TWI293950B - Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the pte in the presence of cyclic carbonic esters - Google Patents

Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the pte in the presence of cyclic carbonic esters Download PDF

Info

Publication number
TWI293950B
TWI293950B TW092123454A TW92123454A TWI293950B TW I293950 B TWI293950 B TW I293950B TW 092123454 A TW092123454 A TW 092123454A TW 92123454 A TW92123454 A TW 92123454A TW I293950 B TWI293950 B TW I293950B
Authority
TW
Taiwan
Prior art keywords
hydroformylation
catalyst
reaction
aliphatic
cyclic carbonate
Prior art date
Application number
TW092123454A
Other languages
Chinese (zh)
Other versions
TW200418785A (en
Inventor
Oliver Moller
Dieter Hess
Klaus-Diether Wiese
Dirk Fridag
Cornelia Borgmann
Alfred Kaizik
Original Assignee
Oxeno Olefinchemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxeno Olefinchemie Gmbh filed Critical Oxeno Olefinchemie Gmbh
Publication of TW200418785A publication Critical patent/TW200418785A/en
Application granted granted Critical
Publication of TWI293950B publication Critical patent/TWI293950B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oncology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Catalytic hydroformylation of 3-24 carbon (C) olefinically unsaturated compounds, using an unmodified catalyst containing group 8-10 metal(s), is carried out in the presence of not less than 1 wt.%, with respect to the reaction mixture, of a cyclic carbonate ester (I), comprising an optionally substituted (cyclo)alkylene or arylene carbonate. Catalytic hydroformylation of 3-24 carbon (C) olefinically unsaturated compounds, using an unmodified catalyst containing group 8-10 metal(s), is carried out in the presence of not less than 1 wt.%, with respect to the reaction mixture, of a cyclic carbonate ester of formula (I), comprising an optionally substituted (cyclo)alkylene or arylene carbonate. R1, R2, R3, R4 = H or optionally substituted 1-27 C aliphatic, alicyclic, aromatic, aliphatic-alicyclic, aliphatic-aromatic or alicyclic-aromatic hydrocarbyl; n = 0-5; X = divalent, optionally substituted 1-27 C aliphatic, alicyclic, aromatic, aliphatic-alicyclic or aliphatic-aromatic hydrocarbyl.

Description

1293950 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關一種使乙烯型不飽和化合物(尤其是烯 烴)受自元素週期表第8至10族金屬所衍生之未改質金 屬觸媒催化性醛化以製備醛類之方法,該方法係於作爲溶 劑之環狀碳酸酯存在下進行。 【先前技術】 烯烴化合物、一氧化碳及氫於觸媒存在下進行反應以 形成多一個碳原子之醛類過程係稱爲醛化(氧化法)。此 等反應中所使用之觸媒經常係爲元素週期表第8至10族 過渡金屬的化合物,尤其量铑與鈷之化合物。與藉銘化合 物催化相比,使用铑化合物進行之醛化通常具有化學選擇 性及區域選擇性較高之優點,因此通常具有經濟上之吸引 力。 由铑催化之醛化通常係使用包含铑及作爲配位體之元 素週期表第1 5族的化合物(以三價磷化合物爲佳)之錯 合物進行。例如,經常使用來自膦、亞磷酸酯及膦酸酯之 化合物作爲配位體。對於烯烴之醛化的評論可參照 B. CORNILS, W. A. HERRMANN, “Applied Homogeneous Catalysis with Organometallic Compounds”, Vo 1. 1 &2 5 VCH,Weinheim,New York,1 996 o 末端烯烴可於經膦改質之铑觸媒存在下輕易地反應。 另一方面,內部烯烴,尤其是內部高度分支鏈烯烴,需要 -5- I293950 (2) 強活性配位體,諸如亞磷酸酯配位體。此外,已發現「原 始」或未改質铑極適於難以醛化之烯烴。此等觸媒包含一 或多種金屬物質,其係於醛化條件下,不存在改質配位體 I ’自金屬鹽形成。就本專利申請案而言,改質配位體係 爲含有一或多個元素週期表第1 5族之予體原子的化合物 °然而,改質配位體不包括烷氧基、羰基、氫基、烷基、 芳:基、烯丙基、醯基或烯配位體,亦不包括用於形成觸媒 之金屬鹽的抗衡離子,例如鹵基諸如氟、氯、溴或碘、乙 醯基丙酮酸根、羧酸根諸如乙酸根、2-乙基己酸根、己酸 根、辛酸根或壬酸根。 本發明所使用之改質配位體係爲含有選自元素週期表 第1 5族之予體原子的配位體,例如氮、磷、砷或銻,尤 其是磷。該配位體可爲單配位基或多配位基,若爲對掌性 配位體,則或可使用消旋物或一鏡像異構物或非鏡像異構 物。磷配位體之特別重要實例有膦、膦林(Phosphinine ) 、膦院(p h 〇 s p h i n a n e )、氧化膦、亞憐酸酯、膦酸酯及 亞膦酸酯。 膦之實例有三苯膦、三(對-甲苯基)膦、三(間-甲 苯基)膦 '三(鄰-甲苯基)膦、三(對-甲氧苯基)膦、 三(對-氟苯基)膦、三(對-氯苯基)膦、三(對-二甲 胺基苯基)膦、乙基二苯基膦、丙基二苯基膦、第三丁基 二苯基膦、正丁基二苯基膦、正己基二苯基膦、c-己基二 苯基膦、二環己基苯基膦、三環己基膦、三環戊基膦、三 乙基膦、三(1 -萘基)膦、三-2 -呋喃基膦、三苄基膦、 -6 - 1293950 (3) 苄基二苯基膦、三-正丁基膦、三-異丁基膦、三-第三丁 基膦、雙(2-甲氧苯基)苯基膦、新盖基二苯基膦、磺化 三苯膦(諸如三(間磺醯苯基)膦、(間-磺醯苯基)二 苯基膦之之鹼金屬、鹼土金屬、銨或其他鹽類;1,2_雙( 二環己基膦基)乙烷、雙(二環己基膦基)甲烷、1,2-雙 (二乙基膦基)乙烷、1,2·雙(2,5-二乙基磷崠基)乙院 、1,2-雙(2,5-二乙基磷嗦基)苯[Et-DUPHOS]、1,2-雙( 2,5-二乙基磷卩東基)乙院[Et-BPE]、1,2-雙(二甲基膦基 )乙烷、雙(二甲基膦基)甲烷、1,2-雙(2,5-二甲基磷嗉)苯 [Me-DUPHOS]、1,2 -雙(2,5 -二甲基磷嘹基)乙烷[M e-ΒΡΕ]、1,2-雙(二苯基膦基)苯.、2,3-雙(二苯基膦基) 二環[2.2.1]庚-5-烯[NORPHOS]、2,2、雙(二苯基膦基)_ 1,15-聯萘|>以人?]、2,2'雙(二苯基膦基)-1,1’-聯苯 [BISBI]、2,3-雙(二苯基膦基)丁烷、1,4-雙(二苯基膦 基)丁烷、1,2 -雙(二苯基膦基)乙烷、雙(2 -二苯基膦 乙基)苯基膦、1,Ρ >雙-(二苯基膦基)二茂鐵、雙(二 苯基膦基)甲烷、1,2-雙(二苯基膦基)丙烷、2,2’-雙( 二-對-甲苯基膦基)-1,1’·聯萘、0-亞異丙基-2,3-二羥基-154-雙(二苯基膦基)丁烷[1)1〇?]、2-(二苯基膦基)-2’ -甲氧-1,1’-聯萘、1-(2 -二苯基膦基-1-萘基)異D奎啉、 1,15卜三(二苯基膦基)乙烷、及/或三(羥苯基)膦。 膦林之實例包括2,6-二甲基-4-苯基膦、2,6-雙(2,4-二甲基苯基)-4 -苯基膦及其他描述於W0 00/55164之配 位體。膦烷之實例係包括2,6-雙(2,4-二甲基苯基)-1-辛 1293950 (4) 基-4-苯基膦烷、1-辛基-2,4,6-三苯基膦烷及其他描述於 WO 02/00669之配位體。 亞磷酸酯之實例有亞磷酸三甲酯、亞磷酸三乙酯、亞 磷酸三正丙酯、亞磷酸三異丙酯、亞磷酸三正丁酯、亞磷 酸三異丁酯、亞磷酸三-第三丁酯、亞磷酸三(2-乙基己 基)酯、亞磷酸三苯酯、亞磷酸三(2,4-二-第三丁基苯) 酯、亞磷酸三(2-第三丁基-4-甲氧苯基)酯、亞磷酸三 (2-第三丁基-4-甲基苯基)酯、亞磷酸三(對··甲苯)酯 。其他實例有立體受阻亞磷酸酯配位體,如描述於(尤其 是)EP 1 5 5 5 08、US 4 66 8 65 1、US 4 74 8 26 1、 US 4 769 498、US 4 774 36 1、US 4 835 29 9、 US 4 885 401 、 US 5 059 710、US 5 113022、 US :5 179055、US5260491、US5264616、 US 5 2 8 8 918、US 5 360 938、EP 4 72 071、EP 5 1 8 24 1 及WO 97/20795。該立體受阻亞磷酸酯中,可提及亞磷酸 三苯酯,其可經一或2個異丙基及/或第三丁基取代基所 取代,以相對於亞磷酸酯基成鄰位爲佳。其他雙亞磷酸酯 配位體係特別於 EP 1 099 677、EP 1 099 67 8、WO 02/00670、JP 1 0279 5 87、EP 4720 1 7、WO 0 1/2 1 627、WO 97/4000 1、WO 97/40002、US 476949 8、EP 2 1 3 63 9 及 EP 214622中提及。 膦酸酯之實例有甲基二乙氧基膦、苯基二甲氧基膦、 苯基二苯氧基膦、6-苯氧基-6H-二苯并[c5e][l,2]氧雜磷林 (phosphorin )及其衍生物(其中所有或部分氫原子係由 1293950 (5) 烷基或芳基或鹵原子置換)及 WO 9 8/43 9 3 5、JP 09-268152及DE 198 10 794及德國專利申請案DE 199 54 721及DE 199 54 510所述之配位體。 習用亞膦酸酯配位體係描述於(尤其是)US 5 710 344、WO 95 06627、US 5 3 60 93 8、JP 07 0 8 22 8 1 中。實 例有二苯基(苯氧基)膦及其衍生物(其中所有或部分氫 原子係由烷基或芳基或鹵原子所置換)、二苯基(甲氧基 )膦、二苯基(乙氧基)膦等。1293950 (1) Field of the Invention The present invention relates to an unmodified metal which is derived from an ethylenically unsaturated compound (especially an olefin) derived from a metal of Groups 8 to 10 of the Periodic Table of the Elements. A process for the catalytic aldehyde formation of a aldehyde to prepare an aldehyde, which is carried out in the presence of a cyclic carbonate as a solvent. [Prior Art] An aldehyde process in which an olefin compound, carbon monoxide, and hydrogen are reacted in the presence of a catalyst to form one more carbon atom is called hydroformylation (oxidation method). The catalyst used in these reactions is often a compound of a transition metal of Groups 8 to 10 of the Periodic Table of the Elements, especially a compound of ruthenium and cobalt. The hydroformylation using a ruthenium compound generally has the advantage of being chemically selective and having a higher regioselectivity than the catalyzed catalysis of the compound, and is therefore generally economically attractive. The hydroformylation catalyzed by ruthenium is usually carried out using a compound comprising ruthenium and a compound of Group 15 of the elemental periodic table as a ligand (preferably a trivalent phosphorus compound). For example, a compound derived from a phosphine, a phosphite, and a phosphonate is often used as a ligand. For a review of the hydroformylation of olefins, see B. CORNILS, WA HERRMANN, "Applied Homogeneous Catalysis with Organometallic Compounds", Vo 1. 1 & 25 VCH, Weinheim, New York, 1 996 o terminal olefins can be modified by phosphine The quality of the catalyst is easily reacted in the presence of the catalyst. On the other hand, internal olefins, especially internal highly branched olefins, require -5-I293950 (2) strong active ligands, such as phosphite ligands. In addition, it has been found that "original" or unmodified ruthenium is suitable for olefins which are difficult to hydroformylate. These catalysts comprise one or more metal species which are under hydroformylation conditions and which are free of modified ligands I' formed from metal salts. For the purposes of this patent application, the modified coordination system is a compound containing one or more of the donor atoms of Group 15 of the Periodic Table of the Elements. However, the modified ligand does not include an alkoxy group, a carbonyl group, or a hydrogen group. Or an alkyl group, an aryl group, an allyl group, a decyl group or an olefin ligand, and does not include a counter ion for forming a metal salt of a catalyst, such as a halogen group such as fluorine, chlorine, bromine or iodine, an ethyl group. Pyruvate, carboxylate such as acetate, 2-ethylhexanoate, hexanoate, octanoate or citrate. The modified coordination system used in the present invention is a ligand containing a donor atom selected from Group 15 of the periodic table, such as nitrogen, phosphorus, arsenic or antimony, especially phosphorus. The ligand may be a mono- or poly-ligand, and if it is a palm ligand, a racemate or a mirror image or a non-image isomer may be used. Particularly important examples of phosphorus ligands are phosphine, phosphine (Phosphinine), phosphine (p h 〇 s p h i n a n e ), phosphine oxide, imidate, phosphonate and phosphinate. Examples of phosphines are triphenylphosphine, tris(p-tolyl)phosphine, tris(m-tolyl)phosphine tris(o-tolyl)phosphine, tris(p-methoxyphenyl)phosphine, tris(p-fluoro) Phenyl)phosphine, tris(p-chlorophenyl)phosphine, tris(p-dimethylaminophenyl)phosphine, ethyldiphenylphosphine, propyldiphenylphosphine, tert-butyldiphenylphosphine , n-butyldiphenylphosphine, n-hexyldiphenylphosphine, c-hexyldiphenylphosphine, dicyclohexylphenylphosphine, tricyclohexylphosphine, tricyclopentylphosphine, triethylphosphine, tris(1) -naphthyl)phosphine, tris-2-furylphosphine, tribenzylphosphine, -6-1293950 (3) benzyl diphenylphosphine, tri-n-butylphosphine, tri-isobutylphosphine, tri- Tributylphosphine, bis(2-methoxyphenyl)phenylphosphine, neocapped diphenylphosphine, sulfonated triphenylphosphine (such as tris(m-sulfonylphenyl)phosphine, (m-sulfophenyl) An alkali metal, alkaline earth metal, ammonium or other salt of diphenylphosphine; 1,2-bis(dicyclohexylphosphino)ethane, bis(dicyclohexylphosphino)methane, 1,2-double ( Diethylphosphino)ethane, 1,2,bis(2,5-diethylphosphonium), Y, 1,2-bis (2,5-di Benzophosphonyl) benzene [Et-DUPHOS], 1,2-bis(2,5-diethylphosphonium), et al. [Et-BPE], 1,2-bis(dimethylphosphino) Ethane, bis(dimethylphosphino)methane, 1,2-bis(2,5-dimethylphosphonium)benzene [Me-DUPHOS], 1,2-bis(2,5-dimethylphosphine) Mercapto) ethane [M e-ΒΡΕ], 1,2-bis(diphenylphosphino)benzene, 2,3-bis(diphenylphosphino)bicyclo[2.2.1]hept-5- Alkene [NORPHOS], 2, 2, bis(diphenylphosphino)-1,15-binaphthyl |> by human], 2,2' bis(diphenylphosphino)-1,1'- Biphenyl [BISBI], 2,3-bis(diphenylphosphino)butane, 1,4-bis(diphenylphosphino)butane, 1,2-bis(diphenylphosphino)ethane , bis(2-diphenylphosphinoethyl)phenylphosphine, 1, Ρ > bis-(diphenylphosphino)ferrocene, bis(diphenylphosphino)methane, 1,2-double ( Diphenylphosphino)propane, 2,2'-bis(di-p-tolylphosphino)-1,1'-binaphthyl, 0-isopropylidene-2,3-dihydroxy-154-double (diphenylphosphino)butane [1)1〇?], 2-(diphenylphosphino)-2'-methoxy-1,1'-binaphthyl, 1-(2-diphenylphosphine -1-naphthyl)iso D , 1,15 Bu tris (diphenylphosphino) ethane, and / or tris (hydroxyphenyl) phosphine. Examples of phosphine include 2,6-dimethyl-4-phenylphosphine, 2,6-bis(2,4-dimethylphenyl)-4-phenylphosphine and others described in WO 00/55164 Ligand. Examples of phosphines include 2,6-bis(2,4-dimethylphenyl)-1-octane 1293950 (4) phenyl-4-phenylphosphane, 1-octyl-2,4,6- Triphenylphosphane and other ligands described in WO 02/00669. Examples of phosphites include trimethyl phosphite, triethyl phosphite, tri-n-propyl phosphite, triisopropyl phosphite, tri-n-butyl phosphite, triisobutyl phosphite, and trisphosphite- Third butyl ester, tris(2-ethylhexyl) phosphite, triphenyl phosphite, tris(2,4-di-t-butylphenyl) phosphite, tris(2-third butyl) Base 4-methoxyphenyl) ester, tris(2-tert-butyl-4-methylphenyl) phosphite, tris(p-toluene) phosphite. Other examples are sterically hindered phosphite ligands as described in (especially) EP 1 5 5 5 08, US 4 66 8 65 1 , US 4 74 8 26 1 , US 4 769 498, US 4 774 36 1 US 4 835 29 9, US 4 885 401, US 5 059 710, US 5 113022, US: 5 179055, US 5,262,891, US 5,264,616, US 5 2 8 8 918, US 5 360 938, EP 4 72 071, EP 5 1 8 24 1 and WO 97/20795. Among the sterically hindered phosphites, mention may be made of triphenyl phosphite, which may be substituted by one or two isopropyl and/or tert-butyl substituents, preferably in the ortho position relative to the phosphite group. . Other bisphosphite coordination systems are described in particular in EP 1 099 677, EP 1 099 67 8 , WO 02/00670, JP 1 0279 5 87, EP 4720 17 , WO 0 1/2 1 627, WO 97/4000 1 Mentioned in WO 97/40002, US 476949 8, EP 2 1 3 63 9 and EP 214622. Examples of phosphonates are methyldiethoxyphosphine, phenyldimethoxyphosphine, phenyldiphenoxyphosphine, 6-phenoxy-6H-dibenzo[c5e][l,2]oxy Phosphorin and its derivatives (all or part of which are replaced by 1293950 (5) alkyl or aryl or halogen atoms) and WO 9 8/43 9 3 5, JP 09-268152 and DE 198 The ligands described in German Patent Application No. DE 199 54 721 and DE 199 54 510. Conventional phosphonite coordination systems are described, among others, in US 5 710 344, WO 95 06627, US 5 3 60 93 8 , JP 07 0 8 22 8 1 . Examples are diphenyl(phenoxy)phosphine and derivatives thereof in which all or part of the hydrogen atoms are replaced by an alkyl or aryl or halogen atom, diphenyl(methoxy)phosphine, diphenyl ( Ethoxylated phosphines and the like.

在工業醛化時,反應產物、未反應起始物質及觸媒通 常係藉蒸餾分離。該醛化因此係於高沸點溶劑存在下進行 ,以藉蒸餾加工產生含有高沸點觸媒之餾份,其可再循環 至該程序中。·許多使用铑觸媒之連續工業醛化方法中,在 醛化中形成之副產物高沸點混合物係作爲溶劑,如(例如 )DE 2 062 703 'DE 2 7 15 685、DE 2 8 02 92 2、EP 〇 1 7 1 83 所述。 除了高沸化合物之外,可使用惰性有機液體(DE 3 1 26 2 65 )及反應產物(醛類、醇類)、脂族及芳族烴、 酯類、醚類及水(DE 4 4 1 9 898 )作爲溶劑。GB 1 1 97 9 02中,使用飽和烴、芳族物、醇及正鏈烷烴達成此目的 〇 於醛化過程中添加一或多種極性有機物質係揭示於( 例如)WO 01/68248、WO 01/68249、WO 01/68252 中。 此情況下,極性物質係選自下列各類化合物之物質:腈類 、環縮醛類、醇類、吡咯烷類、內酯類、甲醯胺類、亞硕 -9 - 1293950 (6) 類及水。 相對長鏈烯烴(C - 6 )之醛化中,藉蒸餾自反應產物 及可能未反應起始物質分離觸媒需要高溫及低溫。有時含 鍺觸媒會在此蒸餾過程中發生相當程度之分解,不論是否 使用附加配位體皆然。此種情況使得在該過程中損失觸媒 ,對於該程序之經濟性具有極大之負面影響。 已發現未改質铑觸媒特別不安定。熟習此項技術者最 普遍之主張係單核錯合物HRh ( CO ) 3(在改質用配位體不 存在下)係於醛化中爲活性之種類。錯合物HRh(C 0)3僅於 低於2(TC之溫度及高壓下下保持穩定(N.S. Imyanitov, Rhodium Express, ( 1 9 9 5 ),10/11,3-64),且與雙核種 類(本身非活性’但作爲活性觸媒之容器)保持平衡(E. V. Slivinskii, Y. A. Rozovskii, G. A. Korneeva, V. I. Kurkin, Kinetics and Catalysis ( 1 998 ) .3 9 ( 6 ) ,764-774 )(A. R. E Γ m a η 5 V. I. Kurkin, E. V· Slivinskii, S. M. Loktev. Neftekhimiya(1990), 3 0( 1 ),46-5 2 ) ° 具有較大 分子量之醛化惰性群集物係自雙核铑羰基錯合物形成。在 強力醛化反應的條件下,低分子量群集之形成係可逆。已 證明可再生高達Rh4 ( CO ) ! 2之群集。活性種類於醛化條 件下之安定化亦可證明(Yu. B· Kagan5Y. A. Rrzovskii,E. V. Slivinskii,G. A. Korneeva,V. I. Kurkin, S. M. Loktev, Kinetilai Kataliz ( 1987) ,28 ( 6) ,1508-1511 )。相反 地,高分子量群集無法在酸化條件下轉化回復成活性種類 (Yu. B. Kagan, E. V. Slivinskii, V. I. Kurkin, G. A. -10- 1293950 ⑺In the industrial hydroformylation, the reaction product, the unreacted starting material and the catalyst are usually separated by distillation. This hydroformylation is therefore carried out in the presence of a high boiling solvent to produce a fraction containing a high boiling catalyst which can be recycled to the process by distillation. - In many continuous industrial hydroformylation processes using a ruthenium catalyst, the high-boiling mixture of by-products formed in the hydroformylation is used as a solvent, for example, as DE 2 062 703 'DE 2 7 15 685, DE 2 8 02 92 2 , EP 〇1 7 1 83. In addition to high boilers, inert organic liquids (DE 3 1 26 2 65 ) and reaction products (aldehydes, alcohols), aliphatic and aromatic hydrocarbons, esters, ethers and water can be used (DE 4 4 1 9 898 ) as a solvent. In GB 1 1 97 902, saturated hydrocarbons, aromatics, alcohols and normal paraffins are used for this purpose. The addition of one or more polar organic materials during the hydroformylation is disclosed, for example, in WO 01/68248, WO 01. /68249, WO 01/68252. In this case, the polar substance is selected from the group consisting of nitriles, cyclic acetals, alcohols, pyrrolidines, lactones, formamides, and subclasses -9 - 1293950 (6) And water. In the hydroformylation of relatively long-chain olefins (C-6), high temperature and low temperature are required to separate the catalyst from the reaction product and possibly unreacted starting materials by distillation. Sometimes the ruthenium-containing catalyst will decompose to a considerable extent during this distillation, regardless of whether or not an additional ligand is used. This situation makes the loss of catalyst in the process, which has a great negative impact on the economics of the program. It has been found that the unmodified product is particularly unstable. The most common claim by those skilled in the art is that the mononuclear complex HRh (CO) 3 (in the absence of a ligand for upgrading) is a species that is active in hydroformylation. The complex HRh(C 0)3 is stable only below 2 (TC temperature and high pressure (NS Imyanitov, Rhodium Express, (19.9), 10/11,3-64), and with dual core The species (self-inactive 'but as a container for the active catalyst) is balanced (EV Slivinskii, YA Rozovskii, GA Korneeva, VI Kurkin, Kinetics and Catalysis (1 998 ) .3 9 ( 6 ) , 764-774 ) (AR E Γ ma η 5 VI Kurkin, E. V· Slivinskii, SM Loktev. Neftekhimiya (1990), 3 0( 1 ), 46-5 2 ) ° Aldehyde-inert clusters with larger molecular weights from dinuclear hydrazine carbonyls Formation. Under the conditions of strong hydroformylation, the formation of low molecular weight clusters is reversible. It has been proved that the clusters of up to Rh4 (CO)! 2 can be regenerated. The stability of active species under hydroformylation conditions can also be proved (Yu. B. Kagan 5Y. A. Rrzovskii, EV Slivinskii, GA Korneeva, VI Kurkin, SM Loktev, Kinetilai Kataliz (1987), 28 (6), 1508-1511). Conversely, high molecular weight clusters cannot be converted back to acidification conditions. Active species (Yu. B. Kagan, EV Slivinskii, VI K Urkin, G. A. -10- 1293950 (7)

Korneeva, R. A. Aranovich, N. N. Rzhevskaya, S. M. Loktev,Neftekhimiya ( 1 9 8 5 ),25 (6),791-797) 。君羊 集之形成通常係爲含鍺之固體沉澱物形成之原因且係其第 一個步驟。其係發生於藉蒸餾加工期間,但有時亦發生於 反應條件下。含铑之沉澱物係沉積於容器壁及管壁上。導 致相當不經濟之觸媒損失,使得在工業應用時需要定期的 將工廠停工及進行淸洗。 铑沉澱物需藉複雜之冶金路徑回收。 一方面因爲未改質铑作爲醛化觸媒之吸引力,另一方 面因其不安定性,已提出許多其循環及/或回收方法。 已知一系列自反應混合物移除铑物質之方法係藉固態 吸附劑進行。因此,例如,DE 1 9 54 3 1 5提出以作爲吸附 劑之聚苯乙烯爲主之弱至強驗性離子交換樹脂。.根據DE 2 0 4 5 4 1 6,已有負荷之離子交換樹脂的再生係藉著以低 級醇、脂族胺及水之混合物於氧存在下進行處理而進行。 溶離物中所含之铑係藉由蒸發且以鹽酸處理而轉化成氯化 铑水合物,其可再次作爲觸媒前驅物。W〇 02/204 5 1及 US 5 208 1 94申請一種自已有負荷之離子交換劑回收铑的 方法,其係進行鍛燒,且自所得灰分單離氧化物形式之铑 。US 4 3 8 8 2 79中,元素週期表第1及2族之金屬的鹽類 、沸石分子篩及離子交換樹脂被提出作爲吸附劑。W Ο 0 1 /72 6 79申請一種於高溫下於氫存在下將铑吸附於活性碳 、多矽酸及氧化鋁上之方法。專利EP 0 3 5 5 8 3 7描述一種 將铑吸附於鹼性離子交換樹脂(其經離子性鍵結有機磷配 -11 - 1293950 (8) 位體改質)上之方法。樹脂之再生係藉著含有有機磷配位 體之溶液溶離進行。WO 97/03 93 8申請一種將活性錢物質 及雜質吸附於酸性離子交換樹脂上之方法。再生係藉著於 第一步驟中使用中性溶劑溶離雜質,之後使用酸性溶劑溶 離活性鍺物質而進行。依此方式回收之觸媒係適當地於再 氫化之後再使用於醛化中。 所有用以回收铑之吸附方法的缺點皆係無法令人滿意 地解決再度釋出活性物質的問題。熟習此項技術者皆明瞭 針此項目的所提出之溶劑或溶劑混合物在醛化時並非惰性 ’而導致副反應。例如,酸性溶劑誘發該醛之高度放熱且 難以控制之醇醛縮合。醇及胺與醛進行縮合反應,因此降 低產物產率。因此,絕對需要在觸媒再循環之前先移除前 述溶劑或溶劑混合物。此點使得回收槪念在技術上極爲複 雜且昂貴。相反地,吸附於離子交換劑上,隨之灰化且冶 金回收铑已達到部分工業重要性。此方法係簡易技術,但 當然可加以改良··使用昂貴之鹼性離子交換劑作爲消耗性 材料,灰化後金屬氧化物,之冶金加工使得程序步驟變得更 爲複雜。 亦已知一系列方法,其中鍺係藉各錯合劑之溶液自反 應器輸出物萃取出來,在再次釋出之後再循環至該醛化反 應器。因此,在可質子化含氮配位體存在下以铑催化之醛 化、使用酸水溶液萃取铑錯合物、脫質子化及使鍺再循環 至該程序係自DE19603201得知。於DE4230871中, 該水溶液係直接再循環至該反應。於EP 0 5 3 8 73 2中,申 -12- 1293950 Ο) 請一種於合成氣壓下使用膦水溶液自反應器所生成之輸出 物萃取的方法。WO 97/03 93 8申請一種水溶性聚合物,諸 如聚丙烯酸、順丁烯二酸共聚物及亞磷羧基甲基化聚乙烯 胺、聚伸乙基亞胺及聚丙烯醯胺,作爲錯合劑。EP 0 5 8 8 2 2 5申請吡啶、D奎琳、2,2,-聯吡啶、1,1 〇 -菲繞林、2,2,-聯曈啉、2,2’,6’,2”-聯三吡啶及樸啉(可爲磺化及/或羧化 形式),作爲錯合劑。然而,水性萃取所需之錯合劑經常 較昂貴,且難以獲得。此外,此等包括兩個附加步驟(萃 取及觸媒釋出)需要增加工程支出。 此外,亦已知一種方法,其中據稱藉添加含有磷( ΙΠ )之配位體防止在藉蒸餾處理反應器輸出物時產生铑 沉澱物(D E 3 3 3 8 3 4 0,U S 4 5 4 0 0,5 4 7 )。酸化活性铑物 質之再生或再釋出係藉著將磷(III )配位體氧化而進行 。此種方法之缺點係爲連續消耗安定劑。所形成之磷(V )化合物需連續取出,以防止累積於反應器系統中。不可 避免地亦排出部分活性形式之铑。此種方法因此亦可同時 於技術及經齊上達到改善。 WO 82/03 8 5 6申請一種於氧存在下蒸餾醛化反應器輸 出物之方法。在氧存在下,在醛化方法中形成之一部分醛 被氧化成對應之羧酸,與铑物質反應以形成可溶性羧酸铑 。該羧酸老可再循環至該程序中。此方法之缺點係爲所需 產物之產率降低。 尙未公開之專利申請案DE 1 02 4 0 2 5 3描述一種於以 元素週期表第8至10族金屬爲主而藉磷配位體改質之觸 -13- 1293950 (10) 媒存在下進行之醛化,使用環狀碳酸酯作爲溶劑。未描述 週期表第8至1 0族金屬之未改質金屬錯合物的使用。 JP 10-226662描述一種嫌烴化合物之醒化方法,其中 铑觸媒係與作爲輔觸媒之磺化三苯膦的鈉鹽一起使用,即 使用經改質之觸媒。該反應係於極性成份及羧酸存在下進 行。該極性成份可爲(例如)乙二醇碳酸酯。該極性成份 可與該酸及該觸媒一起再循環至該醛化反應。然而,該程 序可僅用於末端烯烴(相對活性)之醛化。若爲內部烯烴 ,特別是內部高度分支鏈烯烴,則觸媒活性遠低於工業用 途所需。 目前已知自利用未改質铑作爲醛化觸媒之程序循環或 回收铑之方法同時可自技術及經濟觀點進行改善。 是故,先前技術並不包括將難以使用未改質铑作爲觸 媒以進行霞化之烯烴醛化而在技術及經濟上皆令人滿意的 方法。因此本發明之目的係提出一種針對此層面有大幅改 善之方法,尤其是可簡易地進行觸媒回收之方法,其大幅 減少觸媒失活之情況,因此可防止觸媒大幅損失。 【發明內容】 現在意外發現在乙烯型不飽和化合物之醛化過程中, 當藉由未改質铑催化之醛化係於作爲溶劑之環狀碳酸酯存 在下進行時,選擇性及活性會增高,反應混合物之加工變 簡單,且觸媒安定性大幅增加。 本發明因此提出一種使用包含至少一種元素週期表第 -14- 1293950 (11) 8至1 0族金屬之未改質觸媒使具有3至24個碳原子之乙 烯型不飽和化合物進行催化性醛化的方法,其中該醛化係 於至少一種具有通式I之環狀碳酸酯存在下進行Korneeva, R. A. Aranovich, N. N. Rzhevskaya, S. M. Loktev, Neftekhimiya (1 9 8 5 ), 25 (6), 791-797). The formation of the Jun sheep collection is usually the cause of the formation of solid precipitates containing antimony and is the first step. This occurs during the distillation process, but sometimes also under the reaction conditions. The sediment containing cerium is deposited on the walls of the vessel and the wall of the vessel. This leads to a relatively uneconomical catalyst loss, which necessitates regular plant shutdowns and scrubbing in industrial applications. The ruthenium precipitate needs to be recovered by a complicated metallurgical route. On the one hand, because of the unattractive enthalpy as the attraction of the hydroformylation catalyst, and on the other hand, due to its instability, many cycles and/or recovery methods have been proposed. A series of methods for removing ruthenium from the reaction mixture are known to be carried out by solid adsorbents. Thus, for example, DE 1 9 54 3 1 5 proposes a weak to strong ion exchange resin based on polystyrene as an adsorbent. According to DE 2 0 4 5 4 1 6, the regeneration of the ion exchange resin which has been carried out is carried out by treating the mixture of a lower alcohol, an aliphatic amine and water in the presence of oxygen. The lanthanum contained in the lysate is converted to ruthenium chloride hydrate by evaporation and treatment with hydrochloric acid, which can again serve as a catalyst precursor. W 〇 02/204 5 1 and US 5 208 1 94 apply for a method of recovering ruthenium from an existing ion exchanger, which is calcined and from the ash obtained in the form of an oxide. In US 4 3 8 8 2 79, salts of metals of Groups 1 and 2 of the Periodic Table of the Elements, zeolite molecular sieves and ion exchange resins have been proposed as adsorbents. W Ο 0 1 /72 6 79 applies a method of adsorbing ruthenium on activated carbon, polydecanoic acid and alumina in the presence of hydrogen at a high temperature. Patent EP 0 3 5 5 8 3 7 describes a method of adsorbing ruthenium on a basic ion exchange resin which is ionically bonded to an organophosphorus -11-1293950 (8) monomer. Regeneration of the resin is carried out by dissolution of a solution containing an organophosphorus ligand. WO 97/03 93 8 applies a method of adsorbing active money substances and impurities onto an acidic ion exchange resin. The regeneration is carried out by dissolving the impurities in a neutral solvent in the first step and then dissolving the active hydrazine material using an acidic solvent. The catalyst recovered in this manner is suitably used in the hydroformylation after rehydrogenation. The disadvantage of all adsorption methods for recovering rhodium is that the problem of re-release of the active substance cannot be satisfactorily solved. It is apparent to those skilled in the art that the proposed solvent or solvent mixture for this project is not inert during hydroformylation and causes side reactions. For example, an acidic solvent induces a highly exothermic and uncontrolled aldol condensation of the aldehyde. The alcohol and amine undergo a condensation reaction with the aldehyde, thus reducing the product yield. Therefore, it is absolutely necessary to remove the aforementioned solvent or solvent mixture before the catalyst is recycled. This makes recycling complication extremely technically complex and expensive. Conversely, adsorption to ion exchangers, followed by ashing and metallurgical recovery, has reached some industrial importance. This method is a simple technique, but can of course be improved. • The use of an expensive basic ion exchanger as a consumable material, the metal oxide after ashing, and the metallurgical processing make the procedure steps more complicated. A series of processes are also known in which tethers are extracted from the reactor output by solution of each tether and recycled to the hydroformylation reactor after being re-released. Thus, hydrazine-catalyzed hydroformylation in the presence of a protonatable nitrogen-containing ligand, extraction of a ruthenium complex using an aqueous acid solution, deprotonation, and recycle of hydrazine to the program are known from DE 19603201. In DE 4230871, the aqueous solution is recycled directly to the reaction. In EP 0 5 3 8 73 2, -12-1293950 Ο) A method of extracting an output from a reactor using a phosphine aqueous solution under a synthetic gas pressure. WO 97/03 93 8 for the application of a water-soluble polymer, such as polyacrylic acid, maleic acid copolymer and phosphorous carboxymethylated polyvinylamine, polyethylenimine and polypropylene decylamine as a binder . EP 0 5 8 8 2 2 5 Application of pyridine, D-quine, 2,2,-bipyridine, 1,1 〇-phenanthroline, 2,2,-dipyridyl, 2,2',6',2 "-Tripyridine and porphyrin (which may be in sulfonated and/or carboxylated form) as a miscible agent. However, the complexing agents required for aqueous extraction are often expensive and difficult to obtain. In addition, these include two additional The step (extraction and catalyst release) requires an increase in engineering expenditure. Furthermore, a method is also known in which it is said that the addition of a ligand containing phosphorus (ΙΠ) prevents the formation of ruthenium precipitates when the reactor output is treated by distillation. (DE 3 3 3 8 3 4 0, US 4 5 4 0 0, 5 4 7 ). The regeneration or re-release of the acidified active hydrazine is carried out by oxidizing the phosphorus (III) ligand. The disadvantage is that the stabilizer is continuously consumed. The formed phosphorus (V) compound needs to be continuously taken out to prevent accumulation in the reactor system. Inevitably, some of the active forms are also discharged. This method can also be simultaneously applied to the technology. And improved by the combination. WO 82/03 8 5 6 applies for a distillation of the hydroformylation reactor output in the presence of oxygen In the presence of oxygen, a portion of the aldehyde formed in the hydroformylation process is oxidized to the corresponding carboxylic acid and reacted with the hydrazine species to form a soluble carboxylic acid hydrazine. The carboxylic acid can be recycled to the process. The disadvantage is that the yield of the desired product is reduced. The unpublished patent application DE 1 02 4 0 2 5 3 describes a modification of the phosphorus ligand by predominantly metals of Groups 8 to 10 of the Periodic Table of the Elements. Touch-13-1393950 (10) Hydroformylation in the presence of a medium using a cyclic carbonate as a solvent. The use of unmodified metal complexes of metals from Groups 8 to 10 of the Periodic Table is not described. 226662 describes a method for awakening a hydrocarbon compound in which a ruthenium catalyst is used together with a sodium salt of a sulfonated triphenylphosphine as a secondary catalyst, that is, a modified catalyst is used. The reaction is based on a polar component and a carboxy group. The polar component can be, for example, ethylene glycol carbonate. The polar component can be recycled to the hydroformylation reaction with the acid and the catalyst. However, the procedure can be used only for terminal olefins ( Relative activity). If it is internal olefin, special Internally highly branched olefins, the catalytic activity is much lower than that required for industrial use. It is known that the process of recycling or recovering hydrazine from the use of unmodified hydrazine as a hydroformylation catalyst can be improved from a technical and economic point of view. Therefore, the prior art does not include a method which is technically and economically satisfactory in that it is difficult to use an unmodified ruthenium as a catalyst for alkenylation of acetylation. Therefore, the object of the present invention is to propose a target for this level. There is a method of drastic improvement, in particular, a method of easily recovering a catalyst, which greatly reduces the deactivation of the catalyst, thereby preventing a large loss of the catalyst. [Summary of the Invention] It is now unexpectedly found in an ethylenically unsaturated compound. In the hydroformylation process, when the hydroformylation catalyzed by the unmodified ruthenium is carried out in the presence of a cyclic carbonate as a solvent, the selectivity and activity are increased, the processing of the reaction mixture becomes simple, and the catalyst stability is greatly improved. increase. The present invention therefore provides a catalytic aldehyde for an ethylenically unsaturated compound having from 3 to 24 carbon atoms using an unmodified catalyst comprising at least one metal of Groups 14-1423950 (11) 8 to 10 of the Periodic Table of the Elements. a method in which the hydroformylation is carried out in the presence of at least one cyclic carbonate having the formula I

其中 R1、R2、R3、R4係相同或相異,且各係爲Η或具有1 至27個碳原子之經取代或未經取代的脂族、脂環族、芳 族、脂族-脂環族、:脂族-芳族或脂環族-芳族烴基, η係爲〇至5, X係爲具有1至2 7個碳原子之二價經取代或不經取 代脂族、脂環族、芳族、脂族-脂環族或脂族-芳族烴基, 該碳酸酯之比例係爲該反應混合物之至少1重量%。 本發明使用碳酸酯作爲溶劑之應用使其可於未改質觸 媒(尤其是鍺觸媒)存在下進行醛化,且可再次使用未改 質觸媒。 前述一般使用於以鍺催化之醛化中的經改質配位體具 有受限之熱安定性,通常將反應溫度限制於1 2 0至1 3 〇 °C 。難以醛化之乙烯型不飽和化合物(例如內部烯烴,尤其 是內部高度分支鏈烯烴)之反應中,該經配位體改質之鍺 觸媒於受限於配位體熱安定性之反應溫度及由1至2 7 0巴 -15- 1293950 (12) 之習用反應壓力下顯示在工業上無法令人滿意之活性。 相反地,未改質铑於難以醛化之乙烯型不飽和化合物 的反應中具有遠較爲高之活性。然而,該低熱安定性係爲 缺點(N.S. Imyanitov,Rhodium Express,( 1995),10/11, 3 -64 )。難以醛化之乙烯型不飽和化合物的實例係爲內部 烯烴,尤其是內部高度分支鏈烯烴,其係爲藉著將丙烯及 正丁烯二聚化及寡聚化所製得之異構物混合物形式,例如 三丙烯、四丙烯、二丁烯、三丁烯、四丁烯及五丁烯。 本發明方法尤其具有觸媒之長期安定性較習用溶劑中 所使用之觸媒長的優點。此外,所用溶劑使得觸媒與反應 混合物之分離變得簡單,因爲該觸媒係存在於亦存有作爲 溶劑之環狀碳酸酯的相中,不論進行加工之方式如何皆然 (藉蒸餾或經由相分離)。該混合物可直接以觸媒溶液形 式送回醛化反應器。藉著相分離將反應器輸出物分成包含 產物及未反應起始物質之級份及含觸媒之級份對於觸媒係 遠較藉蒸餾加工溫和。不會在減壓下對觸媒產生熱應力, 故避免形成惰性金屬觸媒物質及含有金屬之沉澱物。在藉 蒸f留分離時,亦意外地大幅避免因爲形成惰.性金屬觸媒物 質及含金屬之沉澱物而減活。 本發明方法可在最高達220。(:之溫度下使用具有特別 高活性之觸媒進行內部高度分支鏈烯烴的醛化。該醛化之 轉化率及選擇性(尤其是內部高度分支鏈烯烴者)可因此 增加。 下文以實施例描述本發明方法,但本發明不受限於此 -16- 1293950 (13) 等特定實施例。熟習此項技術者可推演其他變化形式,其 亦爲本發明標的且範圍係由本文描述及申請專利範圍所表 7f\ ° 本發明使用包含至少一種元素週期表第8至10族金 屬之未改質觸媒將具有3至24個碳原子之乙烯型不飽和 化㈡物(尤其7E細煙)催化|全化的方法中,該醒化係於至 少一種具有通式I之環狀碳酸酯存在下進行Wherein R1, R2, R3, and R4 are the same or different, and each is a substituted or unsubstituted aliphatic, alicyclic, aromatic, aliphatic-alicyclic ring having from 1 to 27 carbon atoms. a family, an aliphatic-aromatic or alicyclic-aromatic hydrocarbon group, a η system of 〇 to 5, and a X-type divalent substituted or unsubstituted aliphatic or alicyclic group having 1 to 27 carbon atoms An aromatic, aliphatic-alicyclic or aliphatic-aromatic hydrocarbon group having a ratio of at least 1% by weight of the reaction mixture. The use of a carbonate as a solvent in the present invention allows it to be hydroformylated in the presence of an unmodified catalyst (especially a ruthenium catalyst), and the unmodified catalyst can be reused. The above-mentioned modified ligands which are generally used in the hydroformylation of rhodium catalysis have limited thermal stability, and the reaction temperature is usually limited to 120 to 13 ° C. In the reaction of a vinylidene-unsaturated compound which is difficult to hydroformylate (for example, an internal olefin, especially an internal highly branched olefin), the ligand-modified ruthenium catalyst is limited to the reaction temperature of the ligand thermal stability. And the industrially unsatisfactory activity is shown by the conventional reaction pressure of 1 to 270 bar -15-1293950 (12). On the contrary, the unmodified product has a much higher activity in the reaction of the ethylenically unsaturated compound which is difficult to hydroformylate. However, this low thermal stability is a disadvantage (N.S. Imyanitov, Rhodium Express, (1995), 10/11, 3-64). Examples of ethylenically unsaturated compounds which are difficult to hydroformylate are internal olefins, especially internal highly branched olefins, which are mixtures of isomers prepared by dimerization and oligomerization of propylene and n-butene. Forms such as tripropylene, tetrapropylene, dibutene, tributene, tetrabutene and pentabutene. The process of the present invention has, inter alia, the advantage that the long-term stability of the catalyst is longer than that of the catalyst used in conventional solvents. Further, the solvent used makes the separation of the catalyst and the reaction mixture simple because the catalyst is present in the phase in which the cyclic carbonate as a solvent is also present, regardless of the manner in which the processing is carried out (by distillation or via Phase separation). The mixture can be returned directly to the hydroformylation reactor as a catalyst solution. The separation of the reactor output into the product containing the product and the unreacted starting material by phase separation and the catalyst-containing fraction are much milder for the catalyst system than by the distillation process. Thermal stress is not generated on the catalyst under reduced pressure, so formation of inert metal catalyst materials and metal-containing precipitates are avoided. In the case of separation by steaming, it is also unexpectedly greatly avoided to be deactivated by the formation of inert metal catalyst materials and metal-containing precipitates. The process of the invention can be up to 220. The hydroformylation of internal highly branched olefins is carried out at a temperature of: a catalyst having a particularly high activity. The conversion and selectivity of the hydroformylation (especially those of internal highly branched olefins) can be increased accordingly. The method of the present invention is described, but the present invention is not limited to the specific embodiments of the present invention, such as the ones of the present invention, and other variations, which are also subject to the description and application of the present invention. Scope of the Patent Table 7f\° The present invention uses an unmodified catalyst comprising at least one metal of Groups 8 to 10 of the Periodic Table of the Elements to have an ethylenic unsaturation (2) having 3 to 24 carbon atoms (especially 7E fine smoke). In the catalytic | totalization process, the wake-up is carried out in the presence of at least one cyclic carbonate having the general formula I

其中 R1、R2、R3、R4係相同或相異,且各係爲H或具有1 至2 7個碳原子之經取代或未經取代的脂族、脂環族、芳 族、脂族-脂環族、脂族·芳族或脂環族_芳族烴基,Wherein R1, R2, R3, and R4 are the same or different, and each is H or a substituted or unsubstituted aliphatic, alicyclic, aromatic, aliphatic-lipid having 1 to 27 carbon atoms. a cyclo, aliphatic, aromatic or alicyclic aromatic hydrocarbon group,

η 係爲〇至5, X 係爲具有1至27個碳原子之二價經取代戥不 經取代脂族、脂環族、芳族、脂族-脂環族或脂族_芳族灼 基, ^ 該碳酸酯之比例係爲該反應混合物之至少1重量。。 取代基R至R及X可相同或相異,且係經〇、Ν Ν Η、Ν -烷基或Ν -二烷基所取代。此外,此等基團可具有 官能基諸如鹵素(氟、氯、溴、碘)、-〇H、-OR、_c -17- 1293950 (14) )烷基、-CN或-C ( Ο ) 0烷基。此外,若此等基團係爲 至少三個遠離酯基之0原子,則其中之C、CH或CH2基 團可由 0、1^、1^、1^-烷基或心二烷基所置換。該烷基 仍可具有1至27個碳原子。 本發明方法中,較佳係使用乙二醇碳酸酯、丙二醇碳 酸酯、丁二醇碳酸酯或其混合物,例如乙二醇碳酸酯與丙 二醇碳酸酯之混合物(重量比=5 0 : 5 0 )作爲環狀碳酸酯。 本發明方法中,環狀碳酸酯之比例係爲反應混合物之 1至9 8重量%,以5至7 0重量%爲佳,而5至5 0重量% 特佳。 可在該環狀碳酸酯之外,另外使用其他溶劑。特別方 法變化形式中,本發明之醛化反應因此係於至少一種非極 性溶劑(與環狀碳酸酯I不相溶混)存在下進行。具有通 式I之碳酸醋係具有超過30之介電常數。與環狀碳酸酯I 不相溶混且使用於本發明方法中之非極性溶劑係具有低於 20之介電常數,以1.1至10爲佳,尤其是1.1至5。使 用附加(尤其是非極性)溶劑使其可(例如)產生呈單一 相或呈兩相之反應混合物,尤其是反應器之輸出物。依此 方式可簡化處理反應器輸出物所使用之加工處理。該醛化 之反應產物可使用與環狀碳酸酯I不相溶混之非極性溶劑 萃取,此情況下,該溶劑或可於反應期間存在於該反應混 合物中,或僅在完成反應之後添加。 可能之非極性溶劑係爲具有1 〇至5 0個碳原子之經取 代或不經取代烴類,例如醛化反應之高沸點副產物、 -18- 1293950 (15)η is 〇 to 5, X is a divalent substituted fluorene having 1 to 27 carbon atoms, unsubstituted aliphatic, alicyclic, aromatic, aliphatic-alicyclic or aliphatic-aromatic base , ^ The ratio of carbonate is at least 1 weight of the reaction mixture. . The substituents R to R and X may be the same or different and are substituted by hydrazine, hydrazine, hydrazine-alkyl or hydrazine-dialkyl. Furthermore, such groups may have a functional group such as halogen (fluoro, chloro, bromo, iodo), -〇H, -OR, _c -17-1293950 (14) )alkyl, -CN or -C ( Ο ) 0 alkyl. Further, if the groups are at least three atoms away from the ester group, the C, CH or CH2 group may be replaced by 0, 1^, 1^, 1^-alkyl or cardinyl dialkyl. . The alkyl group may still have from 1 to 27 carbon atoms. In the method of the present invention, ethylene glycol carbonate, propylene glycol carbonate, butanediol carbonate or a mixture thereof, for example, a mixture of ethylene glycol carbonate and propylene glycol carbonate (weight ratio = 50: 5 0) is preferably used. As a cyclic carbonate. In the process of the present invention, the proportion of the cyclic carbonate is from 1 to 98% by weight of the reaction mixture, preferably from 5 to 70% by weight, particularly preferably from 5 to 50% by weight. Other solvents may be additionally used in addition to the cyclic carbonate. In a special process variant, the hydroformylation reaction of the invention is therefore carried out in the presence of at least one non-polar solvent (immiscible with cyclic carbonate I). The carbonated vinegar having the general formula I has a dielectric constant of more than 30. The non-polar solvent which is immiscible with the cyclic carbonate I and which is used in the process of the invention has a dielectric constant of less than 20, preferably from 1.1 to 10, especially from 1.1 to 5. The use of additional (especially non-polar) solvents makes it possible, for example, to produce a reaction mixture in a single phase or in two phases, especially the output of the reactor. In this way, the processing used to process the reactor output can be simplified. The hydroformylation reaction product may be extracted using a non-polar solvent which is immiscible with the cyclic carbonate I, in which case the solvent may be present in the reaction mixture during the reaction or may be added only after completion of the reaction. Possible non-polar solvents are substituted or unsubstituted hydrocarbons having from 1 〇 to 50 carbon atoms, such as high boiling by-products of hydroformylation, -18-1293950 (15)

Texanol或丙烯或丁烯進行四聚化或高聚化且經後續氫化 所得之異構物混合物,即四丁烷、五丁烷、四丙烷及/或 五丙烷。亦可使用具有3至24個碳原子之烯烴,尤其是 用於醛化之烯烴,來作爲非極性溶劑,藉著進行醛化反應 至不完全轉化(例如僅至9 5 %轉化率,以9 0 %爲佳,尤其 是80%)且/或在醛化反應期間及/或之後添加其他烯烴淤 反應混合物。 本發明方法中,非極性溶劑之比例係爲反應混合物之 〇至90重量%,以5至50重量%爲佳,尤其是5至30重 量% 〇 爲避免副產物,非極性溶劑在醛化反應條件下需大體 呈惰性,除非其係所使用之乙烯型不飽和化合物。 本發明方法中,反應混合物在醛化反應器中於整體轉 化過程內可爲單一相或爲兩相。然而,進料混合物在反應 過程中,亦可在低轉化率時先由兩相構成,而在高轉化率 下則變成單一相。單相進料混合物可在本發明方法過程中 變成雙相產物混合物。此外,該相性質與溫度關係密切。 例如,在反應溫度下爲單一相之反應混合物可在冷卻時分 成兩相。在反應溫度下爲兩相之反應混合物亦可在冷卻時 變均句。 本發明方法可使用元素週期表第8至1 0族之各種催 化活性金屬進行,但以使用铑進行爲佳。就本發明而言, 包含元素週期表第8至10族金屬之未改質觸媒係爲不包 含改質配位體的觸媒。就本專利申請案而言,改質配位體 -19- 1293950 (16) 係爲含有一或多個元素週期表第8至15族予體原子的化 合物。然而,改質配位體不包括羰基、氫基、烷氧基、烷 基、芳基、烯丙基、醯基或烯配位體,亦不包括用於觸媒 形成之金屬鹽的抗衡離子,例如鹵基諸如氟、氯、溴或碘 、乙醯基丙酮酸根、羧酸根諸如乙酸根、2 -乙基己酸根、 己酸根、辛酸根或壬酸根。特佳之未改質觸媒係爲 HRh ( CO ) 3。 醛化反應所使用之活性觸媒錯合物係自金屬之鹽或化 合物(觸媒前驅物)及合成氣體形成。此者較佳係於醛化 過程中於原位發生。習用觸媒前驅物係爲Rh ( I ) 、Rh ( II )及Rh ( III )鹽,例如乙酸鹽、辛酸鹽、壬酸鹽、乙 醯基丙酮酸鹽、或鹵化物,及羰基铑。金屬於該反應混合 物中之濃度以1 p p m至1 0 0 0 p p m範圍內爲佳,5 p p m至 3 0 0 ρ ρ ηι範圍內較佳。 本發明方法中醛化用之起始物質係爲含有乙烯型不飽 和C-C雙鍵之化合物,尤其是烯烴或烯烴混合物,尤其是 具有3至24個(以4至16個爲佳,尤其是4至丨2個) 碳原子且具有末端或內部C-C雙鍵之單烯烴,例如^或 2-戊燃、2 -甲基-1-丁·、2 -甲基-2-丁燒、3 -甲基-1-丁燃 、卜、2 -或3 -己烯、丙烯之二聚化所得之C 6 -烯烴混合物 (二丙烯)、庚烯、2-或3-甲基-1-己烯、辛烯、2_甲基 庚烯、3-甲基庚烯、5-甲基-2-庚烯、6-甲基-2-庚烯、乙 基-1-己烯、正丁烯之二聚化所製得的異構C8-烯烴混合物 、異丁烯之二聚化所製得之C i烯烴混合物(二異丁烯) -20- 1293950 (17) 、壬烯、2-或3-甲基辛烯、丙烯之三聚化所製得的C9-烯 烴混合物(三丙烯)、癸烯、2-乙基-1 -辛烯、十二碳稀 、丙烯之四聚化或.丁烯之三聚化所製得的C】2-烯烴混合物 (四丙烯或三丁烯)、十四碳烯、十六碳烯、丁烯之四聚 化所製得的烯烴混合物(四丁烯)及藉著具有不同數 目之碳原子(以2至4個爲佳)之烯烴藉共寡聚所製備之 烯烴混合物,若適當,則在藉蒸餾分成具有相同或類似鏈 長的餾份之後。亦可使用藉Fischer-Trohsch合成製得之 烯烴或烯烴混合物及藉著可經由置換反應製得之乙烯或烯 烴的寡聚化製得之烯烴。較佳起始物質係爲C4-、C6-、 Cs-、(:9_、C!2.或C16-烯烴混合物。此外,,本發明方法可 使用於聚合乙烯型不飽和化合物之醛化,諸如聚異丁烯或 1,3 - 丁二烯共聚物或異丁烯共聚物。聚合烯烴之分子量的 影響極小,其先決條件爲該燦烴充分可溶於該醒化介質中 。該聚合烯烴之分子量以低於1 0 0 0 0克/莫耳爲佳,尤其 是低於5 000克/莫耳。 該合成氣體中一氧化碳對氫之體積比通常係由2:1至 1 : 2,尤其是1。該合成氣體以使用過量爲佳,例如高達 化學計量之三倍的量。 該醛化通常係於1至3 5 0巴之壓力下進行,以1 5至 2 70巴壓力爲佳。所用壓力係視進料烯烴之結構、所用觸 媒及所需效果而定。因此,例如,α -烯烴可於低於1 〇〇 巴之壓力下於铑觸媒存在下在高空間-時間產率下轉化成 對應之醛。相反地,若爲具有內部雙鍵之烯烴,尤其是分 -21 - 1293950 (18) 支鏈烯烴,以較高壓力爲佳。 本發明方法中之反應溫度以20至22〇t爲佳,100 °C 至200°C更佳,150°C至19(TC特佳,尤其是16〇至i8(TC 。高於150°C之反應溫度特別可改善·末端對內部雙鍵之比 例,因爲在高溫下,因爲加速異構之結果,較多末端雙鍵 變成有效,而較佳末端位置之酸化增多。 本發明方法可分批或連續地進行。然而,以連續操作 爲佳。適當之反應器包括實質上所有熟習此項技術者已知 之氣體-液體反應器,例如噴射攪動容器或泡罩塔或管式 反應器(具有或不具有再循環)。以階式泡罩塔及配置有 靜態混合元件之管式反應器。 本發明方法所得之反應器輸出係包含可能未反應之乙 烯型不飽和化合物(烯烴)、反應產物、反應副產物、至 少一種環狀碳酸酯、可能非極性溶劑及觸媒。視作爲起始 物質之烯烴化合物的類型及質量分率、所含任何非極性溶 劑之種類及質量分率及環狀碳酸酯之種類及質量分率而定 ,反應器輸出可爲單一相或爲雙相。如前文所述,可藉著 適當地添加環狀碳酸酯或非極性溶劑,而達到或防止相分 本發明方法中之反應器輸出物加工處理可分兩變化形 式進行,視反應器輸出物之相性質而定。若爲雙相反應器 輸出物,則以經由相分離進行加工處理爲佳,此稱爲變化 形式A,若爲單相反應器輸出物,則以藉蒸餾進行加工處 理爲佳,此稱爲變化形式B。 -22- 1293950 (19) 合成氣體以在醛化之後,在根據變化形式A或B進 一步加工處理反應器輸出物之前,藉減壓移除合成氣體之 主要部分爲佳。The mixture of isomers obtained by tetramerization or polymerization of Texanol or propylene or butene and subsequent hydrogenation, i.e., tetrabutane, pentabutane, tetrapropane and/or pentapropane. It is also possible to use olefins having 3 to 24 carbon atoms, especially olefins for hydroformylation, as non-polar solvents, by performing a hydroformylation reaction to incomplete conversion (for example, only to 95% conversion, to 9 Preferably, 0%, especially 80%) and/or additional olefinic sludge reaction mixture is added during and/or after the hydroformylation reaction. In the process of the invention, the proportion of the non-polar solvent is from 90% by weight of the reaction mixture, preferably from 5 to 50% by weight, especially from 5 to 30% by weight. To avoid by-products, the non-polar solvent is hydroformylated. It is generally inert under the conditions unless it is a vinyl-type unsaturated compound used. In the process of the present invention, the reaction mixture may be a single phase or a two phase in the overall conversion process in the hydroformylation reactor. However, the feed mixture may also be composed of two phases at a low conversion rate and a single phase at a high conversion rate during the reaction. The single phase feed mixture can be converted to a biphasic product mixture during the process of the invention. In addition, the phase properties are closely related to temperature. For example, a reaction mixture which is a single phase at the reaction temperature can be separated into two phases upon cooling. The reaction mixture which is two phases at the reaction temperature may also be a uniform sentence upon cooling. The process of the present invention can be carried out using various catalytically active metals of Groups 8 to 10 of the Periodic Table of the Elements, but it is preferred to use hydrazine. For the purposes of the present invention, an unmodified catalyst comprising a metal of Groups 8 to 10 of the Periodic Table of the Elements is a catalyst which does not comprise a modified ligand. For the purposes of this patent application, the modified ligand -19-1293950 (16) is a compound containing one or more host atoms of Groups 8 to 15 of the Periodic Table of the Elements. However, the modified ligand does not include a carbonyl group, a hydrogen group, an alkoxy group, an alkyl group, an aryl group, an allyl group, a fluorenyl group or an ene ligand, and does not include a counter ion for a metal salt formed by a catalyst. For example, a halogen group such as fluorine, chlorine, bromine or iodine, acetylpyruvate, a carboxylate such as acetate, 2-ethylhexanoate, hexanoate, octanoate or citrate. The best unmodified catalyst is HRh (CO) 3. The active catalyst complex used in the hydroformylation reaction is formed from a metal salt or a compound (catalyst precursor) and a synthesis gas. This preferably occurs in situ during the hydroformylation process. The conventional catalyst precursors are Rh (I), Rh (II) and Rh (III) salts, such as acetate, octoate, decanoate, ethyl phthalate, or halides, and ruthenium carbonyl. The concentration of the metal in the reaction mixture is preferably in the range of 1 p p m to 1 0 0 p p m , preferably in the range of 5 p p m to 3 0 0 ρ ρ ηι. The starting material for hydroformylation in the process of the invention is a compound containing ethylenically unsaturated CC double bonds, especially an olefin or a mixture of olefins, especially having from 3 to 24 (preferably from 4 to 16 in particular, especially 4) To 2) a monoolefin having a carbon atom and having a terminal or internal CC double bond, such as ^ or 2-pentane, 2-methyl-1-butan, 2-methyl-2-butane, 3-A a C 6 -olefin mixture (dipropylene), heptene, 2- or 3-methyl-1-hexene obtained by dimerization of ketone-1-butane, di, 2- or 3-hexene and propylene, Octene, 2-methylheptene, 3-methylheptene, 5-methyl-2-heptene, 6-methyl-2-heptene, ethyl-1-hexene, n-butene C i olefin mixture (diisobutylene) -20-1293950 (17), terpene, 2- or 3-methyl octene obtained by polymerization of an isomeric C8-olefin mixture obtained by polymerization and dimerization of isobutylene And tetramerization of C9-olefin mixture (tripropylene), terpene, 2-ethyl-1-octene, dodecene, propylene or trimerization of butene obtained by trimerization of propylene The prepared C] 2-olefin mixture (tetrapropylene or tributene), tetradecene, hexadecene An olefin mixture (tetrabutene) obtained by tetramerization of butene and an olefin mixture prepared by co-oligomerization of an olefin having a different number of carbon atoms (preferably 2 to 4), if appropriate, It is then divided into fractions having the same or similar chain length by distillation. It is also possible to use an olefin or olefin mixture obtained by Fischer-Trohsch synthesis and an olefin obtained by oligomerization of ethylene or an olefin which can be obtained by a displacement reaction. Preferred starting materials are C4-, C6-, Cs-, (:9-, C!2. or C16-olefin mixtures. Furthermore, the process of the invention allows for the hydroformylation of polymeric ethylenically unsaturated compounds, such as a polyisobutylene or a 1,3-butadiene copolymer or an isobutylene copolymer. The influence of the molecular weight of the polymerized olefin is extremely small, provided that the condensed hydrocarbon is sufficiently soluble in the awake medium. The molecular weight of the polymerized olefin is lower than 1 0 0 0 0 / mol is preferred, especially less than 5 000 g / mol. The volume ratio of carbon monoxide to hydrogen in the synthesis gas is usually from 2:1 to 1:2, especially 1. The synthesis The gas is preferably used in excess, for example up to three times the stoichiometric amount. The hydroformylation is usually carried out at a pressure of from 1 to 350 bar, preferably from 15 to 2 70 bar. Depending on the structure of the olefin, the catalyst used and the desired effect, for example, the α-olefin can be converted to a corresponding high-space-time yield in the presence of a rhodium catalyst at a pressure of less than 1 Torr. Aldehyde. Conversely, if it is an olefin having an internal double bond, especially a fraction of -21,939,950 (18) Branched olefins are preferred at higher pressures. The reaction temperature in the process of the invention is preferably from 20 to 22 Torr, more preferably from 100 ° C to 200 ° C, and from 150 ° C to 19 (TC is particularly preferred, especially 16). 〇 to i8 (TC. The reaction temperature above 150 °C is particularly improved. The ratio of the end to the internal double bond, because at high temperatures, more end double bonds become effective, and better ends, as a result of accelerated isomerism. The acidification of the location is increased. The process of the invention can be carried out batchwise or continuously. However, continuous operation is preferred. Suitable reactors include substantially all gas-liquid reactors known to those skilled in the art, such as spray agitation vessels or Bubble column or tubular reactor (with or without recirculation). A bubble column with a cascade and a tubular reactor equipped with a static mixing element. The reactor output obtained by the process of the invention contains possibly unreacted ethylene. Type unsaturated compound (olefin), reaction product, reaction by-product, at least one cyclic carbonate, possibly non-polar solvent and catalyst. The type and mass fraction of the olefin compound as the starting material, and any non-containing Depending on the type and mass fraction of the solvent and the type and mass fraction of the cyclic carbonate, the reactor output may be a single phase or a two phase. As described above, a cyclic carbonate may be appropriately added or Non-polar solvent to achieve or prevent phase separation The reactor output processing in the process of the invention can be carried out in two variations, depending on the phase nature of the reactor output. If it is a two-phase reactor output, It is preferred to carry out the processing via phase separation, which is referred to as variant A. If it is a single-phase reactor output, it is preferably processed by distillation, which is referred to as variant B. -22- 1293950 (19) Synthesis The gas is preferably removed by decompression to remove a major portion of the synthesis gas after the hydroformylation, prior to further processing of the reactor output according to variant A or B.

變化形式A 此方法變化形式中,來自醛化反應之雙相反應器輸出 以藉相分離來分離成主要包含觸媒及環狀碳酸酯之級份及 主要包含醛化產物及未反應烯烴或乙烯型不飽和化合物之 級份爲佳。 此方法變化形式可採用於使用選擇性其他非極性溶劑 時。該非極性溶劑可與起始烯烴相同,使得醛化反應未進 行至完全轉化(例如僅達95%,以90%爲佳,80%特佳) 且/或可在醛化反應過程中及/或之後添加其他烯烴於該反 應混合物。 本發明方法之變化形式A係由圖1說明,但方法不 限於此實施例:合成氣體(1 )、烯烴(2 )及溶解於環狀 碳酸酯或多種環狀碳酸酯之混合物中的醒化觸媒(3 )於 醛化反應器(4 )中反應。該反應器輸出(5 )可視情況於 減壓容器(6)中除去過量合成氣體(7)。此方式所得之 液流(8 )以於分離裝置(9 )中分離產生重質相(1 〇 ), 其包含主要部分之環狀碳酸酯及觸媒,與高沸點副產物, 及輕質相(1 1 ),其包含醛化產物、未反應之烯烴及(若 有使用)非極性溶劑。相分離可於0 °C至1 3 (TC之溫度下 進行’以1 〇 °C至6 0 °C爲佳。相分離可於(例如)沉降容 -23- 1293950 (20) 器中進行。分離裝置(9 )中之相分離以於1 : 力(以15至270巴爲佳)壓力下於合成氣體 ,但於與醛化反應器(4 )中所使用相同之壓 佳。該分離裝置(9 )可視情況藉熱交換器進 產液流(5 )(未出示於圖1 )。在選擇性分 )中,可自液流(1 1 )取出觸媒殘留物。液流 1 3 )隨之通至分離階段(1 4 )。此情況下,分 (醛及醇)及未反應烯烴(1 5 ),且送至進一 化步驟。已自液流(1 5 )分離之烯烴可送回相 送至選擇性進一步反應階段。亦分離之級份( (例如)殘留環狀碳酸酯、反應產物、任何所 非極性溶劑及高沸點副產物。級份(1 6 )可丟 回至醛化反應器(4 )。丟棄不需要之副產物 係在再循環之前進行。該分離裝置(9 )中之 以萃取進行,至少部分級份(16 )及/或至少 烴(2 )係直接進料至液流(8 )內。該萃取以 佳,且可爲單階萃取或以多階方法形式逆流、 地操作。含有觸媒之卸料流,例如來自液流( 分離階段(1 2 ),可藉已知方法加工處理,以 用之形式的觸媒金屬。Variant A In this variant of the process, the output of the two-phase reactor from the hydroformylation reaction is separated by phase separation into fractions comprising mainly catalysts and cyclic carbonates and mainly comprising hydroformylation products and unreacted olefins or ethylene. The fraction of the unsaturated compound is preferred. This method variant can be used when using other non-polar solvents. The non-polar solvent may be the same as the starting olefin such that the hydroformylation reaction is not carried out to complete conversion (eg, only up to 95%, preferably 90%, particularly preferably 80%) and/or may be during the hydroformylation reaction and/or Additional olefins are then added to the reaction mixture. Variation A of the method of the present invention is illustrated by Figure 1, but the method is not limited to this embodiment: synthesis gas (1), olefin (2), and awake in a mixture of a cyclic carbonate or a plurality of cyclic carbonates. The catalyst (3) is reacted in the hydroformylation reactor (4). The reactor output (5) may optionally remove excess synthesis gas (7) in a reduced pressure vessel (6). The liquid stream (8) obtained in this manner is separated into a heavy phase (1 〇) in a separation device (9), which comprises a main portion of a cyclic carbonate and a catalyst, a high-boiling by-product, and a light phase. (1 1 ), which comprises a hydroformylation product, an unreacted olefin, and, if used, a non-polar solvent. The phase separation can be carried out at a temperature of from 0 ° C to 13 (at a temperature of TC of from 1 〇 ° C to 60 ° C. The phase separation can be carried out, for example, in a settling chamber -23-1293950 (20). The phase separation in the separation unit (9) is at a pressure of 1: for a pressure (preferably 15 to 270 bar), but is preferably the same pressure as used in the hydroformylation reactor (4). (9) The heat exchanger can be used to feed the liquid stream (5) (not shown in Figure 1). In the selective fraction, the catalyst residue can be taken out from the liquid stream (1 1 ). The liquid stream 1 3 ) then passes to the separation stage (1 4 ). In this case, the aldehyde (alcohol and alcohol) and the unreacted olefin (15) are fed to a further step. The olefins that have been separated from the liquid stream (15) can be sent back to the selective further reaction stage. Also separated fractions (for example, residual cyclic carbonates, reaction products, any non-polar solvents, and high-boiling by-products. Fractions (16) can be thrown back into the hydroformylation reactor (4). The by-product is carried out prior to recycling. The separation device (9) is subjected to extraction, and at least a portion of the fraction (16) and/or at least the hydrocarbon (2) is fed directly into the liquid stream (8). Preferably, the extraction is preferably a single-stage extraction or a countercurrent operation in a multi-stage process. The catalyst-containing discharge stream, for example from a liquid stream (separation stage (12), can be processed by known methods to Catalyst metal in the form of a catalyst.

變化形式B 此方法變化形式中,該醛化反應之均勻反 藉蒸餾分離成主要包含醛化產物及可能未反應 g 3 5 0巴壓 下進行爲佳 力下進行尤 行,以冷卻 離階段(1 2 (11 )或( 離反應產物 步加工或氫 同反應器或 1 6 )係包含 添加之其他 棄或再循環 的加工較佳 觸媒分離可 部分新鮮燒 連續進行爲 順流或交流 10 )或來自 回收可再使 應器輸出係 烯烴或乙烯 - 24- 1293950 (21) 型不飽和化合物之相對低沸點餾份,及主要包含環狀碳酸 酯及觸媒之高沸點餾份。 本發明方法變化形式B係說明於圖2,該方法不限於 此實施例:合成氣體(1 )、烯烴(2 )及溶解於環狀碳酸 酯或多種環狀碳酸酯混合物中之醛化觸媒(3 )係於醛化 反應器(4 )中進行反應。反應器輸出可視情況於減壓容 器(6)中除去過量合成氣體(7)。此方式所得之液流( 8 )以於分離裝置(9 )中分離產生包含主要部分之環狀碳 酸酯及觸媒之局沸點相(1 0 ),及包含醒化產物、未反應 之烯烴及(若有使用)非極性溶劑之低沸點相(1 1 )。含 有觸媒之餾份(1 0 )再循環至醛化反應器。此可視情況藉 加工步驟處理,其中卸除高沸點副產物及/或觸媒降解產 物(未出示於圖2中)。餾分(1 1 )可視情況於分離步騾 (1 2 )中去除觸媒殘留物。液流1 3隨之送至蒸館階段( 14)。此情況下,醛化產物(醛類及醇類)(1 6 )係藉蒸 餾自未反應烯烴(1 5 )分離。含有觸媒之卸料流(例如液 流(1 〇 )或來自分離階段(1 2 ))可藉熟習此項技術者已 知之方法(例如自WO 02/2045 1或US 5,20 8,194得知) 加工回收可再使用形式之觸媒金屬。該醛化產物隨之進一 步加工。 未反應之烯烴(1 5 )可送回相同醛化反應器或送入選 擇性第二反應階段。當該程序係工業化地進行時,該分離 裝置可具有各種不同之設計。該分離以藉由降膜蒸發自、 短程蒸發器或薄膜蒸發器或此等裝置之組合來進行爲佳。 -25- 1293950 (22) 該種組合之優點係爲(例如)仍溶解之合成氣體及主要部 分之產物及未反應起始物質可在第一步驟中自含有觸媒之 烷二醇碳酸酯溶液分離(例如降膜蒸發器或急驟蒸發器) ,而殘留烷二醇碳酸酯之移除及產物與未反應起始物質之 分離則可於第二步驟中進行(例如組合兩塔)。 本發明方法之兩變化形式A及B中,已去除觸媒、 過量合成氣體及主要部分溶劑(即環狀碳酸酯或其多種之 混合物)的反應器輸出物較佳係進一步分灕成醛類(醇類 )、烯烴、溶劑及副產物。如前文所示,此可藉(例如) 蒸餾達成。已自反應輸出物或與醛化產物分離之烯烴及/ 或溶劑(烷二醇碳酸酯及/或非極性溶劑)可再循環至該 醛化反應。 前述本發明方法變化形式係包括分離反應器輸出物及 選擇性醛化產物;此可藉(例如)蒸餾進行。然而,亦可 使用其他分離方法,例如描述於(尤其是)W Ο 0 1 / 6 8 2 4 7 、EP 0 9 22 6 9 1、WO 99/3 8 8 3 2、US 5 64 8 5 54 及 US 5 1 38 ] 01中之萃取,或描述於(尤其是)DE 1 9 5 3 64 1、GB 1312076、NL 8 7 0 0 8 8 1、DE 3842819、W Ο 9419104、DE 1 963 2600及EP 1 1 03 3 03中之滲透。當該分離係工業化地 進行時,可採用各種方法。該分離以藉降膜蒸發器、短程 蒸發器或薄膜蒸發器或此等裝置之組合進行爲佳。萃取分 離以連續地進行爲佳。可設計爲單階方法或以多階方法形 式逆流或交流地操作。 在所有方法變化形式中,包含觸媒之級份皆以再循環 -26- 1293950 (23) 至醛化反應爲佳。此點當然與溶解有觸媒之級份的組成無 關。 當該標的產物並非醛本身,而是自其衍生之醇時,已 除去合成氣體及觸媒且可能除去溶劑之反應產物混合物可 在烯烴分離之前或之後進行氫化,之後藉蒸餾加工處理產 生純醇。 本發明方法可分單階或多階進行。此情況下,第一醛 化反應之後可接著第二醛化階段,亦在較激烈反應條件( 例如高溫及/或高壓)下將難以醛化之內部烯烴(尤其是 內部高度分支鏈烯烴)轉化成所需之醛。然而,較佳情況 係先使用未反應燃烴及醛化產物(醛及醇),未反應烯烴 再循環至相同醛化階段或送至第二醛化階段或甚至更後段 之醛化階段。此情況下,該第二醛化階段可使用完全不同 觸媒系統(即不同觸媒金屬或經配位體改質之觸媒金屬) 進行。亦可(較佳係)於此階段中添加較高濃度觸媒於未 反應烯烴,以使相對難以醛化成所需產物之烯烴轉化。在 所有情況下,皆需將前述量之環狀碳酸酯添加於更段之醛 化階段。 本發明方法中,所使用之乙烯型不飽和化合物亦可包 括自第一醛化反應之反應器輸出物所得而爲未反應乙烯型 不飽和化合物形式的化合物。此情況下,可使用整體反應 產物混合物或僅使用其一部分,尤其是包含大部分來自第 一階段之未反應烯烴化合物的部分。此方法變化形式中較 佳的是第一醛化反應係於經配位體改質之觸媒存在下進行 -27- 1293950 (24) 【實施方式】 以下實施例僅用以說明本發明,而不限制由說明及申 請專利範圍所定義的範圍。 實施例1 (變化形式A ) 560克丙二醇碳酸酯、5 6 0克三-正丁烯及0.08 8 8克 或〇· 02 25克壬酸鍩(II)(對應於以反應器內容物質量計 爲5 ppm或2〇 ppm之铑濃度)放置於氮氛圍下於2公升 攪動壓熱器中。該壓熱器隨之後合成氣體(CO/H2 1:1莫 耳)加壓,加熱至所需之反應溫度。加熱期間偵測反應器 溫度。反應溫度係爲1 3 0 °C至1 8 (ΓC。反應壓力係爲2 6 0 巴。反應期間,於壓力控制下導入其他合成氣體。5小時 之後,停止實驗,反應器冷卻至環境溫度。反應器輸出物 始終由兩相構成,且不含鍺沉澱物。 相分離容器中所分離之較輕烴相的組成係藉氣體層析 偵測。氣體層析之結果及反應條件(諸如溫度及铑濃度) 係列示於表1。 -28- 1293950 (25) 表1 : 三-正丁烯於26 0巴及各種溫度下醛化5小時。所記錄之 比例(以質量%計)與較輕烴相有關,該相已移除任何所 含羧酸酯及觸媒。實驗6中,再次使用使實驗5之反應器 輸出物進行加工處理所得的觸媒溶液。 編號 T/°C c(Rh)/ C13-醛 C 1 3 -醇 C 12- 高沸物 ppm /% /% HC/% /% 1 130 5 27 1 72 0 2 130 2 0 55 4 40 1 3 150 20 68 14 17 1 4 1 80 5 48 33 14 5 5 1 80 2 0 5 9 32 8 1 6 1 80 2 0 61 30 8 1Variant B In this method variant, the uniformization of the hydroformylation reaction is carried out by distillation into a product mainly comprising a hydroformylation product and possibly unreacted g 3 5 0 bar under pressure for the purpose of cooling, and cooling to the stage ( 1 2 (11) or (from the reaction product step processing or hydrogen with the reactor or 16) is added to other discarded or recycled processing preferred catalyst separation can be partially freshly burned continuously for downstream or alternating 10) or The relatively low-boiling fraction from the recovered re-energizer is an olefin or ethylene-24 1293950 (21) type unsaturated compound, and a high-boiling fraction mainly comprising a cyclic carbonate and a catalyst. Variation B of the process of the present invention is illustrated in Figure 2, which is not limited to this embodiment: synthesis gas (1), olefin (2), and a hydroformylation catalyst dissolved in a cyclic carbonate or a mixture of cyclic carbonates. (3) The reaction is carried out in a hydroformylation reactor (4). The reactor output can optionally remove excess synthesis gas (7) from the reduced pressure vessel (6). The liquid stream (8) obtained in this manner is separated in the separation device (9) to produce a partial boiling point phase (10) containing a main portion of a cyclic carbonate and a catalyst, and a waking product, an unreacted olefin, and (if used) Low boiling point phase of a non-polar solvent (1 1 ). The catalyst-containing fraction (10) is recycled to the hydroformylation reactor. This may optionally be handled by a processing step in which high boiling by-products and/or catalyst degradation products are removed (not shown in Figure 2). The fraction (1 1 ) may optionally be removed from the catalyst residue in the separation step (1 2 ). Stream 13 is then sent to the steaming stage (14). In this case, the hydroformylation product (aldehydes and alcohols) (16) is separated from the unreacted olefin (15) by distillation. The catalyst-containing discharge stream (e.g., liquid stream (1 〇) or from the separation stage (12)) can be obtained by methods known to those skilled in the art (e.g., from WO 02/2045 1 or US 5,20 8,194). Learn to process and recycle the catalyst metal in a reusable form. This hydroformylation product is further processed. The unreacted olefin (15) can be returned to the same hydroformylation reactor or fed to a selective second reaction stage. When the program is industrially carried out, the separation device can have a variety of different designs. The separation is preferably carried out by a falling film evaporation, a short path evaporator or a thin film evaporator or a combination of such devices. -25- 1293950 (22) The advantage of this combination is, for example, that the still-dissolved synthesis gas and the major portion of the product and the unreacted starting material can be self-catalyzed in the first step from the catalyst-containing alkanediol carbonate solution. Separation (e.g., falling film evaporator or flash evaporator), while removal of the residual alkanediol carbonate and separation of the product from the unreacted starting material can be carried out in a second step (e.g., combining two columns). In both variants A and B of the process of the invention, the reactor output from which the catalyst, excess synthesis gas and a major portion of the solvent (i.e., the cyclic carbonate or a mixture thereof) have been removed is preferably further separated into aldehydes. (Alcohols), olefins, solvents and by-products. As indicated above, this can be achieved, for example, by distillation. The olefin and/or solvent (alkane carbonate and/or non-polar solvent) which has been separated from the reaction output or from the hydroformylation product can be recycled to the hydroformylation reaction. The foregoing variations of the process of the invention include separating the reactor output and the selective hydroformylation product; this can be done, for example, by distillation. However, other separation methods can also be used, such as described in (especially) W Ο 0 1 / 6 8 2 4 7 , EP 0 9 22 6 9 1 , WO 99/3 8 8 3 2, US 5 64 8 5 54 And the extraction in US 5 1 38 ] 01, or as described in (especially) DE 1 9 5 3 64 1 , GB 1312076, NL 8 7 0 0 8 8 1 , DE 3842819, W Ο 9419104, DE 1 963 2600 and Penetration in EP 1 1 03 3 03. When the separation system is industrially carried out, various methods can be employed. The separation is preferably carried out by a drop film evaporator, a short path evaporator or a thin film evaporator or a combination of such devices. The extraction separation is preferably carried out continuously. It can be designed as a single-order method or in a multi-stage method in the form of countercurrent or alternating current. In all process variants, the catalyst-containing fraction is preferably recycled -26-1293950 (23) to the hydroformylation reaction. This is of course irrelevant to the composition of the fraction in which the catalyst is dissolved. When the target product is not the aldehyde itself but the alcohol derived therefrom, the reaction product mixture from which the synthesis gas and the catalyst have been removed and possibly the solvent may be hydrogenated before or after the olefin separation, and then processed by distillation to produce pure alcohol. . The method of the invention can be carried out in single or multiple orders. In this case, the first hydroformylation reaction may be followed by a second hydroformylation stage, and also under internal reaction conditions (such as high temperature and/or high pressure), which are difficult to hydroformylate internal olefins (especially internal highly branched olefins). Into the desired aldehyde. However, it is preferred to use unreacted hydrocarbons and hydroformylation products (aldehydes and alcohols) first, and the unreacted olefins are recycled to the same hydroformylation stage or to the second hydroformylation stage or even the later stage of the hydroformylation stage. In this case, the second hydroformylation stage can be carried out using completely different catalyst systems (i.e., different catalyst metals or ligand-modified catalyst metals). It is also possible (preferably) to add a higher concentration of catalyst to the unreacted olefin at this stage to effect olefin conversion which is relatively difficult to hydroformylate to the desired product. In all cases, it is necessary to add the aforementioned amount of cyclic carbonate to the further stage of the hydroformylation. In the process of the present invention, the ethylenically unsaturated compound to be used may also be a compound obtained in the form of an unreacted ethylenically unsaturated compound obtained from the reactor output of the first hydroformylation reaction. In this case, the entire reaction product mixture may be used or only a part thereof may be used, especially the portion containing most of the unreacted olefin compound from the first stage. Preferably, in the variant of the process, the first hydroformylation reaction is carried out in the presence of a ligand-modified catalyst. -27-1293950 (24) [Embodiment] The following examples are merely illustrative of the invention, and The scope defined by the description and the scope of the patent application is not limited. Example 1 (Variation A) 560 g of propylene glycol carbonate, 560 g of tri-n-butene and 0.08 8 g or 〇 02 25 g of ruthenium (II) ruthenate (corresponding to the mass of the reactor contents) Placed in a 2 liter agitated autoclave under a nitrogen atmosphere at a concentration of 5 ppm or 2 Torr. The autoclave is pressurized with the subsequent synthesis gas (CO/H2 1:1 mol) and heated to the desired reaction temperature. The reactor temperature was detected during heating. The reaction temperature was from 130 ° C to 18 (ΓC. The reaction pressure was 260 bar. During the reaction, other synthesis gas was introduced under pressure control. After 5 hours, the experiment was stopped and the reactor was cooled to ambient temperature. The reactor output is always composed of two phases and does not contain antimony precipitates. The composition of the lighter hydrocarbon phase separated in the phase separation vessel is detected by gas chromatography. The results of gas chromatography and reaction conditions (such as temperature and铑 Concentration) series are shown in Table 1. -28- 1293950 (25) Table 1: Three-n-butene was hydroformylated for 5 hours at 260 ° C and various temperatures. Recorded ratio (% by mass) and lighter Related to the hydrocarbon phase, the phase has removed any of the carboxylate and catalyst contained. In Experiment 6, the catalyst solution obtained by processing the reactor output of Experiment 5 was again used. No. T/°C c (Rh ) / C13-aldehyde C 1 3 -alcohol C 12- high boiler ppm /% /% HC/% /% 1 130 5 27 1 72 0 2 130 2 0 55 4 40 1 3 150 20 68 14 17 1 4 1 80 5 48 33 14 5 5 1 80 2 0 5 9 32 8 1 6 1 80 2 0 61 30 8 1

實施例2 (變化形式B ) 二-正丁烯(5 60克)依實施例1之方式進行醛化。 實驗7至1 3之反應器輸出物始終係由單一相構成,且不 含(铑)沉澱物。與實施例1相反地,反應器輸出物係在 不加處理之情況下藉氣體層析分析。氣體層析之結果及反 應條件(諸如溫度、壓力及鍺濃度)係列於表2中。 -29- 1293950 (26) 表2 : 二-正丁烯於各種不同壓力、铑濃度及溫度下之醛化。所 記錄之比例(以質量%計)係反應器輸出物之組成,該輸 出物已移除所含之碳酸酯及觸媒。 編號 T/°C p/巴 c(Rh)/p pm C8- HC/% C9-醛 /% C9-醇 /% 7 150 50 40 67.5 30.4 2.1 8 150 250 40 3.1 8 7.6 3.3 9 170 150 5 2 6.3 66.6 27.1 10 170 250 5 4.5 78.1 17.4 11 170 250 40 4.0 20.5 75.5 12 1 80 50 40 66.8 17.5 15.7 13 180 150 40 9.9 23.3 66.8 實施例3 (習用方法) 二-正丁烯如實施例2般進行醛化,不同處係使用五 丁烷取代丙二醇碳酸酯作爲溶劑。實驗1 4之反應器輸出 物出示大量黑色(铑)沉澱物。該醛及未反應烯烴隨之於 薄膜蒸發器中自含有觸媒之溶液分離出來,該觸媒溶液使 用於另一醛化中(實驗15)。氣體層析之結果及反應條 件(諸如溫度、壓力及铑濃度)係列於表2中。 -30- 1293950 (27) 表3 ·· 二-正丁烯於l5〇t及250巴下於五丁烷中醛化。所記錄 之比例(以質量%計)係爲反應器輸出物之組成,該輸出 物已移除所含之五丁烷、副產物及觸媒。實驗1 5中,再 次使用實驗1 4中藉蒸餾加工處理所得的觸媒溶液。 編號 T/°C p/巴 c(Rh)/p C8- C9-醛 C9-醇 pm HC/% /% /% 14 1 50 250 4 0 75.4 23.4 1.2 15 150 250 未知 91.5 7.8 0.7 實驗1至1 3中完全未出現铑沉澱物係表示作爲溶劑 之烷二醇碳酸酯對於铑化合物具有特別之安定化效果。相 反地’在對照實驗中使用烷作爲溶劑時,有相當量之铑沉 澱’且當觸媒再循環時,發現活性大幅降低(實驗14及 15)。實驗1 6中,來自實驗5之觸媒相係使用於新的醛 化中。在實驗準確度的範圍內,烯烴轉化率保持定値。 實驗證明本發明方法針對所需之醛類提供遠較爲高之 化學選擇性,此外,可使觸媒在技術上簡易地再循環,而 不會明顯失活。 【圖式簡單說明】 圖1係說明本發明方法變化形式A,而圖2係說明本 發明方法變化形式B。 -31 - 1293950 (28) [主要元件對照表】 1 合成氣體 2 烯烴 3 溶解於環狀碳酸酯或多種環狀碳酸酯之混合物中的 醛化觸媒 4 醛化反應器 5 反應器輸出 6 減壓容器 7 過量合成氣體 8 液流 9 分離裝置 10 重質相 11 輕質相 12 分離階段 13 液流 14 分離階段 1 5 液流 16 分離之級份Example 2 (Variation B) Di-n-butene (5 60 g) was hydroformylated in the same manner as in Example 1. The reactor outputs of Runs 7 through 13 were always composed of a single phase and did not contain (铑) precipitates. In contrast to Example 1, the reactor output was analyzed by gas chromatography without treatment. The results of gas chromatography and reaction conditions (such as temperature, pressure and helium concentration) are summarized in Table 2. -29- 1293950 (26) Table 2: Hydroformylation of di-n-butene at various pressures, enthalpy concentrations and temperatures. The recorded ratio (in mass %) is the composition of the reactor output which has removed the carbonate and catalyst contained therein. No. T/°C p/bar c(Rh)/p pm C8- HC/% C9-aldehyde/% C9-alcohol/% 7 150 50 40 67.5 30.4 2.1 8 150 250 40 3.1 8 7.6 3.3 9 170 150 5 2 6.3 66.6 27.1 10 170 250 5 4.5 78.1 17.4 11 170 250 40 4.0 20.5 75.5 12 1 80 50 40 66.8 17.5 15.7 13 180 150 40 9.9 23.3 66.8 Example 3 (conventional method) Di-n-butene is carried out as in Example 2. Aldehydeation, using pentabutane in place of propylene glycol carbonate as a solvent. The reactor output of Experiment 1 4 showed a large amount of black (铑) precipitate. The aldehyde and unreacted olefin were then separated from the catalyst-containing solution in a thin film evaporator, and the catalyst solution was used in another hydroformylation (Experiment 15). The results of gas chromatography and the reaction conditions (such as temperature, pressure and helium concentration) are summarized in Table 2. -30- 1293950 (27) Table 3 · · Di-n-butene was hydroformylated in pentabutane at 15 Torr and 250 bar. The recorded ratio (in mass%) is the composition of the reactor output which has removed the pentabutane, by-products and catalyst contained therein. In Experiment 15, the obtained catalyst solution was again treated by distillation in Experiment 14. No. T/°C p/bar c(Rh)/p C8- C9-aldehyde C9-alcohol pm HC/% /% /% 14 1 50 250 4 0 75.4 23.4 1.2 15 150 250 Unknown 91.5 7.8 0.7 Experiment 1 to 1 The absence of an antimony precipitate in 3 indicates that the alkanediol carbonate as a solvent has a particularly stable effect on the antimony compound. In contrast, when an alkane was used as a solvent in a control experiment, a considerable amount of ruthenium precipitate was observed and when the catalyst was recycled, the activity was found to be greatly lowered (Experiments 14 and 15). In Experiment 16, the catalyst phase from Experiment 5 was used in the new hydroformylation. The olefin conversion rate remains constant over the range of experimental accuracy. Experiments have shown that the process of the present invention provides far greater chemical selectivity for the desired aldehydes and, in addition, allows the catalyst to be technically easily recycled without significant deactivation. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing a variation A of the method of the present invention, and Fig. 2 is a modification of the method B of the present invention. -31 - 1293950 (28) [Main component comparison table] 1 Synthetic gas 2 Olefin 3 Aldehyde catalyst dissolved in a mixture of cyclic carbonate or various cyclic carbonates 4 Aldehyde reactor 5 Reactor output 6 minus Pressure vessel 7 Excess synthesis gas 8 Liquid stream 9 Separation unit 10 Heavy phase 11 Light phase 12 Separation stage 13 Stream 14 Separation stage 1 5 Stream 16 Separation fraction

-32--32-

Claims (1)

拾、申請專利範圍 1.一種使用包含至少一種元素週期表第8至10族金 屬之未改質觸媒使具有3至24個碳原子之乙烯型不飽和 化合物進行催化性醛化的方法,其中該醛化係於具有通式 I之環狀碳酸酯存在下進行Patent Application No. 1. A method for catalytically hydroformylating an ethylenically unsaturated compound having 3 to 24 carbon atoms using an unmodified catalyst comprising at least one metal of Groups 8 to 10 of the Periodic Table of the Elements, wherein The hydroformylation is carried out in the presence of a cyclic carbonate of the formula I 其中 R1、R 、R 、R4係相同或相異,且各係爲H或具有1 至2 7個碳原子之經取代或未經取代的脂族、脂環族、芳 族、脂族-脂環族、脂族-芳族或脂環族-芳族烴基, η 係爲〇至5, Χ 係爲具有1至2 7個碳原子之二價經取代或不 經取代脂族、脂環族、芳族、脂族_脂環族或脂族_芳族烴 基, = 該酸fe之比例係爲該反應混合物之至少1重量%。 2 ·如申請專利範圍第1項之方法,其中R1、R2、R3、 r4及X係經選自Ο、N、NH、N-烷基及N-二烷基、氟、 氯、溴、碘、-OH、-0R、_CN、< ( 〇)烷基或 _c ( 〇) 0 -烷基之相同或相異取代基所取代。 3 ·如申請專利範圍第1項之方法,其中該醛化係於以 -33- 1293950 (2) 反應混合物計係由5至5 0重量%之溶劑存在下進行,該 溶劑相較於該環狀碳酸酯I係非極性,且與環狀碳酸酯I 不相溶混。 4 ·如申請專利範圍第1至3項中任一項之方法,其中 來自醛化之反應產物係使用與該環狀碳酸酯I不相溶混之 非極性溶劑萃取。 5 ·如申請專利範圍第3項之方法,其中使用具有丨至 5 0個碳原子之經取代或不經取代烴類或具有3至24個碳 原子之烯烴作爲非極性溶劑。 6 ·如申請專利範圍第1至3項中任一項之方法,其中 該醛化係於作爲觸媒之HRh ( CO ) 3存在下進行。 7 ·如申請專利範圍第1至3項中任一項之方法,其中 來自醛化反應之反應產物混合物係分離成主要包含觸媒及 該環狀碳酸酯之級份及主要包含醛化產物之級份。 8 ·如申請專利範圍第1至3項中任一項之方法,其中 該包含觸媒之級份係再循環至該醛化反應。 9 ·如申請專利範圍第1至3項中任一項之方法,其中 所使用之環狀碳酸酯係爲乙二醇碳酸酯、丙二醇碳酸酯或 丁二醇碳酸酯或其混合物。 10·如申請專利範圍第1至3項中任一項之方法,其 中該未反應乙烯型不飽和化合物係自反應器輸出物或與醛 化產物分離,且送回相同醛化反應,或送至第二醛化反應 〇 1 1 ·如申請專利範圍第1至3項中任一項之方法,其 -34- 1293950 (3) 中所使用之乙烯型不飽和化合物係爲得自第一醛化反應之 反應器輸出物而爲未反應乙烯型化合物形式的化合物。 12.如申請專利範圍第Π項之方法,其中所使用之乙 烯型不飽和化合物係爲得自在經配位體改質之觸媒存在下 進行之第一醛化反應的反應器輸出物,而爲未反應乙烯型 不飽和化合物形式的化合物。 -35- 1293950 柒 (一) 、本案指定之代表圖為:第_j_圖 (二) 、本案代表圖之元件代表符號簡單說明: 1 合成氣體 2 烯烴 3 溶解於環狀碳酸酯或多種環狀碳酸酯之混合物 醛化觸媒 4 醛化反應器 5 反應器輸出 6 減壓容器 7 過量合成氣體 8 液流 9 分離裝置 10 重質相 11 輕質相 12 分離階段 13 液流 1 4 分離階段 15 液流 16 分離之級份Wherein R1, R, R and R4 are the same or different and each is H or a substituted or unsubstituted aliphatic, alicyclic, aromatic or aliphatic-fat having from 1 to 27 carbon atoms a cyclo, aliphatic-aromatic or alicyclic-aromatic hydrocarbon group, η is 〇 to 5, Χ is a divalent substituted or unsubstituted aliphatic or alicyclic group having 1 to 27 carbon atoms , aromatic, aliphatic-alicyclic or aliphatic-aromatic hydrocarbon group, = the ratio of the acid is at least 1% by weight of the reaction mixture. 2. The method of claim 1, wherein R1, R2, R3, r4 and X are selected from the group consisting of ruthenium, N, NH, N-alkyl and N-dialkyl, fluorine, chlorine, bromine, iodine Substituting the same or different substituents of -OH, -0R, _CN, <(〇)alkyl or _c(〇) 0 -alkyl. 3. The method of claim 1, wherein the hydroformylation is carried out in the presence of a solvent of from 5 to 50% by weight based on the reaction mixture of -33 to 1293950 (2), the solvent being compared to the ring The carbonate I is non-polar and is immiscible with the cyclic carbonate I. The method of any one of claims 1 to 3, wherein the reaction product derived from the hydroformylation is extracted using a non-polar solvent which is immiscible with the cyclic carbonate I. 5. The method of claim 3, wherein a substituted or unsubstituted hydrocarbon having from 丨 to 50 carbon atoms or an olefin having from 3 to 24 carbon atoms is used as the nonpolar solvent. The method of any one of claims 1 to 3, wherein the hydroformylation is carried out in the presence of HRh (CO) 3 as a catalyst. The method of any one of claims 1 to 3, wherein the reaction product mixture from the hydroformylation reaction is separated into a fraction mainly comprising a catalyst and the cyclic carbonate, and mainly comprising a hydroformylation product. Level. The method of any one of claims 1 to 3, wherein the catalyst-containing fraction is recycled to the hydroformylation reaction. The method of any one of claims 1 to 3, wherein the cyclic carbonate used is ethylene glycol carbonate, propylene glycol carbonate or butylene glycol carbonate or a mixture thereof. The method of any one of claims 1 to 3, wherein the unreacted ethylenically unsaturated compound is separated from the reactor output or from the hydroformylation product, and returned to the same hydroformylation reaction, or sent The second hydroformylation reaction 〇1 1 · The method of any one of claims 1 to 3, wherein the ethylenically unsaturated compound used in -34-1293950 (3) is derived from the first aldehyde The reactor output of the reaction is a compound in the form of an unreacted ethylenic compound. 12. The method of claim 2, wherein the ethylenically unsaturated compound used is a reactor output obtained from a first hydroformylation reaction in the presence of a catalyst modified by a ligand, and It is a compound in the form of an unreacted ethylenically unsaturated compound. -35- 1293950 柒(1) The representative figure specified in this case is: _j_图(二), the representative symbol of the representative figure in this case is a simple description: 1 Synthetic gas 2 Olefin 3 Dissolved in cyclic carbonate or various rings A mixture of carbonates, hydroformylation catalyst 4, hydroformylation reactor 5 reactor output 6 decompression vessel 7 excess synthesis gas 8 liquid stream 9 separation unit 10 heavy phase 11 light phase 12 separation stage 13 liquid stream 1 4 separation stage 15 Flow 16 Separation fraction 捌、本案若有化學式時,請揭示最能顯示發明特徵的化學式:捌 If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: R4 4_R4 4_
TW092123454A 2002-08-31 2003-08-26 Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the pte in the presence of cyclic carbonic esters TWI293950B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10240253 2002-08-31
DE10327435A DE10327435A1 (en) 2002-08-31 2003-06-18 Catalytic hydroformylation of olefins, e.g. internal, highly branched olefins, to aldehydes and alcohols, using unmodified group 8-10 metal, e.g. rhodium, catalyst, is carried out in presence of cyclic (cyclo)alkylene or arylene carbonate

Publications (2)

Publication Number Publication Date
TW200418785A TW200418785A (en) 2004-10-01
TWI293950B true TWI293950B (en) 2008-03-01

Family

ID=31197552

Family Applications (2)

Application Number Title Priority Date Filing Date
TW092123454A TWI293950B (en) 2002-08-31 2003-08-26 Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the pte in the presence of cyclic carbonic esters
TW092123468A TWI319393B (en) 2002-08-31 2003-08-26 Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW092123468A TWI319393B (en) 2002-08-31 2003-08-26 Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters

Country Status (5)

Country Link
JP (1) JP5340205B2 (en)
AT (1) ATE456549T1 (en)
DE (3) DE10327435A1 (en)
TW (2) TWI293950B (en)
ZA (1) ZA200501710B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006442A1 (en) 2007-02-05 2008-08-07 Evonik Oxeno Gmbh Mixture of diesters of Dianhydrohexitolderivaten with carboxylic acids of the empirical formula C8H17COOH, process for preparing these diesters and use of these mixtures
DE102008006400A1 (en) 2008-01-28 2009-07-30 Evonik Oxeno Gmbh Mixtures of diisononyl esters of terephthalic acid, process for their preparation and their use
DE102008050564B4 (en) 2008-09-22 2011-01-20 Curt Niebling Mold and method for high-pressure forming of a single-layer or multi-layer laminate
DE102009028975A1 (en) 2009-08-28 2011-03-03 Evonik Oxeno Gmbh Ester derivatives of 2,5-furandicarboxylic acid and their use as plasticizers
DE102010021892B4 (en) 2010-05-28 2014-03-20 Curt Niebling jun. Method and device for laminating a 3D support part with a laminate
DE102015012242B4 (en) 2015-09-18 2019-06-19 Leonhard Kurz Stiftung & Co. Kg Method and device for producing a laminated with a laminate 3D substrate
DE102016004047B4 (en) 2016-04-04 2017-10-19 Niebling Gmbh Method and mold for hot forming a flat thermoplastic laminate
TWI793216B (en) * 2017-12-07 2023-02-21 美商陶氏科技投資公司 Hydroformylation process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285875B2 (en) * 1995-08-25 2002-05-27 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Hydroformylation method
JPH11189563A (en) * 1997-12-25 1999-07-13 Kuraray Co Ltd Preservation of hydroformylated product
DE19842368A1 (en) * 1998-09-16 2000-03-23 Oxeno Olefinchemie Gmbh Process for the preparation of higher oxo alcohols from olefin mixtures by two-stage hydroformylation
DE19954665B4 (en) * 1999-11-13 2004-02-12 Celanese Chemicals Europe Gmbh Process for the hydroformylation of olefinically unsaturated compounds
DE10031518A1 (en) * 2000-06-28 2002-01-10 Basf Ag Process for the preparation of hydroformylation products of propylene and of acrylic acid and / or acrolein

Also Published As

Publication number Publication date
TWI319393B (en) 2010-01-11
DE10327435A1 (en) 2004-03-04
ATE456549T1 (en) 2010-02-15
TW200418785A (en) 2004-10-01
ZA200501710B (en) 2005-11-30
TW200417540A (en) 2004-09-16
DE10327434A1 (en) 2004-03-04
JP5340205B2 (en) 2013-11-13
DE50312386D1 (en) 2010-03-18
JP2010138189A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
TW574197B (en) Multistage process for the preparation of oxo aldehydes and/or alcohols
KR100988732B1 (en) Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalysed by unmodified metal complexes in the presence of cyclic carbonic acid esters
JP5226922B2 (en) Stabilization of rhodium catalysts for hydroformylation of olefins.
Bohnen et al. Hydroformylation of alkenes: An industrial view of the status and importance
NL193064C (en) Process for hydroformylating an olefin compound.
TWI450882B (en) Process for preparing c5 aldehyde mixtures with a high n-pentanal content
JP5340205B2 (en) Process for the preparation of aldehydes by hydroformylation of olefinically unsaturated compounds catalyzed by unmodified metal complexes in the presence of cyclic carboxylic esters
AU632140B2 (en) Hydroformylation process
JP6571652B2 (en) Hydroformylation process
JPS6160057B2 (en)
US11141719B2 (en) Methods of treating a hydroformylation catalyst solution
JP4280625B2 (en) Method
JP2557767B2 (en) Reactivation of hydroformylation catalysts
JP2018534290A (en) Aldehyde formation process
JP2006306815A (en) Method for producing aldehyde
JP2841689B2 (en) Purification method of valeraldehyde
JP4288173B2 (en) Method for producing aldehyde
TW202126385A (en) Processes for recovery of rhodium from a hydroformylation process
JPS6253493B2 (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees