TWI294403B - Truncated pyramid array fabrication method - Google Patents

Truncated pyramid array fabrication method Download PDF

Info

Publication number
TWI294403B
TWI294403B TW95116159A TW95116159A TWI294403B TW I294403 B TWI294403 B TW I294403B TW 95116159 A TW95116159 A TW 95116159A TW 95116159 A TW95116159 A TW 95116159A TW I294403 B TWI294403 B TW I294403B
Authority
TW
Taiwan
Prior art keywords
micro
pyramidal
array
substrate
photoresist layer
Prior art date
Application number
TW95116159A
Other languages
Chinese (zh)
Other versions
TW200742728A (en
Inventor
Hsiharng Yang
Wei Hsuan Cheng
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW95116159A priority Critical patent/TWI294403B/en
Publication of TW200742728A publication Critical patent/TW200742728A/en
Application granted granted Critical
Publication of TWI294403B publication Critical patent/TWI294403B/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

1294403 九、發明說明: 【發明所屬之技術領域】 本發明係種鱗機鱗舰法,其兼具可製造不 .同尺寸之角錐微結構陣列、製程穩定、生產設備成本低,以及 導光性特佳等優點。 【先前技術】 不論是液晶顯示ϋ⑽)、練魏的躲、個人數位助 理(PDA),均需要更亮、更均勻、更省電的面光源(最好具有散 射點)來強倾示效果;傳統導光板之騎點製造方法簡介如 下: 一 ·光阻熱溶法。將厚膜光阻經過曝光顯影後形成柱狀的 微結構,再經過高溫整形,光阻柱狀微結構熔化,利用内聚力 絲面張力的制,這些微凸JJJ柱即逐漸自雜形成具有半球 狀表面,達到具有微透鏡狀陣列之結構。 一 ·熱壓成形法。此法是以熱壓機將χ光深刻精密電鑄模 4成^/(包括了 X光微影、微電鑄、微成开),亦即”深刻電鑄 才莫、皮,, — 〜 、k 央文為 Lithography electroforming micro molding ’簡稱LIGA)模具,然後將此模具以熱壓機在聚合塑 膠薄板上以高壓高溫且非接觸壓模成形微透鏡陣列;透鏡曲率 半徑可以藉由熱壓溫度及壓力控制。 二·液滴噴出法。其利用類似喷墨(i nk- j et)印刷之技;^, 喷出複數個微液滴至該光阻層上,進而形成反射式之微透鏡陣 1294403 列。 四·举分子雷射加工法。以準分子雷射微細加工技術製作 微小的3d微結構,可在高分子材料基材(例如有機玻璃(此以 methyl mathacrylate,簡稱 PMMA)、聚碳酸酯 (Polycarbonate,簡稱p〇、聚苯乙烯(p〇iystyrene,簡稱 ps)) 之X及Y軸上移動並利用一可程式控制雷射光強度之裝置,在 預疋之位置發射出預定之強度,如此,即可加工出一具有半圓 球狀之外表面。 五·灰階光罩法。灰階光罩與一般的光罩最大不同處為灰 階光罩曝光壹次即可產生多種不同的蝕刻深度。可應用於連續 曲面形狀的多階繞絲元件與高填紳(fill factor)之 微透鏡陣列之製作。 而上述各種方式分別具有下述缺失: Π]只能製作單種微透鏡陣列之樣式。灰階光罩法雖可應 用於物曲Φ之多階繞射微光學元件與高填絲之微透鏡陣 列’但疋,一個灰階光罩只能製作一種微透鏡陣列,其尺寸及 型式無法再改 變。 [2]製程不穩定。以光阻熱熔法而言,其半球狀表面之精 確度不易控制。而熱壓成形法若溫度過低,則瓣薄板無法形 成透鏡,且壓力過高時聚合卿馳職接接賴仁頂部,半 求狀表面不易精確控制。另外,液滴喷出法則是難以擇制微透 1294403 面則 製程 鏡外表面之精斜形。至辦分子雷㈣I法的微透鏡表 產生粗链度較差的問題,不論使用何種傳統方法,都產生 不穩定的情況。 [3]生產設備成本高。準分子訪加碰與灰階光罩法之 成品雖然尺寸鮮,较,賴娜W貴,謂產業成本。 〜因此’有必要研發出製賴單穩定且生產設備成本低的新 【發明内容】 本發明之主要目的,在於提供—種肖雜結構陣列製法, 其可製造不同尺寸之角錐微結構陣列。 本發明之次要目的,在於提供—種角錐微結構陣列製法, 其具備製程穩定的優點。 本發明之又-目的,在於提供—種角錐微結構陣列製法, 其具有生產設備成本低的產業利用性。 本毛明之再-目的’在於提供—種⑽微結構陣列製法, 其具有導光性特佳的功效。 .本發明係提供-種角錐微結構_製法,其包括下列步 預備步驟.預先準備—基板,以娜塗佈方式於該 基板上塗佈—預定厚度之級層;制光阻層之黏 稠表面略乾硬後,於該光阻層上設一光罩;該光罩 穿設複數個透光孔,再於該光罩上設一光線折射部 1294403 二·破影成型步驟:設—曝光源向該光罩的方向照射— 紫外線光,該紫外線光穿過該光線折射部折射後, 再透概光罩之透光孔對該紐層照射,使該光阻 層曝光;在光阻層曝光後施予顯影及烘烤,微影成 型角錐微結構_ ’該跡微結構_係由複數個 角錐微結構組成。 本發明之上述目的與優點,不難從下述所顧實施例之詳 細說明與附圖中,獲得深入瞭解。 茲以下列實施例並配合圖式詳細說明本發明於後: 【實施方式】 ' 請參閱第-圖’本發明係為—種鱗微結構陣列製法,盆 包括下列步驟: 八 一 ·預備步驟11 ··預先準備—基板21(參閱第二圖),以 旋轉塗佈方式在雌板21上替—默厚度之光阻層 22(如 二及第雨;待_且層22絲絲面略乾硬後,於該光 阻層22上設-光罩23(參閱第五及第六圖);該光罩23穿設 ^數個透光孔231 ’再於該光罩23上設一光線折射部%(參閱 第七及第八圖); 微〜成型步驟12 ·設一曝光源25(例如設一紫外線曝 ^),鱗光源25向該縣23的方向照射―料線光251, 該紫外線絲丨?職祕騎部24折·,賊過該光罩 1294403 之透光孔231對該光阻層22照射,使該光阻層22曝光(如 第九圖所杀),·在光阻層22曝光後施予顯影及供烤,微影成型 角錐微結構陣列22卜該角錐微結構陣列221係由複數個角錐 微結構22A組成(如第十圖所示),每一角錐微結構-之實際 狀態如第十四及第十五圖(配合參閱附件一之第A及第B⑷ 所示。 ^ 如此為本發明角錐微結構陣列製法。 田然’為提供生產線量產,本發明於微影成型步驟1 又可以包括下列步驟·· 三.導電層成型步驟13 :於該基板21上成型該角錐微結 構陣列221後,於該基板21絲一角錐微結構上鑛 電層26(如第十一圖所示); 、 四·微模仁製作步驟14:於該導電層26上電禱一微模仁 30該微桓仁30對應該角錐微結構陣列221形成微模穴(亦1294403 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a scaly scale scale ship method which has both a pyramidal microstructural array of the same size, stable process, low production equipment cost, and light guiding property. Excellent and so on. [Prior Art] Whether it is liquid crystal display (10), training Wei, personal digital assistant (PDA), you need a brighter, more uniform, more power-saving surface light source (preferably with scattering points) to strongly show the effect; The conventional manufacturing method of the light guide plate is as follows: 1. Photoresistive hot solution method. After the thick film resist is exposed and developed, a columnar microstructure is formed, and after high temperature shaping, the photoresist columnar microstructure is melted, and the micro-convex JJJ column is gradually formed by self-mixing to have a hemispherical shape. The surface is structured to have a microlens-like array. A. Hot press forming method. This method is based on a hot press to dilute the deep precision electroforming mold 4 into ^ / (including X-ray lithography, micro-electro-casting, micro-opening), that is, "deep electroforming, Mo, leather, - _, k 央文 is Lithography electroforming micro molding 'LIGA) mold, and then the mold is hot-pressed on a polymeric plastic sheet by high-pressure high-temperature and non-contact compression molding of the microlens array; the radius of curvature of the lens can be obtained by hot pressing temperature and Pressure control. 2. Droplet ejection method, which uses a technique similar to inkjet printing; ^, ejects a plurality of microdroplets onto the photoresist layer to form a reflective microlens array. 1294403 column. Four-molecular laser processing method. The micro-3d microstructure is fabricated by excimer laser micro-machining technology, which can be used in polymer material substrates (such as plexiglass (this is methyl mathacrylate, PMMA for short), polycarbonate). The ester (Polycarbonate, abbreviated as p〇iystyrene, ps) moves on the X and Y axes and uses a device that can control the intensity of the laser light to emit a predetermined intensity at the pre-twisted position. So you can machine it out A surface with a semi-spherical shape. V. Gray-scale reticle method. The maximum difference between a gray-scale reticle and a general reticle is that the gray-scale reticle can be exposed to a plurality of different etch depths. The fabrication of a multi-stage wire-wound element with a curved shape and a high-fill lens array of fill factors. The above various methods have the following drawbacks: Π] Only a single type of microlens array can be produced. Gray-scale mask Although the method can be applied to multi-order diffractive micro-optical elements and high-filled microlens arrays of Φ, a gray-scale reticle can only make a microlens array, and its size and type can no longer be changed. 2] The process is unstable. In the case of the photoresist hot melt method, the accuracy of the hemispherical surface is difficult to control. However, if the temperature is too low, the lamellar sheet cannot form a lens, and when the pressure is too high, the polymer is clarified. The job is connected to the top of the Lairen, and the semi-finished surface is not easy to precisely control. In addition, the droplet discharge method is difficult to select the micro-transparent surface of the external surface of the process mirror. Produce a thick chain The problem, no matter which traditional method is used, is unstable. [3] The cost of production equipment is high. The finished product of the excimer visit and the gray-scale mask method, although the size is fresh, is more expensive, Industrial cost. Therefore, it is necessary to develop a new one that is stable and low in production equipment cost. SUMMARY OF THE INVENTION The main object of the present invention is to provide a method for fabricating a hybrid structure, which can manufacture pyramidal microstructures of different sizes. Array. The secondary object of the present invention is to provide a method for manufacturing a pyramidal microstructure array, which has the advantages of stable process. The present invention is also aimed to provide a method for manufacturing a pyramidal microstructure array, which has low production equipment cost. Industrial utilization. The re-purpose of the present invention is to provide a (10) microstructure array method which has excellent light guiding properties. The present invention provides a pyramidal microstructure process comprising the following steps: preparing a substrate in advance, coating the substrate with a coating layer of a predetermined thickness; and forming a viscous surface of the photoresist layer After a little hardening, a photomask is disposed on the photoresist layer; the photomask is provided with a plurality of light transmissive holes, and a light refraction portion 1294403 is disposed on the photomask. 2. The image forming step: setting the exposure source Irradiating the ultraviolet ray in the direction of the reticle, the ultraviolet ray is refracted through the refracting portion of the ray, and then illuminating the enamel through the light transmission hole of the illuminating layer to expose the photoresist layer; exposing the photoresist layer After development and baking, the micro-image forming pyramid microstructure _ 'the trace microstructure _ is composed of a plurality of pyramidal microstructures. The above objects and advantages of the present invention will be readily understood from the detailed description of the embodiments described herein. The present invention will be described in detail below with reference to the following embodiments: [Embodiment] 'Please refer to the first figure'. The present invention is a method for producing a scale microarray array, the pot comprising the following steps: Bayi·Preparation step 11 · Pre-prepared - substrate 21 (see the second figure), on the female board 21 by spin coating method - the thickness of the photoresist layer 22 (such as two and the first rain; to be _ and layer 22 silk surface slightly dry After hardening, a photomask 23 is disposed on the photoresist layer 22 (see FIGS. 5 and 6); the photomask 23 is provided with a plurality of light transmission holes 231', and a light refraction is disposed on the photomask 23. % (refer to the seventh and eighth figures); micro ~ molding step 12 · set an exposure source 25 (for example, set a UV exposure), the scale light source 25 illuminates the direction of the county 23 - the line of light 251, the ultraviolet丨 丨 职 职 职 职 职 职 职 职 职 职 职 职 职 职 职 职 职 职 职 职 职 职 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 The layer 22 is exposed and developed for baking, and the micro-image forming pyramid microstructure array 22 is composed of a plurality of pyramidal microstructures 22A (eg, The actual state of each pyramidal microstructure - as shown in the tenth figure, is shown in Figures 14 and 15 (see paragraphs A and B (4) of Annex I. ^ This is the method for manufacturing the pyramidal microstructure of the present invention. In order to provide mass production of the production line, the present invention may further comprise the following steps in the lithography forming step 1. 3. Conductive layer forming step 13: After forming the pyramidal microstructure array 221 on the substrate 21, the substrate 21 is formed on the substrate 21. The wire pyramid has a micro-structure on the mineral layer 26 (as shown in FIG. 11); and the fourth micro-manufacturing step 14: electro-praying a micro-mold 30 on the conductive layer 26 The pyramidal microstructure array 221 forms a micro-cavity (also

以二次翻模成微凸柱)陣列31(如第十二圖及第十三圖所示I 倒錐狀微模穴陣列)。 五.翻製成品步驟15 :以該微模仁3〇可以量產射出 具有複數角錐微結構之成品。 也 實務上’於該預備步驟u巾;本發明設一厚膜塗 40(知第二圖所示)在基板21上塗佈該光阻層四,並設—管技 50由基板21 f方抽真空吸附固定(如第二及第三圖所示:、 、 乂 L·! 1294403 該管柱50帶動該基板21轉動,使該光阻層22均勻塗佈於該 基板21上,控制該管柱5〇轉速愈慢,光阻層22愈厚,控制 管柱50轉速愈快,光阻層22愈薄(如第十六圖所示)。 .該基板21係選自晶圓(Wafer)、有機玻璃(P〇ly methyl mathacrylate ’ 簡稱PMMA)、聚碳酸酯(p〇iycarb〇nate,簡稱 PC)板、載玻片之其中一種。該光阻層22在實施上最好具有天 然橡膠之物理性質,例如選用聚異戊二烯(JSR(THB—12〇N)), 利於透鏡成形且透光性佳。 參閱第四圖,將塗佈光阻層22之基板21置入一烤箱6〇, 控制大約賊九十五度烘烤三至人分鐘(實際上依不同光阻層 22厚度彈性改變所需時間),可使光阻層22表面略乾硬而不 會黏住覆於其上之光罩23 ;該光罩23最好選用聚乙烯對苯二 甲酉夂鹽材貝(Polyethylene terephthalate,簡稱 PET),此為 製造薄膜及纖維所需的聚酯樹脂,該透光孔大體為四角形 或多角形。 於該微影成型步驟12中,·係鱗絲25(Aligner)透過 該光線折射部24、該光罩23之透光孔231對該基板21上之 光阻層22進行曝光,因該光線折射部24為凹透鏡,藉由光線 折射,並於曝光後以黃光齡彡—至八分鐘(級層22愈厚則曝 光時間愈長,愈_曝光時間纽),而可細鱗微結構陣 列221,當然,&變透光孔231之形狀與大小,亦可改變每一 1294403 角錐微結構22A之形狀。 最後#基板21及角錐微結構陣列221共同置入烤箱6〇以 攝氏-百二十度烘烤大約五分鐘,使肖錐微結構_ 2二硬化 成型(如第十八及第十九圖所示為角錐微結構陣列221於共輛 焦顯微鏡下之不同狀態示意圖)。 ^ 於該導電成型步驟13中;係利用-電子束蒸鍍機 (Electron Gim Evaporation),於該角錐微結構陣列221表面 鍍上一層金,以做為導電層26。 於繩仁製作步驟Η巾;係_金屬鎳之電鑄技術並 為達到高硬度之賴,通常會加人其他合金元切提高電鱗微 模仁30之硬度’因此本元件之金屬❺微壯3〇便採用所謂之 鎳姑電鍍製作;藉此,可_觀仁3G射㈣社量複數角 錐微結構22A。 本發明之角錐微結構陣列221可利用光學模擬軟體 (T職㈣進行光線追跡,使用三顆發光二極 Emitting Diode ’簡稱LED)作為導光板之光源,且以側光式 導光板模擬出光使職率,並期錐柱微結構_、微透鏡微 結構陣列以及圓柱微結構陣列做比較,其結果如第十七圖所 示’士使用本發明之四肢多邊形鱗微結構_作為導光板網 點日文’在面板光通量與光朗鱗t優於_柱微結構陣列、 微透鏡微結構陣列和圓柱微結構陣列。 1294403 本發明可廣泛使用於: [a] 量產製造顯示器產業之導光板。 [b] 可用於光開關光學元件。 [c] 可用於精密機械元件製程技術。 [d] 可用於發光二極體之封裝模具。 本發明之優點及功效如下所述: 、Π]可衣&不同尺寸之角錐微結構卩細。本發明應用近接 式曝光法可㈣製出尺寸準叙微凸角轉列或微凹角錐陣 列,不論四邊形或是多邊形角錐微結構都可以輕易製造。 [2] 製程穩定。藉由本發明之近接式曝光製程,可以穩定 控制角錐微結構陣列之錐度與尺寸。 [3] 生產設備成本低。本發明無需複雜又昂貴之可程式控 制裝置或是生產設備,即可製造尺寸準確之歸觀構陣列: 再搭配電鑄成形之微模仁,更可大量射出生產降低製造成本。 [4] 導光性特佳。以本發明之角錐微結構陣列應用於導光 板網點’在面板均勻性、視角度、輝度與光使用效率皆優於傳 統製法之圓柱微結構陣列和微透鏡陣列。 以上僅是藉由較佳實施例詳細說明本發明,對於該實施例 所做的任何簡單修改與變化,皆不脫離本發明之精神與範圍。 、由以上詳細說明,可使熟知本項技藝者明瞭本發明的確可 達成前述目的,實已符合專利法之規定,爰提出發明專利申請。 12 1294403 【附件一】 弟A _係本發明之 圖 弟B圖係本發明之 (SE1)圖 四角錐微結構陣列之光學_鏡⑽) 四角錐微結構_之掃騎子顯微鏡 【圖式簡單說明】 第-圖係本發明之製造方法之流程圖 第二圖係本發明之光阻層塗佈前之示意圖 第三圖係本發明之光阻層塗佈後之示意圖 第四圖係本發明之光阻層供烤之示意圖 ,五圖係本發明之光阻層上覆光罩之示意圖 第六圖係本發明之光罩平面示意圖 之示意圖 第七圖係本發明之光線折射部覆於光罩及光阻層上 第八圖係本發明之光線折射部之立體示意圖曰 第九圖係本發明之光阻層曝光過程示意圖 第十圖係本發明之角錐微結構陣列成型示意圖 第十-圖係本發明之角錐微結構陣列上覆導電層 第十二圖係本發明之電鱗微模仁之示意圖 一 第十三_本發明之角錐微結構陣顺模仁之示 第十四圖係本發明之角錐微結構之俯視示_。 13 1294403 =補係树故轉聽狀立齡意W 圖係本發明之轉速與膜厚關係示意® 圖係本發明之*學模擬數據比較圖 ㈤本W之峰微結構陣列絲焦顯微鏡剖面示意 圖 #圖係本㈣之角錐微結構陣列共輛焦顯微鏡立體示意The array 31 is turned into a micro-bump in a second order (as shown in the twelfth and thirteenth figures, the inverted pyramid micro-hole array). V. Remanufactured Step 15: The micro-molecule can be mass-produced to produce a finished product having a complex pyramidal microstructure. It is also practical to use the thick film coating 40 (shown in the second figure) to apply the photoresist layer 4 on the substrate 21, and to provide the tube technology 50 from the substrate 21 f side. The vacuum adsorption is fixed (as shown in the second and third figures: , 乂L·! 1294403) The column 50 drives the substrate 21 to rotate, so that the photoresist layer 22 is uniformly coated on the substrate 21, and the tube is controlled. The slower the rotation speed of the column 5〇, the thicker the photoresist layer 22, the faster the control column 50 rotates, and the thinner the photoresist layer 22 (as shown in Fig. 16). The substrate 21 is selected from wafers (Wafer). One of plexiglass (P〇ly methyl mathacrylate 'PMMA), polycarbonate (p〇iycarb〇nate, PC for short), and glass slide. The photoresist layer 22 is preferably made of natural rubber. Physical properties, for example, polyisoprene (JSR (THB-12N)), which is advantageous for lens formation and good light transmittance. Referring to the fourth figure, the substrate 21 coated with the photoresist layer 22 is placed in an oven 6 〇, control the thief to roast for thirty-five degrees to three minutes (actually according to the time required for the thickness of the different photoresist layer 22 to change), the surface of the photoresist layer 22 can be slightly Dry and hard to adhere to the photomask 23 overlying it; the photomask 23 is preferably made of polyethylene terephthalate (PET), which is required for the manufacture of films and fibers. In the polyester resin, the light transmission hole is substantially quadrangular or polygonal. In the lithography forming step 12, the aligner 25 passes through the light refracting portion 24 and the light transmission hole 231 of the reticle 23 The photoresist layer 22 on the substrate 21 is exposed, because the light refracting portion 24 is a concave lens, which is refracted by light, and is yellow-lighted after exposure to - eight minutes (the thicker the layer 22, the longer the exposure time, the more _exposure time 纽, and the fine-scale microstructure array 221, of course, the shape and size of the light-transmissive aperture 231 can also change the shape of each 1294403 pyramidal microstructure 22A. Finally #substrate 21 and pyramidal microstructure The array 221 is co-located in an oven 6 烘烤 to roast at a temperature of -20 degrees Celsius for about five minutes to make the trici cone microstructure _ 2 two hardening molding (as shown in the eighteenth and nineteenth views of the pyramidal microstructure array 221 Schematic diagram of the different states under a common focal microscope). In the molding step 13 , a layer of gold is plated on the surface of the pyramidal microstructure array 221 by using an electron beam evaporation machine (Electron Gim Evaporation) as a conductive layer 26 . Nickel electroforming technology and in order to achieve high hardness, usually add other alloys to improve the hardness of the micro-module 30 of the electric scale. Therefore, the metal of this component is slightly sturdy, and the so-called nickel-gu plating is used; By this, it is possible to use the spectroscopy 3G shot (4) to measure the complex pyramidal microstructure 22A. The pyramidal microstructure array 221 of the present invention can utilize the optical simulation software (T job (four) for ray tracing, using three light-emitting two-element Emitting Diodes 'LEDs) as the light source of the light guide plate, and simulate the light with the side light type light guide plate. The ratio, the conical cone microstructure, the microlens microstructure array, and the cylindrical microstructure array are compared. The results are as shown in Fig. 17. The use of the quadrilateral polygonal scale microstructure of the present invention is used as a light guide plate dot Japanese. The panel luminous flux and optical scales are superior to _column microstructure arrays, microlens microstructure arrays, and cylindrical microstructure arrays. 1294403 The present invention can be widely used in: [a] Mass production of a light guide plate for the display industry. [b] Can be used for optical switch optics. [c] Can be used in precision mechanical component process technology. [d] Can be used for packaged dies for light-emitting diodes. The advantages and effects of the present invention are as follows: Π, Π] 衣衣& pyramidal microstructures of different sizes are fine. The proximity exposure method of the present invention can (4) produce a quasi-descriptive micro-convex or micro-concave pyramid array, which can be easily fabricated regardless of the quadrilateral or polygonal pyramid microstructure. [2] The process is stable. With the proximity exposure process of the present invention, the taper and size of the pyramid microstructure array can be stably controlled. [3] Production equipment costs are low. The invention can manufacture a dimensionally accurate array of reconstructed structures without complicated and expensive programmable control devices or production equipment: and with the electroformed micro-mold, it can also be produced in large quantities to reduce manufacturing costs. [4] Excellent light guiding properties. The pyramidal microstructure array of the present invention is applied to the light guide plate dot. The panel uniformity, viewing angle, luminance and light use efficiency are superior to those of the conventional cylindrical microstructural array and microlens array. The present invention has been described in detail by the preferred embodiments of the present invention. From the above detailed description, it will be apparent to those skilled in the art that the present invention can achieve the foregoing objects and is in accordance with the provisions of the Patent Law. 12 1294403 [Annex 1] Brother A _ is the picture of the invention B picture of the invention (SE1) figure of the quadrilateral pyramid microstructure array optical _ mirror (10)) quadrilateral cone microstructure _ the slider ride microscope [simple figure BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a flow chart of a manufacturing method of the present invention. FIG. 2 is a schematic view of a photoresist layer of the present invention. FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6 is a schematic view showing a plan view of a photomask of the present invention. FIG. 7 is a schematic view showing a plan view of a photomask of the present invention. The eighth diagram of the mask and the photoresist layer is a perspective view of the light refraction portion of the present invention. The ninth diagram is a schematic diagram of the exposure process of the photoresist layer of the present invention. The tenth diagram is a schematic diagram of the pyramidal microstructure array of the present invention. The twelfth figure of the pyramidal microstructure array of the present invention is a schematic diagram of the electric scale micro-mold of the present invention. The thirteenth figure of the present invention is shown in the fourteenth aspect of the present invention. The top view of the pyramidal microstructure is shown. 13 1294403 = The relationship between the rotational speed and the film thickness of the present invention is shown in the figure. Figure 1. Comparison of the simulation data of the present invention. (V) Schematic diagram of the peak of the microstructure of the W-structure of the W #图本本(4) The pyramidal micro-array array co-focus microscope stereo

【主要元件符號說明】 11預備步驟 13導電層成型步驟 15翻製成品步驟 22光阻層 22A角錐微結構 231透光孔 25曝光源 26導電層 31微模穴陣列 50管柱 12微影成型步驟 14微模仁製作步驟 21基板 221角錐微結構陣列 23光罩 24光線折射部 251紫外線光 30微模仁 40厚膜塗佈機 60烤箱 14[Main component symbol description] 11 preliminary step 13 conductive layer molding step 15 reworked product step 22 photoresist layer 22A pyramidal microstructure 231 light transmission hole 25 exposure source 26 conductive layer 31 micro-mold array 50 column 12 lithography molding step 14 micro-mold production step 21 substrate 221 pyramidal microstructure array 23 photomask 24 light refraction part 251 ultraviolet light 30 micro-mold 40 thick film coating machine 60 oven 14

Claims (1)

%. 6. u修正 、申請專利範固: 丨 . 1’ 一種角錐微結構陣列製法,其包括下列步驟: 預備步驟:預先準備一基板,以旋轉塗佈方式於該基 板上塗佈一預定厚度之光阻層;待該光阻層之黏稠表 面略乾硬後,於該光阻層上設一光罩;該光罩穿設複 數個透光孔,再於該光罩上設一光線折射部; 二·微影成型步驟:設一曝光源向該光罩的方向照射一紫 外線光’該紫外線光穿過該光線折射部折射後,再透 過該光罩之透光孔對該光阻層照射,使該光阻層曝光 ;在光阻層曝光後施予顯影及烘烤,微影成型角錐微 結構陣列,該角錐微結構陣列係由複數個角錐微結構 組成。 2·如申請專利範圍第1項所述之角錐微結構陣列製法,其中: 絲板係選自晶圓、有機玻璃、聚碳酸酉旨板、載玻片其 中之一; 該光阻層係選用聚異戊二烯; 該光罩係選用聚乙烯對苯二甲酸鹽;且該透光孔係選自 四角形、多角形其中之一,· 該曝光機係為紫外線曝光機; 該光線折射部係為凹透鏡。 3 ·如申請專利細第1項所述之角錐微結構陣列製法,其中: 於該預備步驟中’係設-厚膜塗佈機於該基板上塗佈該 1294403 7啐Μ"日修援χ 光阻層並5 又-官柱由該基板下方抽真空吸附固定,且帶 動該基板轉動;再將塗佈光阻層之基板置入 約概斜五度輯三至八分鐘,可使級層表略乾硬。 4·如申請專利範圍第1項所述之角錐微結構陣列製法,直中. 於該微影成型步驟中:係以黃光顯影一至八分鐘而成型 角錐微結構_ ;再將基板及角錐微結構陣朗時置入烤 箱以攝氏-百二十歧烤朗騎鐘,仙 硬化成型。 得平” 5·如申請專利範圍第工項所述之角錐微結構陣列製法,其中, 於该微影成型步驟後又可包括·· 導電層成型步驟.於該基板上成獅肖錐微結構陣列 後’於該基板與每—鱗微結構上鑛-導電層; 四·微模仁製作步驟··於該導電層上輯—微模仁,該微 拉仁%|該練微結構陣列形成微模穴陣列。 6 .如申請專利範圍第5項所述之角錐微結構陣列製法,其中: _ 導縣雜㈣,錢―冑+絲賴於該角錐微 …構陣列表面及該基板上鑛上該導電層; 於鎌账製作步財,係__難造賴模仁。 如申請專利範圍第6項所述之角錐微結構陣列製法,立中: 該導電層係為金; / 該微模仁之微模穴陣列可再翻模成微凸柱陣列。 16 Ί294403 —- 一——— %年A //曰修i參)正替換頁 8 ·如申請專利範圍第薇霖稼陣^製法,其中, 該微模仁製作步驟後又可再包括: 五·翻製成品步驟:以該微模仁可以量產射出成形具有 複數角錐微結構之成品。%. 6. u correction, patent application: '. 1' A pyramidal microstructure array method, comprising the following steps: preliminary step: preparing a substrate in advance, and coating a predetermined thickness on the substrate by spin coating a photoresist layer; after the viscous surface of the photoresist layer is slightly dry, a photomask is disposed on the photoresist layer; the photomask is provided with a plurality of light transmissive holes, and a light refraction is disposed on the photomask a second lithography forming step: an exposure source is irradiated with an ultraviolet light in the direction of the reticle. The ultraviolet ray is refracted through the refracting portion of the ray, and then transmitted through the transparent hole of the reticle to the photoresist layer. Irradiation, the photoresist layer is exposed; after exposure and exposure of the photoresist layer, the pyramidal microstructural array is formed by micro-shaping, and the pyramid microstructure is composed of a plurality of pyramidal microstructures. 2. The method of manufacturing a pyramidal microstructure array according to claim 1, wherein: the silk plate is selected from the group consisting of a wafer, an plexiglass, a polycarbonate plate, and a glass slide; Polyisoprene; the reticle is selected from polyethylene terephthalate; and the light transmission hole is selected from one of a quadrangle and a polygon, and the exposure machine is an ultraviolet exposure machine; It is a concave lens. 3. The pyramidal microstructure array method of claim 1, wherein: in the preliminary step, the 'coating-thick film coater coats the 1294403 7" on the substrate. The photoresist layer 5 and the official column are vacuum-adsorbed and fixed by the underside of the substrate, and the substrate is rotated; and the substrate coated with the photoresist layer is placed in a substantially five-octave sequence for three to eight minutes. The table is slightly hard. 4. The method for manufacturing the pyramidal microstructure array according to claim 1 of the patent scope is straight. In the lithography forming step, the pyramidal microstructure is formed by developing yellow light for one to eight minutes, and then the substrate and the pyramid are micro-shaped. When the structure is framed, it is placed in the oven to Celsius - one hundred and twenty degrees. The method of manufacturing the pyramidal microstructure array according to the application of the patent scope, wherein the lithography forming step may further comprise: a conductive layer forming step. forming a lion-shaped cone microstructure on the substrate After the array, the mineral-conducting layer is formed on the substrate and each of the scales; the preparation process of the micro-mold is performed on the conductive layer-micro-module, the micro-structure is formed. Microcavity array 6. The pyramidal microstructure array method described in claim 5, wherein: _ xianxian miscellaneous (four), Qian 胄 丝 丝 丝 该 该 该 该 构 构 构 构 构 构 构 构 构 构 构The conductive layer is formed on the credit; the __ difficult to make the mold. For example, the pyramidal microstructure array method described in claim 6 of the patent scope, the middle: the conductive layer is gold; / the micro-model The micro-cavity array can be flipped again into a micro-bump array. 16 Ί294403 —- 一———%年A //曰修i 参) is replacing page 8 ·If the patent application scope is the Wei Weilin Array method, After the micro-molding process, the steps can be further included: 5. Turning the finished product steps: The micro-volume production mold core having a plurality of injection molding finished the pyramidal microstructures. 1717
TW95116159A 2006-05-05 2006-05-05 Truncated pyramid array fabrication method TWI294403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95116159A TWI294403B (en) 2006-05-05 2006-05-05 Truncated pyramid array fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95116159A TWI294403B (en) 2006-05-05 2006-05-05 Truncated pyramid array fabrication method

Publications (2)

Publication Number Publication Date
TW200742728A TW200742728A (en) 2007-11-16
TWI294403B true TWI294403B (en) 2008-03-11

Family

ID=45068142

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95116159A TWI294403B (en) 2006-05-05 2006-05-05 Truncated pyramid array fabrication method

Country Status (1)

Country Link
TW (1) TWI294403B (en)

Also Published As

Publication number Publication date
TW200742728A (en) 2007-11-16

Similar Documents

Publication Publication Date Title
Ottevaere et al. Comparing glass and plastic refractive microlenses fabricated with different technologies
JP5539894B2 (en) Method for manufacturing article having recess
Che-Ping et al. A new microlens array fabrication method using UV proximity printing
Wang et al. A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number
TWI289683B (en) Method for fabricating microlens arrays
JP2020076953A (en) Light diffusion plate, image display device, and lighting device
Luo et al. Rapid fabrication of curved microlens array using the 3D printing mold
JP6801349B2 (en) Manufacturing method of pattern structure and manufacturing method of imprint mold
Chen et al. Design and fabrication compound diffuser film with LIGA-like process
TWI294403B (en) Truncated pyramid array fabrication method
Pan et al. Fabrication of gapless dual-curvature microlens as a diffuser for a LED package
TWI280943B (en) Method of micro-structural wedged array
MX2010012582A (en) Fabrication of microscale tooling.
TWI262893B (en) Manufacturing method and product of micro-cones array
TWI269885B (en) Manufacturing method of micro lens mold and micro concave lens
JP7324257B2 (en) Configuration of optical layers in imprint lithography process
Liu et al. Design and fabrication of double-sided optical film for OLED lighting
Yang et al. Fabrication of microlens array with graduated sags using UV proximity printing method
TWI287504B (en) Manufacturing method of a 3-D micro lens array with predetermined surface curvature controlled by centrifugal force surface
JP2023044051A (en) Diffusion plate, display device, projector, and illumination device
JP2020187332A (en) Method for manufacturing minute optical structure
CN111399092B (en) Preparation method of micro-lens array structure and protective film
TW200819789A (en) Molding technology of optics component with micro-lens array
Kim et al. Fabrication of Film-Type Light Guide Plates by Using UV Nano-Imprint Lithography to Enhance Optical Properties
TWI843727B (en) Optical unit, light irradiation device, image display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees