TW200417540A - Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters - Google Patents

Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters Download PDF

Info

Publication number
TW200417540A
TW200417540A TW092123468A TW92123468A TW200417540A TW 200417540 A TW200417540 A TW 200417540A TW 092123468 A TW092123468 A TW 092123468A TW 92123468 A TW92123468 A TW 92123468A TW 200417540 A TW200417540 A TW 200417540A
Authority
TW
Taiwan
Prior art keywords
reaction
catalyst
aldolization
ethylenically unsaturated
separated
Prior art date
Application number
TW092123468A
Other languages
Chinese (zh)
Other versions
TWI319393B (en
Inventor
Oliver Moller
Dirk Fridag
Cornelia Borgmann
Dieter Hess
Klaus-Diether Wiese
Original Assignee
Oxeno Olefinchemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxeno Olefinchemie Gmbh filed Critical Oxeno Olefinchemie Gmbh
Publication of TW200417540A publication Critical patent/TW200417540A/en
Application granted granted Critical
Publication of TWI319393B publication Critical patent/TWI319393B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds catalyzed by metals of groups 8 to 10 of the Periodic Table of the Elements in the presence of cyclic carbonic esters and ligands which contain no sulfonic acid or sulfonate group.

Description

200417540 (1) 玖、發明說明 【發明所屬之技術領域】 本發明有關一種於環狀碳酸酯存在下,藉由元素週期 表第8至1 0族金屬催化進行醛化以製備醛類之方法。 【先前技術】 烯烴化合物、一氧化碳及氫於觸媒存在下進行反應以 形成多一個碳原子之醛類過程係稱爲醛化(氧化法)。此等 反應中所使用之觸媒經常係爲元素週期表第8至1 0族過 渡金屬的化合物,尤其量铑與鈷之化合物。與藉鈷化合物 催化相比,使用铑化合物進行之醛化通常具有化學選擇性 及區域選擇性較高之優點,因此通常較爲經濟。由铑催化 之醛化通常係使用包含铑及作爲配位體之較佳三價磷化合 物的錯合物進行。例如,經常使用來自膦、亞磷酸酯及膦 酸酯的化合物作爲配位體。對於烯烴之醛化的評論可參照 B. CORNILS, W. A. HERRMANN, "Applied Homogeneous Catalysis with O r g a η o m e t a 11 i c Compounds,,, V 〇 ] . ] & 2 , V C H,W e i n h e i m , N e w Y o r k,1 9 9 6 o 醛化經常係於溶劑存在下進行,以在分離反應產物之 後,可輕易地使觸媒再循環。許多使用铑觸媒之連續醒化 方法中,使用在醛化中形成之副產物高沸點混合物作爲溶 劑。該方法係描述於例如DE 2 062 7 03、DE 2 7 1 5 6 8 5、 DE 2 8 02 922 或 EP 01 7 1 83 中。 除了高沸化合物之外,可使用惰性有機液體(DE 3 (2) (2)200417540 1 2 6 2 6 5)及反應產物(醛類、醇類)、脂族及芳族烴、酯 類、醚類及水(DE 4 4 1 9 8 9 8 )作爲溶劑。GB 1 1 97 902 中,使用飽和烴、芳族物、醇及正鏈烷烴達成此目的。 於醛化過程中添加一或多種極性有機物質係揭示於 (例如)WO 01/68248、WO 01/68249、W〇 01/68252 中。此 情況下,極性物質係選自下列各類化合物之物質:腈類、 環縮醛類、醇類、吡咯烷類、內酯類、甲醯胺類、亞硕類 及水。 於以鈷催化之醛化反應中使用碳酸酯作爲極性添加劑 亦係已知(US 2 992 45 3 )。此情況下,該碳酸酯不作爲溶 劑,而是於有機鱗錯合物存在下作爲促進劑。碳酸酯相對 於鈷化合物之使用莫耳比係爲1 :2。根據所需之催化作 用,烯烴用量係較觸媒金屬及碳酸酯過量1 〇 〇倍以上。 技術界亦描述同時使用極性溶劑及非極性溶劑 99/38832、WO 01/68247、WO 01/68248、WO 01/68249、 WO 0 1 / 68250、WO 01/6825]、WO 01/68242)。提及下列 物質以作爲非極性溶劑:脂族、脂環族及芳族烴、醚、 胺、羧酸酯、酮、矽烷、聚矽酮及二氧化碳。 醒化反應中使用極性或非極性溶劑之原因係爲增加觸 媒於反應中之安定性,且較易於加工處理該醛化產物。當 (例如耢蒸飽)自反應產物分離觸媒時,經常發現觸媒失 活。因此有δ午多以較溫和方法(例如萃取)取代蒸飽加工處 理之嘗試。 因此’例如US 6 187 962及EP 09 992 691描述一種 -6 - (3) (3)200417540 於W或聚腈存在下以鈀催化之醛化,其隨之分離產物相及 含有觸媒之相,並使後者再循環。在u S 5 6 4 8 5 5 4中, 使用極性溶劑(諸如水、酮、醇、腈、醯胺、二醇及羧酸) 進行高沸化合物之選擇性萃取及觸媒錯合物之選擇性萃 取。US 5 138 101描述使用醇/水混合物萃取反應產物之 應用。 總而言之,可說許多極性及/或非極性溶劑皆已使用 於醛化反應中。 熟習此項技術者現在已知所述之大部分溶劑在醛化條 件下皆非惰性。例如,醛可與習用亞磷酸酯配位體反應。 添加水及/或羧酸會導致亞磷酸酯、膦酸酯及亞膦酸酯配 位體之水解分解。醯胺因爲其錯合性質,而可自金屬中心 置換配位體。烷二烯已知係爲觸媒毒素(P.W.N.M.van Leuven in P . W . N . Μ . van Leeuven, C .Cl aver,’’Rhodium Catalyzed H y d r o f o r m y ] a t i ο n M. K1 υ e r Academic Publishers j Dordrecht 5 Boston, London, 2000)。 此外,所述溶劑中有一部分會因爲與醛反應而降低產 率。因此,例如,醇與二醇導致形成縮醛,而添加羧酸會 催化難以控制之醇醛縮合反應。 此外,已知醛化方法可改善對線性醛之選擇性,即使 用附加之溶劑於理想狀況下應不僅改善加工處理,亦可改 善選擇性。 J P 1 0 - 2 2 6 6 6 2描述一種烯烴化合物之醛化方法,其中 铑觸媒係與作爲輔觸媒之磺化三苯膦的鈉鹽一起使用,即 (4) (4)200417540 使用經改質之觸媒。該反應係於極性溶劑及羧酸存在下進 行。該極性溶劑可爲(例如)二甲基亞碾、環丁碾、N-甲基 吡咯烷酮、N,N -二甲基甲醯胺、乙腈、丁二醇、聚烷二醇 或乙二醇碳酸酯。該極性溶劑可與該酸及該觸媒一起再循 環至該醛化反應。此方法中,烷二醇碳酸酯係作爲第一次 之溶劑。然而,除了該烷二醇碳酸酯外,需另外使用羧 酸。雖此者可再循環,但此種附加化合物之存在會污染所 需之標的產物。首先,酸本身會產生污染,或會因酸催化 (例如醇醛縮合)而形成副產物,產生不期望之雜質。使用 前述方法亦限制了末端烯烴(相對較具反應性)之醛化。若 爲較低反應性之烯烴,即內部烯烴,尤其是內部高度分支 鏈烯烴,則觸媒之活性遠低於工業應用所需。 【發明內容】 因龀’本發明之目的係提出一種使用於醛化反應而不 具有前述缺點之溶劑或溶劑混合物與配位體的組合物。 現在意外發現在使用習用溶劑之方法中,若於作爲溶 劑之環狀碳酸酯存在下進行催化醛化,則可增加烯烴醛化 成較佳末端醛之產率,反應混合物之加工處理可變得較簡 易’且可增加觸媒安定性,而若使用不含磺酸或磺酸根之 配位體,則可不添加羧酸。 【實施方式】 以下錯貫施例描述本發明方法,但本發明不限於此等 -8- (5) 200417540 牛寸疋貫例。熟習此項技術者可推演其他變化形式,其亦爲 本發明標的且範圍係由本文描述及申請專利範圍所表示。 本發明因此提出一種於至少一種元素週期表第8 g 1 〇族金屬存在下,將具有3至24個碳原子之烯鍵式不飽 和化合物(尤其是烯烴)醛化的方法,其中該醛化係於以燦 烴計至少0. 1莫耳。/〇之至少一種具有通式I之環狀碳酸酯200417540 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a method for preparing aldehydes by catalyzing aldehydes by catalyzing metals in Groups 8 to 10 of the periodic table in the presence of a cyclic carbonate. [Prior art] The process of olefin compounds, carbon monoxide and hydrogen reacting in the presence of a catalyst to form an aldehyde with one more carbon atom is called aldolization (oxidation method). The catalysts used in these reactions are often compounds of transition metals of groups 8 to 10 of the periodic table, especially compounds of rhodium and cobalt. Compared with catalysis by cobalt compounds, aldehydes using rhodium compounds usually have the advantages of high chemical selectivity and regioselectivity, so they are usually more economical. Rhodium-catalyzed aldehydes are usually carried out using a complex comprising rhodium and a preferred trivalent phosphorus compound as a ligand. For example, compounds derived from phosphines, phosphites and phosphonates are often used as ligands. For comments on aldolization of olefins, please refer to B. CORNILS, WA HERRMANN, " Applied Homogeneous Catalysis with O rga η ometa 11 ic Compounds ,,, V 〇]. 1 9 9 6 o Aldolization is often performed in the presence of a solvent, so that the catalyst can be easily recycled after separation of the reaction products. Many continuous annealing methods using rhodium catalysts use high-boiling mixtures of by-products formed during the aldehyde formation as solvents. This method is described, for example, in DE 2 062 7 03, DE 2 7 1 5 6 8 5, DE 2 8 02 922 or EP 01 7 1 83. In addition to high boiling compounds, inert organic liquids (DE 3 (2) (2) 200417540 1 2 6 2 6 5) and reaction products (aldehydes, alcohols), aliphatic and aromatic hydrocarbons, esters, Ethers and water (DE 4 4 1 9 8 9 8) were used as solvents. GB 1 1 97 902 uses saturated hydrocarbons, aromatics, alcohols and normal paraffins to achieve this purpose. The addition of one or more polar organic substances to the aldolization process is disclosed, for example, in WO 01/68248, WO 01/68249, WO 01/68252. In this case, the polar substance is a substance selected from the following types of compounds: nitriles, cyclic acetals, alcohols, pyrrolidines, lactones, formamidines, Asus, and water. The use of carbonates as polar additives in cobalt-catalyzed aldehyde reactions is also known (US 2 992 45 3). In this case, the carbonate is not used as a solvent, but as a promoter in the presence of an organic scale complex. The molar ratio of the carbonate to the cobalt compound is 1: 2. According to the required catalytic effect, the amount of olefin is more than 1000 times more than the catalytic metal and carbonate. The technical community also describes the simultaneous use of polar and non-polar solvents (99/38832, WO 01/68247, WO 01/68248, WO 01/68249, WO 0 1/68250, WO 01/6825], WO 01/68242). The following are mentioned as non-polar solvents: aliphatic, cycloaliphatic and aromatic hydrocarbons, ethers, amines, carboxylic acid esters, ketones, silanes, polysiloxanes and carbon dioxide. The reason for using polar or non-polar solvents in the quenching reaction is to increase the stability of the catalyst in the reaction, and it is easier to process the aldehyde product. When the catalyst is separated from the reaction product (for example, steamed), the catalyst is often found to be inactive. Therefore, there are many attempts to replace the steam-saturation processing with a more gentle method (such as extraction). Thus' for example US 6 187 962 and EP 09 992 691 describe a -6-(3) (3) 200417540 palladium-catalyzed aldehyde formation in the presence of W or polynitrile, which in turn separates the product phase and the catalyst-containing phase And make the latter recycle. In u S 5 6 4 8 5 5 4 using polar solvents (such as water, ketones, alcohols, nitriles, ammonium amines, glycols and carboxylic acids) for selective extraction of high boiling compounds and selection of catalyst complexes Sexual extraction. US 5 138 101 describes the use of an alcohol / water mixture to extract reaction products. In summary, it can be said that many polar and / or non-polar solvents have been used in the aldolization reaction. Those skilled in the art now know that most of the solvents described are not inert under the conditions of aldolization. For example, aldehydes can react with customary phosphite ligands. The addition of water and / or carboxylic acids can cause the hydrolytic decomposition of phosphites, phosphonates, and phosphite ligands. Amidoamine can displace the ligand from the metal center because of its complex nature. Alkadiene is known as a catalyst toxin (PWNMvan Leuven in P.W.N.M.van Leeuven, C.Cl aver, `` Rhodium Catalyzed Hydroformy] ati ο n M. K1 er Academic Publishers j Dordrecht 5 Boston, London, 2000). In addition, a part of the solvent may reduce the yield due to the reaction with the aldehyde. Thus, for example, alcohols and diols lead to the formation of acetals, and the addition of carboxylic acids catalyzes difficult-to-control aldol condensation reactions. In addition, it is known that the aldehyde formation method can improve the selectivity to linear aldehydes. Even if an additional solvent is used under ideal conditions, it should not only improve the processing, but also the selectivity. JP 1 0-2 2 6 6 6 2 describes an aldehyde formation method of an olefin compound, in which a rhodium catalyst is used together with a sodium salt of a sulfonated triphenylphosphine as a secondary catalyst, that is, (4) (4) 200417540 is used Improved catalyst. This reaction is performed in the presence of a polar solvent and a carboxylic acid. The polar solvent may be, for example, dimethylmethylene, cyclobutyl, N-methylpyrrolidone, N, N-dimethylformamide, acetonitrile, butanediol, polyalkylene glycol, or ethylene glycol carbonic acid. ester. The polar solvent can be recycled to the aldolization reaction with the acid and the catalyst. In this method, alkanediol carbonate is used as the first solvent. However, in addition to the alkanediol carbonate, a carboxylic acid is additionally used. Although this is recyclable, the presence of such additional compounds can contaminate the desired target product. First, the acid itself can cause contamination, or by-products due to acid catalysis (such as aldol condensation) can produce undesirable impurities. The use of the aforementioned method also limits the aldolization of terminal olefins, which are relatively reactive. If it is a less reactive olefin, that is, an internal olefin, especially an internally highly branched olefin, the catalyst activity is much lower than that required for industrial applications. [Summary of the Invention] The object of the present invention is to propose a composition of a solvent or a solvent mixture and a ligand for use in an aldolization reaction without the aforementioned disadvantages. It is now unexpectedly discovered that in a method using a conventional solvent, if the catalytic aldehyde is subjected to catalytic aldehydes in the presence of a cyclic carbonate as a solvent, the yield of olefins to be reformed to better terminal aldehydes can be increased, and the processing of the reaction mixture can become more It is simple and can increase the stability of the catalyst, and if a ligand containing no sulfonic acid or sulfonic acid group is used, a carboxylic acid may not be added. [Embodiment] The following staggered examples describe the method of the present invention, but the present invention is not limited to these. Those skilled in the art can infer other variations, which are also the subject of the present invention and whose scope is indicated by the scope of the description and patent application. The present invention therefore proposes a method for the aldolization of an ethylenically unsaturated compound (especially an olefin) having 3 to 24 carbon atoms in the presence of at least one Group 8 g metal of the Periodic Table of the Elements, wherein the aldolization 1 莫耳。 Based on at least 0.1 Mole. / 〇 at least one cyclic carbonate having the general formula I

入人 R* (I) R2 0 其中 R1、R2、R3、R4係相同或相異,且各係爲H或具有] 至2 7個碳原子之經取代或未經取代的脂族、脂環族、芳 族、脂族-脂環族、脂族-芳族或脂環族-芳族烴基, 馨 η係爲0至5, X係爲具有1至2 7個碳原子之二價經取代或不經取 代脂族、脂環族、芳族、脂族-脂環族或脂族-芳族烴基, 及至少一種不含磺酸基或磺酸根之配位體存在下進 行。 使用不含磺酸基或磺酸根且(尤其是)非磺化膦之配位 體的結果’是醛化之反應混合物中可完全不需使用羧酸。 較佳配位體係爲含有作爲予體原子之氮、磷、砷或銻,而 -9- (6) (6)200417540 以含磷配位體特佳。該配位體可爲單配位基或多配位基, 若爲對掌性配位體,則或可使用消旋物或一鏡像異構物或 非鏡像異構物。磷配位體之特別重要實例有膦、氧化膦、 亞磷酸酯、膦酸酯及亞膦酸酯。於本發明方法中添加殘酸 時,作爲溶劑之碳酸酯可與配位體(在酸存在下水解,因 此存有酸時的長期安定性低)結合使用。 取代基R1至R4及X可相同或相異,且係經〇、N、 Ν Η、N -烷基或N -二烷基所取代。此外,此等基團可具有 · 官能基諸如鹵素(氟、氯、溴、碘)、-ΟΗ、-〇R、_C(0)院 基、-C N或-C ( Ο) Ο烷基。此外,若此等基團係爲至少三 個遠離酯基之〇原子,則其中之C、C Η或C Η 2基團可由 Ο、Ν、ΝΗ、Ν-烷基或Ν-二烷基所置換。該烷基仍可具有 i至2 7個碳原子。 本發明方法中,較佳係使用乙二醇碳酸酯、丙二醇碳 酸酯、丁二醇碳酸酯或其混合物,例如乙二醇碳酸酯與丙 二醇碳酸酯之混合物(體積比=5〇:50)作爲環狀碳酸醋。 · 該環狀碳酸酯之用量以所使用之烯烴或所使用之燦鍵 型不飽和化合物計至少0.1莫耳%,以介於下列範圍內之 量爲佳 : 0 . 1 - 1 0 6 莫耳 °/。 0 . 1 - 1 0 5 莫耳 % 0 . 1 - 1 0 4 莫耳 % 0 . 1 - 1 0 3 莫耳 % 0 . 1 - 1 0 0 莫耳 % -10- (7) (7)200417540 0 . 1-10 莫耳 % 0 . 1 - 1 莫耳 %。 可在該環狀碳酸酯之外,另外使用其他溶劑。特別方 t去變化形式中,本發明之醛化反應因此係於以烯烴或烯鍵 式不飽和化合物計至少〇 .〗莫耳。/。之至少一種與環狀碳酸 _ I不相溶混的溶劑存在下進行。 具有通式I之碳酸酯係具有超過30之介電常數。 與環狀碳酸酯I不相溶混且使用於本發明方法中之非 極性溶劑係具有低於20之介電常數,以1 . 1至1 0爲佳, 尤其是1 . 1至5。 可能之非極性溶劑係爲具有5至5 0個碳原子之經取 代或不經取代烴類,例如醛化反應之高沸點副產物、 Texan〇l或丙烯或丁烯進行四聚化或高聚化且經後續氫化 所得之異構物混合物,即四丁烷、五丁烷、四丙烷及/或 五丙烷。亦可使用具有3至24個碳原子之烯烴或烯鍵式 不飽和化合物,尤其是使用於醛化之烯烴或烯烴式不飽和 化合物來作爲起始物質 爲避免副產物,非極性溶劑在醛化反應條件下應大體 呈惰性。 本發明方法中,反應混合物在醛化反應器中於整體轉 化過程內可爲單一相或爲兩相。然而,進料混合物在反應 過程中,亦可於低轉化率時先由兩相構成,而在高轉化率 下則變成單一相。 單相進料混合物可在本發明方法過程中變成雙相產物 -11 - (8) (8)200417540 混合物。 本發明方法可使用各種催化活性金屬及(若需要)各種 配位體進行。 可能之催化活性金屬係爲元素週期表第8至1 0族金 屬,例如铑、鈷、鉑或釕。 如前文所述,本發明方法係於配位體(諸如膦酸酯、 磷酸酯、氧化膦、膦及/或亞膦酸酯或磷林(phosphinine) 或膦烷(phosph inane))存在下進行。 本發明方法中針對金屬添加之配位體的選擇僅限於不 使用含有磺酸基或磺酸根之配位體,尤其是不含磺化芳基 膦。所添加之配位體的選擇係(特別)視所使用之烯烴或烯 烴混合物或視所使用之烯鍵式不飽和化合物且視所需產物 而定。較佳配位體係爲含有氮、磷、砷或銻予體原子的配 位體;含磷配位體特佳。該配位體可爲單配位基或多配位 基,若爲對掌性配位體,則或可使用消旋物或一鏡像異構 物或非鏡像異構物。磷配位體之特別重要實例有膦、氧化 膦、亞磷酸酯、膦酸酯及亞膦酸酯。 膦之實例有三苯膦、三(對甲苯基)膦、三(間·甲苯基) 膦、三(鄰-甲苯基)膦、三(對-甲氧苯基)膦、三(對-氟苯基) 膦、三(對-氯苯基)膦、三(對-二甲胺基苯基)膦、乙基二 苯基膦、丙基二苯基膦、第三丁基二苯基膦、正丁基二苯 基膦、正己基二苯基膦、c-己基二苯基膦、二環己基苯基 膦、三環己基膦、三環戊基膦、三乙基膦、三(卜萘基) 膦、三-2-呋喃基膦、三苄基膦、苄基二苯基膦、三-正丁 -12- (9) (9)200417540 基膦、三-異丁基膦、三-第三丁基膦、雙(2-甲氧苯基)苯 基膦、新盖基二苯基膦、磺化三苯膦(諸如三(間磺醯苯基) 膦、(間-磺醯苯基)二苯基膦之之鹼金屬、鹼土金屬、銨 或其他鹽類;1,2-雙(二環己基膦基)乙烷、雙(二環己基膦 基)甲院、1,2 -雙(一乙基鱗基)乙丨完、1,2 -雙(2,5 -二乙基鱗 凍基)乙烷、1,2-雙(2,5-二乙基磷凍基)苯[Et-DUPHOS]、 1,2-雙(2,5-二乙基磷凍基)乙烷[£^3卩£]、152-雙(二甲基膦 基)'乙烷、雙(二甲基膦基)甲烷、1,2-雙(2,5-二甲基磷凍基) 苯[Me-DUPHOS]、1,2-雙(2,5-二甲基磷凍基)乙烷[!^卜 ΒΡΕ]、1,2-雙(二苯基膦基)苯、2,3-雙(二苯基膦基)二環 [2.2.1]庚-5-烯[NORPHOS]、2,2、雙(二苯基膦基)-151,·聯 萘[ΒΙΝΑΡ]、2,2、雙(二苯基膦基)-】,1,_聯,苯[BISBI]、2;3-雙(二苯基膦基)丁烷、1;4-雙(二苯基膦基)丁烷、1,2-雙 (二苯基膦基)乙烷、雙(2-二苯基膦乙基)苯基膦、]雙-(二苯基膦基)二茂鐵、雙(二苯基膦基)甲烷、1,2 -雙(二苯 基膦基)丙烷、2;2,-雙(二-對·.甲苯基膦基聯萘、0-亞異丙基-253-二羥基_1,4-雙(二苯基膦基)丁烷[010?]、2-(二苯基膦基)-2 ’…甲氧_ ;!,],_聯萘、1 2 _二苯基膦基-卜_ 基)異喹啉、:| j,〗-三(二苯基膦基)乙烷、及,/或三(羥苯基) 膦。 膦林之實例包括2,6 -二甲基-4 -苯基膦、2,6 -雙(2,4 -二 甲基苯基)-4_苯基膦及其他描述於W0 00/55164之配位 體。膦烷之實例係包括2,6 -雙(2,4 -二甲基苯基)-卜辛基-4 -苯基膦院、1-辛基_2,4;6_三苯基膦烷及其他描述於W0 -13- (10) (10)200417540 02/00669之配位體。 亞磷酸酯之實例有亞磷酸三甲酯、亞磷酸三乙酯、亞 磷酸三正丙酯、亞磷酸三異丙酯、亞磷酸三正丁酯、亞磷 酸三異丁酯、亞磷酸三-第三丁酯、亞磷酸三(2-乙基己基) 酯、亞磷酸三苯酯、亞磷酸三(2,4-二-第三丁基苯)酯、亞 磷酸三(2-第三丁基-4-甲氧苯基)酯、亞磷酸三(2-第三丁 基-4-甲基苯基)酯、亞磷酸三(對-甲苯)酯。其他實例有立 體受阻亞磷酸酯配位體,如描述於(尤其是)EP 1 5 5 5 0 8、 US 4 66 8 6 5 1、US 4 74 8 26 1、US 4 769 49 8、US 4 7 74 361、US 4 8 3 5 299、US 4 8 8 5 401、US 5 05 9 710、US 5 113 022、US 5 1 79 055、US 5 260 491、US 5 2 64 616、 US 5 2 8 8 918、US 5 3 60 938、EP 472 071、EP 518 24 1 及WO 9 7/207 9 5。以使用經1或2個異丙基及/或第三丁 基取代基所取代(以相對於亞磷酸酯基成鄰位爲佳)之亞磷 酸三苯酯爲佳。使用描述於(特別)EP 1 09 9 6 7 7、EP 1 0 9 9 6 7 8、WO 02.00670、JP 10279587、EP 472017、WO 01/21627、 WO 97/4 0 00 1 、 WO 9 7/ 40002 、 US 4769498 、 EP 2 1 3 63 9及EP 2 1 4622中之雙亞磷酸酯配位體特佳。R * (I) R2 0 where R1, R2, R3, R4 are the same or different, and each is H or a substituted or unsubstituted aliphatic, alicyclic ring with] to 27 carbon atoms Group, aromatic, aliphatic-alicyclic, aliphatic-aromatic or alicyclic-aromatic hydrocarbon group, Xin η is 0 to 5, X is divalent substituted with 1 to 27 carbon atoms Or it can be carried out without substitution of an aliphatic, cycloaliphatic, aromatic, aliphatic-alicyclic or aliphatic-aromatic hydrocarbon group, and at least one ligand having no sulfonic acid group or sulfonic acid group. The consequence of using ligands that do not contain sulfonate or sulfonate and (especially) non-sulfonated phosphine ' ' is that no carboxylic acid is required in the reaction mixture for the aldolization. The preferred coordination system contains nitrogen, phosphorus, arsenic or antimony as a donor atom, and -9- (6) (6) 200417540 is particularly preferred as a phosphorus-containing ligand. The ligand may be a single ligand or a multi-ligand. If it is a palmate ligand, a racemate or a mirror image isomer or a non-image isomer may be used. Particularly important examples of phosphorus ligands are phosphines, phosphine oxides, phosphites, phosphonates and phosphinates. When a residual acid is added to the method of the present invention, a carbonate as a solvent can be used in combination with a ligand (hydrolyzed in the presence of an acid, so that long-term stability in the presence of an acid is low). The substituents R1 to R4 and X may be the same or different, and are substituted with 0, N, NΗ, N-alkyl or N-dialkyl. In addition, these groups may have a functional group such as halogen (fluorine, chlorine, bromine, iodine), -0Η, -0R, -C (0) group, -C N or -C (0) 0 alkyl group. In addition, if these groups are at least three atoms away from the ester group, the C, C Η or C Η 2 group can be substituted by 0, N, NΗ, N-alkyl or N-dialkyl. Replacement. The alkyl group may still have i to 27 carbon atoms. In the method of the present invention, it is preferred to use ethylene glycol carbonate, propylene glycol carbonate, butanediol carbonate, or a mixture thereof, for example, a mixture of ethylene glycol carbonate and propylene glycol carbonate (volume ratio = 50: 50) as the Cyclic carbonated vinegar. · The cyclic carbonate should be used in an amount of at least 0.1 mole% based on the olefin used or the bright-bond unsaturated compound used, preferably in an amount within the range of 0.1 to 1.06 mole ° /. 0. 1-1 0 5 Mole% 0. 1-1 0 4 Mole% 0. 1-1 0 3 Mole% 0. 1-1 0 0 Mole% -10- (7) (7) 200417540 0. 1-10 mole% 0. 1-1 mole%. Other solvents may be used in addition to the cyclic carbonate. In particular, in the modified form, the aldehyde reaction of the present invention is therefore based on at least 0.1 moles based on olefins or ethylenically unsaturated compounds. /. It is carried out in the presence of at least one solvent immiscible with cyclic carbonic acid _I. The carbonate having the general formula I has a dielectric constant exceeding 30. The non-polar solvent which is immiscible with the cyclic carbonate I and is used in the method of the present invention has a dielectric constant lower than 20, preferably from 1.1 to 10, especially from 1.1 to 5. Possible non-polar solvents are substituted or unsubstituted hydrocarbons having 5 to 50 carbon atoms, such as high-boiling by-products of the aldolization reaction, Texanol or propylene or butene for tetramerization or polymerisation A mixture of isomers obtained by subsequent hydrogenation, namely tetrabutane, pentabutane, tetrapropane and / or pentapropane. It is also possible to use olefins or ethylenically unsaturated compounds with 3 to 24 carbon atoms, especially for aldehydes or olefinically unsaturated compounds as starting materials. To avoid by-products, non-polar solvents are used in the aldolization. The reaction conditions should be substantially inert. In the method of the present invention, the reaction mixture may be single-phase or two-phase in the overall conversion process in the aldehydeization reactor. However, during the reaction, the feed mixture may also be composed of two phases at a low conversion rate, and become a single phase at a high conversion rate. The single-phase feed mixture can become a biphasic product during the process of the invention -11-(8) (8) 200417540 mixture. The method of the present invention can be carried out using various catalytically active metals and, if necessary, various ligands. Possible catalytically active metals are metals from groups 8 to 10 of the periodic table, such as rhodium, cobalt, platinum or ruthenium. As mentioned previously, the method of the invention is performed in the presence of a ligand such as a phosphonate, phosphate, phosphine oxide, phosphine and / or phosphinate or phosphinine or phosphinane . The choice of ligands for metal addition in the method of the present invention is limited to the absence of sulfonate or sulfonate-containing ligands, and especially no sulfonated arylphosphine. The choice of ligands to be added depends, in particular, on the olefin or olefin mixture used or on the ethylenically unsaturated compound used and on the desired product. Preferred coordination systems are ligands containing nitrogen, phosphorus, arsenic or antimony donor atoms; phosphorus-containing ligands are particularly preferred. The ligand may be a single ligand or a multi-ligand, and if it is a palmate ligand, a racemate or a mirror image isomer or a non-image isomer may be used. Particularly important examples of phosphorus ligands are phosphines, phosphine oxides, phosphites, phosphonates and phosphonates. Examples of phosphines are triphenylphosphine, tris (p-tolyl) phosphine, tris (m-tolyl) phosphine, tris (o-tolyl) phosphine, tris (p-methoxyphenyl) phosphine, tris (p-fluorophenyl) Group) phosphine, tris (p-chlorophenyl) phosphine, tris (p-dimethylaminophenyl) phosphine, ethyldiphenylphosphine, propyldiphenylphosphine, third butyldiphenylphosphine, N-butyldiphenylphosphine, n-hexyldiphenylphosphine, c-hexyldiphenylphosphine, dicyclohexylphenylphosphine, tricyclohexylphosphine, tricyclopentylphosphine, triethylphosphine, tris (naphthyl) Phosphine, tri-2-furylphosphine, tribenzylphosphine, benzyldiphenylphosphine, tri-n-butyl-12- (9) (2004) 4040740-based phosphine, tri-isobutylphosphine, tri-third Butylphosphine, bis (2-methoxyphenyl) phenylphosphine, neocapryl diphenylphosphine, sulfonated triphenylphosphine (such as tris (m-sulfofluorenylphenyl) phosphine, (m-sulfofluorenylphenyl)) Alkali metals, alkaline earth metals, ammonium or other salts of diphenylphosphine; 1,2-bis (dicyclohexylphosphino) ethane, bis (dicyclohexylphosphino) methylamine, 1,2-bis ( Monoethylstilbene) ethene, 1,2-bis (2,5-diethylstilbene) ethane, 1,2 -Bis (2,5-diethylphosphoryl) benzene [Et-DUPHOS], 1,2-bis (2,5-diethylphosphoryl) ethane [£ ^ 3 卩 £], 152- Bis (dimethylphosphino) 'ethane, bis (dimethylphosphino) methane, 1,2-bis (2,5-dimethylphosphino) benzene [Me-DUPHOS], 1,2- Bis (2,5-dimethylphosphoryl) ethane [! ^ 卜 ΒΡΕ], 1,2-bis (diphenylphosphino) benzene, 2,3-bis (diphenylphosphino) bicyclo [2.2.1] Hept-5-ene [NORPHOS], 2, 2, bis (diphenylphosphino) -151, binaphthyl [BINNAP], 2,2, bis (diphenylphosphino)-] , 1, _bi, benzene [BISBI], 2; 3-bis (diphenylphosphino) butane, 1; 4-bis (diphenylphosphino) butane, 1,2-bis (diphenyl) Phosphino) ethane, bis (2-diphenylphosphinoethyl) phenylphosphine,] bis- (diphenylphosphino) ferrocene, bis (diphenylphosphino) methane, 1,2-bis (Diphenylphosphino) propane, 2; 2,2-bis (di-p-.tolylphosphine binaphthyl), 0-isopropylidene-253-dihydroxy_1,4-bis (diphenylphosphine) Group) butane [010?], 2- (diphenylphosphino) -2 '... methoxy _;!,], Binaphthyl, 1 2_diphenylphosphino-phenyl) isoquinoline , : | J,〗-tris (diphenylphosphino) ethane, and / or tris (hydroxyphenyl) phosphine. Examples of phosphine include 2,6-dimethyl-4-phenylphosphine, 2, 6-Bis (2,4-dimethylphenyl) -4-phenylphosphine and other ligands described in WO 00/55164. Examples of phosphanes include 2,6-bis (2,4-di (Methylphenyl) -Businyl-4-phenylphosphine, 1-octyl_2,4; 6-triphenylphosphine and others described in WO -13- (10) (10) 200417540 02 / 00669 ligand. Examples of phosphites are trimethyl phosphite, triethyl phosphite, tri-n-propyl phosphite, triisopropyl phosphite, tri-n-butyl phosphite, triisobutyl phosphite, and tri- Tertiary butyl ester, tris (2-ethylhexyl) phosphite, triphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2-tert-butyl) phosphite Methyl-4-methoxyphenyl) ester, tris (2-tert-butyl-4-methylphenyl) phosphite, and tris (p-toluene) phosphite. Other examples are sterically hindered phosphite ligands, as described in (especially) EP 1 5 5 5 0 8, US 4 66 8 6 5 1, US 4 74 8 26 1, US 4 769 49 8, US 4 7 74 361, US 4 8 3 5 299, US 4 8 8 5 401, US 5 05 9 710, US 5 113 022, US 5 1 79 055, US 5 260 491, US 5 2 64 616, US 5 2 8 8 918, US 5 3 60 938, EP 472 071, EP 518 24 1 and WO 9 7/207 95. It is preferred to use triphenyl phosphite substituted with 1 or 2 isopropyl and / or third butyl substituents (preferably ortho to the phosphite group). Description of use in (Special) EP 1 09 9 6 7 7, EP 1 0 9 9 6 7 8, WO 02.00670, JP 10279587, EP 472017, WO 01/21627, WO 97/4 0 00 1, WO 9 7/40002 The bisphosphite ligands in US 4,769,498, EP 2 1 3 63 9 and EP 2 1 4622 are particularly good.

膦酸酯之實例有甲基二乙氧基膦、苯基二甲氧基膦、 苯基二苯氧基膦、6-苯氧基-6H-二苯并[c,e][】,2]氧雜磷林 (p h 〇 s p h 〇 r i η )及其衍生物(其中所有或部分氫原子係由院基 或芳基或鹵原子置換)及WO 98/43 93 5、JP 09-2 6 8 1 5 2及 DE 198 10 794及德國專利申請案DE 199 54 7 21及DE 1 9 9 5 4 5 1 0所述之配位體。 -14 - (11) (11)200417540 習用亞膦酸酯配位體係描述於(尤其是)US 5 7 1 0 344、WO 9 5 06627、US 5 360 938、JP 07082281 中。實 例有二苯基(苯氧基)膦及其衍生物(其中所有或部分氫原 子係由烷基或芳基或鹵原子所置換)、二苯基(甲氧基) 膦、二苯基(乙氧基)膦等。 醛化反應所使用之活性觸媒錯合物係自金屬之鹽或化 合物(觸媒前驅物)、配位體及合成氣體形成。此者較佳係 於醛化過程中於原位發生。習用觸媒前驅物係爲例如辛酸 鹽、壬酸鹽、乙醯基丙酮酸鹽。金屬相對於配位體之莫耳 比係爲1 /1至1 / 1 0 0 0,以1 / 1至1 / 5 0爲佳。金屬於該反 應混合物中之濃度以1 ppm至1 000 ppm範圍內爲佳,5 PPm至.3 00 ppm範圍內較佳。 本發明方法中醛化用之起始物質係爲含有乙烯型(烯 鍵式)不飽和C-C雙鍵之化合物,烯烴或烯烴混合物,尤 其楚具有3至24個(以4至1 6個爲佳,尤其是4至I 2個) 碳H子且具有末端或內部c雙鍵之單烯烴,例如卜或 ’认烯、2 -甲基-卜丁烯、2 -甲基-2 - 丁烯、3 -甲基-】-丁 / 3、]…2 -或3 -己烯、丙烯之二聚化所得之c 6 -烯烴混合 物( 烯)、庚烯、2-或3-甲基己烯、辛烯、2 -甲基庚’ 嫌 甲基庚烯、5-甲基-2-庚烯、6-甲基-2-庚烯、2-乙 基—丨、^烯、丁烯之二聚化(二丁烯)所製得的異構C 8 -烯烴 混合物、異丁烯之二聚化所製得之C8-烯烴混合物、壬 稀、2'或3-甲基辛烯、丙烯之三聚化所製得的C9-烯烴混 合物(S丙烯)、癸烯、2-乙基-1-辛烯、十二碳烯、丙烯之 -15- (12) (12)200417540 四聚化或丁烯之三聚化所製得的烯烴混合物(四丙烯 或三丁烯)、十四碳烯、十六碳烯、丁烯之四聚化所製得 的C】6-烯烴混合物(四丁烯)及藉著具有不同數目之碳原子 (以2至4個爲佳)之烯烴藉共寡聚所製備之烯烴混合物, 若適當,則在藉蒸餾分成具有相同或類似鏈長的餾份之 後。亦可使用藉Fischer-Trohsch合成製得之烯烴或烯烴 混合物及藉著可經由置換反應製得之乙烯或烯烴的寡聚化 製得之烯烴。較佳起始物質係爲 C4-、C6-、C8-、C9-、 C12-或C16-烯烴混合物。 該合成氣體中一氧化碳對氫之體積比通常係由2:1至 1 : 2,尤其是1 : 1。該合成氣體以使用過量爲佳,例如高達 化學計量之三倍的量。 該醛化通常係於1至3 5 0巴之壓力下進行,以〗5至 2 7 0巴壓力爲佳。所用壓力係視進料烯烴之結構、所用觸 媒及所需效果而定。因此,例如,α -烯烴可於低於64巴 之壓力下於铑觸媒存在下在高空間-時間產率下轉化成對 應之醛。相反地,若爲具有內部雙鍵之烯烴,尤其是分支 鏈烯烴,以較高壓力爲佳。 本發明方法中之反應溫度係爲2 0至2 5 0 °C,6 0 °C至 1 8 0 °C 爲佳,9 0 °C 至 1 5 (TC 更佳。 醛化之後,可藉減壓移除大部分合成氣體。 醛化反應之後,以藉著相分離來分離產物及觸媒溶液 爲佳。 包含任何未反應之烯烴或烯鍵式不飽和化合物、反應 •16- (13) (13)200417540 產物、反應副產物、至少一種環狀碳酸酯、可能之非極性 溶劑、觸媒及可能之游離配位體的反應器輸出物導入相分 離裝置內,例如滯留容器.(沉降器),其可視情況於之前配 置熱交換器,以冷卻該反應器輸出物。根據本發明,相分 離係於〇 °C至1 3 0 °c之溫度下進行。以1 0 °c至6 0 t爲佳。 相分離係於1巴至2 7 0巴之壓力下進行,但以於與醛化步 驟所選擇相同的壓力下爲佳。 視所使用之起始物質而定,相分離容器中之分離產生 (例如)基本上由未反應烯烴或烯鍵式不飽和化合物、觸媒 錯合物及選擇性游離配位體及非極性溶劑所組成且送回反 應器之相對輕質相,及主要包含至少一種環狀碳酸酯、反 應產物及反應副產物且進一步加工處理之重質相。根據碘 原子’此係藉著分離成醛(醇)、未反應烯烴或烯鍵式不飽 和化合物、殘留溶劑及副產物來達成,且可藉(例如)蒸餾 進行。已分離之溶劑係再循環回到醛化反應器。 此等相之組成係由所使用之配位體的種類、殘留烯烴 或·含量及所使用之溶劑的種類及周量來決定。因啟,可 輕易發現不同之相組成。 本發明方法可以數種變化形式進行。Examples of phosphonates are methyldiethoxyphosphine, phenyldimethoxyphosphine, phenyldiphenoxyphosphine, 6-phenoxy-6H-dibenzo [c, e] [], 2 ] Oxaphosphine (ph 〇sph 〇 ri η) and its derivatives (where all or part of the hydrogen atom is replaced by a syl or aryl or halogen atom) and WO 98/43 93 5, JP 09-2 6 8 1 5 2 and the ligands described in DE 198 10 794 and German patent applications DE 199 54 7 21 and DE 1 9 9 5 4 5 1 0. -14-(11) (11) 200417540 Conventional phosphinate coordination systems are described in, inter alia, US 5 7 1 0 344, WO 9 5 06627, US 5 360 938, JP 07082281. Examples are diphenyl (phenoxy) phosphine and its derivatives (where all or part of the hydrogen atoms are replaced by alkyl or aryl or halogen atoms), diphenyl (methoxy) phosphine, diphenyl ( Ethoxy) phosphine and the like. The active catalyst complex used in the aldolization reaction is formed from a metal salt or compound (catalyst precursor), a ligand, and a synthesis gas. This preferably occurs in situ during the aldehyde formation process. Conventional catalyst precursors are, for example, octanoate, nonanoate, and acetopyruvate. The molar ratio of the metal to the ligand is from 1/1 to 1/1 0 0, and preferably from 1/1 to 1/5 0. The concentration of the metal in the reaction mixture is preferably in the range of 1 ppm to 1 000 ppm, and more preferably in the range of 5 PPm to .3 00 ppm. The starting material used in the process of the present invention is a compound containing an ethylenic (ethylenic) unsaturated CC double bond, an olefin or a mixture of olefins, especially 3 to 24 (preferably 4 to 16) , Especially 4 to I 2) mono-olefins having carbon atoms and having a terminal or internal c double bond, such as dioxin or acetylene, 2-methyl-butene, 2-methyl-2 -butene, 3 -methyl-]-butane / 3, ... 2-or 3 -hexene, c 6 -olefin mixture (ene) obtained by dimerization of propylene, heptene, 2- or 3-methylhexene, Dimerization of octene, 2-methylheptene, methylheptene, 5-methyl-2-heptene, 6-methyl-2-heptene, 2-ethylhexene, ^ ene, butene Heterogeneous C 8 -olefin mixture prepared by (dibutene), C8-olefin mixture prepared by dimerization of isobutene, non-thin, 2 'or 3-methyloctene, trimerization of propylene C9-olefin mixture (S propylene), decene, 2-ethyl-1-octene, dodecene, -15-15 of (12) (12) 200417540 of tetramerization of butene Olefin mixture (tetrapropylene or tributene), tetradecene, hexadecene produced by trimerization C] 6-olefin mixture (tetrabutene) prepared by tetramerization of butene and olefin mixture prepared by copolymerization of olefins having different numbers of carbon atoms (preferably 2 to 4) , If appropriate, after distillation into fractions with the same or similar chain length. It is also possible to use olefins or olefin mixtures prepared by Fischer-Trohsch synthesis and olefins prepared by oligomerization of ethylene or olefins that can be prepared by displacement reactions. Preferred starting materials are C4-, C6-, C8-, C9-, C12- or C16-olefin mixtures. The volume ratio of carbon monoxide to hydrogen in the synthesis gas is usually from 2: 1 to 1: 2, especially 1: 1. The synthesis gas is preferably used in excess, for example up to three times the stoichiometric amount. The aldolization is usually carried out at a pressure of 1 to 350 bar, preferably a pressure of 5 to 270 bar. The pressure used depends on the structure of the feed olefin, the catalyst used and the desired effect. Thus, for example, alpha-olefins can be converted to the corresponding aldehydes in high space-time yields in the presence of rhodium catalysts at pressures below 64 bar. Conversely, for olefins having internal double bonds, especially branched olefins, higher pressures are preferred. The reaction temperature in the method of the present invention is preferably 20 to 250 ° C, preferably 60 to 180 ° C, and more preferably 90 to 15 ° C (TC is better. After aldehyde, it can be borrowed and reduced. Most of the synthesis gas is removed by pressure. After the aldolization reaction, it is better to separate the product and catalyst solution by phase separation. Contains any unreacted olefin or ethylenically unsaturated compounds, reaction • 16- (13) ( 13) 200417540 The reactor output of products, reaction by-products, at least one cyclic carbonate, possible non-polar solvents, catalysts and possible free ligands is introduced into a phase separation device, such as a retention vessel. (Settler) According to the present invention, a heat exchanger may be configured to cool the output of the reactor. According to the present invention, the phase separation is performed at a temperature of 0 ° C to 130 ° C. At 10 ° c to 60 ° t The phase separation is carried out at a pressure of 1 bar to 270 bar, but preferably at the same pressure as selected for the aldehyde formation step. Depending on the starting material used, the Separation produces, for example, essentially from unreacted olefins or ethylenically unsaturated compounds, catalyst complexes A relatively light phase composed of a substance, a selective free ligand and a non-polar solvent and returned to the reactor, and a heavy phase mainly containing at least one cyclic carbonate, a reaction product, and a reaction by-product, and further processed. According to the iodine atom, this is achieved by separation into aldehydes (alcohols), unreacted olefins or ethylenically unsaturated compounds, residual solvents and by-products, and can be performed by, for example, distillation. The separated solvents are recycled Back to the aldolization reactor. The composition of these phases is determined by the type of ligand used, the residual olefin or content, and the type and amount of the solvent used. Due to the fact, different phases can be easily found The method of the invention can be carried out in several variations.

變化形式A 此方法變化形式中,來自醛化反應之輸出物係分離成 ±要包含觸媒及環狀碳酸酯之部份及主要包含醛化產物之 部份。 -17- (14) (14)200417540 此方法變化形式可採用於使用極性觸媒及選擇性其他 非極性溶劑時。該非極性溶劑亦可與所使用之進料烯烴或 烯鍵式不飽和化合物相同,使得醛化反應未進行至完全_專 化(例如僅達90%,以80%爲佳)或可在醛化反應過程中及/ 或之後添加其他烯鍵式不飽和化合物。 方法之變化形式A係由圖1說明:合成氣體(1 )、燦 烴或烯鍵式不飽和化合物(2 )及觸媒溶液(3 )(較佳係包含環 狀碳酸酯)於醛化反應器(4)中反應。該反應器輸出物(5 )可 視情況於減壓容器(6)中除去過量合成氣體(7)。此方式所 得之液流(8)以於沉降器(9)中分離成重質相(1 〇),其包含 主要部分之環狀碳酸醋及觸媒,及輕質相(1 1 ),其包含醒 化產物、,未反應之烯烴或烯鍵式不飽和化合物及(若有使 用)非極性溶劑。視所使用之觸媒系統而定,以藉由適當 之分離階段(1 2)自後續程序移除觸媒殘留物爲佳。液流 (1 1 )或(1 3 )隨之送至分離階段(1 4 )。此情況下,分離反應 產物(醛及醇)(1 5),且送至進一步加工或氫化步驟。亦分 離之部份(]6)係包含(例如)殘留之環狀碳酸酯、高沸點副 產物、反應產物、及(若有使用)所添加之其他非極性溶 劑。部份(1 6)可再循環回至醛化反應器(4)。丟棄不需要之 副產物的加工較佳係在再循環之前進行。該觸媒分離可藉 著將至少部分部份(1 6)直接進料至液流(8)內而以萃取形式 進行。該萃取可爲單階萃取或以多階方法形式逆流、順流 或交流地操作。 -18- (15) (15)200417540Variation A In this variation of the method, the output from the aldehyde reaction is separated into ± the part containing the catalyst and the cyclic carbonate and the part mainly containing the aldehyde product. -17- (14) (14) 200417540 This method can be used when using polar catalysts and other non-polar solvents. The non-polar solvent can also be the same as the feed olefin or ethylenically unsaturated compound used, so that the aldolization reaction does not proceed to complete_specialization (for example, only 90%, preferably 80%) or can be Other ethylenically unsaturated compounds are added during and / or after the reaction. The variation A of the method is illustrated in Figure 1: the synthesis gas (1), the bright hydrocarbon or ethylenically unsaturated compound (2), and the catalyst solution (3) (preferably containing a cyclic carbonate) in the aldehyde reaction Reactor (4). The reactor output (5) can be used to remove excess synthesis gas (7) in the decompression vessel (6) as appropriate. The liquid stream (8) obtained in this way is separated into a heavy phase (10) in a settler (9), which contains the main part of a cyclic carbonate and a catalyst, and a light phase (1 1). Contains deactivated products, unreacted olefins or ethylenically unsaturated compounds and, if used, non-polar solvents. Depending on the catalyst system used, it may be better to remove the catalyst residues from subsequent processes through an appropriate separation stage (1 2). The liquid stream (1 1) or (1 3) is then sent to the separation stage (1 4). In this case, the reaction products (aldehyde and alcohol) (15) are separated and sent to a further processing or hydrogenation step. The fraction (] 6) also contains, for example, residual cyclic carbonate, high-boiling by-products, reaction products, and (if used) other non-polar solvents added. Part (16) can be recycled back to the aldehyde reforming reactor (4). The process of discarding unwanted by-products is preferably performed before recycling. The catalyst separation can be carried out in the form of extraction by feeding at least a part (16) directly into the liquid stream (8). The extraction can be a single-stage extraction or operated countercurrently, co-currently, or alternatingly in a multi-stage process. -18- (15) (15) 200417540

變化形式B 此方法變化形式中,來自醛化反應之反應器輸出物係 分離成主要包含觸媒及非極性溶劑之部份及主要包含醛化 產物及環狀碳酸酯之部份。 此方法變化形式可採用於添加與該環狀碳酸酯不相溶 混之非極性溶劑或溶劑混合物時。此變化形式特別可使用 於不添加其他進料烯烴或不添加其他烯鍵式不飽和化合物 時或醛化反應係進行至高轉化率或完全轉化率時。非極性 溶劑之添加使得變化形式B特別可使用於採用包含(例如) 亞磷酸酯配位體之非極性觸媒系統的情況。該方法變化形 式B係藉圖2說明於下文:在醛化反應器(4)中,合成氣 體(1.)及烯烴或烯鍵式不飽和化合物(2)(以含有非極緘溶劑 及觸媒爲佳)係於環狀碳酸酯(3)存在下進行反應。該反應 器輸出物(5)係視情況於分離器(6)中去除過量合成氣體 (7 ) ’且以液流(8 )形式送至分離器(9 )。此情況下,包含觸 媒、未反應烯烴或未反應烯鍵式不飽和化合物及非極性溶 劑之輕貝相(1 0)係與包含反應產物及環狀碳酸醋之重質相 (1 1)分離。部份(10)以再循環至該醛化反應器爲佳。部份 (1 ])可視丨目況於谷益:(1 2 )中去除觸媒殘留物,隨之送至蒸 貴留階段(14)。此情況下,反應產物(15)與環狀碳酸酯(1 6) 为離’後者再循运至|全·化反應器(4)。該觸媒分離亦可藉 者將至少一邰分邰份(1 6)導入該液流(8)內而以萃取形式進 行。該萃取可以單階萃取或在逆流、順流或交流下以多階 程序操作。 -19- (16) (16)200417540 變化形式c 此醛化反應中,分離成主要包含觸媒及烯烴或烯鍵式 飽和化合物的部份,及主要包含醛化產物及環狀碳酸酯之 部份。 可在醛化反應之前及之後添加各種烯烴或烯鍵式不飽 和化合物、烯烴混合物或異構物混合物。使用相同烯烴/ 烯烴混合物或烯鍵式不飽和化合物爲佳。 此方法變化形式特別可使用於使用非極性觸媒且不採 用其他非極性溶劑之情況。在方法變化形式c中,可有其 他變化形式:在實際醛化反應之後送入其他儀烴或烯鍵式 不飽和化合物,或該醛化反應僅進行至特定部分轉化率 (例如5 0至7 0 % )。 圖3說明此種方法變化形式:在醛化反應器(4)中, 烯烴或烯鍵式不飽和化合物(1)與合成氣體(2)係於環狀碳 酸醋(3 )存在下進行反應。該觸媒以存在於燒烴相中爲 佳。該醛化反應器輸出物(5)可於容器(6)中去除過量合成 氣體(7),於適當之容器中進行相分離。在此之前,可經 由混合邰分(8 )導入新進料稀烴(9)。導入;):希烴化合物時, 通常需藉熱交換器(未示)將反應器輸出物冷卻。該相分離 產生包含烯烴或未反應烯鍵式不飽和化合物及觸媒之輕質 相(1 1);此相再循環至醛化反應器(4)。該重質相(1 〇)係包 含反應產物及環狀碳酸酯,且在選擇性移除觸媒2)之後 進行蒸態(]3 ) °此情況下,反應產物(1 4 )與環狀碳酸酯(]5 ) >20> (17) (17)200417540 分離,後者再循環至醛化反應器。該觸媒分離亦以單階萃 取或以多階、逆流、順流或交流萃取形式進行。 前述本發明方法變化氣係包括分離反應器輸出物及選 擇性醛化產物;此可藉(例如)蒸餾進行。然而,亦可使用 其他分離方法,例如描述於(尤其是)WO 01/68247、EP 0 922 691、WO 99/38832、US 5 648 554 及 US 5 138 101 中 之萃取,或描述於(尤其是)DE 1953641、GB 1312076、 NL 8 7 00 8 8 1、DE 3 8 42 8 1 9、WO 94 1 9 1 04、DE 1 9632 600 及EP 1 1 0 3 3 0 3中之滲透。當該分離係工業化地進行時, 可採用各種方法。該分離以藉降膜蒸發器、短程蒸發器或 薄膜蒸發器或此等裝置之組合進行爲佳。該種組合之優點 可爲(例如)可在第一步驟(例如於降膜蒸發器中)分離仍溶 解於混合物中之合成氣體及一部分產物及仍存在之起始烯 烴’而該觸媒可在最後於第二步驟(例如於薄膜蒸發器中) 分離。 該萃取分離以連續地進行爲佳。可設計爲單階方法或 以多階方法形式逆流或交流地操作。 已去除觸媒、過量合成氣體及主要部分溶劑(環狀碳 酸酯)之反應產物混合物隨之分成醛(醇)、烯烴或烯鍵式 不飽和化合物、溶劑及副產物。此可藉著(例如)蒸餾達 成。已自反應產物混合物或醛化產物分離之烯烴或烯鍵式 不飽和化合物及/或溶劑可再循環至該醛化反應。 當標的產物並非醛本身,而是由其衍生之醇時,已去 除合成氣體及可能之溶劑的反應產物混合物可在分離烯烴 -21 - (18) (18)200417540 (分離烯鍵式不飽和化合物)之前或之後氫化’之後藉蒸倉留 加工處理以產生純醇。 在所有方法變化形式中,包含觸媒之邰份皆以再循環 至醛化反應爲佳。此點當然與溶解有觸媒之部份的組成無 關。 本發明方法可分單階或多階進行。此情況下’第一醛 化反應之後可接著第二醛化階段,在「較激烈」操作條件 下使難以醛化之內部烯烴轉化成所需之醛/然而,較佳情 況係先分離未反應之烯烴及產物,未反應之產物送至後續 酵化階段。此情況下,不同方法變化形式中再度產生區 隔;若爲在分離反應器輸出物之後,各種部份中含有未反 應烯烴、.觸媒及亦可能存在之游離配位體的情況,則可在 第二醛化階段使用完全不同之觸媒系統(不同金屬及/或不 同配位體)。若各部份中不含未反應之燒煙、觸媒及可能 之游離配位體,當然不可能。此情況下,較佳係於未反應 之烯烴中添加高濃度之觸媒或配位體系統,以轉化更難以 醛化成所需之產物的烯烴。在所有情況下,皆需添加前述 量之環狀碳酸酯於後續醛化階段。 環狀碳酸酯亦可應用於其他由金屬催化之反應。應用 範圍係例如氰化、氫氰化、烯烴之異構物、水合、Heck 反應、縮合反應(諸如醇醛縮合或水合)或酯化反應。 以下實施例僅用以說明本發明,而不限制其範圍,本 發明範圍僅由本文描述及申請專利範圍所界定。 -22 - (19) (19)200417540 實施例1(變化形式A) 3公升攪拌壓熱器於氮下置入1 〇 7 〇克丙二醇碳酸 酯、〇·22克壬酸铑及3.4克亞磷酸三(2,4_二-第三丁基苯 基)酯。該反應混合物中之鍺濃度係爲4 0 ppm ’而磷對铑 之莫耳比係爲1 0。於合成氣體(氫對一氧化碳之莫耳比係 爲丨:1)下加熱至lOOt:之後,導入2 8 0克1-辛烯。醛化係 於2 〇巴反應壓力及1 0 0。(:溫度下攪拌進行。 在 5 0分鐘反應時間之後,1 -辛烯之轉化率係爲 76%。正-壬醛之選擇率係爲65%。對應於49.4%之正壬醛 產率。 實施例2(實施例1之對照實驗): 依實施例1之方式進行另一實驗,不同處係使用四丁 $完取代丙二醇碳酸酯作爲溶劑。 醛化5 0分鐘後,卜辛烯之轉化率係爲9 2 %。正·壬醛 之選擇率係爲3 4 %。對應於3 1 . 3 %之正壬醛產率。 兩實驗比較顯示線性醛之選擇率及產率可藉著使周丙 Z _碳酸酯而增高。 實施例3 (變化形式B ) 1070克丙二醇碳酸酯、0.26克壬酸铑、5.7克具有通 式U之二配位基亞磷酸酯配位體及2 73克正-癸烷於氮下 置入3公升壓熱器中。此對應於4 〇 ρρηι之鍺濃度,磷對 錶之莫耳比爲 20。於合成氣體壓力(CO-H2之莫耳比爲 -23- (20) 200417540 1 : 1)下加熱至1 〇 crc之後,導入2 8 0克內部辛烯之混合 物。Variation B In this variation of the method, the reactor output from the aldehydeization reaction is separated into a portion mainly containing a catalyst and a non-polar solvent and a portion mainly containing an aldehydeization product and a cyclic carbonate. This method variation can be used when adding a non-polar solvent or solvent mixture that is immiscible with the cyclic carbonate. This variation is particularly useful when no other feed olefins or other ethylenically unsaturated compounds are added or when the aldolization reaction system proceeds to a high conversion rate or a complete conversion rate. The addition of a non-polar solvent makes Variation B particularly useful in the case of a non-polar catalyst system containing, for example, a phosphite ligand. Variation B of this method is described below with reference to FIG. 2: In the aldehydeization reactor (4), the synthesis gas (1.) and the olefin or ethylenically unsaturated compound (2) It is preferred that the reaction is performed in the presence of a cyclic carbonate (3). The output of the reactor (5) is to remove excess syngas (7) 'in the separator (6) as appropriate, and send it to the separator (9) in the form of a liquid stream (8). In this case, the light shell phase (1 0) containing the catalyst, unreacted olefin or unreacted ethylenically unsaturated compound, and a non-polar solvent is the heavy phase (1 1) containing the reaction product and cyclic carbonate. Separation. Part (10) is preferably recycled to the aldehydeization reactor. Part (1)) can be seen in Gu Yi: remove the catalyst residue in (1 2), and then send it to the steaming and retaining stage (14). In this case, the reaction product (15) and the cyclic carbonate (16) are separated from the latter, and then are transported to the | chemical reactor (4). The catalyst separation can also be performed in the form of extraction by introducing at least one fraction (16) into the liquid stream (8). The extraction can be performed in a single stage or in a multistage procedure under countercurrent, cocurrent or alternating current. -19- (16) (16) 200417540 Variation c In this aldolization reaction, it is separated into a part mainly containing a catalyst and an olefin or an ethylenically saturated compound, and a part mainly containing an aldehyde product and a cyclic carbonate. Serving. Various olefins or ethylenically unsaturated compounds, olefin mixtures or isomer mixtures can be added before and after the aldolization reaction. It is preferred to use the same olefin / olefin mixture or ethylenically unsaturated compound. This variant of the method is particularly useful when using non-polar catalysts and no other non-polar solvents. In method variation c, there may be other variations: other hydrocarbons or ethylenically unsaturated compounds are sent after the actual aldolization reaction, or the aldolization reaction proceeds only to a specific partial conversion rate (for example, 50 to 7) 0%). Figure 3 illustrates a variation of this method: in the aldehydeization reactor (4), the olefin or ethylenically unsaturated compound (1) and the synthesis gas (2) are reacted in the presence of a cyclic carbonate (3). The catalyst is preferably present in the hydrocarbon-burning phase. The output (5) of the aldehyde reforming reactor can remove excess synthesis gas (7) in a container (6) and perform phase separation in a suitable container. Prior to this, a new feed of dilute hydrocarbons (9) can be introduced via mixed fractions (8). Introduced;): When the hydrocarbon compound is used, the reactor output is usually cooled by a heat exchanger (not shown). This phase separation produces a light phase (1 1) containing an olefin or unreacted ethylenically unsaturated compound and a catalyst; this phase is recycled to the aldolization reactor (4). The heavy phase (10) contains a reaction product and a cyclic carbonate, and is vaporized (] 3) after selective removal of the catalyst 2). In this case, the reaction product (1 4) and the cyclic Carbonate (] 5) > 20 > (17) (17) 200417540 is separated and the latter is recycled to the aldehydeization reactor. The catalyst separation is also performed in single-stage extraction or in the form of multi-stage, countercurrent, cocurrent, or alternating current extraction. The aforementioned modified gas system of the method of the present invention includes separation of reactor output and selective aldehyde product; this can be performed by, for example, distillation. However, other separation methods can also be used, such as the extractions described in, inter alia, WO 01/68247, EP 0 922 691, WO 99/38832, US 5 648 554 and US 5 138 101, or described in (especially ) Penetration in DE 1953641, GB 1312076, NL 8 7 00 8 8 1, DE 3 8 42 8 19, WO 94 1 9 1 04, DE 1 9632 600 and EP 1 1 0 3 3 03. When the separation is performed industrially, various methods can be adopted. The separation is preferably performed by a falling film evaporator, a short-path evaporator or a thin film evaporator or a combination of these devices. The advantage of this combination can be, for example, that the synthesis gas and a portion of the product and the starting olefins that are still present in the mixture can be separated in the first step (eg in a falling film evaporator), and the catalyst can be used in Finally, it is separated in a second step (for example in a thin-film evaporator). This extraction and separation is preferably performed continuously. It can be designed as a single-stage method or operated countercurrently or alternatingly as a multi-stage method. The reaction product mixture from which the catalyst, excess synthesis gas and major solvents (cyclic carbonates) have been removed is then divided into aldehydes (alcohols), olefins or ethylenically unsaturated compounds, solvents and by-products. This can be achieved, for example, by distillation. The olefin or ethylenically unsaturated compound and / or solvent that has been separated from the reaction product mixture or the aldolization product may be recycled to the aldolization reaction. When the target product is not the aldehyde itself, but an alcohol derived from it, the reaction product mixture from which the synthesis gas and possible solvents have been removed can separate olefins 21-(18) (18) 200417540 (isolate ethylenically unsaturated compounds ) Before or after hydrogenation, after that, it is left to be processed by a steam bin to produce pure alcohol. In all method variations, the catalyst-containing fraction is preferably recycled to the aldolization reaction. This is of course not related to the composition of the part where the catalyst is dissolved. The method of the invention can be performed in single or multiple stages. In this case, the first aldehydeization reaction can be followed by the second aldehydeization stage, and the internal olefins that are difficult to be aldehydeized are converted to the desired aldehyde under the "more intense" operating conditions. However, it is better to separate the unreacted first The olefins and products and unreacted products are sent to the subsequent fermentation stage. In this case, partitions are generated again in different method variants; if after the reactor output is separated, various parts contain unreacted olefins, catalysts, and free ligands that may also be present, then A completely different catalyst system (different metals and / or different ligands) is used in the second aldolization stage. It is of course impossible if all parts do not contain unreacted soot, catalyst and possible free ligands. In this case, it is preferable to add a high-concentration catalyst or ligand system to the unreacted olefin to convert the olefin which is more difficult to be aldehyde-formed into the desired product. In all cases, it is necessary to add the aforementioned amount of cyclic carbonate in the subsequent aldehyde formation stage. Cyclic carbonates can also be used in other metal-catalyzed reactions. Applications include, for example, cyanation, hydrocyanation, isomers of olefins, hydration, Heck reactions, condensation reactions (such as aldol condensation or hydration), or esterification reactions. The following examples are only used to illustrate the present invention, but not to limit the scope of the present invention. The scope of the present invention is only defined by the scope of the description and patent application. -22-(19) (19) 200417540 Example 1 (Variation A) A 3 liter stirring autoclave was placed under nitrogen with 1.07 g of propylene glycol carbonate, 0.22 g of rhodium nonanoate, and 3.4 g of phosphorous acid. Tris (2,4-di-tert-butylphenyl) ester. The germanium concentration in the reaction mixture was 40 ppm 'and the molar ratio of phosphorus to rhodium was 10. After heating under a synthesis gas (molar ratio of hydrogen to carbon monoxide: 1: 1) to 100 t :, 280 g of 1-octene was introduced. The aldolization was carried out at a reaction pressure of 200 bar and a pressure of 100. (: Stirring at temperature. After a reaction time of 50 minutes, the conversion of 1-octene is 76%. The selectivity of n-nonanal is 65%. This corresponds to a yield of 49.4% of n-nonanal. Example 2 (Comparative Experiment of Example 1): Another experiment was performed in the same manner as in Example 1, except that tetrabutylene was used instead of propylene glycol carbonate as the solvent. After 50 minutes of aldolization, the conversion of bustene The rate is 92%. The selectivity of n-nonanal is 34%. This corresponds to a yield of 31.3%. Comparison of two experiments shows that the selectivity and yield of linear aldehydes can be obtained by using Zhou Bing Z _ carbonate increased. Example 3 (Variation B) 1070 g of propylene glycol carbonate, 0.26 g of rhodium nonanoate, 5.7 g of a phosphite ester ligand with a two-ligand general formula U and 2 73 g N-decane was placed in a 3 liter booster under nitrogen. This corresponds to a germanium concentration of 4 〇ρρηι, and the molar ratio of phosphorus to the surface is 20. At the pressure of the synthesis gas (the molar ratio of CO-H2 is- 23- (20) 200417540 1: 1) After heating to 10 crc, a mixture of 280 g of internal octene was introduced.

醛化係於1 0 溫度及2 0巴合成氣體壓力下進行。 反應完全之後,混合物冷卻至室溫,進行相分離。含有活 性觸媒錯合物之烴相保持於反應器中。自反應卸出含有大 部分醛之丙二醇碳酸酯相,於125t及25 hPa下於薄膜蒸 發器中加工處理,產生粗製醛。所得塔底產物丙二醇碳酸 酯與1 4 0克烯烴混合物及殘留於反應器中之觸媒溶液一起 使用前述方法再使用於另一醛化反應中。(總共再使用八 次,參照表1,實驗3 . 1至3 .8)。 ΜThe aldolization is carried out at a temperature of 10 and a synthesis gas pressure of 20 bar. After the reaction was completed, the mixture was cooled to room temperature and phase separated. The hydrocarbon phase containing the active catalyst complex is held in the reactor. The propylene glycol carbonate phase containing most of the aldehyde was discharged from the reaction and processed in a thin film evaporator at 125t and 25 hPa to produce crude aldehyde. The obtained bottom product propylene glycol carbonate was used together with 140 g of an olefin mixture and a catalyst solution remaining in the reactor, and then used in another aldolization reaction using the aforementioned method. (A total of eight more uses, refer to Table 1, Experiments 3.1 to 3.8). Μ

οο

Me0 (li) 實施例4(實施例3之對照實驗) 使用與實施例3之方法進行另一系列實驗,不同處 爲·使用四丁丨兀取代丙一醇碳酸醋及正癸院作爲溶劑(此 四丁烷係爲藉寡聚化,之後將1- 丁烯氫化所形成之c】6· 院類的混合物)。 -24- (21) (21)200417540 反應完成之後,整體反應混合物於125 °C及25 hP a下 於薄膜蒸發器中蒸餾。產生塔頂產物粗製醛。塔底產物係 爲主要包含四丁烷與觸媒之烴混合物。此溶液與1 4 0克烯 烴混合物使用前述方法一起再使用於另一醛化反應。(總 共再使用八次,參照表1,實驗4. 1至4.8)。 實施例3及4所述之實驗系列中,轉化率係藉連續測 量合成氣體消耗量而測得。轉化率之時間相依性使得可計 算整體速率常數,此係觸媒活性之量度。各種反應系統皆 可藉著標準化成整體速率常數,而與第一反應實驗系列比 較。 表1列示實施例之多個再使用循環的經標準化整體速 率常數。 對照後顯示本發明實施例之觸媒活性易保持定値,但 對照例所採用之習用方法的觸媒活性大幅降低。因此,使 用本發明方法可大幅增加觸媒安定性。 -25- (22)200417540 表1 -實施例3及4之比較 實施例3 相對整體速率常數[-] 實施例4 相對整體速率常數l·] 3.0 1 4.0 1 .000 3 . 1 1.110 4.1 0.855 3.2 1.035 4.2 0.909 3.3 0.982 4.3 0.726 3.4 0.990 4.4 0.834 3 .5 0.942 4.5 0.728 3.6 1.009 4.6 - 3 .7 0.805 4.7 0.592 3.8 1.000 4.8 0.3 13 註:在實施例4.6情況下, 測量有瑕疵 ,故未記錄數値 [圖式簡單說明] 圖 1係說明本發明方法之變化形式 A。 圖 2係說明本發明方法之變化形式 B。 圖 3係說明本發明方法之變化形式 C。 主要元 件對照表 1 合成氣體 2 烯烴或烯鍵式不飽和化合物 3 觸媒溶液 4 醛化反應器 5 反應器輸出物Me0 (li) Example 4 (Comparative Experiment of Example 3) Another series of experiments were performed using the method of Example 3, except that tetrabutyl alcohol was used instead of glycerol carbonate and n-decane as solvents ( This tetrabutane system is a mixture of c] 6 · methane formed by oligomerization, followed by hydrogenation of 1-butene). -24- (21) (21) 200417540 After the reaction is completed, the whole reaction mixture is distilled in a thin film evaporator at 125 ° C and 25 hPa. Overhead product crude aldehyde was produced. The bottom product is a hydrocarbon mixture mainly containing tetrabutane and catalyst. This solution was reused with another 140 grams of an olefin mixture using the method described above for another aldolization reaction. (A total of eight more uses, refer to Table 1, experiments 4.1 to 4.8). In the experimental series described in Examples 3 and 4, the conversion rate was measured by continuously measuring the amount of synthetic gas consumed. The time dependence of the conversion rate allows the calculation of the overall rate constant, which is a measure of catalyst activity. Various reaction systems can be compared with the first reaction experiment series by normalizing to the overall rate constant. Table 1 shows the normalized overall rate constants for multiple reuse cycles of the examples. After the comparison, it was shown that the catalyst activity of the examples of the present invention is easily maintained, but the catalyst activity of the conventional method used in the comparative example is greatly reduced. Therefore, using the method of the present invention can greatly increase catalyst stability. -25- (22) 200417540 Table 1-Comparative Example 3 of Examples 3 and 4 Relative overall rate constant [-] Example 4 Relative overall rate constant l ·] 3.0 1 4.0 1. .000 3. .1 1.110 4.1 0.855 3.2 1.035 4.2 0.909 3.3 0.982 4.3 0.726 3.4 0.990 4.4 0.834 3 .5 0.942 4.5 0.728 3.6 1.009 4.6-3 .7 0.805 4.7 0.592 3.8 1.000 4.8 0.3 13 Note: In the case of Example 4.6, the measurement is defective, so the number is not recorded. [Brief Description of the Drawings] Fig. 1 illustrates a variation A of the method of the present invention. Fig. 2 illustrates a variation B of the method of the present invention. Fig. 3 illustrates a variation C of the method of the present invention. Comparison of main components 1 Synthetic gas 2 Olefins or ethylenically unsaturated compounds 3 Catalyst solution 4 Aldehyde reactor 5 Reactor output

-26- (23) (23)200417540 6 減壓容器 7 過量合成氣體 8 液流 9 沉降器 1 〇重質相 1 1輕質相 1 2分離階段 13 液流 Μ分離階段 1 5 反應產物 1 6部份-26- (23) (23) 200417540 6 Decompression vessel 7 Excessive synthesis gas 8 Liquid stream 9 Settler 1 〇 Heavy phase 1 1 Light phase 1 2 Separation phase 13 Liquid phase M separation phase 1 5 Reaction product 1 6 Part

-27--27-

Claims (1)

(1) 200417540 拾、申請專利範圍 1 種於至少一種兀素週期表第8至1 ϋ族金屬觸媒 存在下}1¾•具有3至2 4個碳原子之烯鍵式不飽和化合物醛 化的方法,其中該醛化係於以烯鍵式不飽和化合物計至少 〇.ι莫耳%之至少一種具有通式I之環狀碳酸酯 乂。 (I)(1) 200417540 The scope of application for patents is one in the presence of at least one of Group 8 metal catalysts of the Periodic Table of the Elements. 1¾ • Alkylated unsaturated compounds with 3 to 24 carbon atoms The method wherein the aldolization is based on at least 0.1 mol% of an ethylenically unsaturated compound of at least one cyclic carbonate fluorene having the general formula I. (I) 其中 ^ ' R2 ' R3、R4係相同或相異,且各係爲Η或具巧 广2/個碳原子之經取代或未經取代的脂族、脂環族、 方大 ' 脂族J旨環族、脂族_ A α如%脂環族-芳族烴基, η係爲〇至5,Where ^ 'R2' R3 and R4 are the same or different, and each is Η or substituted or unsubstituted aliphatic, cycloaliphatic, or square with 2/4 carbon atoms' aliphatic J purpose Cyclic, aliphatic_A α such as% cycloaliphatic-aromatic hydrocarbon group, η system is 0 to 5, 什π族I爲具月1主27個碳原子之二價經取代或不經 ^二脂職、芳族、脂族偏族或脂族姻烴基 κ至少·一種不含確酿 行。 、險基或磺酸根之配位體存在下 -.如申I靑專利範圍第1 R3、R4及X係經選自ο、N、 氟、氯、溴、5ft、-oh、〇R 烷基之相同或相異取代基所取 3 ·如申請專利範圍第玉 項之方法,其中R1、R2、 NH、N-烷基及N-二烷基、 •CN、-C(O)烷基或 <(〇)〇 一 代。 項之方法,其中該醛化係於 -28- (2) (2)200417540 以該烯鍵式不飽和化合物計至少〇 . 1莫耳%之溶劑存在下 進行,該溶劑相較於該環狀碳酸酯I係相對非極性,且與 環狀碳酸酯I不相混溶。 4 .如申請專利範圍第3項之方法,其中使用具有5 至5 0個碳原子之經取代或不經取代烴類或具有3至24個 碳原子之烯鍵式不飽和化合物或烯烴作爲非極性溶劑。 5 ·如申請專利範圍第1至4項中任一項之方法,其 中來自酵化反應之輸出物係分離成主要包含觸媒及該環狀 碳酸酯之部份及主要包含醛化產物之部份。 6 ·如申請專利範圍第1至4項中任一項之方法,其 中來自醛化反應之輸出物係分離成主要包含觸媒及非極性 溶劑之部份及主要包含醛化產物及該環狀碳酸醋,之部份。 7 ·如申請專利範圍第1至4項中任一項之方法,其 中來自醛化反應之輸出物係分離成主要包含觸媒及未反應 烯鍵式不飽和化合物之部份及主要包含醛化產物及該環狀 _酸酯之部份。 8 ·如申請專利範圍第1至4項中任一項之方法,其 中該包含觸媒之部份係再循環至該醛化反應。 9 .如申請專利範圍第1至4項中任一項之方法,其 中所使用之環狀碳酸酯係爲乙二醇碳酸酯、丙二醇碳酸酯 _ 丁二醇碳酸酯或其混合物。 1 0 .如申請專利範圍第1至4項中任一項之方法,其 中該醛化係於膦酸酯、亞磷酸酯、氧化膦、膦、亞膦酸 酉_、膦林(phosphinine)及/或膦烷(pIl〇sphinane)存在下進 -29- (3) (3)200417540 行。 1 1 ·如申請專利範圍第1至4項中任一項之方法,其 中該未反應烯鍵式不飽和化合物(烯烴)係自反應器輸出物 分離或自醛化產物分離’且再循環至該醛化反應。 1 2 .如申請專利範圍第1至4項中任一項之方法,其 中該未反應烯鍵式不飽和化合物係自反應器輸出物分離或 自醛化產物分離,且使用於第二反應階段。Even π group I is a bivalent substituted or non-substituted divalent, aromatic, aliphatic, or aliphatic hydrocarbyl group with at least 27 carbon atoms per month. At least one type does not contain alcohol. In the presence of a ligand of hydrazone, sulfonate or sulfonate.-For example, the scope of patent application No. 1 R3, R4 and X is selected from ο, N, fluorine, chlorine, bromine, 5ft, -oh, 〇 alkyl The same or different substituents are taken. 3 · The method as described in the item of the scope of patent application, wherein R1, R2, NH, N-alkyl and N-dialkyl, CN, -C (O) alkyl or < (〇) 〇 Generation. The method of item, wherein the aldolization is carried out in the presence of a solvent of at least 0.1 mol% based on the ethylenically unsaturated compound at -28- (2) (2) 200417540, which is compared with the cyclic Carbonate I is relatively non-polar and immiscible with cyclic carbonate I. 4. The method according to item 3 of the patent application, wherein a substituted or unsubstituted hydrocarbon having 5 to 50 carbon atoms or an ethylenically unsaturated compound or olefin having 3 to 24 carbon atoms is used as a non- Polar solvents. 5. The method according to any one of claims 1 to 4, wherein the output from the fermentation reaction is separated into a part mainly containing a catalyst and the cyclic carbonate and a part mainly containing an aldehyde product. Serving. 6. The method according to any one of claims 1 to 4, wherein the output from the aldehyde reaction is separated into a part mainly containing a catalyst and a non-polar solvent and mainly containing an aldehyde product and the ring Carbonic acid vinegar, part. 7. The method according to any one of claims 1 to 4, wherein the output from the aldehyde reaction is separated into a part mainly containing a catalyst and an unreacted ethylenically unsaturated compound and mainly containing an aldehyde Product and part of the cyclic acid ester. 8. The method according to any one of claims 1 to 4, wherein the catalyst-containing portion is recycled to the aldolization reaction. 9. The method according to any one of claims 1 to 4, wherein the cyclic carbonate used is ethylene glycol carbonate, propylene glycol carbonate-butanediol carbonate, or a mixture thereof. 10. The method according to any one of claims 1 to 4, wherein the aldolization is based on a phosphonate, a phosphite, a phosphine oxide, a phosphine, a phosphonium phosphinate, a phosphinine, and / Or phosphorane (pIlOsphinane) in the presence of -29- (3) (3) 200417540 line. 1 1 · The method according to any one of claims 1 to 4, wherein the unreacted ethylenically unsaturated compounds (olefins) are separated from the reactor output or separated from the aldehyde product and are recycled to The aldolization reaction. 1 2. The method according to any one of claims 1 to 4, wherein the unreacted ethylenically unsaturated compound is separated from the reactor output or from the aldehyde product, and is used in the second reaction stage . -30--30-
TW092123468A 2002-08-31 2003-08-26 Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters TWI319393B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10240253 2002-08-31
DE10327434A DE10327434A1 (en) 2002-08-31 2003-06-18 Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins in the presence of cyclic carbonic acid esters

Publications (2)

Publication Number Publication Date
TW200417540A true TW200417540A (en) 2004-09-16
TWI319393B TWI319393B (en) 2010-01-11

Family

ID=31197552

Family Applications (2)

Application Number Title Priority Date Filing Date
TW092123454A TWI293950B (en) 2002-08-31 2003-08-26 Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the pte in the presence of cyclic carbonic esters
TW092123468A TWI319393B (en) 2002-08-31 2003-08-26 Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW092123454A TWI293950B (en) 2002-08-31 2003-08-26 Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the pte in the presence of cyclic carbonic esters

Country Status (5)

Country Link
JP (1) JP5340205B2 (en)
AT (1) ATE456549T1 (en)
DE (3) DE10327435A1 (en)
TW (2) TWI293950B (en)
ZA (1) ZA200501710B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006442A1 (en) 2007-02-05 2008-08-07 Evonik Oxeno Gmbh Mixture of diesters of Dianhydrohexitolderivaten with carboxylic acids of the empirical formula C8H17COOH, process for preparing these diesters and use of these mixtures
DE102008006400A1 (en) 2008-01-28 2009-07-30 Evonik Oxeno Gmbh Mixtures of diisononyl esters of terephthalic acid, process for their preparation and their use
DE102008050564B4 (en) 2008-09-22 2011-01-20 Curt Niebling Mold and method for high-pressure forming of a single-layer or multi-layer laminate
DE102009028975A1 (en) 2009-08-28 2011-03-03 Evonik Oxeno Gmbh Ester derivatives of 2,5-furandicarboxylic acid and their use as plasticizers
DE102010021892B4 (en) 2010-05-28 2014-03-20 Curt Niebling jun. Method and device for laminating a 3D support part with a laminate
DE102015012242B4 (en) 2015-09-18 2019-06-19 Leonhard Kurz Stiftung & Co. Kg Method and device for producing a laminated with a laminate 3D substrate
DE102016004047B4 (en) 2016-04-04 2017-10-19 Niebling Gmbh Method and mold for hot forming a flat thermoplastic laminate
TWI793216B (en) * 2017-12-07 2023-02-21 美商陶氏科技投資公司 Hydroformylation process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69610844T2 (en) * 1995-08-25 2001-03-29 Dsm Nv HYDROFORMYLATION PROCESS.
JPH11189563A (en) * 1997-12-25 1999-07-13 Kuraray Co Ltd Preservation of hydroformylated product
DE19842368A1 (en) * 1998-09-16 2000-03-23 Oxeno Olefinchemie Gmbh Process for the preparation of higher oxo alcohols from olefin mixtures by two-stage hydroformylation
DE19954665B4 (en) * 1999-11-13 2004-02-12 Celanese Chemicals Europe Gmbh Process for the hydroformylation of olefinically unsaturated compounds
DE10031518A1 (en) * 2000-06-28 2002-01-10 Basf Ag Process for the preparation of hydroformylation products of propylene and of acrylic acid and / or acrolein

Also Published As

Publication number Publication date
DE50312386D1 (en) 2010-03-18
ATE456549T1 (en) 2010-02-15
DE10327434A1 (en) 2004-03-04
TW200418785A (en) 2004-10-01
ZA200501710B (en) 2005-11-30
TWI319393B (en) 2010-01-11
JP5340205B2 (en) 2013-11-13
JP2010138189A (en) 2010-06-24
DE10327435A1 (en) 2004-03-04
TWI293950B (en) 2008-03-01

Similar Documents

Publication Publication Date Title
JP4523411B2 (en) Process for hydroformylation of olefinically unsaturated compounds, especially olefins, in the presence of cyclic carbonates
KR100729160B1 (en) Process for the preparation of oxo aldehydes and/or alcohols by multistage hydroformylation
KR100988732B1 (en) Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalysed by unmodified metal complexes in the presence of cyclic carbonic acid esters
TWI432411B (en) A calixarene bisphosphite ligand for use in hydroformylation processes
JP2005529916A (en) Hydroformylation of olefins by rhodium-catalyzed reaction with reduced rhodium loss
US20140081050A1 (en) Single solvent gas expanded hydroformylation process
TWI566834B (en) Methods to store transition metal organophosphorous ligand based catalysts
GB2028677A (en) Carbonylation of olefinic compounds
JP2010138189A (en) Method for producing aldehyde by hydroformylation of olefinically unsaturated compound catalytically activated by unmodified metallic complex in the presence of cyclic carboxylic acid ester
JP3812095B2 (en) Method for producing aldehydes and bisphosphite used therefor
JPH08165266A (en) Production of aldehyde compounds
JP6558742B2 (en) Method for producing aldehyde compound and acetal compound
JP3956559B2 (en) Method for producing aldehyde
JP3812094B2 (en) Method for producing aldehydes
Arnoldy Process aspects of rhodium-catalyzed hydroformylation
JPH0242040A (en) Method of hydroformylation
JPS63222139A (en) Hydroformilation of olefin
JPH0764772B2 (en) Olefin hydroformylation method.
JPS63264433A (en) Hydroformylation of olefins
JPH0433780B2 (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees