors when the kth predetermined current command Controlling the upper arm* switch and the lower arm switch of the output circuits to receive the power when the phase of the signal is positive or negative and a predetermined phase The current of the kth stator coil drawn by the current detecting resistor compares the current of the kth stator coil with the magnitude of the kth predetermined current command signal to select one of the stator coils and control the current magnitude thereof, wherein i and k are natural numbers. 2. The motor driver according to claim 1, wherein the position detecting circuit has a three-position detecting circuit, each of which comprises: a differential amplifier that receives a plurality of Hall sensors 1294717 22134twf2 .doc/006 year-and-month repair (more) is replacing page 96·11, 1 5 _________________ 96-11-15 output for obtaining a differential output of the complex outputs of the Hall sensors; a quasi-offset circuit for shifting a voltage level of the differential output; and a comparator for outputting a position signal. 3. The motor driver of claim 2, wherein the position detecting circuit further comprises at least one automatic gain control circuit for adjusting the output of the differential amplifier to have the same peak value. 4. The motor driver of claim 2, wherein the current command generating circuit comprises a phase shift table for receiving the predetermined phase angle for determining a first gain value and a second gain a first current command generating circuit, comprising: a first multiplier receiving a first differential output of the Hall sensor output and the first gain value for generating a first signal; And a second multiplier receiving a first differential output of the Hall sensor output and the second gain value for generating a second signal; a second current command generating circuit, including a third multiplier receiving a second differential output of the Hall sensor output and the first gain value for generating a third signal; and a fourth multiplier receiving the Hall (Hall) sensor output 41 1294717 22134twS.doc/006 month repair (more) positive replacement page QfV H LS_--- 96-11-15 a second differential output and the second gain value for Generating a fourth signal; generating a third current command The circuit includes: a fifth multiplier receiving a third differential output of the Hall sensor output and the first gain value for generating a fifth signal; a sixth multiplier receiving a third differential output of the Hall sensor output and the second gain value for generating a sixth signal; a first adder receiving the fifth signal and the second signal for Generating a first phase angle signal; a second adder receiving the first signal and the fourth signal for generating a second phase angle signal; a third adder receiving the third signal and the sixth a signal for generating a third phase angle signal; a seventh multiplier receiving a torque command signal and the first phase angle signal for generating a first predetermined current command signal; an eighth multiplier receiving The torque command signal and the second phase angle signal are used to generate a second predetermined current command signal; and a ninth multiplier receives the torque command signal and the third phase angle signal for generating a first Three predetermined current command letter number. 5. The motor driver of claim 4, wherein the current command generating circuit further comprises a torque amplitude proportional gain control circuit for adjusting the value of the torque command signal. 42 1294717 22134twf2.doc/006 Year of the month: A more) is replacing the page "1" - 96-11-15 6. A motor controller that controls multiple output circuits, each of which contains a An upper arm switch and a lower arm switch, wherein a connection point between the upper arm switch and the lower arm switch of the i-th output circuit is coupled to the i-th stator coil, the controller comprising: a current detecting resistor coupled to the above a plurality of output circuits; a position detecting circuit for outputting a position signal related to the position of the motor rotor; a current command generating circuit for generating a plurality of predetermined current command signals according to the position signal and a predetermined phase angle, And corresponding to the stator coils; and a space vector modulation control circuit, receiving the predetermined current command signals and coupling the current detecting resistors, when the phase of the kth predetermined current command signal is at a positive or negative predetermined phase Controlling the upper arm switch and the lower arm switch of the output circuits to receive the current of the kth stator coil captured by the current detecting resistor, comparing the current of the kth stator coil with the kth pre Magnitude of the current command signal to select one from the plurality of stator coils, and to control the magnitude of the current, wherein i and k is a natural number. 7. The controller of claim 6, wherein the position detecting circuit has a three-position detecting circuit, each of which includes: a differential amplifier that receives a complex output of a Hall sensor. Obtaining a differential output of the complex outputs of the Hall sensors; a quasi-offset circuit for shifting a voltage level of the differential output 43 1294717 22134twf2.doc/006 The replacement page ^11·15 an 1 5 is normal; and a comparator for outputting a position signal. 8. The controller of claim 7, wherein the position detecting circuit further comprises at least one automatic gain control circuit to adjust the outputs of the differential amplifiers to have the same peak value. 9. The controller of claim 6, wherein the current command generating circuit comprises: a phase shifting device that receives the predetermined phase angle for determining a first gain value and a second gain value; a first current command generating circuit, comprising: a first multiplier receiving a first differential output of the Hall sensor output and the first gain value for generating a first signal; and a a second multiplier receiving a first differential output and a second gain value of the Hall sensor output for generating a second signal; a second current command generating circuit comprising: a first a three multiplier, receiving a second differential output of the Hall sensor output and the first gain value for generating a third signal; and a fourth multiplier receiving the Hall a second differential output of the sensor output and the second gain value for generating a fourth signal; a third current command generating circuit comprising: 44 1294717 22134twG.doc/006 a fifth multiplier (more) positive replacement page 96 · η_15 a Hall receives the third differential output (Hall) of the sensor output of the first gain value and for generating a fifth channel 一第六乘法器,接收該霍爾(Hall)感測器輸出的 一第三差分輸出及該第二增益值,用於產生一第六信 號; 一第一加法器,接收該第五信號及該第二信號,用 於產生一第一相位角信號; 一第二加法器,接收該第一信號及該第四信號,用 於產生一第二相位角信號; 一第三加法器,接收該第三信號及該第六信號,用 於產生一第三相位角信號; 一第七乘法器,接收一轉矩命令信號及該第一相位 角信號,用於產生一第一預定電流命令信號; 一第八乘法器,接收該轉矩命令信號及該第二相位 角信號,用於產生一第二預定電流命令信號;及 一第九乘法器,接收該轉矩命令信號及該第三相位 角信號,用於產生一第三預定電流命令信號。 10. 如申請專利範圍第9項所述之控制器,其中該電流命 令產生電路更包含一轉矩振幅比例增益控制電路,其 係用於調整該轉矩命令信號值。 11. 一種用於控制電動馬達之方法,該電動馬達具有多個 定子線圈,分別耦接多個輸出電路,該些輸出電路耦 45a sixth multiplier, receiving a third differential output of the Hall sensor output and the second gain value for generating a sixth signal; a first adder receiving the fifth signal and The second signal is used to generate a first phase angle signal; a second adder receives the first signal and the fourth signal for generating a second phase angle signal; and a third adder receives the signal The third signal and the sixth signal are used to generate a third phase angle signal; a seventh multiplier receives a torque command signal and the first phase angle signal for generating a first predetermined current command signal; An eighth multiplier receiving the torque command signal and the second phase angle signal for generating a second predetermined current command signal; and a ninth multiplier receiving the torque command signal and the third phase angle a signal for generating a third predetermined current command signal. 10. The controller of claim 9, wherein the current command generating circuit further comprises a torque amplitude proportional gain control circuit for adjusting the torque command signal value. 11. A method for controlling an electric motor, the electric motor having a plurality of stator coils coupled to a plurality of output circuits, the output circuit couplings 45 96-11-15 1294717 22134twf2.doc/006 接一電流偵測電阻器,該方法包含以下步驟: 提供多個預定電流命令信號,分別對應該些定子線 圈;以及 當第k個預定電流命令信號的相位在正負一預設相 位的一特定期間,其中該特定期間至少包括一偵測狀態 期間以及一控制狀態期間: 在該偵測狀態期間,控制該些輸出電路使電流 流過第k個定子線圈;以及 當從該偵測狀態期間進入該控制狀態期間 時,透過該電流偵測電阻器偵測第k個定子線圈之電 流,並將其與第k個預定電流命令信號作比較,以從該 些定子線圈選擇一特定定子線圈,並控制該特定定子線 圈之電流大小,其中k為自然數。 12. 如申請專利範圍第11項所述之用於控制電動馬達之方 法,更包括: 當該特定定子線圈所流過之電流與其所對應之預定 電流命令信號相等時,控制該些輸出電路停止對該些定子 線圈供應電力。 13. 如申請專利範圍第11項所述之用於控制電動馬達之方 法,其中該些定子線圈包括一第一相、一第二相與一第三 相定子線圈,該些預定電流命令信號包括一第一相、一第 二相與一第三相預定電流命令信號。 14. 如申請專利範圍第13項所述之用於控制電動馬達之方 法,其中該第一相、該第二相與該第三相預定電流命令信 46 年月曰修(更)正替換頁 1294717 22134twf2.doc/006 號分別為相位差120度之弦波。 15.如申請專利範圍第13項所述之用於控制電動馬達之方 法,其中該預設相位為30度,該特定期間為該第k相預定 電流命令信號由負30度相位到正30度相位所構成的期間 或由該第k相預定電流命令信號由正30度相位到負30度 相位所構成的期間。96-11-15 1294717 22134twf2.doc/006 In connection with a current detecting resistor, the method comprises the steps of: providing a plurality of predetermined current command signals respectively corresponding to the stator coils; and when the kth predetermined current command signal The phase is positive or negative for a predetermined period of time, wherein the specific period includes at least one detection state period and a control state period: during the detection state, the output circuits are controlled to cause current to flow through the kth stator coil And detecting a current of the kth stator coil through the current detecting resistor when entering the control state period from the detecting state, and comparing the current to the kth predetermined current command signal to The stator coils select a particular stator coil and control the magnitude of the current of the particular stator coil, where k is a natural number. 12. The method for controlling an electric motor according to claim 11, further comprising: controlling the output circuits to stop when a current flowing through the specific stator coil is equal to a predetermined current command signal corresponding thereto The stator coils are supplied with electric power. 13. The method for controlling an electric motor according to claim 11, wherein the stator coils comprise a first phase, a second phase and a third phase stator coil, and the predetermined current command signals include A first phase, a second phase and a third phase predetermined current command signal. 14. The method for controlling an electric motor according to claim 13, wherein the first phase, the second phase, and the third phase predetermined current command letter are replaced by a (more) replacement page. 1294717 22134twf2.doc/006 is a sine wave with a phase difference of 120 degrees. 15. The method for controlling an electric motor according to claim 13, wherein the preset phase is 30 degrees, and the specific period is the k-th phase predetermined current command signal from a negative 30 degree phase to a positive 30 degree A period formed by the phase or a period in which the k-th phase predetermined current command signal is composed of a positive 30-degree phase to a negative 30-degree phase. 4747
TW94103253A 2005-02-02 2005-02-02 Motor driver, motor controller and controlling method for electric motor TWI294717B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94103253A TWI294717B (en) 2005-02-02 2005-02-02 Motor driver, motor controller and controlling method for electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94103253A TWI294717B (en) 2005-02-02 2005-02-02 Motor driver, motor controller and controlling method for electric motor

Publications (2)

Publication Number Publication Date
TW200629708A TW200629708A (en) 2006-08-16
TWI294717B true TWI294717B (en) 2008-03-11

Family

ID=45068228

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94103253A TWI294717B (en) 2005-02-02 2005-02-02 Motor driver, motor controller and controlling method for electric motor

Country Status (1)

Country Link
TW (1) TWI294717B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393342B (en) * 2009-10-15 2013-04-11 Univ Nat Cheng Kung The Driving and Switching Method of Variable Structure Motor
US8724354B2 (en) 2012-01-17 2014-05-13 National Chiao Tung University Multi-phase inverter control device and current control method for the same
US9372200B2 (en) 2011-06-01 2016-06-21 Coretronic Corporation Rotation speed detecting device and detecting method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201431271A (en) * 2013-01-25 2014-08-01 Mei-Chun Liu Brushless motor device using DC positive/negative power supply line carrier for control
TWI683530B (en) * 2018-05-25 2020-01-21 茂達電子股份有限公司 Motor driving circuit and method thereof
TWI755131B (en) * 2020-10-30 2022-02-11 禾一電子科技有限公司 Real-time sensorless motor drive system
TWI796740B (en) * 2021-07-26 2023-03-21 祥誠科技股份有限公司 Motor driving system with automatic phase adjustment mechanism
TWI798151B (en) * 2022-08-29 2023-04-01 茂達電子股份有限公司 Forward and reverse rotation detector and motor driver having forward and reverse rotation detector
TWI800453B (en) * 2022-08-31 2023-04-21 茂達電子股份有限公司 Motor driver using correcting mechanism on sensed motor position
TWI823562B (en) * 2022-09-14 2023-11-21 威剛科技股份有限公司 Motor driver with detecting circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393342B (en) * 2009-10-15 2013-04-11 Univ Nat Cheng Kung The Driving and Switching Method of Variable Structure Motor
US9372200B2 (en) 2011-06-01 2016-06-21 Coretronic Corporation Rotation speed detecting device and detecting method thereof
US8724354B2 (en) 2012-01-17 2014-05-13 National Chiao Tung University Multi-phase inverter control device and current control method for the same
TWI448065B (en) * 2012-01-17 2014-08-01 Univ Nat Chiao Tung Multi-phase inverter control device and its current control method

Also Published As

Publication number Publication date
TW200629708A (en) 2006-08-16

Similar Documents

Publication Publication Date Title
TWI294717B (en) Motor driver, motor controller and controlling method for electric motor
CN100563092C (en) Controller and control method thereof and have the motor driver of this controller
Rahman et al. A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening
Cheok et al. A new torque and flux control method for switched reluctance motor drives
Ahmad High performance AC drives: modelling analysis and control
JP5446324B2 (en) Inverter device
Hoang et al. Influence and compensation of inverter voltage drop in direct torque-controlled four-switch three-phase PM brushless AC drives
CN103259481A (en) Method and system for estimating electrical angular speed of permanent magnet machine
WO2007001007A1 (en) Power conversion control device, power conversion control method, and power conversion control program
CN110504889B (en) Fault-tolerant direct torque control method for five-phase permanent magnet synchronous motor
JP2004064909A (en) Motor control device
JP2019097341A (en) Motor controller and motor system
WO2002007297A2 (en) Floating frame controller
Akın State estimation techniques for speed sensorless field oriented control of induction motors
CN113300653B (en) Direct instantaneous torque control system and method for switched reluctance motor
CN109964402A (en) Rotary electric machine controller and the electric power steering apparatus for having the rotary electric machine controller
Tian et al. Investigation of dual-inverter-fed drives for permanent magnet synchronous motor with winding switching
Shin et al. Fault diagnosis method for power transistors in switched reluctance machine drive system
JP2007089336A (en) Revolution detection device and revolution detection method of turbocharger with electric motor
US11146190B2 (en) Multiphase synchronous motor controller with angle tracking
Liu et al. Sensorless Fault-Tolerant Control of A Nine-phase Permanent Magnet Synchronous Motor Under One-phase Open-Circuited Fault
Low et al. Instantaneous torque control brushless DC drives
Martins et al. Direct-torque-control fault-tolerant strategies for three induction motor drive systems operating under single-phase open-circuit fault
Guo et al. A Vector Control Method of PMSM Using Single Phase Current Sensor
JP4312993B2 (en) Inverter control method and apparatus