TWI796740B - Motor driving system with automatic phase adjustment mechanism - Google Patents

Motor driving system with automatic phase adjustment mechanism Download PDF

Info

Publication number
TWI796740B
TWI796740B TW110127285A TW110127285A TWI796740B TW I796740 B TWI796740 B TW I796740B TW 110127285 A TW110127285 A TW 110127285A TW 110127285 A TW110127285 A TW 110127285A TW I796740 B TWI796740 B TW I796740B
Authority
TW
Taiwan
Prior art keywords
time
hall
actual
phase
phase adjustment
Prior art date
Application number
TW110127285A
Other languages
Chinese (zh)
Other versions
TW202306300A (en
Inventor
吳松憙
柯懿庭
魏佐穎
Original Assignee
祥誠科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 祥誠科技股份有限公司 filed Critical 祥誠科技股份有限公司
Priority to TW110127285A priority Critical patent/TWI796740B/en
Publication of TW202306300A publication Critical patent/TW202306300A/en
Application granted granted Critical
Publication of TWI796740B publication Critical patent/TWI796740B/en

Links

Images

Abstract

A motor driving system with an automatic phase adjustment mechanism is provided. A time difference calculator circuit divides one period of one of Hall signals of three phases of a three-phase motor into N times based on transition time points of the Hall signals of the three phases of the three-phase motor. The time difference calculator circuit defines each of the times as an actual Hall state time. The time difference calculator circuit calculates a difference between each of the actual Hall state times and an ideal commutation time. A phase adjusting circuit compensates the Hall signal according to the differences to generate a compensation signal. A driving circuit drives a bridge circuit connected to the three-phase motor according to the compensation signals.

Description

具相位自動調整機制的馬達驅動系統 Motor drive system with automatic phase adjustment mechanism

本發明涉及馬達,特別是涉及一種具相位自動調整機制的馬達驅動系統。 The invention relates to a motor, in particular to a motor drive system with an automatic phase adjustment mechanism.

馬達於現今自動化科技的發展中扮演著舉足輕重的角色。特別是應用於風扇,由於馬達能帶動風扇旋轉而引動氣流,進而達到驅風散熱的目的,因此相當適合於電子產業中用於電子產品的散熱作業。 Motors play a pivotal role in the development of today's automation technology. Especially when applied to fans, since the motor can drive the fan to rotate to induce airflow, and then achieve the purpose of driving wind and heat dissipation, it is quite suitable for heat dissipation of electronic products in the electronics industry.

然而,在馬達運轉過程中,會受霍爾元件本身的磁滯及霍爾元件擺放位置偏移,導致馬達在不正確的位置換相,進而造成馬達振動與噪音。 However, during the operation of the motor, due to the hysteresis of the Hall element itself and the displacement of the placement of the Hall element, the motor will commutate at an incorrect position, resulting in vibration and noise of the motor.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種具相位自動調整機制的馬達驅動系統,適用於三相馬達。所述具相位自動調整機制的馬達驅動系統包含霍爾感測器、理想時間設定電路、時間差計算電路、相位調整電路、橋式電路以及驅動電路。霍爾感測器配置以感測三相馬達的三相中的每一相的霍爾訊號。理想時間設定電路連接各霍爾感測器。理想時間設定電路配置以將欲補償的霍爾訊號的一週期時間除以N,以將此一 週期時間分成N等份,其中N為大於1的整數值,每一等份的時間定義為理想換相時間。每一理想換相時間與其他各理想換相時間等長。時間差計算電路連接理想時間設定電路。時間差計算電路配置以依據三相馬達的三相分別的多個霍爾訊號的轉態時間點,以將欲補償的霍爾訊號的此一週期時間分成時間長度不同的N等份。時間差計算電路配置以將霍爾訊號的此一週期時間的每一等份的時間定義為一實際霍爾狀態時間。多個實際霍爾狀態時間基於在霍爾訊號中出現的時序分別對應多個理想換相時間。時間差計算電路配置以計算各實際霍爾狀態時間與對應的理想換相時間的差值作為一換相時間差值。相位調整電路配置以依據所有多個換相時間差值補償霍爾訊號以產生補償訊號。驅動電路連接相位調整電路。驅動電路配置以依據補償訊號驅動橋式電路。 The technical problem to be solved by the present invention is to provide a motor drive system with an automatic phase adjustment mechanism, which is suitable for three-phase motors. The motor drive system with automatic phase adjustment mechanism includes a hall sensor, an ideal time setting circuit, a time difference calculation circuit, a phase adjustment circuit, a bridge circuit and a drive circuit. The Hall sensor is configured to sense Hall signals of each of the three phases of the three-phase motor. The ideal time setting circuit is connected to each Hall sensor. The ideal time setting circuit configuration is to divide the cycle time of the Hall signal to be compensated by N to divide this The cycle time is divided into N equal parts, where N is an integer value greater than 1, and the time of each equal part is defined as the ideal commutation time. Each ideal commutation time is equal to the other ideal commutation times. The time difference calculating circuit is connected with the ideal time setting circuit. The time difference calculation circuit is configured to divide the cycle time of the Hall signal to be compensated into N equal parts with different time lengths according to the transition time points of the multiple Hall signals of the three phases of the three-phase motor. The time difference calculation circuit is configured to define the time of each equal division of the cycle time of the Hall signal as an actual Hall state time. The multiple actual Hall state times respectively correspond to multiple ideal commutation times based on the timings occurring in the Hall signal. The time difference calculation circuit is configured to calculate the difference between each actual Hall state time and the corresponding ideal commutation time as a commutation time difference. The phase adjustment circuit is configured to compensate the Hall signal according to all the plurality of commutation time differences to generate a compensation signal. The drive circuit is connected to the phase adjustment circuit. The drive circuit is configured to drive the bridge circuit according to the compensation signal.

在一實施例中,時間差計算電路計算霍爾訊號中的欲補償的實際霍爾狀態時間與在同一週期時間內出現時間較早的所有實際霍爾狀態時間分別對應的多個理想換相時間的總和作為第一運算值。時間差計算電路將第一運算值減去欲補償的實際霍爾狀態時間之前的同一週期內的所有實際霍爾狀態時間以計算出第二運算值。時間差計算電路計算第二運算值與欲補償的實際霍爾狀態時間的前一實際霍爾狀態時間的比例。相位調整電路依據比例以補償霍爾訊號的實際霍爾狀態時間。 In one embodiment, the time difference calculation circuit calculates the ideal commutation times corresponding to the actual Hall state time to be compensated in the Hall signal and all the actual Hall state times that occur earlier in the same cycle time The sum is used as the first operand value. The time difference calculation circuit subtracts all actual Hall state times in the same cycle before the actual Hall state time to be compensated from the first calculated value to calculate the second calculated value. The time difference calculation circuit calculates the ratio of the second operation value to the actual Hall state time before the actual Hall state time to be compensated. The phase adjustment circuit compensates the actual Hall state time of the Hall signal according to the ratio.

在一實施例中,時間差計算電路將各理想換相時間切成M個子等份且每一子等份的時間定義為一子換相時間,其中M為不小於1的整數值。時間差計算電路將M值乘以第二運算值以計算出第三運算值。時間差計算電路將第三運算值除以欲補償的實際霍爾狀態時間的前一實際霍爾狀態時間以計算出補償徑向角。相位調整電路依據補償徑向角補償霍爾訊號的實際霍爾狀態時間。 In an embodiment, the time difference calculation circuit divides each ideal commutation time into M sub-divisions, and the time of each sub-division is defined as a sub-commutation time, wherein M is an integer value not less than 1. The time difference calculating circuit multiplies the M value by the second calculated value to calculate a third calculated value. The time difference calculation circuit divides the third calculated value by the actual Hall state time before the actual Hall state time to be compensated to calculate the compensated radial angle. The phase adjustment circuit compensates the actual Hall state time of the Hall signal according to the compensated radial angle.

在一實施例中,時間差計算電路將理想換相時間與一期望徑向角相乘以計算出第四運算值。時間差計算電路將第三運算值減去第四運算值以取得第五運算值。時間差計算電路將第五運算值除以欲補償的實際霍爾狀態時間的前一實際霍爾狀態時間以計算出一相位調整徑向角。相位調整電路依據相位調整徑向角補償霍爾訊號的實際霍爾狀態時間。 In one embodiment, the time difference calculation circuit multiplies the ideal commutation time by a desired radial angle to calculate the fourth operation value. The time difference calculating circuit subtracts the fourth calculated value from the third calculated value to obtain a fifth calculated value. The time difference calculation circuit divides the fifth calculated value by the actual Hall state time before the actual Hall state time to be compensated to calculate a phase adjustment radial angle. The phase adjustment circuit compensates the actual Hall state time of the Hall signal according to the phase adjustment radial angle.

在一實施例中,部分實際霍爾狀態時間的一開始時間點對準三相馬達的三相中的其中一相的霍爾訊號的上緣且一結束時間點對準三相馬達的三相中的另一相的霍爾訊號的下緣。 In one embodiment, the first time point of part of the actual Hall state time is aligned with the upper edge of the Hall signal of one of the three phases of the three-phase motor and the end time point is aligned with the three phases of the three-phase motor. The lower edge of the Hall signal in the other phase.

在一實施例中,部分實際霍爾狀態時間的一開始時間點對準三相馬達的三相中的其中一相的霍爾訊號的下緣且一結束時間點對準三相馬達的三相中的另一相的霍爾訊號的上緣。 In one embodiment, the beginning time point of part of the actual Hall state time is aligned with the lower edge of the Hall signal of one of the three phases of the three-phase motor and the end time point is aligned with the three phases of the three-phase motor. The upper edge of the Hall signal of the other phase.

如上所述,本發明提供一種具相位自動調整機制的馬達驅動系統,其可在霍爾元件本身的磁滯及霍爾元件擺放位置偏移狀態下,對霍爾感測器所感測到的霍爾訊號進行補償和調整相位,使得馬達在正確的時間點進行換相,使馬達正常穩定運轉的同時,大幅度降低振動噪音。 As mentioned above, the present invention provides a motor drive system with an automatic phase adjustment mechanism, which can detect the signal detected by the Hall sensor under the hysteresis of the Hall element itself and the offset state of the Hall element. The Hall signal compensates and adjusts the phase, so that the motor commutates at the correct time point, so that the motor can run normally and stably, while greatly reducing vibration and noise.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 In order to further understand the features and technical content of the present invention, please refer to the following detailed description and drawings related to the present invention. However, the provided drawings are only for reference and description, and are not intended to limit the present invention.

10:理想時間設定電路 10: Ideal time setting circuit

20:時間差計算電路 20: Time difference calculation circuit

30:相位調整電路 30: Phase adjustment circuit

40:驅動電路 40: Drive circuit

50:負載 50: load

61~63:霍爾感測器 61~63: Hall sensor

M1:第一上橋電晶體 M1: the first upper bridge transistor

M2:第二上橋電晶體 M2: The second upper bridge transistor

M3:第三上橋電晶體 M3: The third upper bridge transistor

M4:第一下橋電晶體 M4: The first lower bridge transistor

M5:第二下橋電晶體 M5: Second lower bridge transistor

M6:第三下橋電晶體 M6: The third lower bridge transistor

501:三相馬達 501: three-phase motor

502:橋式電路 502: bridge circuit

U、V、W:相 U, V, W: phase

VDD:共用電壓 VDD: common voltage

UHS、VHS、WHS:霍爾訊號 UHS, VHS, WHS: Hall signal

T1~T6:實際霍爾狀態時間 T1~T6: Actual Hall state time

T:理想換相時間 T: ideal commutation time

ASL1~ASL6:相位調整徑向角 ASL1~ASL6: phase adjustment radial angle

圖1為本發明實施例的具相位自動調整機制的馬達驅動系統的方塊圖。 FIG. 1 is a block diagram of a motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention.

圖2為本發明實施例的具相位自動調整機制的馬達驅動系統的驅動電路、橋式電路以及馬達的電路佈局圖。 2 is a circuit layout diagram of a drive circuit, a bridge circuit, and a motor of a motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention.

圖3為本發明實施例的具相位自動調整機制的馬達驅動系統的霍爾訊號的波形圖。 FIG. 3 is a waveform diagram of a Hall signal of a motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention.

圖4為本發明實施例的具相位自動調整機制的馬達驅動系統的霍爾訊號的波形圖。 FIG. 4 is a waveform diagram of a Hall signal of a motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention.

圖5為本發明實施例的具相位自動調整機制的馬達驅動系統的實際霍爾狀態時間與理想換相時間的差異的示意圖。 5 is a schematic diagram of the difference between the actual Hall state time and the ideal commutation time of the motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention.

圖6為本發明實施例的具相位自動調整機制的馬達驅動系統的未補償的霍爾訊號的曲線圖。 FIG. 6 is a graph of the uncompensated Hall signal of the motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention.

圖7為本發明實施例的具相位自動調整機制的馬達驅動系統的補償後的霍爾訊號的曲線圖。 FIG. 7 is a graph of the compensated Hall signal of the motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention.

圖8為本發明實施例的具相位自動調整機制的馬達驅動系統的霍爾訊號的波形圖。 FIG. 8 is a waveform diagram of a Hall signal of a motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention.

以下是通過特定的具體實施例來說明本發明的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包含相關聯的列出項目中的任一個或者多個的組合。 The implementation of the present invention is described below through specific specific examples, and those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the concept of the present invention. In addition, the drawings of the present invention are only for simple illustration, and are not drawn according to the actual size, which is stated in advance. The following embodiments will further describe the relevant technical content of the present invention in detail, but the disclosed content is not intended to limit the protection scope of the present invention. In addition, the term "or" used herein may include any one or a combination of more of the associated listed items depending on the actual situation.

請參閱圖1至圖4,其中圖1為本發明實施例的具相位自動調整機制的馬達驅動系統的方塊圖;圖2為本發明實施例的具相位自動調整機制的馬 達驅動系統的驅動電路、橋式電路以及馬達的電路佈局圖;圖3為本發明實施例的具相位自動調整機制的馬達驅動系統的霍爾訊號的波形圖;圖4為本發明實施例的具相位自動調整機制的馬達驅動系統的霍爾訊號的波形圖。 Please refer to Figures 1 to 4, wherein Figure 1 is a block diagram of a motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention; Figure 2 is a motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention The circuit layout diagram of the drive circuit, the bridge circuit and the motor of the drive system; Fig. 3 is a waveform diagram of the Hall signal of the motor drive system with an automatic phase adjustment mechanism of the embodiment of the present invention; Fig. 4 is the waveform diagram of the motor drive system of the embodiment of the present invention Waveform diagram of the Hall signal of the motor drive system with automatic phase adjustment mechanism.

本發明實施例的具相位自動調整機制的馬達驅動系統可包含如圖1所示的理想時間設定電路10、時間差計算電路20、相位調整電路30、驅動電路40以及多個霍爾感測器61~63。 The motor drive system with an automatic phase adjustment mechanism in the embodiment of the present invention may include an ideal time setting circuit 10, a time difference calculation circuit 20, a phase adjustment circuit 30, a driving circuit 40, and a plurality of Hall sensors 61 as shown in FIG. 1 ~63.

如圖2所示的霍爾感測器61~63可設於三相馬達501。霍爾感測器61~63可感測三相馬達501的三相U、V、W分別的霍爾訊號例如圖3所示的霍爾訊號UHS、VHS、WHS。 The Hall sensors 61 - 63 shown in FIG. 2 can be provided in the three-phase motor 501 . The Hall sensors 61 - 63 can sense the respective Hall signals of the three phases U, V, and W of the three-phase motor 501 , such as the Hall signals UHS, VHS, and WHS shown in FIG. 3 .

理想時間設定電路10可連接霍爾感測器61~63,以從霍爾感測器61~63接收三相馬達501的三相U、V、W分別的霍爾訊號。理想時間設定電路10可將任一相的霍爾訊號的一週期時間除以N,以將霍爾訊號的此一週期時間分成N等份,其中N為大於1的整數值。為方便說明,每一等份的時間定義為一理想換相時間。每一理想換相時間與其他各該理想換相時間等長。 The ideal time setting circuit 10 can be connected to the Hall sensors 61-63 to receive the three-phase U, V, W Hall signals of the three-phase motor 501 from the Hall sensors 61-63. The ideal time setting circuit 10 can divide a cycle time of any phase of the Hall signal by N to divide the cycle time of the Hall signal into N equal parts, wherein N is an integer value greater than 1. For convenience of description, each equal division time is defined as an ideal commutation time. Each ideal commutation time is as long as the other ideal commutation times.

舉例而言,理想時間設定電路10可取如圖4所示的U相的霍爾訊號UHS的一週期波形的開始時間點(即此波形的上升緣的時間點)至此波形的結束時間點(即下一週期波形的上升緣的時間點)之間的一週期時間。 For example, the ideal time setting circuit 10 can take the starting time point (that is, the time point of the rising edge of this waveform) of a cycle waveform of the U-phase Hall signal UHS shown in FIG. 4 to the end time point of this waveform (that is, One cycle time between the rising edge time points of the next cycle waveform).

理想時間設定電路10可將U相的霍爾訊號UHS的一週期時間除以6(即N=6),以將霍爾訊號的此一週期時間分成6等份,每一等份的時間定義為理想換相時間T,此一週期時間有6個理想換相時間T。 The ideal time setting circuit 10 can divide a cycle time of the U-phase Hall signal UHS by 6 (that is, N=6), so as to divide this cycle time of the Hall signal into 6 equal parts, and the time definition of each equal part is the ideal commutation time T, and there are 6 ideal commutation times T in this cycle time.

實務上,N可以為其他數值,本發明不限於N=6。再者,在U相的霍爾訊號UHS的此一週期時間之前或之後的霍爾訊號UHS的其他每一或任一週期時間亦可切分成N等份,以對所有或部分等份進行補償。同樣,V相和W相的霍爾訊號的每一或任一週期時間亦可切分成N等份,以對所有或部分等 份進行補償。 In practice, N can be other values, and the present invention is not limited to N=6. Furthermore, each or any other period of the Hall signal UHS before or after this period of the U-phase Hall signal UHS can also be divided into N equal parts to compensate for all or part of the equal parts . Similarly, each or any period of the Hall signal of V-phase and W-phase can also be divided into N equal parts, so that all or part of the part for compensation.

如圖1所示,時間差計算電路20可連接理想時間設定電路10。時間差計算電路20可依據三相馬達501的三相分別的多個霍爾訊號的轉態時間點(或為換相時間點),以將三相馬達501的三相中的任一相的霍爾訊號的一週期分成N等份。為方便說明,霍爾訊號的此一週期時間的每一等份的時間定義為一實際霍爾狀態時間。多個實際霍爾狀態時間基於在霍爾訊號中出現的時序分別對應多個理想換相時間。 As shown in FIG. 1 , the time difference calculation circuit 20 can be connected to the ideal time setting circuit 10 . The time difference calculation circuit 20 can calculate the Hall signals of any one of the three phases of the three-phase motor 501 according to the transition time points (or commutation time points) of the three phases of the three-phase motor 501 respectively. A cycle of the Seoul signal is divided into N equal parts. For the convenience of description, the time of each equal part of the cycle time of the Hall signal is defined as an actual Hall state time. The multiple actual Hall state times respectively correspond to multiple ideal commutation times based on the timings occurring in the Hall signal.

當霍爾元件本身的磁滯及霍爾元件擺放位置偏移或其他因素下,會導致霍爾訊號的同一週期內切分出的多個實際霍爾狀態時間中,所有或至少部分的實際霍爾狀態時間與其他的實際霍爾狀態時間不等長。為解決此問題,執行以下的補償作業。 When the hysteresis of the Hall element itself and the offset of the placement of the Hall element or other factors will cause the multiple actual Hall state times divided in the same cycle of the Hall signal, all or at least part of the actual The Hall state time is not as long as the other actual Hall state times. To solve this problem, perform the following compensation work.

霍爾訊號的實際霍爾狀態時間的開始時間點可能對準三相馬達501的三相中的其中一相的霍爾訊號的上緣,且此實際霍爾狀態時間的結束時間點可能對準三相馬達501的三相中的另一相的霍爾訊號的下緣。霍爾訊號中的其他實際霍爾狀態時間的開始時間點可能對準三相馬達501的三相中的其中一相的霍爾訊號的下緣且結束時間點可能對準三相馬達501的三相中的另一相的霍爾訊號的上緣。 The start time point of the actual Hall state time of the Hall signal may be aligned with the upper edge of the Hall signal of one of the three phases of the three-phase motor 501, and the end time point of the actual Hall state time may be aligned with The lower edge of the Hall signal of the other phase of the three phases of the three-phase motor 501 . The start time point of other actual Hall state time in the Hall signal may be aligned with the lower edge of the Hall signal of one of the three phases of the three-phase motor 501 and the end time point may be aligned with the three phases of the three-phase motor 501. The upper edge of the Hall signal of the other phase in the phase.

如圖1所示的時間差計算電路20可取U相的霍爾訊號UHS的一週期時間,將此一週期時間切分成如圖3所示的6個實際霍爾狀態時間T1~T6,詳細說明如下。 The time difference calculation circuit 20 as shown in FIG. 1 can take a cycle time of the U-phase Hall signal UHS, and divide this cycle time into six actual Hall state times T1~T6 as shown in FIG. 3 , and the details are as follows .

如圖3所示,實際霍爾狀態時間T1的開始時間點對準三相馬達501的U相的霍爾訊號UHS的一週期波形的上緣時間點(即低準位轉高準位的轉態時間點),且實際霍爾狀態時間T1的結束時間點對準三相馬達501的W相的霍爾訊號WHS的一週期波形的下緣時間點(即高準位轉低準位的轉態時間 點)。 As shown in FIG. 3 , the start time point of the actual Hall state time T1 is aligned with the time point of the upper edge of one cycle waveform of the U-phase Hall signal UHS of the three-phase motor 501 (that is, the transition from low level to high level). State time point), and the end time point of the actual Hall state time T1 is aligned with the time point of the lower edge of one cycle waveform of the W-phase Hall signal WHS of the three-phase motor 501 (that is, the transition from high level to low level state time point).

如圖3所示,實際霍爾狀態時間T2的開始時間點對準三相馬達501的W相的霍爾訊號WHS的一週期波形的下緣時間點(即高準位轉低準位的轉態時間點),且實際霍爾狀態時間T2的結束時間點對準三相馬達501的V相的霍爾訊號VHS的一週期波形的上緣時間點(即低準位轉高準位的轉態時間點)。 As shown in FIG. 3 , the start time point of the actual Hall state time T2 is aligned with the time point of the lower edge of one cycle of the Hall signal WHS of the W-phase of the three-phase motor 501 (that is, the transition from high level to low level). State time point), and the end time point of the actual Hall state time T2 is aligned with the upper edge time point of one cycle waveform of the V-phase Hall signal VHS of the three-phase motor 501 (ie, the transition from low level to high level state time point).

如圖3所示,實際霍爾狀態時間T3的開始時間點對準三相馬達501的V相的霍爾訊號VHS的一週期波形的上緣時間點(即低準位轉高準位的轉態時間點),且實際霍爾狀態時間T3的結束時間點對準三相馬達501的U相的霍爾訊號UHS的一週期波形的下緣時間點(即高準位轉低準位的轉態時間點)。 As shown in FIG. 3 , the start time point of the actual Hall state time T3 is aligned with the time point of the upper edge of one cycle waveform of the V-phase Hall signal VHS of the three-phase motor 501 (that is, the transition from low level to high level). state time point), and the end time point of the actual Hall state time T3 is aligned with the time point of the lower edge of one cycle waveform of the U-phase Hall signal UHS of the three-phase motor 501 (that is, the transition from high level to low level state time point).

如圖3所示,實際霍爾狀態時間T4的開始時間點對準三相馬達501的U相的霍爾訊號UHS的一週期波形的下緣時間點(即高準位轉低準位的轉態時間點),且實際霍爾狀態時間T4的結束時間點對準三相馬達501的W相的霍爾訊號WHS的下一週期波形的上緣時間點(即低準位轉高準位的轉態時間點)。 As shown in FIG. 3 , the start time point of the actual Hall state time T4 is aligned with the time point of the lower edge of one cycle waveform of the U-phase Hall signal UHS of the three-phase motor 501 (that is, the transition from high level to low level). state time point), and the end time point of the actual Hall state time T4 is aligned with the upper edge time point of the next cycle waveform of the W-phase Hall signal WHS of the three-phase motor 501 (that is, the transition from low level to high level transition time).

如圖3所示,實際霍爾狀態時間T5的開始時間點對準三相馬達501的W相的霍爾訊號WHS的下一週期波形的上緣時間點(即低準位轉高準位的轉態時間點),且實際霍爾狀態時間T5的結束時間點對準三相馬達501的V相的霍爾訊號VHS的下一週期波形的下緣時間點(即高準位轉低準位的轉態時間點)。 As shown in FIG. 3 , the start time point of the actual Hall state time T5 is aligned with the upper edge time point of the next cycle waveform of the W-phase Hall signal WHS of the three-phase motor 501 (that is, the transition from low level to high level). Transition time point), and the end time point of the actual Hall state time T5 is aligned with the lower edge time point of the next cycle waveform of the V-phase Hall signal VHS of the three-phase motor 501 (that is, the high level turns to the low level transition time).

如圖3所示,實際霍爾狀態時間T6的開始時間點對準三相馬達501的V相的霍爾訊號VHS的下一週期波形的下緣時間點(即低準位轉高準位的轉態時間點),且實際霍爾狀態時間T6的結束時間點對準三相馬達501的U相的霍爾訊號UHS的下一週期波形的上緣時間點(即低準位轉高準位的轉態時間點)。 As shown in FIG. 3 , the start time point of the actual Hall state time T6 is aligned with the time point of the lower edge of the next cycle waveform of the V-phase Hall signal VHS of the three-phase motor 501 (that is, when the low level turns to high level. Transition time point), and the end time point of the actual Hall state time T6 is aligned with the upper edge time point of the next cycle waveform of the U-phase Hall signal UHS of the three-phase motor 501 (that is, the low level turns to the high level transition time).

應理解,實務上,時間差計算電路20可將霍爾訊號UHS的一週期時間分成更多或更少等份,N可為大於1的任意適當整數值,不限於為6,或者時間差計算電路20亦可取W相的霍爾訊號WHS或V相的霍爾訊號VHS的一週期時間,切分成N等份,本實施例僅為舉例施說明,本發明不以此為限。 It should be understood that in practice, the time difference calculation circuit 20 can divide a period of the Hall signal UHS into more or less equal parts, and N can be any appropriate integer value greater than 1, not limited to 6, or the time difference calculation circuit 20 It is also possible to take a period of the W-phase Hall signal WHS or the V-phase Hall signal VHS and divide it into N equal parts. This embodiment is only for illustration, and the present invention is not limited thereto.

請參閱圖1至圖7,其中圖5為本發明實施例的具相位自動調整機制的馬達驅動系統的實際霍爾狀態時間與理想換相時間的差異的示意圖;圖6為本發明實施例的具相位自動調整機制的馬達驅動系統的未補償的霍爾訊號的曲線圖;圖7為本發明實施例的具相位自動調整機制的馬達驅動系統的補償後的霍爾訊號的曲線圖。 Please refer to FIGS. 1 to 7, wherein FIG. 5 is a schematic diagram of the difference between the actual Hall state time and the ideal commutation time of the motor drive system with an automatic phase adjustment mechanism of the embodiment of the present invention; FIG. 6 is the schematic diagram of the embodiment of the present invention The graph of the uncompensated Hall signal of the motor drive system with the automatic phase adjustment mechanism; FIG. 7 is the graph of the compensated Hall signal of the motor drive system with the automatic phase adjustment mechanism of the embodiment of the present invention.

如圖1所示的時間差計算電路20可計算如圖4所示的霍爾訊號UHS的一週期時間內的各實際霍爾狀態時間T1~T6與理想換相時間T的差值。為方便說明,將此差值定義為換相時間差值。如圖5所示,由於各實際霍爾狀態時間T1~T6與理想換相時間T有差異,因此需進行補償。 The time difference calculation circuit 20 shown in FIG. 1 can calculate the difference between the actual Hall state times T1 ˜ T6 and the ideal commutation time T within one cycle of the Hall signal UHS shown in FIG. 4 . For the convenience of description, this difference is defined as the commutation time difference. As shown in Figure 5, due to the difference between the actual Hall state time T1~T6 and the ideal commutation time T, it needs to be compensated.

相位調整電路30可連接時間差計算電路20。相位調整電路30可依據各實際霍爾狀態時間T1~T6與理想換相時間T的換相時間差值來補償霍爾訊號的一週期時間切分出的每一實際霍爾狀態時間T1~T6,以產生補償訊號。舉例而言,如圖6所示,補償前的U相的霍爾訊號UHS的一週期時間切分出的N個時間即實際霍爾狀態時間T1~T6彼此不等長,而補償後的霍爾訊號UHS的N個時間的每一時間等長且等於理想換相時間T。 The phase adjustment circuit 30 can be connected to the time difference calculation circuit 20 . The phase adjustment circuit 30 can compensate each actual Hall state time T1~T6 divided by one cycle time of the Hall signal according to the commutation time difference between each actual Hall state time T1~T6 and the ideal commutation time T , to generate a compensation signal. For example, as shown in Figure 6, the actual Hall state times T1~T6 are divided into N times divided by one cycle of the U-phase Hall signal UHS before compensation. Each of the N times of the signal UHS is equal in length and equal to the ideal commutation time T.

舉例而言,時間差計算電路20可計算霍爾訊號中的欲補償的實際霍爾狀態時間與在同一週期時間內出現時間較早的所有實際霍爾狀態時間分別對應的多個理想換相時間的總和作為第一運算值。接著,時間差計算電路20可將第一運算值減去欲補償的實際霍爾狀態時間之前的同一週期內的所有實際霍爾狀態時間以計算出第二運算值。接著,時間差計算電路20可計算 第二運算值與欲補償的實際霍爾狀態時間的前一實際霍爾狀態時間的比例。相位調整電路30依據此比例以補償霍爾訊號的實際霍爾狀態時間。 For example, the time difference calculation circuit 20 can calculate the ideal commutation times corresponding to the actual Hall state time to be compensated in the Hall signal and all the actual Hall state times that occur earlier in the same cycle time The sum is used as the first operand value. Next, the time difference calculation circuit 20 may subtract all actual Hall state times in the same cycle before the actual Hall state time to be compensated from the first calculation value to calculate a second calculation value. Then, the time difference calculation circuit 20 can calculate The ratio of the second operation value to the previous actual Hall state time of the actual Hall state time to be compensated. The phase adjustment circuit 30 compensates the actual Hall state time of the Hall signal according to this ratio.

若有需要,可更進一步執行以下作業。時間差計算電路20可將各理想換相時間切成M個子等份且每一子等份的時間定義為一子換相時間,其中M為不小於1的整數值,M例如但不限於32。接著,時間差計算電路20可將M值乘以第二運算值以計算出第三運算值。接著,時間差計算電路20可將第三運算值除以欲補償的實際霍爾狀態時間的前一實際霍爾狀態時間以計算出一補償徑向角。 If necessary, the following operations can be carried out further. The time difference calculation circuit 20 can divide each ideal commutation time into M sub-divisions and each sub-division time is defined as a sub-commutation time, where M is an integer value not less than 1, such as but not limited to 32. Then, the time difference calculation circuit 20 can multiply the M value by the second operation value to calculate the third operation value. Then, the time difference calculation circuit 20 can divide the third calculated value by the actual Hall state time before the actual Hall state time to be compensated to calculate a compensated radial angle.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T1的補償徑向角:AS1=M-(M×T/T6),其中,AS1代表實際霍爾狀態時間T1的補償徑向角(或稱補償時間),M代表欲補償的實際霍爾狀態時間T1切分出的多個子換相時間的數量,T代表理想換相時間,T6代表欲補償的實際霍爾狀態時間T1的前一實際霍爾狀態時間。 The time difference calculation circuit 20 can use the following formula to calculate the compensation radial angle of the actual Hall state time T1: AS1=M-(M×T/T6), wherein AS1 represents the compensation radial angle of the actual Hall state time T1 (or is called compensation time), M represents the number of multiple sub-commutation times divided by the actual Hall state time T1 to be compensated, T represents the ideal commutation time, and T6 represents the previous actual time of the actual Hall state time T1 to be compensated Hall state time.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T2的補償徑向角:AS2=M-〔M×(2T-T1)/T1〕,其中,AS2代表實際霍爾狀態時間T2的補償徑向角(或稱補償時間),M代表欲補償的實際霍爾狀態時間T2切分出的多個子換相時間的數量,T代表理想換相時間,T1代表欲補償的實際霍爾狀態時間T2的前一實際霍爾狀態時間。 The time difference calculation circuit 20 can use the following formula to calculate the compensation radial angle of the actual Hall state time T2: AS2=M-[M×(2T-T1)/T1], wherein AS2 represents the compensation radius of the actual Hall state time T2 Angle (or compensation time), M represents the number of multiple sub-commutation times divided by the actual Hall state time T2 to be compensated, T represents the ideal commutation time, and T1 represents the actual Hall state time T2 to be compensated The previous actual Hall state time.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T3的補償徑向角:AS3=M-〔M×(3T-T1-T2)/T2〕, 其中,AS3代表實際霍爾狀態時間T3的補償徑向角(或稱補償時間),M代表欲補償的實際霍爾狀態時間T3切分出的多個子換相時間的數量,T代表理想換相時間,T2、T1代表欲補償的實際霍爾狀態時間T3之前的實際霍爾狀態時間。 The time difference calculation circuit 20 can use the following formula to calculate the compensation radial angle of the actual Hall state time T3: AS3=M-[M×(3T-T1-T2)/T2], Among them, AS3 represents the compensation radial angle (or compensation time) of the actual Hall state time T3, M represents the number of multiple sub-commutation times divided by the actual Hall state time T3 to be compensated, and T represents the ideal commutation Time, T2 and T1 represent the actual Hall state time before the actual Hall state time T3 to be compensated.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T4的補償徑向角:AS4=M-〔M×(4T-T1-T2-T3)/T3〕,其中,AS4代表實際霍爾狀態時間T4的補償徑向角(或稱補償時間),M代表欲補償的實際霍爾狀態時間T4切分出的多個子換相時間的數量,T代表理想換相時間,T3、T2、T1代表欲補償的實際霍爾狀態時間T4之前的實際霍爾狀態時間。 The time difference calculation circuit 20 can use the following formula to calculate the compensation radial angle of the actual Hall state time T4: AS4=M-[M×(4T-T1-T2-T3)/T3], wherein AS4 represents the actual Hall state time The compensation radial angle (or compensation time) of T4, M represents the number of multiple sub-commutation times divided by the actual Hall state time T4 to be compensated, T represents the ideal commutation time, and T3, T2, T1 represent the desired The actual Hall state time before the compensated actual Hall state time T4.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T5的補償徑向角:AS5=M-〔M×(5T-T1-T2-T3-T4)/T4〕,其中,AS5代表實際霍爾狀態時間T5的補償徑向角(或稱補償時間),M代表欲補償的實際霍爾狀態時間T5切分出的多個子換相時間的數量,T代表理想換相時間,T4、T3、T2、T1代表欲補償的實際霍爾狀態時間T5之前的實際霍爾狀態時間。 The time difference calculation circuit 20 can use the following formula to calculate the compensation radial angle of the actual Hall state time T5: AS5=M-[M×(5T-T1-T2-T3-T4)/T4], wherein AS5 represents the actual Hall state time T5 The compensation radial angle (or compensation time) of the state time T5, M represents the number of sub-commutation times divided by the actual Hall state time T5 to be compensated, T represents the ideal commutation time, T4, T3, T2 , T1 represents the actual Hall state time before the actual Hall state time T5 to be compensated.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T6的補償徑向角:AS6=M-〔M×(6T-T1-T2-T3-T4-T5)/T5〕,其中,AS6代表實際霍爾狀態時間T6的補償徑向角(或稱補償時間),M代表欲補償的實際霍爾狀態時間T6切分出的多個子換相時間的數量,T代表理想換相時間,T5、T4、T3、T2、T1代表欲補償的實際霍爾狀態時間T6之前的實際霍爾狀態時間。 The time difference calculation circuit 20 can adopt the following formula to calculate the compensation radial angle of the actual Hall state time T6: AS6=M-[M×(6T-T1-T2-T3-T4-T5)/T5], wherein AS6 represents the actual The compensation radial angle (or compensation time) of the Hall state time T6, M represents the number of sub-commutation times divided by the actual Hall state time T6 to be compensated, T represents the ideal commutation time, T5, T4 , T3, T2, T1 represent the actual Hall state time before the actual Hall state time T6 to be compensated.

相位調整電路30可依據所有補償徑向角以補償霍爾訊號的實際霍爾狀態時間,如圖6所示的補償前的U相的霍爾訊號UHS的一週期時間切分出的彼此不等長的6個實際霍爾狀態時間T1~T6,可補償為如圖7所示的彼此等長且等於6個理想換相時間T。相位調整電路30可依據補償後的霍爾訊號以產生補償訊號。 The phase adjustment circuit 30 can compensate the actual Hall state time of the Hall signal according to all compensation radial angles, as shown in FIG. The six long actual Hall state times T1~T6 can be compensated to be equal to each other and equal to the six ideal commutation times T as shown in FIG. 7 . The phase adjustment circuit 30 can generate a compensation signal according to the compensated Hall signal.

如圖1所示,驅動電路40可連接相位調整電路30以及負載50。如圖1所示的負載50可例如為如圖2所示的三相馬達501,在驅動電路40與三相馬達501之間可連接橋式電路502。橋式電路502可包含多個電晶體例如圖2所示的第一上橋電晶體M1、第一下橋電晶體M4、第二上橋電晶體M2、第二下橋電晶體M5、第三上橋電晶體M3以及第三下橋電晶體M6。驅動電路40可連接各電晶體的控制端。 As shown in FIG. 1 , the driving circuit 40 can be connected to the phase adjustment circuit 30 and the load 50 . The load 50 shown in FIG. 1 can be, for example, a three-phase motor 501 as shown in FIG. 2 , and a bridge circuit 502 can be connected between the driving circuit 40 and the three-phase motor 501 . The bridge circuit 502 may include multiple transistors such as the first upper bridge transistor M1 shown in FIG. 2 , the first lower bridge transistor M4 , the second upper bridge transistor M2 , the second lower bridge transistor M5 , the third The upper bridge transistor M3 and the third lower bridge transistor M6. The driving circuit 40 can be connected to the control terminals of each transistor.

三相馬達501的U相的一端可連接第一上橋電晶體M1的第二端與第一下橋電晶體M4的第一端之間的節點。三相馬達501的V相的一端可連接第二上橋電晶體M2的第二端與第二下橋電晶體M5的第一端之間的節點。三相馬達501的W相的一端可連接第三上橋電晶體M3的第二端與第三下橋電晶體M6的第一端之間的節點。 One end of the U-phase of the three-phase motor 501 can be connected to a node between the second end of the first upper bridge transistor M1 and the first end of the first lower bridge transistor M4 . One terminal of the V-phase of the three-phase motor 501 can be connected to a node between the second terminal of the second high-bridge transistor M2 and the first terminal of the second low-bridge transistor M5 . One end of the W phase of the three-phase motor 501 can be connected to a node between the second end of the third upper bridge transistor M3 and the first end of the third lower bridge transistor M6 .

驅動電路40可從時間差計算電路20接收補償訊號,並可依據補償訊號輸出驅動訊號以驅動橋式電路502,進而驅動三相馬達501。如此,可使三相馬達501在正確的時間點換相,以使三相馬達501正常穩定運轉的過程中,不會產生振動與噪音。 The driving circuit 40 can receive the compensation signal from the time difference calculation circuit 20 , and can output a driving signal according to the compensation signal to drive the bridge circuit 502 , and then drive the three-phase motor 501 . In this way, the phases of the three-phase motor 501 can be commutated at the correct time, so that vibration and noise will not be generated during the normal and stable operation of the three-phase motor 501 .

請參閱圖1至圖8,其中圖8為本發明實施例的具相位自動調整機制的馬達驅動系統的霍爾訊號的波形圖。如圖1所示的時間差計算電路20可將理想換相時間與一期望徑向角相乘以計算出第四運算值。接著,時間差計算電路20可將上述計算出的將第三運算值 減去第四運算值以取得第五運算值。接著,時間差計算電路20可將第五運算值除以欲補償的實際霍爾狀態時間的前一實際霍爾狀態時間以計算出一相位調整徑向角。相位調整電路30可依據此相位調整徑向角來補償霍爾訊號的實際霍爾狀態時間以產生補償訊號。 Please refer to FIGS. 1 to 8 , wherein FIG. 8 is a waveform diagram of a Hall signal of a motor drive system with an automatic phase adjustment mechanism according to an embodiment of the present invention. The time difference calculation circuit 20 shown in FIG. 1 can multiply the ideal commutation time by a desired radial angle to calculate the fourth calculation value. Then, the time difference calculation circuit 20 can calculate the above-mentioned third operation value Subtracting the fourth operation value to obtain the fifth operation value. Then, the time difference calculation circuit 20 can divide the fifth calculated value by the actual Hall state time before the actual Hall state time to be compensated to calculate a phase adjustment radial angle. The phase adjustment circuit 30 can adjust the radial angle according to the phase to compensate the actual Hall state time of the Hall signal to generate a compensation signal.

舉例而言,時間差計算電路20可採用下列公式計算實際霍爾狀態時間T1的相位調整徑向角:ASP1=M-(M×T/T6-ASL1×T),其中,ASP1代表實際霍爾狀態時間T1的相位調整徑向角(或稱期望調整時間),M代表欲補償的實際霍爾狀態時間T1切分出的多個子換相時間的數量,T代表理想換相時間,T6代表欲補償的實際霍爾狀態時間T1的前一實際霍爾狀態時間,ASL1代表實際霍爾狀態時間T1的期望徑向角(或稱期望時間)。 For example, the time difference calculation circuit 20 can use the following formula to calculate the phase adjustment radial angle of the actual Hall state time T1: ASP1=M-(M×T/T6-ASL1×T), where ASP1 represents the actual Hall state Phase adjustment radial angle of time T1 (or expected adjustment time), M represents the number of multiple sub-commutation times divided by the actual Hall state time T1 to be compensated, T represents the ideal commutation time, and T6 represents the desired compensation The previous actual Hall state time of the actual Hall state time T1, ASL1 represents the expected radial angle (or expected time) of the actual Hall state time T1.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T2的相位調整徑向角:ASP2=M-{〔M×(2T-T1)-ASL2×T〕/T1},其中,ASP2代表實際霍爾狀態時間T2的相位調整徑向角,M代表欲補償的實際霍爾狀態時間T2切分出的多個子換相時間的數量,T代表理想換相時間,T1代表欲補償的實際霍爾狀態時間T2的前一實際霍爾狀態時間,ASL2代表實際霍爾狀態時間T2的期望徑向角。 The time difference calculation circuit 20 can use the following formula to calculate the phase adjustment radial angle of the actual Hall state time T2: ASP2=M-{[M×(2T-T1)-ASL2×T]/T1}, wherein ASP2 represents the actual Hall state time T2 The phase adjustment radial angle of Hall state time T2, M represents the number of multiple sub-commutation times divided by the actual Hall state time T2 to be compensated, T represents the ideal commutation time, and T1 represents the actual Hall state to be compensated The previous actual Hall state time of time T2, ASL2 represents the desired radial angle of the actual Hall state time T2.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T3的相位調整徑向角:ASP3=M-{〔M×(3T-T1-T2)-ASL3×T〕/T2},其中,ASP3代表實際霍爾狀態時間T3的相位調整徑向角,M代表欲補償的實際霍爾狀態時間T3切分出的多個子換相時間的數量,T代表理想換相時間,T2、T1代表欲補償的實際霍爾狀態時間T3之前的實際霍爾狀態時間, ASL3代表實際霍爾狀態時間T3的期望徑向角。 The time difference calculation circuit 20 can use the following formula to calculate the phase adjustment radial angle of the actual Hall state time T3: ASP3=M-{[M×(3T-T1-T2)-ASL3×T]/T2}, wherein ASP3 represents The phase adjustment radial angle of the actual Hall state time T3, M represents the number of multiple sub-commutation times divided by the actual Hall state time T3 to be compensated, T represents the ideal commutation time, and T2 and T1 represent the sub-commutation times to be compensated the actual Hall state time before the actual Hall state time T3, ASL3 represents the desired radial angle of the actual Hall state time T3.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T4的相位調整徑向角:ASP4=M-{〔M×(4T-T1-T2-T3)-ASL4×T〕/T3},其中,ASP4代表實際霍爾狀態時間T4的相位調整徑向角,M代表欲補償的實際霍爾狀態時間T4切分出的多個子換相時間的數量,T代表理想換相時間,T3、T2、T1代表欲補償的實際霍爾狀態時間T4之前的實際霍爾狀態時間,ASL4代表實際霍爾狀態時間T4的期望徑向角。 The time difference calculation circuit 20 can use the following formula to calculate the phase adjustment radial angle of the actual Hall state time T4: ASP4=M-{[M×(4T-T1-T2-T3)-ASL4×T]/T3}, wherein, ASP4 represents the phase adjustment radial angle of the actual Hall state time T4, M represents the number of multiple sub-commutation times divided by the actual Hall state time T4 to be compensated, T represents the ideal commutation time, T3, T2, T1 represents the actual Hall state time before the actual Hall state time T4 to be compensated, and ASL4 represents the expected radial angle of the actual Hall state time T4.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T5的相位調整徑向角:ASP5=M-{〔M×(5T-T1-T2-T3-T4)-ASL5×T〕/T4},其中,ASP5代表實際霍爾狀態時間T5的相位調整徑向角,M代表欲補償的實際霍爾狀態時間T5切分出的多個子換相時間的數量,T代表理想換相時間,T4、T3、T2、T1代表欲補償的實際霍爾狀態時間T5之前的實際霍爾狀態時間,ASL5代表實際霍爾狀態時間T5的期望徑向角。 The time difference calculation circuit 20 can use the following formula to calculate the phase adjustment radial angle of the actual Hall state time T5: ASP5=M-{[M×(5T-T1-T2-T3-T4)-ASL5×T]/T4}, Among them, ASP5 represents the phase adjustment radial angle of the actual Hall state time T5, M represents the number of multiple sub-commutation times divided by the actual Hall state time T5 to be compensated, T represents the ideal commutation time, T4, T3 , T2, and T1 represent the actual Hall state time before the actual Hall state time T5 to be compensated, and ASL5 represents the expected radial angle of the actual Hall state time T5.

時間差計算電路20可採用下列公式計算實際霍爾狀態時間T6的相位調整徑向角:ASP6=M-{〔M×(6T-T1-T2-T3-T4-T5)-ASL6×T〕/T5},其中,ASP6代表實際霍爾狀態時間T6的相位調整徑向角,M代表欲補償的實際霍爾狀態時間T6切分出的多個子換相時間的數量,T代表理想換相時間,T5、T4、T3、T2、T1代表欲補償的實際霍爾狀態時間T6之前的實際霍爾狀態時間,ASL6代表實際霍爾狀態時間T6的期望徑向角。 The time difference calculation circuit 20 can use the following formula to calculate the phase adjustment radial angle of the actual Hall state time T6: ASP6=M-{[M×(6T-T1-T2-T3-T4-T5)-ASL6×T]/T5 }, where ASP6 represents the phase adjustment radial angle of the actual Hall state time T6, M represents the number of multiple sub-commutation times divided by the actual Hall state time T6 to be compensated, T represents the ideal commutation time, and T5 , T4, T3, T2, T1 represent the actual Hall state time before the actual Hall state time T6 to be compensated, and ASL6 represents the expected radial angle of the actual Hall state time T6.

應理解,上述期望徑向角ASL1~ASL6可彼此等長或不等長, 且期望徑向角ASL1~ASL6可為正值或負值,或是將上述減法運算改為加法,即可調整霍爾訊號的相位超前或落後,以上僅舉例說明,本發明不以此為限。再者,本文中僅舉例補償霍爾訊號的一個週期時間,實際上可補償任一相的霍爾訊號中的連續或不連續的多個週期時間。 It should be understood that the above-mentioned expected radial angles ASL1~ASL6 may be equal or unequal in length to each other, And it is expected that the radial angles ASL1~ASL6 can be positive or negative, or the above-mentioned subtraction operation can be changed to addition, so that the phase of the Hall signal can be adjusted to lead or fall behind. The above is only an example, and the present invention is not limited thereto. . Furthermore, this article only exemplifies the compensation of one cycle time of the Hall signal, in fact, multiple continuous or discontinuous cycle times of any phase of the Hall signal can be compensated.

綜上所述,本發明提供一種具相位自動調整機制的馬達驅動系統,其可在霍爾元件本身的磁滯及霍爾元件擺放位置偏移狀態下,對霍爾感測器所感測到的霍爾訊號進行補償和調整相位,使得馬達在正確的時間點進行換相,使馬達正常穩定運轉的同時,大幅度降低振動噪音。 To sum up, the present invention provides a motor drive system with an automatic phase adjustment mechanism, which can sense the Hall sensor under the hysteresis of the Hall element itself and the offset state of the Hall element. The Hall signal is used to compensate and adjust the phase, so that the motor commutates at the correct time point, so that the motor can run normally and stably, while greatly reducing vibration and noise.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred feasible embodiment of the present invention, and does not therefore limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. within the scope of the patent.

10:理想時間設定電路 10: Ideal time setting circuit

20:時間差計算電路 20: Time difference calculation circuit

30:相位調整電路 30: Phase adjustment circuit

40:驅動電路 40: Drive circuit

50:負載 50: load

61~63:霍爾感測器 61~63: Hall sensor

Claims (6)

一種具相位自動調整機制的馬達驅動系統,適用於一三相馬達,所述具相位自動調整機制的馬達驅動系統包含: 一霍爾感測器,配置以感測該三相馬達的三相中的每一相的一霍爾訊號; 一理想時間設定電路,連接各該霍爾感測器,配置以將欲補償的該霍爾訊號的一個週期時間除以N,以將此週期時間分成N等份,每一等份的時間定義為一理想換相時間,每一該理想換相時間與其他各該理想換相時間等長,其中N為大於1的整數值; 一時間差計算電路,連接該理想時間設定電路,配置以依據該三相馬達的三相分別的多個該霍爾訊號的轉態時間點,以將欲補償的該霍爾訊號的此週期時間分成時間長度不同的N等份,將該霍爾訊號的此週期時間的每一等份的時間定義為一實際霍爾狀態時間,多個該實際霍爾狀態時間基於在該霍爾訊號中出現的時序分別對應多個該理想換相時間,計算各該實際霍爾狀態時間與對應的該理想換相時間的差值作為一換相時間差值; 一相位調整電路,連接該時間差計算電路,配置以依據所有多個該換相時間差值補償該霍爾訊號以產生一補償訊號; 一橋式電路,連接該三相馬達;以及 一驅動電路,連接該相位調整電路以及該橋式電路,配置以依據該補償訊號驅動該橋式電路。 A motor drive system with an automatic phase adjustment mechanism, suitable for a three-phase motor, the motor drive system with an automatic phase adjustment mechanism includes: a Hall sensor configured to sense a Hall signal of each of the three phases of the three-phase motor; An ideal time setting circuit, connected to each of the Hall sensors, configured to divide a cycle time of the Hall signal to be compensated by N, so as to divide this cycle time into N equal parts, and the time definition of each equal part is an ideal commutation time, each ideal commutation time is equal to the other ideal commutation times, wherein N is an integer value greater than 1; A time difference calculation circuit, connected to the ideal time setting circuit, configured to divide the cycle time of the Hall signal to be compensated according to a plurality of transition time points of the Hall signal in the three phases of the three-phase motor For N equal parts with different time lengths, the time of each equal part of this cycle time of the Hall signal is defined as an actual Hall state time, and a plurality of the actual Hall state times are based on The time sequence corresponds to a plurality of the ideal commutation times, and the difference between each actual Hall state time and the corresponding ideal commutation time is calculated as a commutation time difference; A phase adjustment circuit, connected to the time difference calculation circuit, configured to compensate the Hall signal according to all the plurality of commutation time differences to generate a compensation signal; a bridge circuit connected to the three-phase motor; and A drive circuit, connected to the phase adjustment circuit and the bridge circuit, configured to drive the bridge circuit according to the compensation signal. 如請求項1所述的具相位自動調整機制的馬達驅動系統,其中該時間差計算電路計算該霍爾訊號中的欲補償的該實際霍爾狀態時間與在同一週期時間內出現時間較早的所有該實際霍爾狀態時間分別對應的多個該理想換相時間的總和作為一第一運算值,將該第一運算值減去欲補償的該實際霍爾狀態時間之前的同一週期內的所有該實際霍爾狀態時間以計算出一第二運算值,計算該第二運算值與欲補償的該實際霍爾狀態時間的前一該實際霍爾狀態時間的一比例,該相位調整電路依據該比例以補償該霍爾訊號的該實際霍爾狀態時間。The motor drive system with an automatic phase adjustment mechanism as described in Claim 1, wherein the time difference calculation circuit calculates the actual Hall state time to be compensated in the Hall signal and all the earlier occurrence times in the same cycle time The sum of a plurality of ideal commutation times corresponding to the actual Hall state time is used as a first calculation value, and the first calculation value is subtracted from the actual Hall state time to be compensated. The actual Hall state time is used to calculate a second operation value, and a ratio of the second operation value to the actual Hall state time before the actual Hall state time to be compensated is calculated, and the phase adjustment circuit is based on the ratio To compensate the actual Hall state time of the Hall signal. 如請求項2所述的具相位自動調整機制的馬達驅動系統,其中該時間差計算電路將各該理想換相時間切成M個子等份且每一子等份的時間定義為一子換相時間,將M值乘以該第二運算值以計算出一第三運算值,將該第三運算值除以欲補償的該實際霍爾狀態時間的前一該實際霍爾狀態時間以計算出一補償徑向角,該相位調整電路依據該補償徑向角補償該霍爾訊號的該實際霍爾狀態時間,其中M為不小於1的整數值。The motor drive system with an automatic phase adjustment mechanism as described in claim 2, wherein the time difference calculation circuit divides each ideal commutation time into M sub-equal parts, and the time of each sub-division is defined as a sub-commutation time , multiplying the M value by the second calculation value to calculate a third calculation value, dividing the third calculation value by the actual Hall state time before the actual Hall state time to be compensated to calculate a Compensating the radial angle, the phase adjustment circuit compensates the actual Hall state time of the Hall signal according to the compensated radial angle, wherein M is an integer value not less than 1. 如請求項3所述的具相位自動調整機制的馬達驅動系統,其中該時間差計算電路將該理想換相時間與一期望徑向角相乘以計算出一第四運算值,將該第三運算值減去該第四運算值以取得一第五運算值,將該第五運算值除以欲補償的該實際霍爾狀態時間的前一該實際霍爾狀態時間以計算出一相位調整徑向角,該相位調整電路依據該相位調整徑向角補償該霍爾訊號的該實際霍爾狀態時間。The motor drive system with an automatic phase adjustment mechanism as described in Claim 3, wherein the time difference calculation circuit multiplies the ideal commutation time by a desired radial angle to calculate a fourth calculation value, and the third calculation subtract the fourth calculated value to obtain a fifth calculated value, and divide the fifth calculated value by the actual Hall state time before the actual Hall state time to be compensated to calculate a phase adjustment radial Angle, the phase adjustment circuit compensates the actual Hall state time of the Hall signal according to the phase adjustment radial angle. 如請求項1所述的具相位自動調整機制的馬達驅動系統,其中部分該實際霍爾狀態時間的一開始時間點對準該三相馬達的三相中的其中一相的該霍爾訊號的上緣且一結束時間點對準該三相馬達的三相中的另一相的該霍爾訊號的下緣。The motor drive system with an automatic phase adjustment mechanism as described in claim 1, wherein the first start time point of part of the actual Hall state time is aligned with the Hall signal of one of the three phases of the three-phase motor The upper edge and an end time point are aligned with the lower edge of the Hall signal of the other phase of the three phases of the three-phase motor. 如請求項1所述的具相位自動調整機制的馬達驅動系統,其中部分該實際霍爾狀態時間的一開始時間點對準該三相馬達的三相中的其中一相的該霍爾訊號的下緣且一結束時間點對準該三相馬達的三相中的另一相的該霍爾訊號的上緣。The motor drive system with an automatic phase adjustment mechanism as described in claim 1, wherein the first start time point of part of the actual Hall state time is aligned with the Hall signal of one of the three phases of the three-phase motor The lower edge and an end time point are aligned with the upper edge of the Hall signal of the other phase of the three phases of the three-phase motor.
TW110127285A 2021-07-26 2021-07-26 Motor driving system with automatic phase adjustment mechanism TWI796740B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110127285A TWI796740B (en) 2021-07-26 2021-07-26 Motor driving system with automatic phase adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127285A TWI796740B (en) 2021-07-26 2021-07-26 Motor driving system with automatic phase adjustment mechanism

Publications (2)

Publication Number Publication Date
TW202306300A TW202306300A (en) 2023-02-01
TWI796740B true TWI796740B (en) 2023-03-21

Family

ID=86661443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127285A TWI796740B (en) 2021-07-26 2021-07-26 Motor driving system with automatic phase adjustment mechanism

Country Status (1)

Country Link
TW (1) TWI796740B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200629708A (en) * 2005-02-02 2006-08-16 Prolific Technology Inc Space vector-based current controlled PWM inverter for motor driver
US20110043148A1 (en) * 2009-08-19 2011-02-24 Chien-Sheng Lin Motor control apparatus and method thereof
TW201201502A (en) * 2010-06-24 2012-01-01 Sentelic Corp Motor driving mechanism and driving method
TW201947865A (en) * 2018-05-14 2019-12-16 茂達電子股份有限公司 Motor driving circuit and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200629708A (en) * 2005-02-02 2006-08-16 Prolific Technology Inc Space vector-based current controlled PWM inverter for motor driver
US20110043148A1 (en) * 2009-08-19 2011-02-24 Chien-Sheng Lin Motor control apparatus and method thereof
TW201201502A (en) * 2010-06-24 2012-01-01 Sentelic Corp Motor driving mechanism and driving method
TW201947865A (en) * 2018-05-14 2019-12-16 茂達電子股份有限公司 Motor driving circuit and method thereof

Also Published As

Publication number Publication date
TW202306300A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
US6081087A (en) Motor control apparatus
US7026782B2 (en) Method and apparatus for controlling synchronous motor
JP2007116791A (en) Weak magnetic field vector controller and module of permanent magnet synchronous motor
JP2006025499A (en) Motor controller
JP2006087152A (en) Controller and module of permanent magnet synchronous motor
US5805438A (en) Current controlled PWM inverter for driving a motor without gain adjustment
TWI796740B (en) Motor driving system with automatic phase adjustment mechanism
US9030146B2 (en) Driving apparatus and motor
US20170345288A1 (en) Motor control device and motor control method
WO2005018080A1 (en) Voltage source inverter control method
JP2003189700A (en) Motor controller, driving method for motor, and program for controlling motor
JP6753326B2 (en) Motor control device
JP2002034265A (en) Method for compensating voltage error with dead-band of pwm voltage type inverter and the same inverter
JP2008220069A (en) Control device of motor
JP2006149045A (en) Motor driver
JPH03207296A (en) Driver for brushless motor
JPH05236794A (en) Controller for pulse width modulation inverter
JP2000134987A (en) Inverter controller of three-phase ac motor
WO2024100911A1 (en) Control device, control method, and air conditioner
JP7077878B2 (en) Motor control device
JPH0191690A (en) Driving device for brushless motor
WO2022154027A1 (en) Motor control device and drive system equipped with same
JP2004289929A (en) Motor driving circuit
JP6383072B2 (en) Motor control device
JP2023032879A (en) Control method and control device for motor unit