TWI294402B - A method for fabricating a micro-optical element and an apparatus thereof - Google Patents
A method for fabricating a micro-optical element and an apparatus thereof Download PDFInfo
- Publication number
- TWI294402B TWI294402B TW95109932A TW95109932A TWI294402B TW I294402 B TWI294402 B TW I294402B TW 95109932 A TW95109932 A TW 95109932A TW 95109932 A TW95109932 A TW 95109932A TW I294402 B TWI294402 B TW I294402B
- Authority
- TW
- Taiwan
- Prior art keywords
- micro
- optical element
- solution
- optical
- substrate
- Prior art date
Links
Landscapes
- Micromachines (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
1294402 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種微光學元件製作方法及其製作裝置,係指 一種利用微液滴以佈放製作微光學元件及微光學陣列元件的方法 及其製作裝置。 【先前技術】 現今喷墨核心技術(inkjet-based technology)具有可控制之微 # 液滴產生能力,且微液滴(micro droplet)具有即需即噴及固化佈著 的基礎功能,而微液滴體積大小(drop volume)介於5皮升(pico-iiter pi)至200皮升之間,其相對應之微液滴直徑大小則介於1〇微米 (micro-meter,μπι)至50微米之間,近年來,微米級的流體產生技 術已經開始研究運用於生醫領域的生物晶片,半導體領域的有機 薄膜電晶體(Organic thin film transistor),光電領域的液晶顯示器彩 色濾光片(LCD color filter,LCD CF)和高分子有機發光二極體 • (Polymer Light-emitting Diode,PLED)等重要領域,在此些微元件 主要作用區域之特徵尺寸(characteristicdimension)方面,可以歸納 出其單一線徑寬度多介於10微米至100微米之間,而線徑厚度則 、 不大於1微米左右。 ' — 上述特徵尺寸之單一寬度是與現今喷墨核心技術之微液滴直 徑大小有密切關係,特別是微液滴直徑不可以大於線徑寬度之基 本原則,同日守,為了降低流體黏滯係數至可喷出條件内(黏度係為 5〜40cps),則微液滴的組成中多數為常溫下可蒸(揮)發溶劑,故線 1294402 位之厚度大多小於i微米,然而,微液滴在蒸發固化過程中,尤 :微尺寸裡❾目像朗(mieiOpatterning)時,I遍具有薄膜化的 特徵見象這種起因於微流體本性的問題,經常是喷墨應用製程 彳纽體n曲率物件的主要障礙,如微透鏡陣列(miero_lensarray)便 屬於此類立體高曲率物件。 _ 進—步考慮㈣在賴雜平衡後,此時讀體必須透過冷 卻之相艾化或療(揮)發進一步轉變成固體,最後形成所欲之微圖像 Φ物冑這痛由液體轉化為固體之相變過程,其時間可能必須經歷 、、勺數至數,倘I媒介物件的固體表面與液體為相親性 時(Hydrophilic,θ<90 degree),在正常的熱傳毛細流等擴散作用 下’將自然形成巾央平坦但邊緣較高之山谷般輪廓現象,其中, 平坦區域與較南邊緣區域之面積比例及高度比鑛視固體濃度等 材料組成錢定之,而此自賴散作用致使無法形成圓凸狀之微 、、、口構物件,k成械圖像的結果失真,亦無法達成一般微光學元件 φ 的圓凸曲度要求。 美國專利公告號第US5498444號專利案以及第US57〇7684號 專利案則揭示了利用喷墨頭來製作光學透鏡的方法,其係以噴印 -技術為核心而製作微光學元件,然僅止於如何製作出各種不同形 狀的光學元件,而未說明如何在一媒介基底上作出精確定位與系 統化的製作方法。 針對微透鏡陣列製造問題,工研院曾在中華民國專利公告號 第1224210號專利案中,揭露了一種所謂微流體之實施方法(以^阳 12944021294402 IX. Description of the Invention: The present invention relates to a method for fabricating a micro-optical element and a device for fabricating the same, and a method for fabricating a micro-optical element and a micro-optical array element by using micro-droplets Its production equipment. [Prior Art] Today's inkjet-based technology has controllable micro-droplet generation capability, and micro-droplets have the basic functions of immediate spraying and curing, while micro-liquid The drop volume is between 5 picoliters (pico-iiter pi) and 200 picolitres, and the corresponding microdroplet diameter is between 1 micron (micrometer) and 50 micrometers. In recent years, micron-scale fluid generation technology has begun to study bio-discs for biomedical applications, organic thin film transistors in the semiconductor field, and liquid crystal display color filters in the field of optoelectronics (LCD color). In the important fields such as filter, LCD CF) and Polymer Light-emitting Diode (PLED), the single dimension width can be summarized in terms of the characteristic dimension of the main active areas of these micro-components. It is between 10 microns and 100 microns, and the wire diameter is no more than 1 micron. ' The single width of the above feature size is closely related to the diameter of the microdroplet of the current inkjet core technology, especially the basic principle that the diameter of the microdroplet cannot be larger than the width of the wire diameter. In the same day, in order to reduce the viscosity coefficient of the fluid In the ejectable conditions (viscosity is 5~40cps), most of the composition of the microdroplets can be steamed at room temperature, so the thickness of the line 1294402 is mostly less than i micron, however, the microdroplets In the process of evaporation and solidification, especially when the micro-size is mieiOpatterning, the characteristics of the I-pass filming are similar to those caused by the microfluid nature, and are often the process of inkjet application process. The main obstacles of objects, such as microlens arrays (miero_lensarray), belong to such stereoscopic high curvature objects. _ Advance-step consideration (4) After the balance of the ambiguity, at this time, the reading body must be further transformed into a solid through the cooling phase of the Aihua or the treatment (Walk), and finally form the desired micro-image Φ. This pain is transformed by the liquid. For the phase transition process of solids, the time may have to be experienced, the number of spoons to the number, if the solid surface of the I medium object is in phase with the liquid (Hydrophilic, θ < 90 degree), in the normal heat transfer capillary flow and other diffusion Under the action, it will naturally form a valley-like contour with a flattened but high edge. The area ratio and height of the flat area and the souther edge area are determined by the composition of the solid concentration of the mineral, and this self-distribution As a result, it is impossible to form a circular and convex shape, and the result of the k-shaped mechanical image is distorted, and the circular curvature requirement of the general micro-optical element φ cannot be achieved. U.S. Patent Publication No. 5,498,844 and U.S. Patent No. 5,778, 768 disclose a method of making an optical lens using an ink jet head, which is a micro-optical component based on a jet-technology technique. How to fabricate optical components of various shapes without illustrating how to make precise positioning and systematic fabrication on a media substrate. In view of the manufacturing problem of microlens arrays, the Institute of Industrial and Commercial Research has published a method for the implementation of so-called microfluids in the Patent Case No. 1224210 of the Republic of China (in Chinese)
FluidicMethGd) ’其方法包括提供齡基底,接著,職薄膜於媒 介基底上並圖案化薄膜,以形成具微透鏡圖案之一無⑻__ 在媒介基底上,然後,進行微流體佈著步驟,將微流體佈著於無⑷ 薄膜區域,以形成為微透鏡物件。 、絲媒介物㈣m齡面與紐為相祕時(HydiOph〇bic, θ>90 degree),則可以避免上述現象產生,因而乾燥固化形成圓凸 狀之微結構物件,因此必須針對一般親水性基板來進行疏水性的 ♦表面處理,最後’初始時與固化時其徑長比例及高度比例將視固 體濃度等材料組成而決定之。 【發明内容】 本發明的目的係提出利用佈放微流體以製作微透鏡與微透鏡 陣列的方法及其製作裝置,以克服上述討論的根本問題,其係以 喷墨核心技術(inkjet-based technology)為基礎,然後利用疏水性材 料與佈放微液滴來達成蒸發成形的製程,而能完成所需的微光學 φ 元件之圖樣區域(patterning)。 根據上述目的,本發明所揭示之微光學元件製作方法,係為 以溶液佈放並形成具有特定直徑之微光學元件之方法,微光學元 • 件I作方法包含有下列步驟,提供表面已進行疏水性處理之基 板,並依據特定曲率半徑計算微流體之預定濃度以配製溶液,以 及依據特定直徑來計算溶液之佈放液量,且佈放一定佈放液量之 浴液於基板以形成微光學元件。 根據上述目的,本發明再揭示有微光學元件製作裝置,用以 1294402 將溶液佈放於基板以形成特定直徑之微光學元件,微光學元件製 作裝置包含有液滴佈放器與中央控制單元,其中,液滴佈放器用 以配製溶液及佈放溶液於基板,且中央控制單元係依據特定直徑 叶异該溶液之濃度及佈放液量,並控制液滴佈放器所配製有一定 濃度之溶液並佈放一定佈放液量之溶液於基板,以形成具有特定 直徑之微光學元件。 根據本發明所揭示之微光學元件製作方法及其製作裝置,可 春對於各種不同線徑寬度大小與個別間距的微光學圖樣,經過預先 计异與簡^製作後,皆可㈣翻設計值的元件規格,並且可以 運用微液滴佈著之圖像而來達成所欲之顯示器增亮層、導光片等 製作,另外,微液滴數量與蒸發成形過程方法可更進一步地來控 制其徑長與高度,以獲得可變大小(_ble size)與可變間距細獅 pitch)之立體微光學陣列元件。 為讓本發日狀上述和其他目的、特徵與優點更麵易懂,下 • 文特舉實施例,並配合所附圖式,作詳細說明。 【實施方式】 根據本發騎揭^:之微光學元件製作方法及其製作袭置,此 -微光學元㈣指微賴而言,_並不限於微透鏡,諸如可供微 、流财塗佩之微絲元件亦可應用本發明賴示之技術,本發 明將以微透鏡作為應用實施例。 明爹閱「第1A圖」所示,圖示中係為立體佈放微液滴之基 本結構側視示賴’此微賴佈放後之蒸發_是由初始期的完 1294402 全濕態(wet state,t=〇)演化至末期完全蒸發乾燥之固化態(dry他纪, t=final time),其中,包括有佈放初始之微液滴i〇a,初始微液滴 l〇a具有初始直徑Di(wet droplet diameter)與初始高度Hi(wet droplet height) ’而末期完全蒸發乾燥之固化微液滴i〇c具有固化 直徑 Ds(dry droplet diameter)與固化高度 Hs(dry droplet height),明 顯地,初始直徑A應大於固化直徑Ds,同理,初始高度珣亦應 大於固化直徑Ds,再定義固化直徑Ds與初始直徑〇1之比值為心, • 而固化高度Hs與初始高度珥之比值為Xh :FluidicMethGd) 'The method includes providing an aged substrate, and then working on the film on the medium substrate and patterning the film to form one of the microlens patterns without (8)__ on the medium substrate, and then performing a microfluidic laying step to microfluid It is placed in the (4) film area to form a microlens object. When the silk medium (4) m-age surface and the new phase are secret (HydiOph〇bic, θ > 90 degree), the above phenomenon can be avoided, and thus the dried and solidified to form a circular convex microstructured object, and therefore must be directed to a general hydrophilic substrate. For the hydrophobic surface treatment, the final ratio of the diameter to the length at the initial curing and the height ratio will be determined by the composition of the solid concentration. SUMMARY OF THE INVENTION The object of the present invention is to provide a method for fabricating a microlens and a microlens array by using a microfluid to fabricate a microlens array and a device for fabricating the same, which overcomes the fundamental problem discussed above, and is based on inkjet-based technology. Based on the basis of the hydrophobic material and the placement of the micro-droplets to achieve the evaporation forming process, the desired patterning of the micro-optical φ elements can be accomplished. According to the above object, a micro-optical element manufacturing method disclosed in the present invention is a method of disposing a solution and forming a micro-optical element having a specific diameter, and the method of micro-optical element I includes the following steps to provide a surface having been performed. a hydrophobically treated substrate, and calculating a predetermined concentration of the microfluid according to a specific radius of curvature to prepare a solution, and calculating a solution discharge amount according to a specific diameter, and discharging a bath of a certain amount of liquid on the substrate to form a micro Optical element. According to the above object, the present invention further discloses a micro-optical element manufacturing apparatus for disposing a solution on a substrate to form a micro-optical element of a specific diameter, and the micro-optical element manufacturing apparatus includes a droplet discharge device and a central control unit. Wherein, the droplet discharge device is used for preparing the solution and discharging the solution on the substrate, and the central control unit is different according to the concentration of the solution and the amount of the liquid discharged according to the specific diameter leaf, and controls the droplet discharge device to have a certain concentration. The solution is placed with a solution of a certain amount of liquid on the substrate to form a micro-optical element having a specific diameter. According to the method for fabricating a micro-optical element and the apparatus for fabricating the same according to the present invention, the micro-optical patterns of various wire diameters and individual pitches can be adjusted by pre-difference and simpleness. Component specifications, and can use the image of the micro-droplet to achieve the desired brightness-increasing layer, light guide, etc. In addition, the number of micro-droplets and the evaporation forming process can further control its diameter. Length and height to obtain a stereo micro-optical array element of variable size (_ble size) and variable pitch lion pitch. In order to make the above and other objects, features and advantages of the present invention more comprehensible, the embodiments are described in detail with reference to the accompanying drawings. [Embodiment] According to the method for fabricating micro-optical elements and the fabrication thereof, the micro-optical element (4) refers to a micro-relay, and is not limited to a microlens, such as micro-flowing The microfilament component of the present invention can also be applied to the technique of the present invention, and the present invention will use a microlens as an application embodiment. As shown in Figure 1A, the basic structure of the three-dimensional micro-droplet is shown in the figure. The evaporation after the micro-distribution is completed by the initial period of 1294402 Wet state, t=〇) evolved to the final state of complete evaporation and solidification (dry, t = final time), which includes the initial micro-droplet i〇a, the initial micro-droplet l〇a has The solid droplet diameter i〇c of the initial diameter Di (wet droplet diameter) and the initial height Hi (wet droplet height)' has a solid droplet diameter and a dry droplet height (Hs). Obviously, the initial diameter A should be greater than the curing diameter Ds. Similarly, the initial height 珣 should be greater than the curing diameter Ds, and the ratio of the curing diameter Ds to the initial diameter 〇1 is defined as the heart, and the curing height Hs and the initial height are The ratio is Xh:
Ds/DrXd<l ^ Hs/H!=Xh<l ⑴ 換言之,利用方程式(1)可以規範出單顆微液滴佈放時之基本 結構。 續參閱「第1A圖」所示,再進一步地闡明單顆微液滴佈放 • 在基板20上蒸發形成微透鏡的技術基礎,圖示中包含有液滴佈放 器68、具有複數個喷佈孔681之喷佈頭682、基板20以及佈放初 始之微液滴10a、蒸發中微液滴i〇b與固化微液滴1〇c等主要過程 步驟,其中,基板20的表面已進行疏水性處理,例如在基板2〇 表面形成有疏水層,於基板形成疏水層的方式係任選為物理氣相 沉積法(Physical Vapor Deposition,PVD)、化學氣相沉積法 (Chemical Vapor Deposition,CVD)與濕式塗佈法(wet coating)其中 之一 ’其厚度介於100奈米(nanometer, nm)至1厘米(millimeter, 1294402 mm)之間,且疏水層的材料有細氟乙聊咖池㈣ PTFE) > ^^6^(P〇lyvinylchl〇ride) pvc) ^ ^6##(p〇lyvinyl cohol, PVA鄭條光_,如此,佈放初始之微液滴收與其接 觸之角度大於90度’使得微液滴在蒸發固化過程中,可避免擴散 .作訂卿針央平坦但邊雜高之山谷般輪靡現象 ,初始微液 =池將隨著時間枝魏蒸發溶劑,而成為蒸發巾微液滴滿, 取後當溶劑蒸發%全,蒸發中微液滴娜便轉成固化微液滴i〇C。 • 針對微尺寸之標的物件而言,初始直徑Di值以及初始高度 战值’大多界定於幾十個微米至幾百個微米之間,其中,濕固之 直徑比例Xd及高度比例Xh則視固體濃度等材料組成而決定。 清翏閱「第1B圖」所示,圖示中係為立體佈放單顆微液滴之 基本結構另-示意圖,當固化微液滴收在普通空氣中被佈放於 基板20表面時,其中的液、固、氣界面線(interfaciallines)最終將 達成一個平衡角度狀態(in equilibrium w池Specific c〇ntact • angle) ’此物理關係式可以由Y〇ung_Laplace equations得知:Ds/DrXd<l ^ Hs/H!=Xh<l (1) In other words, the basic structure of a single microdroplet can be specified by using equation (1). Continued to refer to "Figure 1A" to further clarify the technical basis for the deposition of a single micro-droplet on the substrate 20 to form a microlens, the illustration comprising a droplet discharge device 68 having a plurality of sprays The spray head 682 of the cloth hole 681, the substrate 20, and the main process steps of laying the initial micro-droplet 10a, evaporating the micro-droplet i〇b, and solidifying the micro-droplet 1〇c, wherein the surface of the substrate 20 has been hydrophobic For example, a hydrophobic layer is formed on the surface of the substrate 2, and a hydrophobic layer is formed on the substrate, optionally by Physical Vapor Deposition (PVD) or Chemical Vapor Deposition (CVD). And one of the wet coatings, the thickness of which is between 100 nanometers (nm) and 1 centimeter (millimeter, 1294402 mm), and the material of the hydrophobic layer has a fine fluoride (4) PTFE) > ^^6^(P〇lyvinylchl〇ride) pvc) ^ ^6##(p〇lyvinyl cohol, PVA Zheng strip light _, so, the initial micro-droplet is placed at an angle greater than the contact angle 90 degrees' makes the micro-droplets avoid diffusion during the evaporation and solidification process. Flat but mixed with high valley like rim phenomenon, the initial micro-liquid = pool will evaporate the solvent over time, and become the droplets of the evaporating towel full, after the solvent is evaporated, the evaporation of the droplets Conversion to solidified microdroplets i〇C. • For micro-sized objects, the initial diameter Di and initial height warfare values are mostly defined between tens of microns and hundreds of microns, where wet-solid The diameter ratio Xd and the height ratio Xh are determined by the composition of the material such as the solid concentration. As shown in Figure 1B, the basic structure of the three-dimensional micro-droplet is shown in the figure. When the micro-droplets are placed on the surface of the substrate 20 in ordinary air, the liquid, solid, and air interface lines will eventually reach an equilibrium angle state (in equilibrium w pool Specific c〇ntact • angle) The physical relationship can be known by Y〇ung_Laplace equations:
YlvC〇s(0c)=ysv-yls (2) 以及 AP=pgt=yLS(l/R1+l/R2) ⑶ 其中’ Θ。值表示液固界面線之接觸角度(contact angle),而丫^、 11 1294402 ^、irLS值則分別表示液氣、固氣、液固界面之表面能(surface energy),△!>表示微液滴的内外壓力差,p值表示微液滴密度,g 值表示重力加速度,t值表示微液滴最大高度,及&、R2值分別 表示微液滴在固體表面二方向的曲率半徑,若假設微液滴在固體 表面二方向的曲率半徑完全相同(即Ri=R2=R),m值及r值可以 進一步地由方程式(4)與方程式(5)求得·· ν^π/όχ^+ΒΛ] (4) (5) “其中,R為微液滴的曲率半徑,r為微液滴的半徑,由於曲率 半徑R係與微透鏡距細,因此可以來精確控織液滴的表 面位置與其成形結果。 明參閱第2A圖」、「第2B圖」所示,圖示中係為初始微液 鲁滴1〇3被分別以相隔一預定間距佈放在基板20上,使得複數個固 化微液滴l〇c形成微透鏡陣列,各分隔之固化微液滴1〇c其水平 方向門距為Px垂直方向間距為Py,而實際戶斤需的排列樣式與距 離大小可依據微光學元件的設計需求而決定。 再者,作為媒介用的基板可為共聚合聚丙烯(c〇p〇lymerpp)、 承乙一酉予對苯二甲酸酯(p〇lyethyleneter印伽,ρΕτ)等材料,而 關於微流體之材料方面,以具有良好光學特性及機械強性的一般 光學塑膠材料為優^如聚乙婦醇斤咖㈣伽㈣顺厂聚氨 S曰(olyurethane,PU)、聚氣酯/啊pu/si〇2)、聚 12 1294402 氨醋/丙烯酸(Polyurethane-Acrylate,PUA )、聚二甲基石夕氧烧 (Polydimethysiloxane,PDMS)、聚甲基丙烯酸甲酯(P〇lymethyl Methacrylate,PMMA)、聚苯乙烯(p〇lyStyrene,PS)與聚碳酸醋 (Polycarbonate,PC)等材料,一般而言,這些光學塑膠作為微流體 材料,其成品耐衝擊性較玻璃高,亦較不易破損與安全性高,另 外成本亦較玻璃低且重量輕。 為了適用於常溫常壓(20°C,latm)之工作條件,可將微流體材 • 料配製成溶液型材料的方式來使用,亦即將微流體材料作為溶質 (solute)材料,可調配溶解於其適當之溶劑(solvent)材料裡,而合成 一液態溶液型材料,而溶劑材料係為蒸發性材料,溶劑材料包含 有純水(H2〇),甲醇(Methanol),乙醇(Ethanol)與乙二醇二醚 (2-Ethoxyethanol)等,假設溶質成分的含量為s,則溶劑成分的含 量為100%-s,在此情形下,微透鏡結構之最終體積將縮減為Vxs, 或者說減少了 100%-s,舉例而言,倘若某體積v之微液滴是由百 φ 分之六十的溶質為聚氨醋所組成,即s=60%,以及百分之四十的 溶劑,如純水,由聚氨酯與純水一同組成的溶液則其所組成之微 透鏡最終固化成形體積,將縮減為Vx60%,或者說體積v減少了 、 40% 〇 另外’應用斯乃爾定律(Snell’s Law)的設計原理,光束折射現 象可定量地由方程式⑹來明確規範。 ⑹ η 1X sin(a i )=n2x sin(a2) 1294402 其中111為入射光束於入射端的光線折射率(代6^沿^^也^, n2為出射端的光線折射率,%為入射角度,%為出射角度。 …睛參閱「第3Α圖」所示,圖示中有點光源5〇自具有光線折 射率%之基板20 一面等向性地如伽㈣持續發射光束,其中非 垂直方向的光束則依據其各不同之人射角度,遵循斯乃爾雜而 產生各異之光線方向偏折,進人-具有折射率Π4之空間裡,當入 籲射光束34a與36a的入射角度至鰣,已出現出射角度為9〇度之 出射光束34b與36b,因此,若入射光束34a與36a的入射角度大 於δ將無法穿出界面,形成内部全反射(tQtal intemal refl_n,顶) 之反射光束34c與36c,將不斷地在基板2〇的二界面反射前進, 所以點光源50可通過之界面寬度w〇將滿足方程式⑹而有方程式 ⑺: ' sin(5)=n4/n3 ⑺ 又依據畢達哥拉斯定理(Pythagorean theorem),界面寬度w〇 與夾角δ因而可寫成方程式(8): ⑻ tan(6)=0.5W〇/H〇 其中,H〇為基板厚度,因此能求得w〇,而原來之點光源5〇 經過基板20後’出光角度已被擴散開來,成為近似面h_F2之非 1294402 均勻發散光在空間裡前進,其整體出光率(〇111{)11^也〇)為5/90。。 明苓閱「第3B圖」所示,圖示中係為在基板2〇增加一固化 微液滴10c之微結構設計,需注意到,固有微液滴寬度^與折 射率ns之固化微液滴1〇c的結構已局部地提高原處之曲率值 (curvature) ’進而改變了原有的入射角度與出射角度,在固化微液 滴10c、基板20與佈放空間41三者之相接點τ點上,該處原有 的法線N〇將因固化微液滴10c的佈放而導致位置有所改變,因而 法線N〇旋轉了 90-β的角度而變成Nl,進而將原有入射角度①變成 Φ,倘若入射角度ω大於原有基板2〇的光束折射臨界角度,則入 射光束44a、46a將無法穿出界面,並循全反射方向前進而有反射 光束44c、46c,然而,由於固化微液滴i〇c扭曲了原平面曲率, 使知原有入射角度①縮減為入射角度φ,進一步使得入射光束 44a、46a以折射角度ε的方向,而成出射光束徘、她以進入佈 放空間41裡繼續前進,原來點光源5〇經過基板2〇的寬度〜〇被 • 擴散開之非均勻發散光,現可經由具有寬度^之固化微液滴i〇c 的佈放而聚集進入佈放空間41裡前進,所以其整體出光提高率為 Wm/WG ’更進一步地說,當固化微液滴10c的結構覆蓋越寬大, , 即固化微液滴的寬度Wm愈寬時則出光提高率越高,直到入 射角度Φ達到臨界值為上限而止,以玻璃基板(光線折射率η=1·5) 的實驗結果而言,應用一圓凸球結構(η=1·5、Wm/w〇=14)來針對 不同光譜(波長為400〜700奈米)可使得出光提高率高達4〇〜7〇%。 縯參閱「弟3B圖」所示,其中固化微液滴i〇c並不受限於圓 15 1294402 球狀及個數,其可以為長條形、方形、圓形、橢圓形等幾 而個數亦可以為複數個,使得各固化微液滴成為相隔一可形狀, 列,依據光源配置與基板20來達成最佳化設計,以^加間距之陣 覆蓋率為目標,則可以完成最高的整體出光提高率。政出光 睛參閱「第4圖」所示,圖示中係描繪了複數條光束在且 固化微液滴陣列A、B、C之基板20中傳導的結構,依據斯乃爾 定律,當入射角度大於折射的臨界角度時,則入射 山 其界面,因此會有入射光束53ai 一侧進入基板2〇,未^過=化 微液滴陣列A而形成内部全反射之反射光束53b、,將向另側 不斷地在界面Sl、S2之間反射前進,倘若上述前進中的入射光束 53a,欲在某些位置被允許穿越界面而出,則可利用已立體成型之 微液滴來達到此目的。 續參閱「第4圖」所示,另有入射光束54a、54b、54c分別 經由固化微液滴陣列A、B、C,而受其導引折射向下以分別成出 φ 射光束56a、56b、56c而出,再藉由鄰近固化微液滴陣列a、B、 C處設一反射板51,反射板51係將某一方向入射光束轉導至一預 定方向,因此利用反射板51可分別將出射光束56a、56b、56c穿 ^ 透基板20 ’成為導出光束58a、58b、58c,並繼續朝著導出方向 前進,即垂直方向前進,藉由固化微液滴陣列來破壞全反射邊界, 可以有效地將原來沿著水平方向Η前進之光束轉換成垂直方向V 來前進,由於其應用於侧邊的入射光源經過一媒介基材後而導轉 為垂直光源,故可做為導光板的用途。 16 1294402 月』1第5A圖」、厂第5B圖」、「第5C圖」所示,直中厂第 ^圖」係為微光學元件製作裝置6Q的架構,在底部载臺幻上係 。又有運動平台64,用以承載基板,運動平台64並具有驅動模 、且1驅動拉組641受中央控制單元7〇所控制,以使得運動平 • 0可相對底部載Φ 62做水平勒方向χ触直物方向γ等 方向^移動,同時,於掛架臺66上掛载有高度測量器^與液滴 佈放二、68液滴佈放器68係用以配製溶液及佈放溶液於基板, 鲁液滴佈放為沾並包含有具複數個嘴佈孔之喷佈頭682以饰放 命液用以配製洛液濃度之供應模組刪,及用以控制溶液佈放 液里的调郎模組685,以使佈放液量能被佈放微光學元件之圖像 :土板而贺佈頭682係任選為熱氣泡式與壓電式 ㈣心咖,PZT)其中之—,高度測量器67係鄰近液滴佈放器 68之處,尚度測量器67係受中央控制單元7〇所控制,能藉此進 行高度量測以利觀察微光學元件圖像;鄰近液滴佈放器68另外設 • 置有取影器69,取影器69係受中央控制單元70所控制,用以分 析檢測液滴佈放器68之佈放狀況與微光學元件之圖像結果,且可 拍攝佈放之圖像結果,另外,中央控制單元7〇係依據特定直徑來 . 汁异溶液之濃度及佈放液量,並控制液滴佈放器68來配製溶液濃 度並佈放一定佈放液量之溶液於基板,以形成特定直徑之微光學 元件’所以,中央控制單元70係聯繫控制驅動模組64ΐ、高度測 量器67、供應模組684、調節模組685與取影器69之相互作動。 當然,必須特別聲明,上述設備之實施例並不以此架構為限, 17 1294402 例如’其液滴佈放器68與運動方向亦可進一步地擴展至複數個, f為越多的「液滴佈放器」及「運動方向」是越能加速圖像佈放 兀成’與確保佈放位置的精確無誤。 μ參閱「第6A圖」、「第6B圖」所示,圖示中係為本發明之 利用微液滴佈放方式製作微光學元件之實施步驟圖,首先提供表 面已進行疏水性處理之基板(步驟11〇),基板必須清潔無污财 性處理係為形成疏水層於基板’其任縣物理肋沉積法、化學 •氣相沉積法與濕式塗佈法其中之一,疏水層的厚度介於卿奈米 至1厘米之間’而且疏水層的材料例如有聚四氟乙烯、聚氯乙稀、 聚乙婦醇與石夕膠光阻等’然後依據特定曲率半徑,來計算微流體 之預疋濃度以配製溶液(步驟120),而爲了適用常溫常壓下的工作 條件’係將微流體作為溶質材料’可調配溶解於其適當之溶劑材 料裡,而合成-液態溶液型材料,溶劑材料係為蒸發性材料,溶 劑材料包含有純水(H2〇),甲醇(Methanol),乙醇(Ethan〇1)與乙二 • 醇二醚(2_Eth〇Xyethano1)等,由於微光學元件體積取決於微流體所 佔溶液的體積比例,因此來決定微光學元件成形體積(步驟122), 並且選擇微流體與溶劑材料之組成比例(步驟123),另外,微光學 - 元件之特定直徑係隨佈放液量成正比關係,正比關係進一步地係 、依據特定直徑等於常數乘以佈放液量之三分之一級數所決定,因 此可以計算溶液之佈放液量(步驟130),於是開始進行溶液之佈 放’係將具佈放液量之溶液佈放於基板(步驟14〇),且持續堆疊佈 放以增加最終微光學元件的厚度,待溶液中的溶劑材料蒸發完全 18 1294402 之後,會造成微流體固化(步驟15〇),微流體因固化而形成微光學 疋件(步驟16G),同理,若要形成微光學陣列元件,則在開始進行 溶液之佈放時,係以相隔預定間距來佈放佈放液量於基板,使得 微光學元件於基板呈陣列分佈而形成微光學陣列元件。 請參閱「第7A圖」、「第7B圖」所示,圖示中係為複數個微 液滴堆豐在媒介基材以形成微透鏡之關係圖,根據理論計算與實 驗結果顯示,其中聚氨酯溶液(15wt%)固化成形之微透鏡直徑寬度 (D)是隨堆疊的液滴數(N)之三分之一級數成正比關係(即 〜Ν )’其係為曲線72,此說明了利用堆疊的液量可以控制並決 定微透鏡的徑寬,另外,依據理論計算與實驗結果顯示(如「第7Β 圖」所示)’原始濕態(wet)與固化成形(dried)之微透鏡直徑寬度⑼ 隨堆疊的液滴數(N)之三分之一級數亦分別成正比曲線關係74、 76 ’其中在曲線74,當液滴數為1時,微透鏡直徑寬度為91微 米,在曲線76的液滴數為1時,微透鏡直徑寬度為4〇微米,此 說明了利用蒸發固化過程,可欲使堆疊的液量控制決定固化前後 之微透鏡徑寬,如此,當欲製作任一預定之微光學元件圖像,可 以計算出單一微透鏡結構所需佈放堆疊的液量,便於達到變化大 小的需求。 明參閱「弟8圖」所示,聚氨醋溶液(i5wt%)在三十分鐘的蒸 發固化過程顯示,固化前後之微透鏡直徑寬度收縮率Xd為9〇〇/〇 (2004微米/2196微米),高度收縮率&為50% (6%微米/1432微 米)’過程皆如「弟1A圖」所示,一般而言,整個體積收縮率的 19 1294402 大小略等於溶質固含量之體積百分比。 請參閱「第9A圖」、「第9B圖」所示,圖示中係旋轉塗佈有 疏水性材料聚四氟乙烯在一清潔無污之玻璃基板上,然 酿溶液來製作微透鏡陣列的結構,實驗結果顯示了在玻璃美板: 製作出心3〇陣列透鏡,其直徑大小為293微米±8微米、扣接 觸角為65度,顯示其圓形外觀均為齊性良好。 ^雖然本發明以前述之實施例揭示如上,然其並_以限定本 發明’任何熟悉蝴技藝者,在不脫離本發明之精神和範圍内, 所為之均等更動細飾,冑為本發明之專娜護範圍内。 【圖式簡單說明】 第1A圖係為立體佈放單顆微液滴之基本結構示意圖。 第1B圖係為立體佈放單顆微液滴之基本結構另一示意圖。 第2A圖係為微透鏡陣列外觀俯視圖。 第2B圖係為微透鏡陣列外觀侧視圖。 第3A圖係為點光源之光束於基板裡傳導行進示意圖。 第3B圖係為點光源之光束於佈放有微液滴之基板裡傳導行 進示意圖。 第4圖係為入射光束於佈放有微液滴之基板裡傳導行進示意 圖0 第5A圖係為微光學元件製作裝置外觀示意圖。 第5B圖係為微光學元件製作裝置佈放微液滴動作示音圖。 第5C圖係為微光學元件製作裝置中央控制單元運作㈣圖。 20 1294402 第6A圖係為本發明之利用微液滴佈放以製作微光學元件實 施步驟圖。 、 第6B圖係為本發明之計算微流體預定濃度以配製溶液實施 步驟圖。 第7A圖係為佈放聚氨酯溶液以製作微透鏡之實驗結果與理 論計算比較關係圖。 第7B圖係為佈放聚氨酯溶液以製作微透鏡之原始濕態與固 • 化成形之實驗結果與理論計算比較關係圖。 第8圖係為以聚氨酯溶液製作微透鏡之實驗過程示意圖。 第9A圖係為以聚氨酯溶液製作微透鏡陣列之實驗結果俯視 圖。 第9B圖係為以聚氨酯溶液製作微透鏡陣列之實驗結果侧視 圖。 【主要元件符號說明】 a、b、c...............................................固化微液滴陣列YlvC〇s(0c)=ysv-yls (2) and AP=pgt=yLS(l/R1+l/R2) (3) where 'Θ. The value indicates the contact angle of the liquid-solid interface line, while the 丫^, 11 1294402 ^, and irLS values indicate the surface energy of the liquid-gas, solid-gas, and liquid-solid interfaces, respectively, △! The internal and external pressure difference of the droplet, the p value indicates the microdroplet density, the g value indicates the gravitational acceleration, the t value indicates the maximum height of the microdroplet, and the & R2 values indicate the radius of curvature of the microdroplet in the two directions of the solid surface, respectively. If it is assumed that the radius of curvature of the micro-droplets in the two directions of the solid surface is exactly the same (ie, Ri=R2=R), the m-value and the r-value can be further obtained from the equation (4) and the equation (5)·· ν^π/ Όχ^+ΒΛ] (4) (5) “where R is the radius of curvature of the microdroplet, r is the radius of the microdroplet, and because the radius of curvature R is thinner than the microlens, it is possible to precisely control the droplets. The position of the surface and the result of the forming thereof are as shown in Fig. 2A and Fig. 2B. In the figure, the initial microfluids 1〇3 are placed on the substrate 20 at a predetermined interval, respectively. A plurality of solidified microdroplets l〇c form a microlens array, and each of the separated solid droplets 1〇c has a horizontal direction gate Px is the pitch Py in the vertical direction, but the actual users kg for an arrangement pattern may be determined with a micro-optical element according to the design requirements of the size of the distance. Further, the substrate for the medium may be a copolymerized polypropylene (c〇p〇lymerpp), a polyethylene terephthalate (p〇lyethyleneter intaglio, ρΕτ) or the like, and a material related to the microfluid. In terms of general optical plastic materials with good optical properties and mechanical strength, such as polyethyl alcohol (500) gamma (four) cis plant polyamine S (olyurethane, PU), polyester / pu / xi 2), Poly 12 1294402 Polyurethane-Acrylate (PUA), Polydimethylmethysiloxane (PDMS), Polymethyl Methacrylate (PMMA), Polystyrene (p〇lyStyrene, PS) and polycarbonate (PC) and other materials, in general, these optical plastics as microfluidic materials, the finished product has higher impact resistance than glass, and is less prone to breakage and safety. The cost is also lower than glass and light weight. In order to be suitable for working conditions at normal temperature and pressure (20 ° C, lamat), the microfluid material can be used as a solution type material, that is, the microfluid material is used as a solute material, and can be dissolved and dissolved. In a suitable solvent material, a liquid solution type material is synthesized, and the solvent material is an evaporative material, and the solvent material comprises pure water (H2 〇), methanol (Methanol), ethanol (Ethanol) and B. 2-Ethoxyethanol, etc., assuming that the content of the solute component is s, the content of the solvent component is 100%-s. In this case, the final volume of the microlens structure is reduced to Vxs, or is reduced. 100%-s, for example, if a volume v of microdroplets is composed of a hexahydrate solute of polyurethane, ie s=60%, and 40% solvent, such as Pure water, a solution composed of polyurethane and pure water, the microlens composed of the final solidified forming volume will be reduced to Vx60%, or the volume v is reduced by 40%. 〇In addition, the application of Snell's Law Design principle, beam refraction can be determined To explicitly regulate the equation ⑹. (6) η 1X sin(ai )=n2x sin(a2) 1294402 where 111 is the refractive index of the incident beam at the incident end (generation 6^ along ^^^^, n2 is the refractive index of the exit end, % is the incident angle, % is The angle of the exit. ...the eye is shown in the "3rd diagram". In the illustration, a light source 5 〇 from the substrate 20 having the refractive index % is one side of the astigmatically emitted light beam, such as gamma (four), wherein the non-vertical beam is based on The different angles of the human beings follow the Snell's miscellaneous and the different light directions are deflected. In the space with the refractive index Π4, when the incident angles of the incident light beams 34a and 36a are 鲥, the exit has appeared. The outgoing beams 34b and 36b are at an angle of 9 degrees. Therefore, if the incident angles of the incident beams 34a and 36a are greater than δ, the interface will not be able to pass through the interface, and the reflected beams 34c and 36c of the internal total reflection (tQtal intemal refl_n) will be formed. Constantly reflecting forward at the interface of the substrate 2〇, so the point source width through which the point source 50 can pass satisfies equation (6) and equation (7): ' sin(5)=n4/n3 (7) and according to Pythagorean theorem (Pythagorean theorem), interface The degree w〇 and the angle δ can be written as the equation (8): (8) tan(6)=0.5W〇/H〇 where H〇 is the thickness of the substrate, so that w〇 can be obtained, and the original point source 5〇 passes through the substrate. After 20, the exit angle has been diffused, and it becomes the non-1294402 of the approximate surface h_F2. The uniform divergent light advances in the space, and its overall light-emitting rate (〇111{)11^〇) is 5/90. . As shown in Figure 3B, the figure shows the microstructure design of adding a solid droplet 10c to the substrate 2〇. It should be noted that the inherent microdroplet width ^ and the refractive index ns solidified microfluid The structure of the drop 1〇c has locally increased the curvature value of the original 'and thus changed the original incident angle and the exit angle, and the solidified micro-droplet 10c, the substrate 20 and the deployment space 41 are connected. At the point τ, the original normal N〇 at this point will change the position due to the deployment of the solidified micro-droplet 10c, so the normal N〇 is rotated by the angle of 90-β to become Nl, and then the original If the incident angle 1 becomes Φ, if the incident angle ω is larger than the critical angle of the original substrate 2〇, the incident light beams 44a, 46a will not be able to pass through the interface and proceed in the total reflection direction to have the reflected light beams 44c, 46c. Since the solidified micro-droplet i〇c distorts the curvature of the original plane, the original incident angle 1 is reduced to the incident angle φ, and the incident light beams 44a, 46a are further formed in the direction of the refractive angle ε to form the outgoing beam. Go into the deployment space 41 and move on. The point source 5 〇 passes through the width of the substrate 2 〇 〇 • 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非 非The overall light emission improvement rate is Wm/WG'. Further, when the structure coverage of the solidified micro-droplet 10c is wider, that is, the wider the width Wm of the solidified micro-droplet is, the higher the light-increasing rate is up to the incident angle Φ. When the critical value is reached, the experimental results of the glass substrate (light refractive index η=1·5) are applied to a different convex spectrum using a convex spherical structure (η=1·5, Wm/w〇=14). (Wavelength is 400~700 nm), the light improvement rate can be as high as 4〇~7〇%. See the "Division 3B", in which the solidified micro-droplets i〇c are not limited to the circle 15 1294402 spherical and the number, which can be long, square, round, elliptical, etc. The number can also be plural, so that the solidified micro-droplets are separated into a shape, a column, and the optimal design can be achieved according to the light source configuration and the substrate 20, and the highest coverage can be achieved by the coverage ratio of the spacing. Overall light increase rate. The government's light is shown in Figure 4, which depicts the structure in which a plurality of beams are conducted in the substrate 20 of the solidified droplet arrays A, B, and C. According to Snell's law, when the incident angle is greater than When the critical angle of refraction is incident, the interface is incident on the mountain, so that the incident beam 53ai enters the substrate 2〇, and the reflected beam 53b that forms the internal total reflection is not formed by the micro-droplet array A, and will be directed to the other side. Continually reflecting forward between the interfaces S1, S2, if the incident light beam 53a in the above-mentioned advancement is to be allowed to pass through the interface at some positions, the stereoscopically shaped micro-droplets can be utilized for this purpose. Continuing to refer to FIG. 4, the incident light beams 54a, 54b, 54c are respectively refracted downward by the solidified micro-droplet arrays A, B, and C to form φ-beams 56a, 56b, respectively. And a filter plate 51 is disposed between the adjacent solidified droplet arrays a, B, and C. The reflector 51 deflects the incident light beam in a certain direction to a predetermined direction, so that the reflector 51 can be used separately. The outgoing beams 56a, 56b, 56c are passed through the substrate 20' into the derivation beams 58a, 58b, 58c, and continue to advance in the derivation direction, that is, in the vertical direction, by solidifying the micro-droplet array to destroy the total reflection boundary, Effectively transforming the beam that has been traversed in the horizontal direction into the vertical direction V, and it can be used as a light guide plate because the incident light source applied to the side passes through a medium substrate and is turned into a vertical light source. . 16 1294402 month "1 5A", factory 5B", "5C", the straight picture of the factory is the structure of the micro-optical component making device 6Q, and the bottom stage is phantom. There is also a motion platform 64 for carrying the substrate, the motion platform 64 has a driving mode, and the 1 driving pull group 641 is controlled by the central control unit 7〇 so that the motion level 0 can be horizontally oriented with respect to the bottom load Φ 62 . χTouch the direction of the object γ and other directions ^, at the same time, mount the height measuring device on the pylon table 66 and the liquid droplets are placed. The liquid droplet scatterer 68 is used to prepare the solution and the solution. The substrate, the ruthenium droplet is placed as a dip and contains a plurality of nozzles 682 having a plurality of nozzle holes for arranging the liquid supply for the supply of the liquid concentration, and for controlling the solution in the solution discharge liquid. Lang module 685, so that the amount of liquid can be placed on the image of the micro-optical components: the soil plate and the Hebutou 682 series are optional as hot bubble type and piezoelectric type (four) heart coffee, PZT) - height The measurer 67 is adjacent to the drop dispenser 68, and the measurer 67 is controlled by the central control unit 7〇, thereby enabling height measurement to facilitate viewing of the micro-optical image; The device 68 is additionally provided with a image pickup unit 69, and the image pickup unit 69 is controlled by the central control unit 70 for dividing Detecting the placement of the droplet placement device 68 and the image result of the micro-optical element, and photographing the image result of the placement, and the central control unit 7 is based on a specific diameter. The concentration of the juice solution and the cloth The amount of liquid is discharged, and the droplet discharge device 68 is controlled to prepare a solution concentration and a solution of a certain amount of liquid is disposed on the substrate to form a micro-optical element of a specific diameter. Therefore, the central control unit 70 is associated with the control driving module. 64 ΐ, height measurer 67, supply module 684, adjustment module 685 and camera 69 actuate each other. Of course, it must be specifically stated that the embodiment of the above device is not limited to this architecture, 17 1294402, for example, 'the droplet placement device 68 and the direction of motion can be further extended to a plurality of, and the more "f" The "distributor" and "moving direction" are the more accurate the image placement and the precise placement. μ Referring to "Fig. 6A" and "Fig. 6B", the illustration is a step of implementing the micro-optical element by the micro-droplet deployment method of the present invention, first providing a substrate whose surface has been subjected to hydrophobic treatment. (Step 11〇), the substrate must be cleaned and the non-fouling treatment is to form a hydrophobic layer on the substrate. One of its physical rib deposition methods, chemical vapor deposition method and wet coating method, the thickness of the hydrophobic layer Between qingnan and 1 cm 'and the hydrophobic layer materials such as PTFE, polyvinyl chloride, polyethyl ethoxylate and Shishi gum photoresist, etc.' then calculate the microfluid according to the specific radius of curvature The pre-concentration concentration is used to prepare the solution (step 120), and in order to apply the working condition under normal temperature and normal pressure, the microfluid is used as a solute material to be dissolved in the appropriate solvent material, and the synthetic-liquid solution type material is The solvent material is an evaporative material, and the solvent material includes pure water (H2 〇), methanol (Methanol), ethanol (Ethan 〇 1) and ethylene bis (Eth 〇 Xyethano1), etc., due to the volume of the micro-optical component. Microfluidics The volume ratio of the solution, thus determining the micro-optical element forming volume (step 122), and selecting the composition ratio of the microfluidic material to the solvent material (step 123). In addition, the specific diameter of the micro-optical element is proportional to the amount of liquid discharged. The relationship, the proportional relationship is further determined by the specific diameter equal to the constant multiplied by the third of the discharge amount, so that the solution discharge amount can be calculated (step 130), and then the solution is discharged. 'The solution is placed on the substrate (step 14〇), and the stacking is continued to increase the thickness of the final micro-optical element. After the solvent material in the solution evaporates completely 18 1294402, it will cause microfluidics. Curing (step 15〇), the microfluids form a micro-optical element due to curing (step 16G). Similarly, if a micro-optical array element is to be formed, the solution is laid at a predetermined interval when the solution is initially laid. The liquid discharge amount is placed on the substrate such that the micro-optical elements are distributed in an array on the substrate to form a micro-optical array element. Please refer to "Fig. 7A" and "Fig. 7B". The diagram shows the relationship between a plurality of microdroplets stacked on a medium substrate to form microlenses. According to theoretical calculations and experimental results, polyurethane is shown. The solution (15 wt%) solidified microlens diameter width (D) is proportional to the one-third of the number of droplets (N) of the stack (ie, ~Ν)' is the curve 72, which illustrates Using the amount of liquid in the stack, the diameter of the microlens can be controlled and determined. In addition, according to theoretical calculations and experimental results (as shown in Figure 7), the original wet and cured microlenses are used. The diameter width (9) is also proportional to the curve relationship 74, 76 ' with the number of droplets (N) of the stack, respectively. In the curve 74, when the number of droplets is 1, the diameter of the microlens is 91 μm. When the number of droplets in the curve 76 is 1, the diameter of the microlens is 4 μm, which indicates that the evaporation curing process is used, and the liquid amount control of the stack can be determined to determine the microlens diameter before and after curing. Any predetermined micro-optical image can be calculated as a single The desired amount of liquid lens structure laying stacked facilitate achieve large demand for small changes. As shown in the "Figure 8", the polyurethane solution (i5wt%) showed a microlens diameter shrinkage Xd of 9 〇〇/〇 (2004 μm / 2196 μm) before and after curing. ), the high shrinkage ratio & is 50% (6% micron / 1432 micron) 'the process is as shown in the "1A map", in general, the overall volume shrinkage of 19 1294402 size is slightly equal to the volume percentage of the solute solid content . Please refer to "Fig. 9A" and "Fig. 9B". The illustration shows a spin coating of a hydrophobic material of polytetrafluoroethylene on a clean, non-staining glass substrate, and then brewing a solution to make a microlens array. Structure, the experimental results show that in the glass plate: The core 3〇 array lens is made with a diameter of 293 μm ± 8 μm and a buckle contact angle of 65 °, indicating that the circular appearance is homogeneous. Although the present invention has been disclosed in the foregoing embodiments, the present invention is not limited to the spirit and scope of the present invention, and is equivalent to the invention. Within the scope of the special care. [Simple description of the diagram] Figure 1A is a schematic diagram of the basic structure of a single micro-droplet. Figure 1B is another schematic view of the basic structure of a single micro-droplet. Figure 2A is a top view of the appearance of the microlens array. Figure 2B is a side view of the appearance of the microlens array. Figure 3A is a schematic diagram of the conduction of a light beam of a point source in a substrate. Fig. 3B is a schematic diagram showing the conduction of a light beam of a point source in a substrate on which microdroplets are placed. Figure 4 is a diagram showing the conduction of the incident beam in the substrate on which the microdroplets are placed. Fig. 5 Fig. 5A is a schematic view showing the appearance of the micro-optical device fabrication apparatus. Fig. 5B is a diagram showing the operation of placing micro droplets on the micro-optical element manufacturing apparatus. Figure 5C is a diagram showing the operation of the central control unit of the micro-optical element making device (4). 20 1294402 Fig. 6A is a diagram showing the steps of fabricating a micro-optical element by using micro-droplet placement in the present invention. Figure 6B is a diagram showing the implementation of the predetermined concentration of the microfluid of the present invention to prepare a solution. Fig. 7A is a graph comparing experimental results and theoretical calculations for laying a polyurethane solution to make a microlens. Fig. 7B is a graph showing the experimental results and theoretical calculations of the original wet state and solidification of the microlens by laying a polyurethane solution. Figure 8 is a schematic diagram of an experimental process for making microlenses from a polyurethane solution. Fig. 9A is a plan view showing the experimental results of making a microlens array using a polyurethane solution. Fig. 9B is a side view showing the experimental results of making a microlens array using a polyurethane solution. [Main component symbol description] a, b, c....................................... ........cured microdroplet array
Dj............................................................初始i徑Dj................................................. ...........initial i path
Ds............................................................固化直徑 Η.............................................................水平方向 Η〇...........................................................基板厚度 Η!............................................................初始高度Ds................................................. ...........curing diameter Η.................................... ......................... Horizontal direction Η〇........................ ......................................Substrate thickness Η!........ .................................................. .. initial height
Hs............................................................固化高度 N〇-Ni...................................................法線 21 1294402Hs................................................. ...........curing height N〇-Ni.................................... ..................Normal 21 2129440
Px............................................................水平方向間距Px................................................. ...........horizontal spacing
Py............................................................垂直方向間距 R.............................................................徑Py................................................. ........... Vertical spacing R.................................. ..........................path
Wo..........................................................界面寬度 wm..........................................................固化微液滴寬度Wo................................................ .........interface width wm...................................... ....................curing microdroplet width
Si ' S2....................................................界面 T.............................................................相接點 V................ n3 - ιΐ4 " n5 δ、φ、ω… β................Si ' S2............................................... .....interface T........................................... ..................Contact point V................ n3 - ιΐ4 " n5 δ, φ, ω... β................
垂直方向 光線折射率 入射角度 角度 ε..............................................................折身子胃度 θ〇............................................................接_胃度 l〇a..........................................................初始微液滴Vertical direction ray refractive index incident angle angle ε................................................ ..................... folding body stomach degree θ〇....................... .....................................接_胃度 l〇a...... .................................................. .. initial microdroplets
l〇b........................................................蒸發中微液滴 l〇c..........................................................固化微液滴 20............................................................絲 34a、36a、44a、46a、53a、54a、54b、54c............入射光束 34b、36b、44b、46b、56a、56b、56c.....................出射光束 34c、36c、44c、46c、53b、53c...............................反射光束 41.............................................................佈放空間 50.............................................................點光源 22 1294402 51 反射板 58a、58b、58c 60" 62·· 64" 641 66·· 67·· 68" 68a 導出光束 微光學元件製作裝置 底部載臺 運動平台 驅動模組 掛架臺 高度測量器 液滴佈放器 微液滴L〇b.............................................. .........Evaporation of micro-droplets l〇c.................................... ......................... Curing microdroplets 20.................... ........................................ wires 34a, 36a, 44a, 46a, 53a , 54a, 54b, 54c, ..., incident light beams 34b, 36b, 44b, 46b, 56a, 56b, 56c........... .... outgoing beam 34c, 36c, 44c, 46c, 53b, 53c......................... reflected beam 41................................................. ............laying space 50.................................. ...........................point light source 22 1294402 51 reflectors 58a, 58b, 58c 60" 62·· 64" 641 66·· 67·· 68" 68a Derived beam micro-optical component making device bottom stage motion platform drive module pylon height measuring device droplet placement micro-droplet
681 682 684 685 69" 70·· 72、74、76 喷佈孔 喷佈頭 供應模組 調節模組 取影器 中央控制單元 曲線681 682 684 685 69" 70·· 72, 74, 76 Spray hole Spray head Supply module Adjustment module Shadow detector Central control unit Curve
23twenty three
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95109932A TWI294402B (en) | 2006-03-22 | 2006-03-22 | A method for fabricating a micro-optical element and an apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95109932A TWI294402B (en) | 2006-03-22 | 2006-03-22 | A method for fabricating a micro-optical element and an apparatus thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200736155A TW200736155A (en) | 2007-10-01 |
TWI294402B true TWI294402B (en) | 2008-03-11 |
Family
ID=45068141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95109932A TWI294402B (en) | 2006-03-22 | 2006-03-22 | A method for fabricating a micro-optical element and an apparatus thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI294402B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8308338B2 (en) | 2009-10-09 | 2012-11-13 | Coretronic Corporation | Light guide plate and backlight module |
TWI413585B (en) * | 2010-10-13 | 2013-11-01 | Univ Nat Kaohsiung Applied Sci | Method of manufacturing microelements using inkjet technology |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114632557B (en) * | 2020-12-16 | 2024-05-28 | 合肥京东方光电科技有限公司 | Opposite substrate of micro-fluidic chip and micro-fluidic chip |
-
2006
- 2006-03-22 TW TW95109932A patent/TWI294402B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8308338B2 (en) | 2009-10-09 | 2012-11-13 | Coretronic Corporation | Light guide plate and backlight module |
TWI413585B (en) * | 2010-10-13 | 2013-11-01 | Univ Nat Kaohsiung Applied Sci | Method of manufacturing microelements using inkjet technology |
Also Published As
Publication number | Publication date |
---|---|
TW200736155A (en) | 2007-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | High-efficiency fog collector: water unidirectional transport on heterogeneous rough conical wires | |
US9446590B2 (en) | Diagonal openings in photodefinable glass | |
Hu et al. | Nanoscale control of polymer crystallization by nanoimprint lithography | |
Chen et al. | Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement | |
Jacot-Descombes et al. | Fabrication of epoxy spherical microstructures by controlled drop-on-demand inkjet printing | |
JP6755009B2 (en) | Perforated film, perforated film manufacturing method, microlens array, microreactor and biodevice | |
Hirai et al. | Uphill water transport on a wettability-patterned surface: experimental and theoretical results | |
CN102834188A (en) | Method of producing film by inkjet process, and film | |
Zhang et al. | 3D printing of a PDMS cylindrical microlens array with 100% fill-factor | |
TWI294402B (en) | A method for fabricating a micro-optical element and an apparatus thereof | |
TW200811467A (en) | Lens arrays and methods of making the same | |
Zhang et al. | Fabrication of microlens arrays with high quality and high fill factor by inkjet printing | |
CN101909841A (en) | Articles and methods of making articles having a concavity or convexity | |
US20060216487A1 (en) | Fluid guiding surfaces | |
JP2018136574A (en) | Fine-rugged sheet, illumination unit for display, and display | |
JP2006150751A (en) | Method for producing three-dimensional structure and micro lens | |
Coppola et al. | Nanocomposite polymer carbon-black coating for triggering pyro-electrohydrodynamic inkjet printing | |
CN104781017B (en) | Form tectosome, the manufacture method of tectosome and line pattern on base material | |
Chen et al. | Using ink-jet printing and coffee ring effect to fabricate refractive microlens arrays | |
Im et al. | Drop-on-demand electrohydrodynamic jet printing of microlens array on flexible substrates | |
TWI289683B (en) | Method for fabricating microlens arrays | |
Han et al. | Recent patterning methods for halide perovskite nanoparticles | |
Wu et al. | Designing laplace pressure pattern for microdroplet manipulation | |
Wang et al. | Capillary number encouraged the construction of smart biomimetic eyes | |
JP2008203831A (en) | Method of filling cavity with fluid material in optical microtechnological compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |