TW200418785A - Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the PTE in the presence of cyclic carbonic esters - Google Patents

Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the PTE in the presence of cyclic carbonic esters Download PDF

Info

Publication number
TW200418785A
TW200418785A TW092123454A TW92123454A TW200418785A TW 200418785 A TW200418785 A TW 200418785A TW 092123454 A TW092123454 A TW 092123454A TW 92123454 A TW92123454 A TW 92123454A TW 200418785 A TW200418785 A TW 200418785A
Authority
TW
Taiwan
Prior art keywords
reaction
catalyst
aldehyde
aliphatic
aldolization
Prior art date
Application number
TW092123454A
Other languages
Chinese (zh)
Other versions
TWI293950B (en
Inventor
Oliver Moller
Dieter Hess
Klaus-Diether Wiese
Dirk Fridag
Cornelia Borgmann
Alfred Kaizik
Original Assignee
Oxeno Olefinchemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxeno Olefinchemie Gmbh filed Critical Oxeno Olefinchemie Gmbh
Publication of TW200418785A publication Critical patent/TW200418785A/en
Application granted granted Critical
Publication of TWI293950B publication Critical patent/TWI293950B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a process for preparing aldehydes by hydroformylation catalyzed by metals of groups 8 to 10 of the Periodic Table of the Elements in the presence of cyclic carbonic esters.

Description

200418785 ⑴ 玖、發明說明 【發明所屬之技術領域】 本發明係有關一種使乙烯型不飽和化合物(尤其是嫌 烴)受自元素週期表第8至1 0族金屬所衍生之未改質金 屬觸媒催化性醛化以製備醛類之方法,該方法係於作爲溶 劑之環狀碳酸酯存在下進行。 【先前技術】 烯烴化合物、一氧化碳及氫於觸媒存在下進行反應以 形成多一個碳原子之醛類過程係稱爲醛化(氧化法)。此 等反應中所使用之觸媒經常係爲元素週期表第8至1 0族 過渡金屬的化合物,尤其量铑與鈷之化合物。與藉鈷化合 物催化相比,使用铑化合物進行之醛化通常具有化學選擇 性及區域選擇性較高之優點,因此通常具有經濟上之吸引 力。 由铑催化之醛化通常係使用包含铑及作爲配位體之元 素週期表第1 5族的化合物(以三價磷化合物爲佳)之錯 合物進行。例如,經常使用來自膦、亞磷酸酯及膦酸酯之 化合物作爲配位體。對於烯烴之醛化的評論可參照B. CORNILS, W. A. HERRMANN, “Applied Homogeneous Catalysis with Organ ometallic Compounds,,, V 〇 1. 1 & 2 5 VCH, Weinheim, New York,1996 〇 末端烯烴可於經膦改質之铑觸媒存在下輕易地反應。 另一方面,內部烯烴,尤其是內部高度分支鏈烯烴,需要 -5- (2) (2)200418785 強活性配位體,諸如亞磷酸酯配位體。此外,已發現「原 始」或未改質铑極適於難以醛化之烯烴。此等觸媒包含一 或多種金屬物質,其係於醛化條件下,不存在改質配位體 下,自金屬鹽形成。就本專利申請案而言,改質配位體係 爲含有一或多個元素週期表第1 5族之予體原子的化合物 。然而,改質配位體不包括烷氧基、羰基、氫基、烷基、 芳基、烯丙基、醯基或烯配位體,亦不包括用於形成觸媒 之金屬鹽的抗衡離子,例如鹵基諸如氟、氯、溴或碘、乙 醯基丙酮酸根、羧酸根諸如乙酸根、2 -乙基己酸根、己酸 锒、辛酸根或壬酸根。 本發明所使用之改質配位體係爲含有選自元素週期表 笔1 5族之予體原子的配位體,例如氮、磷、砷或銻,尤 _是磷。該配位體可爲單配位基或多配位基,若爲對掌性 配位體,則或可使用消旋物或一鏡像異構物或非鏡像異構 物。磷配位體之特別重要實例有膦、膦林(phosphinine) 、膦烷(phosphinane )、氧化膦、亞磷酸酯、膦酸醋及 变膦酸酯。 膦之實例有三苯膦、三(對-甲苯基)膦、三(間-甲 1基)膦、二(鄰-甲苯基)膦、三(對-甲氧苯基)膦、 $(對-氟苯基)膦、三(對-氯苯基)膦、三(對-二甲 知基本基)膦、乙基二苯基膦、丙基二苯基膦、第三丁基 二苯基膦、正丁基二苯基膦、正己基二苯基膦、己基二 笨基膦、二環己基苯基膦、三環己基膦、三環戊基膦、三 之基膦、三(卜萘基)膦、三·2 -呋喃基膦、三苄基膦、 -6 - (3) (3)200418785 苄基二苯基膦、三-正丁基膦、三-異丁基膦、三-第三丁 基膦、雙(2-甲氧苯基)苯基膦、新盖基二苯基膦、磺化 三苯膦(諸如三(間磺醯苯基)膦、(間-磺醯苯基)二 苯基膦之之鹼金屬、鹼土金屬、銨或其他鹽類;1,2-雙( 二環己基膦基)乙烷、雙(二環己基膦基)甲烷、1,2-雙 (二乙基膦基)乙烷、1,2-雙(2,5-二乙基磷嗦基)乙烷 、:1,2-雙(2,5-二乙基磷嘹基)苯[Et-DUPHOS]、1,2-雙( 2,5-二乙基磷卩東基)乙烷[Et-BPE]、1,2-雙(二甲基膦基 )乙烷、雙(二甲基膦基)甲烷、1,2-雙(2,5-二甲基磷I]東)苯 [Me-DUPHOS]、1,2 -雙(2,5 -二甲基磷嗦基)乙烷[M e-ΒΡΕ]、1,2-雙(二苯基膦基)苯、2,3-雙(二苯基膦基) 二環[2.2.1]庚-5-烯[NORPHOS]、2,2,-雙(二苯基膦基)-1,1、聯萘[31>^?]、2,2’-雙(二苯基膦基)-1,1’-聯苯 [BISBI]、2;3-雙(二苯基膦基)丁烷、1,4-雙(二苯基膦 基)丁烷、1,2-雙(二苯基膦基)乙烷、雙(2-二苯基膦 乙基)苯基膦、]雙-(二苯基膦基)二茂鐵、雙(二 苯基膦基)甲烷、1,2-雙(二苯基膦基)丙烷、2,2’-雙( 二-對-甲苯基膦基)-1,1’-聯萘、〇-亞異丙基-2,3-二羥基-154-雙(二苯基膦基)丁烷[010?]、2-(二苯基膦基)-2’ -甲氧聯蔡、1-(2 - 一本基鱗基-1-蔡基)異D奎琳、 1515卜三(二苯基膦基)乙烷、及/或三(羥苯基)膦。 膦林之實例包括2,6-二甲基-4-苯基膦、2,6-雙(2,4-二甲基苯基)-4-苯基膦及其他描述於W0 00/5 5 1 64之配 位體。膦烷之實例係包括2,6-雙(2,4-二甲基苯基)-1-辛 -7- (4) (4)200418785 基-4-苯基膦烷、卜辛基-2,4,6-三苯基膦烷及其他描述於 WO 02/00669之配位體。 亞磷酸酯之實例有亞磷酸三甲酯、亞磷酸三乙酯、亞 磷酸三正丙酯、亞磷酸三異丙酯、亞磷酸三正丁酯、亞磷 酸三異丁酯、亞磷酸三-第三丁酯、亞磷酸三(2-乙基己 基)酯、亞磷酸三苯酯、亞磷酸三(2,4-二-第三丁基苯) 酯、亞磷酸三(2-第三丁基-4-甲氧苯基)酯、亞磷酸三 (2-第三丁基-4-甲基苯基)酯、亞磷酸三(對-甲苯)酯 。其他實例有立體受阻亞磷酸酯配位體,如描述於(尤其 是)EP 1 5 5 5 0 8、US 4 668 65 1、US 4 748 26 1、 US 4 7 69 49 8、US 4 774 3 6 1、US 4 8 3 5 299、 US 4 885401、 US 5 059710、 US 5 113 022、 US 5 179055、 US 5 260 491 、 US 5 264 616、 US 5 2 8 8 9 1 8、US 5 3 6 0 93 8、EP 4 72 07 1、EP 5 1 8 24 1 及WO 97/2 07 9 5。該立體受阻亞磷酸酯中,可提及亞磷酸 三苯酯,其可經一或2個異丙基及/或第三丁基取代基所 取代,以相對於亞磷酸酯基成鄰位爲佳。其他雙亞磷酸酯 配位體係特別於 EP 1 099 6 7 7、EP 1 09 9 6 7 8、WO 02/00670、JP 1 02 795 8 7、EP 4 72 0 1 7、WO 0 1 /2 1 62 7、WO 97/4 000 1、WO 97/40002、US 47 6949 8、EP 2 1 3 6 3 9 及 EP 2 1 4 622中提及。 膦酸酯之實例有甲基二乙氧基膦、苯基二甲氧基膦、 苯基二苯氧基膦、6 -苯氧基- 6H -二苯并[c,e][l,2]氧雜磷林 (p h 〇 s p h 〇 r i η )及其衍生物(其中所有或部分氫原子係由 -8- (5) (5)200418785 烷基或芳基或鹵原子置換)及 wo 9 8/43 9 3 5、JP 09-268152及DE 198 10 794及德國專利申請案DE 199 54 721及DE 199 54 510所述之配位體。 習用亞膦酸酯配位體係描述於(尤其是)U S 5 7 1 0 344、WO 95 06627、US 5 3 60 93 8、JP 0 7 0 8 22 8 1 中 ° 實 例有二苯基(苯氧基)膦及其衍生物(其中所有或部分氫 原子係由烷基或芳基或鹵原子所置換)、二苯基(甲氧基 )膦、二苯基(乙氧基)膦等。200418785 ⑴ 发明, Description of the invention [Technical field to which the invention belongs] The present invention relates to a method for subjecting an ethylenically unsaturated compound (especially a hydrocarbon) to an unmodified metal derived from a group 8 to 10 metal of the periodic table. A method of catalyzing aldehydes to produce aldehydes, which is carried out in the presence of a cyclic carbonate as a solvent. [Prior art] The process of olefin compounds, carbon monoxide and hydrogen reacting in the presence of a catalyst to form an aldehyde with one more carbon atom is called aldolization (oxidation method). The catalysts used in these reactions are often compounds of transition metals of groups 8 to 10 of the periodic table, especially compounds of rhodium and cobalt. Compared with the catalysis of cobalt compounds, the aldehydes using rhodium compounds usually have the advantages of chemical selectivity and high regioselectivity, so they are usually economically attractive. Rhodium-catalyzed aldehydes are usually carried out using a complex containing rhodium and a compound of Group 15 of the Periodic Table of the Elements (preferably a trivalent phosphorus compound). For example, compounds derived from phosphines, phosphites and phosphonates are often used as ligands. For comments on aldolization of olefins, see B. CORNILS, WA HERRMANN, "Applied Homogeneous Catalysis with Organ ometallic Compounds,", V 〇1.1. &Amp; 2 5 VCH, Weinheim, New York, 1996 Phosphine-modified rhodium catalysts react easily in the presence of internal olefins, especially internally highly branched olefins, which require -5- (2) (2) 200418785 strong active ligands, such as phosphite ligands In addition, "raw" or unmodified rhodium has been found to be extremely suitable for olefins that are difficult to formaldehyde. These catalysts contain one or more metal species which are formed from metal salts under aldehyde formation conditions in the absence of modified ligands. For the purposes of this patent application, a modified coordination system is a compound containing one or more donor atoms of group 15 of the periodic table. However, modified ligands do not include alkoxy, carbonyl, hydrogen, alkyl, aryl, allyl, fluorenyl, or alkenyl ligands, nor do they include counterions for forming metal salts of catalysts. For example, a halo group such as fluorine, chlorine, bromine or iodine, acetopyruvate, a carboxylate such as acetate, 2-ethylhexanoate, hexanoate, caprylate or nonanoate. The modified coordination system used in the present invention is a ligand containing a donor atom selected from Group 15 of the Periodic Table of the Elements, such as nitrogen, phosphorus, arsenic or antimony, especially phosphorus. The ligand may be a single ligand or a multi-ligand. If it is a palmate ligand, a racemate or a mirror image isomer or a non-image isomer may be used. Particularly important examples of phosphorus ligands are phosphine, phosphinine, phosphinane, phosphine oxide, phosphite, phosphonate and phosphonate. Examples of phosphines are triphenylphosphine, tris (p-tolyl) phosphine, tris (m-tolyl) phosphine, bis (o-tolyl) phosphine, tris (p-methoxyphenyl) phosphine, $ (p-- Fluorophenyl) phosphine, tris (p-chlorophenyl) phosphine, tris (p-dimethylformyl) phosphine, ethyldiphenylphosphine, propyldiphenylphosphine, third butyldiphenylphosphine , N-butyldiphenylphosphine, n-hexyldiphenylphosphine, hexyldibenzylphosphine, dicyclohexylphenylphosphine, tricyclohexylphosphine, tricyclopentylphosphine, trisylphosphine, tris (naphthyl) phosphine , Tris-2-furylphosphine, tribenzylphosphine, -6-(3) (3) 200418785 benzyldiphenylphosphine, tri-n-butylphosphine, tri-isobutylphosphine, tri-tertiary-butyl Phosphine, bis (2-methoxyphenyl) phenylphosphine, neocapryldiphenylphosphine, sulfonated triphenylphosphine (such as tris (m-sulfofluorenylphenyl) phosphine, Alkali, alkaline earth metal, ammonium or other salts of phenylphosphine; 1,2-bis (dicyclohexylphosphino) ethane, bis (dicyclohexylphosphino) methane, 1,2-bis (diethyl) Phosphinyl) ethane, 1,2-bis (2,5-diethylphosphoranyl) ethane, 1,2-bis (2,5- Ethylphosphino) benzene [Et-DUPHOS], 1,2-bis (2,5-diethylphosphoniumdongyl) ethane [Et-BPE], 1,2-bis (dimethylphosphino) ) Ethane, bis (dimethylphosphino) methane, 1,2-bis (2,5-dimethylphospho I] east) benzene [Me-DUPHOS], 1,2-bis (2,5 -bis Methylphosphoranyl) ethane [M e-BPE], 1,2-bis (diphenylphosphino) benzene, 2,3-bis (diphenylphosphino) bicyclo [2.2.1] heptane- 5-ene [NORPHOS], 2,2, -bis (diphenylphosphino) -1,1, binaphthyl [31 > ^?], 2,2'-bis (diphenylphosphino) -1, 1'-biphenyl [BISBI], 2; 3-bis (diphenylphosphino) butane, 1,4-bis (diphenylphosphino) butane, 1,2-bis (diphenylphosphine) ) Ethane, bis (2-diphenylphosphinoethyl) phenylphosphine,] bis- (diphenylphosphino) ferrocene, bis (diphenylphosphino) methane, 1,2-bis (di Phenylphosphino) propane, 2,2'-bis (di-p-tolylphosphino) -1,1'-binaphthalene, 0-isopropylidene-2,3-dihydroxy-154-bis ( Diphenylphosphino) butane [010?], 2- (diphenylphosphino) -2'-methoxydiazepam, 1- (2-monobenzyl-1-calyl) iso-diquinone Lynn, 1515 Phosphino) ethane and / or tris (hydroxyphenyl) phosphine. Examples of phosphine include 2,6-dimethyl-4-phenylphosphine, 2,6-bis (2,4-dimethylbenzene ) -4-phenylphosphine and other ligands described in WO 00/5 5 1 64. Examples of phosphanes include 2,6-bis (2,4-dimethylphenyl) -1-octane -7- (4) (4) 200418785 yl-4-phenylphosphine, buxyl-2,4,6-triphenylphosphine and other ligands described in WO 02/00669. Examples of phosphites are trimethyl phosphite, triethyl phosphite, tri-n-propyl phosphite, triisopropyl phosphite, tri-n-butyl phosphite, triisobutyl phosphite, and tri- Tert-butyl ester, tris (2-ethylhexyl) phosphite, triphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2-tert-butyl) phosphite Methyl-4-methoxyphenyl) ester, tris (2-tert-butyl-4-methylphenyl) phosphite, and tris (p-toluene) phosphite. Other examples are sterically hindered phosphite ligands, as described in (especially) EP 1 5 5 5 0 8, US 4 668 65 1, US 4 748 26 1, US 4 7 69 49 8, US 4 774 3 6 1.US 4 8 3 5 299, US 4 885401, US 5 059710, US 5 113 022, US 5 179055, US 5 260 491, US 5 264 616, US 5 2 8 8 9 1 8, US 5 3 6 0 93 8, EP 4 72 07 1, EP 5 1 8 24 1 and WO 97/2 07 9 5. Among the sterically hindered phosphites, mention may be made of triphenyl phosphite, which may be substituted with one or two isopropyl and / or third butyl substituents, preferably in an ortho position relative to the phosphite group . Other bisphosphite coordination systems are particularly EP 1 099 6 7 7, EP 1 09 9 6 7 8, WO 02/00670, JP 1 02 795 8 7, EP 4 72 0 1 7, WO 0 1/2 1 62 7, WO 97/4 000 1, WO 97/40002, US 47 6949 8, EP 2 1 3 6 3 9 and EP 2 1 4 622. Examples of phosphonates are methyldiethoxyphosphine, phenyldimethoxyphosphine, phenyldiphenoxyphosphine, 6-phenoxy-6H-dibenzo [c, e] [l, 2 ] Oxaphosphine (ph 〇sph 〇 ri η) and its derivatives (where all or part of the hydrogen atom is replaced by -8- (5) (5) 200418785 alkyl or aryl or halogen atom) and wo 9 8 / 43 9 3 5, JP 09-268152 and DE 198 10 794 and the ligands described in German patent applications DE 199 54 721 and DE 199 54 510. Conventional phosphinate coordination systems are described, inter alia, in US 5 7 1 0 344, WO 95 06627, US 5 3 60 93 8, JP 0 7 0 8 22 8 1 Moderate examples include diphenyl (phenoxy Group) phosphine and its derivatives (where all or part of the hydrogen atoms are replaced by alkyl or aryl or halogen atoms), diphenyl (methoxy) phosphine, diphenyl (ethoxy) phosphine, etc.

在工業醛化時,反應產物、未反應起始物質及觸媒通 常係藉蒸餾分離。該醛化因此係於高沸點溶劑存在下進行 ,以藉蒸餾加工產>生含有高沸點觸媒之餾份,其可再循環 至該程序中。許多使用铑觸媒之連續工業醛化方法中,在 醛化中形成之副產物高沸點混合物係作爲溶劑,如(例如 )DE 2 062 703、DE 2 715 685、DE 2 8 02 922、EP 〇 1 7 1 8 3 所述。 除了高沸化合物之外,可使用惰性有機液體(DE 3 ]26 2 6 5 )及反應產物(醛類、醇類)、脂族及芳族烴、 酯類、醚類及水(DE 4 4 1 9 8 9 8 )作爲溶劑。G B 1 1 9 7 9 02中,使用飽和烴、芳族物、醇及正鏈烷烴達成此目的 〇 於醛化過程中添加一或多種極性有機物質係揭示於( 例如)WO 01/68248、WO 01/68249、WO 01/68252 中。 此情況下,極性物質係選自下列各類化合物之物質:腈類 、環縮醛類、醇類、吡咯烷類、內酯類、甲醯胺類、亞硕 -9- (6) (6)200418785 類及水。 相對長鏈稀煙(C g 6 )之醛化中,藉蒸態自反應產物 及可能未反應起始物質分離觸媒需要高溫及低溫。有時含 铑觸媒會在此蒸餾過程中發生相當程度之分解,不論是否 使用附加配位體皆然。此種情況使得在該過程中損失觸媒 ,對於該程序之經濟性具有極大之負面影響。 已發現未改質铑觸媒特別不安定。熟習此項技術者最 普遍之主張係單核錯合物HRh ( CO ) 3(在改質用配位體不 存在下)係於醛化中爲活性之種類。錯合物HRh(CO)3僅於 低於 20°C之溫度及高壓下下保持穩定(N.S. Imyanitov, Rhodium Express, ( 1 995 ) ? 10/11,3-64),且與雙核種 類(本身非活性,但作爲活性觸媒之容器)保持平衡(E. V. Slivinskii, Y. A. Rozovskii, G. A. Korneeva, V. I. Kurkin, Kinetics and Catalysis ( 1998) 539 ( 6) ,764-774 )(A ♦ R · E Γ m a η ? V · I. Kurkin, E . V . S 1 i v i n s k i i 5 S . M . Loktev, Ne;ftekhimiya(1990),30(1),46-52 )。具有較大 分子量之醛化惰性群集物係自雙核铑羰基錯合物形成。在 強力醛化反應的條件下,低分子量群集之形成係可逆。已 證明可再生高達Rh4 ( CO )】2之群集。活性種類於醛化條 件下之安定化亦可證明(Yu· B. Kagan,Y. A. Rrzovskii,E. V. Slivinskii, G. A. Korneeva. V. I. Kurkin, S. M. Loktev, Kinetilai Kataliz ( 1987) ,28 ( 6) ,1508-1511)。相反 地,高分子量群集無法在醛化條件下轉化回復成活性種類 (Υυ. B. Kagan, E. V. Slivinskii, V. I. Kurkin, G. A. (7) (7)200418785In industrial aldolization, reaction products, unreacted starting materials and catalysts are usually separated by distillation. The aldolization is therefore carried out in the presence of a high boiling point solvent to produce a fraction containing a high boiling point catalyst by distillation processing, which can be recycled to the process. In many continuous industrial aldolization processes using rhodium catalysts, high-boiling mixtures of by-products formed during the aldolization are used as solvents, such as, for example, DE 2 062 703, DE 2 715 685, DE 2 8 02 922, EP 〇 1 7 1 8 3 as described. In addition to high boiling compounds, inert organic liquids (DE 3] 26 2 6 5) and reaction products (aldehydes, alcohols), aliphatic and aromatic hydrocarbons, esters, ethers and water (DE 4 4 1 9 8 9 8) as a solvent. In GB 1 1 9 7 9 02, saturated hydrocarbons, aromatics, alcohols and normal paraffins are used to achieve this goal. The addition of one or more polar organic substances during the aldolization process is disclosed in, for example, WO 01/68248, WO 01/68249, WO 01/68252. In this case, the polar substance is a substance selected from the following types of compounds: nitriles, cyclic acetals, alcohols, pyrrolidines, lactones, formamidines, asus-9- (6) (6 ) 200418785 class and water. In the aldolization of relatively long-chain dilute smoke (C g 6), high and low temperatures are required to separate the catalyst from the reaction products and possibly unreacted starting materials by vaporization. Sometimes rhodium-containing catalysts decompose to a considerable extent during this distillation, whether or not an additional ligand is used. This situation makes the loss of catalyst in the process, which has a great negative impact on the economics of the process. The unmodified rhodium catalyst has been found to be particularly unstable. The most common claim made by those skilled in the art is that the mononuclear complex HRh (CO) 3 (in the absence of a modifying ligand) is an active species in the aldolization. The complex HRh (CO) 3 remains stable only at temperatures below 20 ° C and high pressure (NS Imyanitov, Rhodium Express, (1 995)? 10/11, 3-64), and is compatible with the dual-core species (itself Inactive, but as a container for active catalysts) keeps balance (EV Slivinskii, YA Rozovskii, GA Korneeva, VI Kurkin, Kinetics and Catalysis (1998) 539 (6), 764-774) (A ♦ R · E Γ ma η V. I. Kurkin, E. V. S 1 ivinskii 5 S. M. Loktev, Ne; ftekhimiya (1990), 30 (1), 46-52). Larger molecular weight aldehyde-formed inert clusters are formed from dinuclear rhodium carbonyl complexes. The formation of low-molecular-weight clusters is reversible under the conditions of a strong aldehyde reaction. Clusters up to Rh4 (CO)] 2 have been proven to be renewable. Stabilization of active species under aldehyde conditions can also be demonstrated (Yu · B. Kagan, YA Rrzovskii, EV Slivinskii, GA Korneeva. VI Kurkin, SM Loktev, Kinetilai Kataliz (1987), 28 (6), 1508-1511) . In contrast, high molecular weight clusters cannot be converted back to active species under aldehyde conditions (醛 υ. B. Kagan, E. V. Slivinskii, V. I. Kurkin, G. A. (7) (7) 200418785

Korneeva, R. A. Aranovich, N. N. Rzhevskaya, S. M. Loktev,Neftekhimiya ( 1985),25 ( 6) 5 79 1 -797 )。群 集之形成通常係爲含铑之固體沉澱物形成之原因且係其第 一個步驟。其係發生於藉蒸餾加工期間,但有時亦發生於 反應條件下。含铑之沉澱物係沉積於容器壁及管壁上。導 致相當不經濟之觸媒損失,使得在工業應用時需要定期的 將工廠停工及進行淸洗。 铑沉澱物需藉複雜之冶金路徑回收。 一方面因爲未改質铑作爲醛化觸媒之吸引力,另一方 面因其不安定性,已提出許多其循環及/或回收方法。 已知一系列自反應混合物移除铑物質之方法係藉固態 吸附劑進行。、因此,例如,DE 1 9 54' 31 5提出以作爲吸附 劑之聚苯乙烯爲主之弱至強鹼性離子交換樹脂。根據DE 20 4 5 4 ]6,已有負荷之離子交換樹脂的再生係藉著以低 級醇、脂族胺及水之混合物於氧存在下進行處理而進行。 溶離物中所含之铑係藉由蒸發且以鹽酸處理而轉化成氯化 铑水合物,其可再次作爲觸媒前驅物。W0 02/2045 1及 US 5 208 1 94申請&種自已有負荷之離子交換劑回收铑的 方法,其係進行鍛燒,且自所得灰分單離氧化物形式之铑 。US 4 388 279中,元素週期表第1及2族之金屬的鹽類 、沸石分子篩及離子交換樹脂被提出作爲吸附劑。W0 0 1 /72 679申請一種於高溫下於氫存在下將铑吸附於活性碳 、多矽酸及氧化鋁上之方法。專利E P 0 3 5 5 8 3 7描述一種 將铑吸附於鹼性離子交換樹脂(其經離子性鍵結有機磷配 -11 - (8) (8)200418785 位體改質)上之方法。樹脂之再生係藉著含有有機磷配位 體之溶液溶離進行。W 0 9 7 / 0 3 9 3 8申請一種將活性铑物質 及雜質吸附於酸性離子交換樹脂上之方法。再生係藉著於 第一步驟中使用中性溶劑溶離雜質,之後使用酸性溶劑溶 離活性铑物質而進行。依此方式回收之觸媒係適當地於再 氫化之後再使用於醛化中。 所有用以回收铑之吸附方法的缺點皆係無法令人滿意 地解決再度釋出活性物質的問題。熟習此項技術者皆明瞭 針此項目的所提出之溶劑或溶劑混合物在醛化時並非惰性 ,而導致副反應。例如,酸性溶劑誘發該醛之高度放熱且 難以控制之醇醛縮合。醇及胺與醛進行縮合反應,因此降 低產物產率。因此,絕對需要在觸媒再循環之前先移除前 述溶劑或溶劑混合物。此點使得回收槪念在技術上極爲複 雜且昂貴。相反地,吸附於離子交換劑上,隨之灰化且冶 金回收铑已達到部分工業重要性。此方法係簡易技術,但 當然可加以改良:使用昂貴之鹼性離子交換劑作爲消耗性 材料,灰化後金屬氧化物之冶金加工使得程序步驟變得更 爲複雜。 亦已知一系列方法,其中铑係藉各錯合劑之溶液自反 應器輸出物萃取出來,在再次釋出之後再循環至該醛化反 應器。因此,在可質子化含氮配位體存在下以铑催化之醛 化、使用酸水溶液萃取铑錯合物、脫質子化及使铑再循環 至該程序係自DE 196 03 201得知。於DE 4 230 871中, 該水溶液係直接再循環至該反應。於E P 0 5 3 8 7 3 2中,申 (9) (9)200418785 請一種於合成氣壓下使用膦水溶液自反應器所生成之輸出 物萃取的方法。W 0 9 7 / 0 3 9 3 8申請一種水溶性聚合物,諸 如聚丙烯酸、順丁烯二酸共聚物及亞磷羧基甲基化聚乙烯 胺、聚伸乙基亞胺及聚丙烯醯胺,作爲錯合劑。EP 0 5 8 8 2 2 5申請吡啶、[]奎啉、2,2 ’ -聯吡啶、1,1 〇 -菲繞林、2 5 2,· 聯D奎啉、2,2 5,6 ’ 5 2 ” -聯三吡啶及樸啉(可爲磺化及/或羧化 形式)’作爲錯合劑。然而,水性萃取所需之錯合劑經常 較昂貴,且難以獲得。此外,此等包括兩個附加步驟(萃 取及觸媒釋出)需要增加工程支出。 此外,亦已知一種方法,其中據稱藉添加含有磷( III )之配位體防止在藉蒸餾處理反應器輸出物時產生铑 沉源物(DE 3 3 3 8 3 4 0,US 4,4 00,547 )。醛化活性铑物 質之再生或再釋出係藉著將磷(III )配位體氧化而進行 。此種方法之缺點係爲連續消耗安定劑。所形成之磷(V )化合物需連續取出,以防止累積於反應器系統中。不可 避免地亦排出部分活性形式之鍺。此種方法因此亦可同時 於技術及經齊上達到改善。 WO 82/03 8 5 6申請一種於氧存在下蒸餾醛化反應器輸 出物之方法。在氧存在下,在醛化方法中形成之一部分醛 被氧化成對應之羧酸,與铑物質反應以形成可溶性羧酸铑 。該羧酸老可再循環至該程序中。此方法之缺點係爲所需 產物之產率降低。 尙未公開之專利申請案D E 1 0 2 4 0 2 5 3描述一種於以 元素週期表第8至1〇族金屬爲主而藉磷配位體改質之觸 -13- (10) (10)200418785 媒存在下進行之醛化,使用環狀碳酸酯作爲溶劑。未描述 週期表第8至1 0族金屬之未改質金屬錯合物的使用。 JP 1 0-226 662描述一種烯烴化合物之醛化方法,其中 铑觸媒係與作爲輔觸媒之磺化三苯膦的鈉鹽一起使用,即 使用經改質之觸媒。該反應係於極性成份及羧酸存在下進 行。該極性成份可爲(例如)乙二醇碳酸酯。該極性成份 可與該酸及該觸媒一起再循環至該醛化反應。然而,該程 序可僅用於末端烯烴(相對活性)之醛化。若爲內部烯烴 ’特別是內部高度分支鏈烯烴,則觸媒活性遠低於工業用 途所需。 目前已知自利用未改質铑作爲醛化觸媒之程序循環或 回收铑之方法同時可自技術及經濟觀點進行改善。 是故,先前技術並不包括將難以使用未改質铑作爲觸 媒以進行醛化之烯烴醛化而在技術及經濟上皆令人滿意的 方法。因此本發明之目的係提出一種針對此層面有大幅改 善之方法,尤其是可簡易地進行觸媒回收之方法,其大幅 減少觸媒失活之情況,因此可防止觸媒大幅損失。 【發明內容】 現在意外發現在乙烯型不飽和化合物之醛化過程中, 當藉由未改質铑催化之醛化係於作爲溶劑之環狀碳酸酯存 在下進行時,選擇性及活性會增高,反應混合物之加工變 簡單,且觸媒安定性大幅增加。 本發明因此提出一種使用包含至少一種元素週期表第 -14- (11) (11)200418785 8至1 〇族金屬之未改質觸媒使具有3至2 4個碳原子之乙 烯型不飽和化合物進行催化性醛化的方法,其中該醛化係 於至少一種具有通式I之環狀碳酸酯存在下進行Korneeva, R. A. Aranovich, N. N. Rzhevskaya, S. M. Loktev, Neftekhimiya (1985), 25 (6) 5 79 1 -797). The formation of the cluster is usually the cause of the formation of a rhodium-containing solid precipitate and is its first step. It occurs during distillation, but sometimes also under reaction conditions. The rhodium-containing precipitate is deposited on the container wall and the tube wall. This results in a relatively uneconomical loss of catalyst, making it necessary to periodically shut down and clean the plant during industrial applications. Rhodium deposits need to be recovered by complex metallurgical routes. On the one hand, because of the attractiveness of unmodified rhodium as an aldehyde catalyst, on the other hand, because of its instability, many recycling and / or recovery methods have been proposed. A series of methods are known for removing rhodium species from a reaction mixture by means of a solid adsorbent. Therefore, for example, DE 1 9 54 '31 5 proposes a weak to strong basic ion exchange resin mainly composed of polystyrene as an adsorbent. According to DE 20 4 5 4] 6, regeneration of a loaded ion exchange resin is carried out by treating a mixture of a lower alcohol, an aliphatic amine and water in the presence of oxygen. The rhodium contained in the eluate is converted into rhodium chloride hydrate by evaporation and treatment with hydrochloric acid, which can be used as a catalyst precursor again. WO 02/2045 1 and US 5 208 1 94 apply & a method for recovering rhodium from an already-loaded ion exchanger, which is calcined and rhodium in the form of a single oxide from the ash obtained. In US 4 388 279, salts of metals of groups 1 and 2 of the periodic table, zeolite molecular sieves, and ion exchange resins are proposed as adsorbents. WO 0 1/72 679 applies a method for adsorbing rhodium on activated carbon, polysilicic acid, and alumina in the presence of hydrogen at high temperature. The patent E P 0 3 5 5 8 3 7 describes a method for adsorbing rhodium on a basic ion exchange resin (which is ionic-bonded with an organic phosphorus compound -11-(8) (8) 200418785 modification). Regeneration of the resin is carried out by dissolution of a solution containing an organophosphorus ligand. W 0 9 7/0 3 9 3 8 applied for a method for adsorbing active rhodium material and impurities on acidic ion exchange resin. Regeneration is performed by dissolving impurities with a neutral solvent in the first step and then dissolving active rhodium species with an acidic solvent. The catalyst recovered in this way is suitably used in the aldolization after rehydrogenation. The disadvantages of all adsorption methods for the recovery of rhodium are the inability to satisfactorily solve the problem of re-release of active substances. Those skilled in the art will understand that the proposed solvent or solvent mixture for this project is not inert when it is aldolized, resulting in side reactions. For example, an acidic solvent induces a highly exothermic and difficult to control aldol condensation of the aldehyde. Alcohols and amines undergo condensation reactions with aldehydes, thereby reducing product yield. Therefore, it is absolutely necessary to remove the aforementioned solvent or solvent mixture before the catalyst is recycled. This makes the recycling concept technically very complicated and expensive. Conversely, adsorption on ion exchangers, followed by ashing and metal recovery of rhodium, has reached some industrial importance. This method is a simple technique, but of course it can be improved: the use of expensive alkaline ion exchangers as consumable materials, and the metallurgical processing of metal oxides after ashing make the program steps more complicated. A series of methods are also known in which rhodium is extracted from the reactor output by a solution of each complexing agent and recycled to the aldolization reactor after being released again. Therefore, rhodium-catalyzed aldehyde-formation in the presence of protonatable nitrogen-containing ligands, extraction of rhodium complexes with aqueous acid solutions, deprotonation and recycling of rhodium to this procedure are known from DE 196 03 201. In DE 4 230 871, the aqueous solution is directly recycled to the reaction. In EP 0 5 3 8 7 32, Shen (9) (9) 200418785 requested a method for extracting the output produced from the reactor using an aqueous phosphine solution under a synthetic pressure. W 0 9 7/0 3 9 3 8Apply a water-soluble polymer, such as polyacrylic acid, maleic acid copolymer and phosphorous carboxymethylated polyvinylamine, polyethylenimine and polyacrylamide , As a blending agent. EP 0 5 8 8 2 2 5 applies pyridine, [] quinoline, 2,2'-bipyridine, 1,10-phenanthroline, 2 5 2, · bi-D quinoline, 2,2 5,6 ' 5 2 "-bipyridine and pioline (which can be sulfonated and / or carboxylated) 'are used as complexing agents. However, complexing agents required for aqueous extraction are often expensive and difficult to obtain. In addition, these include two An additional step (extraction and catalyst release) requires increased engineering expenditure. In addition, a method is also known in which the addition of a ligand containing phosphorus (III) is said to prevent the production of rhodium when the reactor output is treated by distillation Shen Yuan (DE 3 3 3 8 3 4 0, US 4,4 00,547). The regeneration or re-release of the aldehyde-formed active rhodium material is carried out by oxidizing the phosphorus (III) ligand. The disadvantage is the continuous consumption of stabilizers. The formed phosphorus (V) compounds need to be continuously taken out to prevent accumulation in the reactor system. Some active forms of germanium are inevitably also discharged. This method can also be used in both technology and An improvement has been achieved in the whole process. WO 82/03 8 5 6 An application for distilling the output of an aldolization reactor in the presence of oxygen In the presence of oxygen, a part of the aldehyde formed in the aldehyde formation method is oxidized to the corresponding carboxylic acid, and reacts with the rhodium substance to form a soluble rhodium carboxylic acid. The carboxylic acid can be recycled to the process. The disadvantage is that the yield of the desired product is reduced. 尙 Unpublished patent application DE 1 0 2 4 0 2 5 3 describes a phosphorus-based ligand based on metals from groups 8 to 10 of the periodic table. Touch of Modification-13- (10) (10) 200418785 Aldehyde in the presence of a medium using a cyclic carbonate as a solvent. The unmodified metal complexes of Group 8 to 10 of the periodic table are not described. JP 1 0-226 662 describes a method for the aldehyde formation of olefin compounds, in which a rhodium catalyst is used with a sodium salt of a sulfonated triphenylphosphine as a secondary catalyst, that is, a modified catalyst is used. The reaction It is performed in the presence of a polar component and a carboxylic acid. The polar component may be, for example, ethylene glycol carbonate. The polar component may be recycled to the aldolization reaction together with the acid and the catalyst. However, the procedure may be For aldolization of terminal olefins (relatively active) only. For internal olefins 'Especially for highly internally branched olefins, the catalytic activity is much lower than that required for industrial use. Currently known methods for recycling or recovering rhodium from the process of using unmodified rhodium as the aldehyde catalyst can be both technical and economical. Therefore, the prior art does not include a method that is technically and economically satisfactory for the olefination of olefins that are difficult to use without modification of rhodium as a catalyst for the aldehydes. Therefore, the object of the present invention is to propose a method There are significant improvements to this level, especially methods that allow easy catalyst recovery, which greatly reduces catalyst inactivation and therefore prevents significant loss of catalyst. [Summary of the Invention] It is now unexpectedly discovered that during the aldehyde formation of ethylenically unsaturated compounds, selectivity and activity increase when the aldehyde catalyzed by unmodified rhodium is performed in the presence of a cyclic carbonate as a solvent The processing of the reaction mixture becomes simple, and the stability of the catalyst is greatly increased. The present invention therefore proposes an ethylenically unsaturated compound having 3 to 24 carbon atoms using an unmodified catalyst containing at least one metal of Group -14- (11) (11) 200418785 Group 8 to 10 of the Periodic Table of the Elements. Method for performing catalytic aldolization, wherein the aldolization is performed in the presence of at least one cyclic carbonate having the general formula I

其中 R1、R2、R3、R4係相同或相異,且各係爲Η或具有1 至2 7個碳原子之經取代或未經取代的脂族、脂環族、芳 族、脂族-脂環族、脂族 '芳族或脂環族-芳族烴基, η係爲0至5, X係爲具有1至2 7個碳原子之二價經取代或不經取 代脂族、脂環族、芳族、脂族-脂環族或脂族-芳族烴基, 該碳酸酯之比例係爲該反應混合物之至少1重量%。 φ 本發明使用碳酸酯作爲溶劑之應用使其可於未改質觸 媒(尤其是铑觸媒)存在下進行醛化,且可再次使用未改 質觸媒。 前述一般使用於以鍺催化之醛化中的經改質配位體具 有受限之熱安定性,通常將反應溫度限制於1 2 0至1 3 0 °C 。難以醛化之乙烯型不飽和化合物(例如內部烯烴,尤其 是內部高度分支鏈烯烴)之反應中,該經配位體改質之铑 觸媒於受限於配位體熱安定性之反應溫度及由1至2 7 0巴 -15- (12) (12)200418785 之習用反應壓力下顯示在工業上無法令人滿意之活性。 相反地,未改質铑於難以醛化之乙烯型不飽和化合物 的反應中具有遠較爲高之活性。然而,該低熱安定性係爲 缺點(N.S. Imya n itov,Rhodium Express,( 1995 ),10/11, 3 -64 )。難以醛化之乙烯型不飽和化合物的實例係爲內部 烯烴,尤其是內部高度分支鏈烯烴,其係爲藉著將丙烯及 正丁烯二聚化及寡聚化所製得之異構物混合物形式,例如 三丙烯、四丙烯、二丁烯、三丁烯、四丁烯及五丁烯。 本發明方法尤其具有觸媒之長期安定性較習用溶劑中 所使用之觸媒長的優點。此外,所用溶劑使得觸媒與反應 混合物之分離變得簡單,因爲該觸媒係存在於亦存有作爲 溶劑之環狀碳酸醋的相中,不論進行加工之方式如何皆然 (藉蒸餾或經由相分離)。該混合物可直接以觸媒溶液形 式送回醛化反應器。藉著相分離將反應器輸出物分成包含 產物及未反應起始物質之級份及含觸媒之級份對於觸媒係 遠較藉蒸餾加工溫和。不會在減壓下對觸媒產生熱應力, 故避免形成惰性金屬觸媒物質及含有金屬之沉澱物。在藉 蒸餾分離時,亦意外地大幅避免因爲形成惰性金屬觸媒物 質及含金屬之沉澱物而減活。 本發明方法可在最局達2 2 0 °C之溫度下使用具有特別 高活性之觸媒進行內部高度分支鏈烯烴的醛化。該醒化之 轉化率及選擇性(尤其是內部高度分支鏈烯烴者)可因此 增力口。 下文以實施例描述本發明方法,但本發明不受限於此 -16- (13) 200418785 等特定實施例。熟習此項技術者可推演其他變化形式,其 亦爲本發明標的且範圍係由本文描述及申請專利範圍所表 示0 本發明使用包含至少一種元素週期表第8至1〇族金 屬之未改質觸媒將具有3至24個碳原子之乙烯型不飽和 化合物(尤其是;1¾煙)催化醒化的方法中,該醒化係於至 少一種具有通式I之環狀碳酸酯存在下進行Where R1, R2, R3, R4 are the same or different, and each is fluorene or a substituted or unsubstituted aliphatic, cycloaliphatic, aromatic, aliphatic-aliphatic having 1 to 27 carbon atoms Cyclic, aliphatic 'aromatic or cycloaliphatic-aromatic hydrocarbon group, η is 0 to 5, X is divalent substituted or unsubstituted aliphatic or alicyclic having 1 to 27 carbon atoms , Aromatic, aliphatic-alicyclic or aliphatic-aromatic hydrocarbon groups, the proportion of the carbonate is at least 1% by weight of the reaction mixture. φ The application of the present invention using carbonate as a solvent allows it to be aldehyde-formed in the presence of an unmodified catalyst (especially a rhodium catalyst), and the unmodified catalyst can be used again. The aforementioned modified ligands, which are generally used in germanation-catalyzed aldehydes, have limited thermal stability and usually limit the reaction temperature to 120 to 130 ° C. The reaction of the ligand-modified rhodium catalyst in the reaction of ethylene-type unsaturated compounds that are difficult to form (such as internal olefins, especially internally highly branched olefins) is limited by the reaction temperature of the ligand. And from 1 to 2 7 0 bar-15- (12) (12) 200418785 customary reaction pressure shows industrially unsatisfactory activity. In contrast, unmodified rhodium has a much higher activity in the reaction of an ethylenically unsaturated compound which is difficult to be reformed. However, this low-heat stability is a disadvantage (N.S. Imya nitov, Rhodium Express, (1995), 10/11, 3 -64). Examples of ethylene-type unsaturated compounds that are difficult to form are internal olefins, especially internally highly branched olefins, which are isomer mixtures prepared by dimerizing and oligomerizing propylene and n-butene. Forms such as tripropylene, tetrapropylene, dibutene, tributene, tetrabutene and pentabutene. The method of the invention has the advantage that the long-term stability of the catalyst is longer than that of the catalyst used in conventional solvents. In addition, the solvent used simplifies the separation of the catalyst from the reaction mixture, because the catalyst exists in the phase that also contains cyclic carbonate vinegar as a solvent, regardless of the method of processing (by distillation or via Phase separation). This mixture can be returned directly to the aldehydeization reactor in the form of a catalyst solution. The separation of the reactor output by a phase separation into a fraction containing the product and unreacted starting materials and a fraction containing the catalyst is much milder for the catalyst system than by distillation. No thermal stress is generated on the catalyst under reduced pressure, so the formation of inert metal catalyst substances and metal-containing precipitates is avoided. In the case of separation by distillation, the deactivation due to the formation of inert metal catalysts and metal-containing precipitates is also unexpectedly and greatly avoided. The method of the present invention can use a catalyst with particularly high activity to perform the internalization of highly branched olefins at a temperature of up to 220 ° C. The conversion and selectivity of this awakening (especially those with highly internally branched olefins) can therefore be enhanced. Hereinafter, the method of the present invention is described by examples, but the present invention is not limited to the specific embodiments such as -16- (13) 200418785. Those skilled in the art can deducate other variations, which are also the subject of the present invention and whose scope is indicated by the scope of the description and patent application. 0 The present invention uses unmodified materials containing at least one Group 8 to 10 metal of the periodic table. In a method for catalytically deactivating an ethylenically unsaturated compound having 3 to 24 carbon atoms (especially; 1¾ smoke), the deactivation is performed in the presence of at least one cyclic carbonate having the general formula I

其中 R R R R係相同或相異,且各係爲Η或具有1 至27個碳原子之經取代或未經取代的脂族、脂環族、芳Where R R R R are the same or different, and each is Η or a substituted or unsubstituted aliphatic, cycloaliphatic, aromatic having 1 to 27 carbon atoms

族、脂族,環族 '脂族姻或脂環族·芳族烴基, η 係爲〇至5, X 係爲具有1至2 7 經取代脂族、脂環族、芳族、 基, 個碳原子之二價經取代或不 脂族·'脂環族或脂族-芳族烴 該碳酸酯之比例係貝# ^ ^、 保馬该反應混合物之至少1重量〇/〇 取代基R1至R4及χ π 、 1相同或相異,且係經ο、ί ΝΗ、Ν-院基或Ν、二烷基所取代 官能基諸如鹵素(氟、氯、彳臭、 。此外,此等基團可具有 碘)、-OH、-OR、-c ( 〇 -17- (14) (14)200418785 )烷基' -CN或-C ( Ο ) 〇烷基。此外,若此等基團係爲 至少三個遠離酯基之0原子,則其中之C、CH或CH2基 團可由 Ο、N、NH、N-烷基或N-二烷基所置換。該烷基 仍可具有1至2 7個碳原子。 本發明方法中,較佳係使用乙二醇碳酸酯、丙二醇碳 酸酯、丁二醇碳酸酯或其混合物,例如乙二醇碳酸酯與丙 二醇碳酸酯之混合物(重量比=5 0 : 5 0 )作爲環狀碳酸酯。 本發明方法中,環狀碳酸酯之比例係爲反應混合物之 1至98重量%,以5至70重量%爲佳,而5至50重量% 特佳。 可在該環狀碳酸酯之外,另外使用其他溶劑。特別方 法變化形式中,本發明之醛化反應因此係於至少一種非極 性溶劑(與環狀碳酸酯I不相溶混)存在下進行。具有通 式ί之碳酸酯係具有超過3 0之介電常數。與環狀碳酸酯I 不相溶混且使用於本發明方法中之非極性溶劑係具有低於 2 0之介電常數,以1 . 1至1 0爲佳,尤其是1 . 1至5。使 用附加(尤其是非極性)溶劑使其可(例如)產生呈單一 相或呈兩相之反應混合物,尤其是反應器之輸出物。依此 方式可簡化處理反應器輸出物所使用之加工處理。該醛化 之反應產物可使用與環狀碳酸酯I不相溶混之非極性溶劑 萃取,此情況下,該溶劑或可於反應期間存在於該反應混 合物中,或僅在完成反應之後添加。 可能之非極性溶劑係爲具有1 0至5 0個碳原子之經取 代或不經取代烴類,例如醛化反應之高沸點副產物、 -18- (15) (15)200418785Family, aliphatic, cyclic 'aliphatic marriage or alicyclic aromatic hydrocarbon group, η system is 0 to 5, X system is 1 to 2 7 substituted aliphatic, alicyclic, aromatic, radical, Bivalent substituted or non-aliphatic carbon atoms or 'alicyclic or aliphatic-aromatic hydrocarbons. The proportion of the carbonate is # 1, ^, and at least 1 weight of the reaction mixture. R4 and χ π, 1 are the same or different, and are functional groups such as halogen (fluorine, chlorine, odor, etc.) substituted by ο, ΝΝ, Ν- group or N, dialkyl. In addition, these groups It may have iodine), -OH, -OR, -c (0-17- (14) (14) 200418785) alkyl'-CN or -C (0) oalkyl. In addition, if these groups are at least three 0 atoms far from the ester group, the C, CH or CH2 group therein may be replaced by 0, N, NH, N-alkyl or N-dialkyl. The alkyl group may still have 1 to 27 carbon atoms. In the method of the present invention, it is preferred to use ethylene glycol carbonate, propylene glycol carbonate, butanediol carbonate, or a mixture thereof, such as a mixture of ethylene glycol carbonate and propylene glycol carbonate (weight ratio = 50: 50) As a cyclic carbonate. In the method of the present invention, the proportion of the cyclic carbonate is 1 to 98% by weight of the reaction mixture, preferably 5 to 70% by weight, and particularly preferably 5 to 50% by weight. Other solvents may be used in addition to the cyclic carbonate. In a special variant of the method, the aldolization reaction of the present invention is therefore carried out in the presence of at least one non-polar solvent (immiscible with cyclic carbonate I). Carbonates having the general formula Γ have a dielectric constant exceeding 30. The non-polar solvent which is immiscible with the cyclic carbonate I and is used in the method of the present invention has a dielectric constant lower than 20, preferably 1.1 to 10, especially 1.1 to 5. The use of additional (especially non-polar) solvents makes it possible, for example, to produce a single-phase or two-phase reaction mixture, especially the output of a reactor. In this way, the processing used to process the reactor output can be simplified. The reaction product of the aldolization can be extracted with a non-polar solvent that is immiscible with the cyclic carbonate I. In this case, the solvent may be present in the reaction mixture during the reaction or may be added only after completion of the reaction. Possible non-polar solvents are substituted or unsubstituted hydrocarbons having 10 to 50 carbon atoms, such as high boiling point by-products of the aldolization reaction, -18- (15) (15) 200418785

Texanol或丙烯或丁烯進行四聚化或高聚化且經後續氫化 所得之異構物混合物,即四丁烷、五丁烷、四丙烷及/或 五丙烷。亦可使用具有3至24個碳原子之烯烴,尤其是 用於Si化之烯烴’來作爲非極性溶劑,藉著進行醛化反應 至不完全轉化(例如僅至95 %轉化率,以90%爲佳,尤其 是80% )且/或在醛化反應期間及/或之後添加其他烯烴於 反應混合物。 本發明方法中,非極性溶劑之比例係爲反應混合物之 0至90重量%,以5至50重量%爲佳,尤其是5至30重 量%。 爲避免副產物,非極性溶劑在醛化反應條件下需大體 呈惰性,除非其係所使用之乙烯型不飽和化合物。 本發明方法中,反應混合物在醛化反應器中於整體轉 化過程內可爲單一枏或爲兩相。然而,進料混合物在反應 過程中,亦可在低轉化率時先由兩相構成,而在高轉化率 下則變成單一相。單相進料混合物可在本發明方法過程中 變成雙相產物混合物。此外’該相性質與溫度關係密切。 例,在反應溫度下爲單一相之反應混合物可在冷卻時分 成兩相。在反應溫度下爲兩相之反應混合物亦可在冷卻時 變均勻。 本發明方法可使用元素週期表第8至10族之各種催 化活性金屬進行,但以使用錢進行爲佳。就本發明而言’ 包含元素週期表第8至1 〇族#屬t $改胃觸媒係爲不包 含改質配位體的觸媒。就本專利申請案而言’改質配位體 -19- (16) (16)200418785 係爲含有一或多個元素週期表第8至1 5族予體原子的化 合物。然而,改質配位體不包括羰基、氫基、烷氧基、烷 基、芳基、烯丙基、醯基或烯配位體,亦不包括用於觸媒 形成之金屬鹽的抗衡離子,例如鹵基諸如氟、氯、溴或碘 、乙醯基丙酮酸根、羧酸根諸如乙酸根、2 -乙基己酸根、 己酸根、辛酸根或壬酸根。特佳之未改質觸媒係爲 HRh ( CO ) 3。 醛化反應所使用之活性觸媒錯合物係自金屬之鹽或化 合物(觸媒前驅物)及合成氣體形成。此者較佳係於醛化 過程中於原位發生。習用觸媒前驅物係爲Rh ( I ) 、Rh ( II )及Rh ( III )鹽,例如乙酸鹽、辛酸鹽、壬酸鹽、乙 醯基丙酮酸鹽、或鹵化物,及羰基鍺。金屬於該反應混合 物中之濃度以1 ρ Ρ Π1至1 〇 〇 〇 P P ni範圍內爲佳,5 p P m至 3 0 0 p p m範圍內較佳。 本發明方法中醛化用之起始物質係爲含有乙烯型不飽 和C - C雙鍵之化合物,尤其是烯烴或烯烴混合物,尤其是 具有3至24個(以4至16個爲佳,尤其是4至12個) 碳原子且具有末端或內部C - C雙鍵之單烯烴,例如^或 2-戊烯、2-甲基-卜丁烯、2-甲基-2-丁烯、%甲基- ρ丁烯 、卜、2 -或3 -己烯、丙烯之二聚化所得之c 6 -烯烴混合物 (二丙烯)、庚烯、2-或3-甲基-卜己烯、辛烯、甲基 庚細、3 -甲基庚丨布、5 -甲基-2-庚嫌、6 -甲基-2-庚燃、2 -乙 基-1-己烯、正丁燦之二聚化所製得的異構C8_烯烴混合物 、異丁 _之一聚化所製得之c8 -燒烴混合物(二異丁燒) -20 - (17) (17)200418785 、壬烯、2-或3-甲基辛烯、丙烯之三聚化所製得的C9-烯 烴混合物(三丙烯)、癸烯、2 -乙基-卜辛烯、十二碳烯 、丙烯之四聚化或.丁烯之三聚化所製得的C】2 -烯烴混合物 (四丙烯或三丁烯)、十四碳烯、十六碳烯、丁烯之四聚 化所製得的CI6-烯烴混合物(四丁烯)及藉著具有不同數 目之碳原子(以2至4個爲佳)之烯烴藉共寡聚所製備之 烯烴混合物,若適當,則在藉蒸餾分成具有相同或類似鏈 長的鶴份之後。亦可使用藉 Fischer-Trohsch合成製得之 烯烴或烯烴混合物及藉著可經由置換反應製得之乙烯或烯 烴的寡聚化製得之烯烴。較佳起始物質係爲c4_、C6 一、 C 8 -、C9 -、C ! 2 -或C 1 6 -烯烴混合物。此外,本發明方法可 使用於聚合乙烯型不飽和化合物之醒化、,.諸如聚異丁烯或 1,3 - 丁二烯共聚物或異丁烯共聚物。聚合烯烴之分子量的 影#極小’其先決條件爲該燒烴充分可溶於該醒化介質中 。該聚合烯烴之分子量以低於1 0 0 0 0克/莫耳爲佳,尤其 是低於5 000克/莫耳。 1^: 3成氣體中一氧化碳對氫之體積比通常係由2 : 1至 1 : 2,尤其是1 : 1。該合成氣體以使用過量爲佳,例如高達 化學計量之三倍的量。 該酵化通常係於丨至3 5 〇巴之壓力下進行,以1 5至 2 7 0巴壓力爲佳。所用壓力係視進料烯烴之結構、所用觸 媒及所需效果而定。因此,例如,α -烯烴可於低於】〇 〇 巴之壓力下於铑觸媒存在下在高空間-時間產率下轉化成 對應之醒。相反地,若爲具有內部雙鍵之烯烴,尤其是分 -21 - (18) (18)200418785 支鏈烯烴,以較高壓力爲佳。 本發明方法中之反應溫度以20至220 °C爲佳,l〇〇°C 至2 0 0 °C更佳,1 5 0 °C至1 9 0 °C特佳,尤其是1 6 0至1 8 0 °C 。高於1 5 0 °C之反應溫度特別可改善末端對內部雙鍵之比 例,因爲在高溫下,因爲加速異構之結果,較多末端雙鍵 變成有效,而較佳末端位置之醒化增多。 本發明方法可分批或連續地進行。然而,以連續操作 爲佳。適當之反應器包括實質上所有熟習此項技術者已知 之氣體-液體反應器,例如噴射攪動容器或泡罩塔或管式 反應器(具有或不具有再循環)。以階式泡罩塔及配置有 靜態混合元件之管式反應器。 本發明方法所得之反應器輸出係包含可能未反應之乙 烯型不飽和化合物(烯烴)、反應產物、反應副產物、至 少一種環狀碳酸酯、可能非極性溶劑及觸媒。視作爲起始 物質之烯烴化合物的類型及質量分率、所含任何非極性溶 劑之種類及質量分率及環狀碳酸酯之種類及質量分率而定 ,反應器輸出可爲單一相或爲雙相。如前文所述,可藉著 適當地添加環狀碳酸酯或非極性溶劑,而達到或防止相分 離。 本發明方法中之反應器輸出物加工處理可分兩變化形 式進行,視反應器輸出物之相性質而定。若爲雙相反應器 輸出物,則以經由相分離進行加工處理爲佳,此稱爲變化 形式A,若爲單相反應器輸出物,則以藉蒸餾進行加工處 理爲佳,此稱爲變化形式B。 -22- (19) (19)200418785 合成氣體以在醛化之後’在根據變化形式A或B進 一步加工處理反應器輸出物之前,藉減壓移除合成氣體之 主要邰分爲佳。A mixture of isomers obtained by the tetramerization or hyperpolymerization of Texanol or propylene or butene and subsequent hydrogenation, namely tetrabutane, pentabutane, tetrapropane and / or pentapropane. It is also possible to use olefins having 3 to 24 carbon atoms, especially olefins used for silylation, as a non-polar solvent, by performing an aldolization reaction to incomplete conversion (for example, to only 95% conversion, 90% Preferably, especially 80%) and / or other olefins are added to the reaction mixture during and / or after the aldehyde reaction. In the method of the present invention, the proportion of the non-polar solvent is 0 to 90% by weight of the reaction mixture, preferably 5 to 50% by weight, especially 5 to 30% by weight. To avoid by-products, non-polar solvents need to be substantially inert under the conditions of the aldehyde reaction, unless they are ethylenically unsaturated compounds. In the method of the present invention, the reaction mixture may be a single amidine or two-phase in the overall conversion process in the aldehydeization reactor. However, during the reaction, the feed mixture may also be composed of two phases at a low conversion rate, and become a single phase at a high conversion rate. The single-phase feed mixture can become a two-phase product mixture during the process of the invention. In addition, the properties of this phase are closely related to temperature. For example, a reaction mixture that is a single phase at the reaction temperature can separate into two phases when cooled. A two-phase reaction mixture at the reaction temperature may also become homogeneous when cooled. The method of the present invention can be carried out using various catalytically active metals of groups 8 to 10 of the periodic table, but it is preferably carried out using money. For the purposes of the present invention, the group 8 to 10 of the Periodic Table of the Elements is included. The modified stomach catalyst is a catalyst that does not contain a modified ligand. For the purposes of this patent application, 'modified ligands -19- (16) (16) 200418785 are compounds containing one or more group 8 to 15 donor atoms of the periodic table. However, modified ligands do not include carbonyl, hydrogen, alkoxy, alkyl, aryl, allyl, fluorenyl, or alkenyl ligands, nor do they include counterions of metal salts for catalyst formation For example, halo groups such as fluorine, chlorine, bromine or iodine, acetamylpyruvate, carboxylates such as acetate, 2-ethylhexanoate, hexanoate, caprylate, or nonanoate. The best modified catalyst is HRh (CO) 3. The active catalyst complex used in the aldolization reaction is formed from a metal salt or compound (catalyst precursor) and a synthesis gas. This preferably occurs in situ during the aldehyde formation process. Conventional catalyst precursors are Rh (I), Rh (II), and Rh (III) salts, such as acetate, caprylate, nonanoate, acetamylpyruvate, or halide, and germanium carbonyl. The concentration of the metal in the reaction mixture is preferably in the range of 1 ρ Π1 to 100 p P ni, and more preferably in the range of 5 p P m to 300 p p m. The starting material used in the process of the present invention is a compound containing an ethylenically unsaturated C-C double bond, especially an olefin or an olefin mixture, especially having 3 to 24 (4 to 16 is preferred, especially Is 4 to 12) monoolefins having carbon atoms and having terminal or internal C-C double bonds, such as ^ or 2-pentene, 2-methyl-butene, 2-methyl-2-butene,% C6-olefin mixture (dipropylene) obtained by dimerization of methyl-p-butene, bu, 2- or 3-hexene, and propylene, heptene, 2- or 3-methyl-buxene, octane Ene, methylheptan, 3-methylheptane, 5-methyl-2-heptan, 6-methyl-2-heptane, 2-ethyl-1-hexene, n-butane Heterogeneous C8-olefin mixture prepared by polymerization, c8-carbon-burned hydrocarbon mixture (diisobutane) prepared by polymerization of one of isobutene -20-(17) (17) 200418785, nonene, 2 -Or C9-olefin mixture (tripropylene) produced by trimerization of 3-methyloctene, propylene, decene, 2-ethyl-buxene, dodecene, propylene .C] 2-olefin mixture (tetrapropene or tributene), fourteen carbons produced by trimerization of butene CI6-olefin mixture (tetrabutene) prepared by the tetramerization of olefin, hexadecene and butene, and oligomerization by olefins having different numbers of carbon atoms (preferably 2 to 4) The olefin mixture prepared, if appropriate, is separated by distillation into crane parts having the same or similar chain length. It is also possible to use olefins or mixtures of olefins obtained by Fischer-Trohsch synthesis and olefins obtained by oligomerization of ethylene or olefins which can be obtained by displacement reactions. Preferred starting materials are c4-, C6-, C8-, C9-, C! 2-, or C16-olefin mixtures. In addition, the method of the present invention can be used for the awakening of polymerized ethylenically unsaturated compounds, such as polyisobutylene or a 1,3-butadiene copolymer or an isobutylene copolymer. The effect of the molecular weight of the polymerized olefin is extremely small, a prerequisite of which is that the hydrocarbon burning is sufficiently soluble in the quenching medium. The molecular weight of the polymerized olefin is preferably less than 1,000 g / mole, especially less than 5,000 g / mole. The volume ratio of carbon monoxide to hydrogen in a 1%: 30% gas is usually from 2: 1 to 1: 2, especially 1: 1. The synthesis gas is preferably used in excess, for example up to three times the stoichiometric amount. The fermentation is usually carried out at a pressure of 315 to 350 bar, preferably at a pressure of 15 to 270 bar. The pressure used depends on the structure of the feed olefin, the catalyst used and the desired effect. Thus, for example, α-olefins can be converted to the corresponding awake at a pressure of less than 100 bar in the presence of a rhodium catalyst at a high space-time yield. On the contrary, if it is an olefin having an internal double bond, especially a branched olefin of -21-(18) (18) 200418785, a higher pressure is preferred. The reaction temperature in the method of the present invention is preferably from 20 to 220 ° C, more preferably from 100 ° C to 200 ° C, particularly preferably from 150 ° C to 190 ° C, especially from 160 to 1 8 0 ° C. A reaction temperature above 150 ° C can improve the ratio of the terminal to internal double bonds in particular, because at high temperatures, as a result of accelerated isomerization, more terminal double bonds become effective, and the awakening of the preferred terminal positions increases. . The process according to the invention can be carried out batchwise or continuously. However, continuous operation is preferred. Suitable reactors include virtually all gas-liquid reactors known to those skilled in the art, such as jet agitation vessels or bubble column or tubular reactors (with or without recirculation). A stepped bubble column and a tubular reactor equipped with static mixing elements. The reactor output obtained by the method of the present invention includes a possibly unreacted ethylenically unsaturated compound (olefin), a reaction product, a reaction by-product, at least one cyclic carbonate, a possibly non-polar solvent, and a catalyst. Depending on the type and mass fraction of the olefin compound as the starting material, the type and mass fraction of any non-polar solvents contained, and the type and mass fraction of the cyclic carbonate, the reactor output can be a single phase or Biphasic. As described above, phase separation can be achieved or prevented by appropriately adding a cyclic carbonate or a non-polar solvent. The processing of the reactor output in the method of the present invention can be performed in two variants, depending on the phase properties of the reactor output. If it is a two-phase reactor output, it is better to process it through phase separation. This is called Variation A. If it is a single-phase reactor output, it is better to process it by distillation. This is called change. Form B. -22- (19) (19) 200418785 Synthetic gas is better after the aldolization ', before the reactor output is further processed and processed according to variation A or B, the main fraction of synthetic gas is removed by decompression.

變化形式A 此方法變化形式中,來自醛化反應之雙相反應器輸出 以藉相分離來分離成主要包含觸媒及環狀碳酸酯之級份及 主要包含醛化產物及未反應烯烴或乙烯型不飽和化合物之 級份爲佳。 此方法變化形式可採用於使用選擇性其他非極性溶劑 時。該非極性溶劑可與起始烯烴相同,使得醛化反應未進 行至完全轉化(例如僅達,95%,以.90%爲佳,80%特佳) 且/或可在醛化反應過程中及/或之後添加其他烯烴於該反 應混合物。 本發明方法之變化形式A係由圖1說明,但方法不 限於此實施例:合成氣體(1 )、烯烴(2 )及溶解於環狀 碳酸酯或多種環狀碳酸酯之混合物中的醛化觸媒(3 )於 醛化反應器(4)中反應。該反應器輸出(5)可視情況於 減壓容器(6)中除去過量合成氣體(7)。此方式所得之 液流(8 )以於分離裝置(9 )中分離產生重質相(1 0 ), 其包含主要部分之環狀碳酸酯及觸媒,與高沸點副產物, 及輕質相(11 ),其包含醛化產物、未反應之嫌烴及(若 有使用)非極性溶劑。相分離可於〇 t至1 3 0 °C之溫度下 進行’以1 〇 °C至6 0 °C爲佳。相分離可於(例如)沉降容 -23- (20) (20) 200418785 器中進行。分離裝置(9)中之相分離以於1至350巴壓 力(以15至270巴爲佳)壓力下於合成氣體下進行爲佳 ,但於與醛化反應器(4 )中所使用相同之壓力下進行尤 佳。該分離裝置(9 )可視情況藉熱交換器進行,以冷卻 產液流(5 )(未出示於圖1 )。在選擇性分離階段(:ι 2 )中,可自液流(1 1 )取出觸媒殘留物。液流(!丨)或( 1 3 )隨之通至分離階段(1 4 )。此情況下,分離反應產物 (酸及醇)及未反應烯烴(15),且送至進一步加工或氫 化步驟。已自液流(1 5 )分離之烯烴可送回相同反應器或 送至選擇性進一步反應階段。亦分離之級份6 )係包含 (例如)殘留環狀碳酸酯、反應產物、任何所添加之其他 非極性溶劑及®沸點副.產物。級份(1 6 )可丟棄或再循環 回至醛化反應器(4 )。丟棄不需要之副產物的加工較佳 係在再循環之前進行。該分離裝置(9 )中之觸媒分離可 以竿取進行’至少部分級份(1 6 )及/或至少部分新鮮;(:希 煙(2 )係直接進料至液流(8 )內。該萃取以連續進行爲 佳’且可爲單階萃取或以多階方法形式逆流、順流或交流 地操作。含有觸媒之卸料流,例如來自液流(1 〇 )或來自 分離階段(1 2 ),可藉已知方法加工處理,以回收可再使 用之形式的觸媒金屬。 變化形式Β 此方法變化形式中,該醛化反應之均勻反應器輸出係 藉蒸餾分離成主要包含醛化產物及可能未反應烯烴或乙烯 -24- (21) (21)200418785 型不飽和化合物之相對低沸點餾份,及主要包含環狀碳酸 酯及觸媒之高沸點餾份。 本發明方法變化形式B係說明於圖2,該方法不限於 此實施例:合成氣體(1 )、烯烴(2 )及溶解於環狀碳酸 酯或多種環狀碳酸酯混合物中之醛化觸媒(3 )係於醛化 反應器(4 )中進行反應。反應器輸出可視情況於減壓容 器(6 )中除去過量合成氣體(7 )。此方式所得之液流( 8)以於分離裝置(9)中分離產生包含主要部分之環狀碳 酸酯及觸媒之高沸點相(1 0 ),及包含醛化產物、未反應 之烯烴及(若有使用)非極性溶劑之低沸點相(n )。含 有觸媒之餾份(1 0 )再循環至醛化反應器。此可視情況藉 加工步驟處理,其中卸除高沸點副產物及/或觸媒降解產 物(未出示於圖2中)。餾分(1 1 )可視情況於分離步驟 (1 2 )中去除觸媒殘留物。液流1 3隨之送至蒸態階段( 1 4 )。此情況下,醛化產物(醛類及醇類)(1 6 )係藉蒸 餾自未反應烯烴(1 5 )分離。含有觸媒之卸料流(例如液 流(】〇 )或來自分離階段(1 2 ))可藉熟習此項技術者已 知之方法(例如自W Ο 0 2 /2 0 4 5 1或U S 5,2 0 8 ; 1 9 4得知) 加工回收可再使用形式之觸媒金屬。該醒化產物隨之進一 步加工。 未反應之烯烴(1 5 )可送回相同醛化反應器或送入選 擇性第二反應階段。當該程序係工業化地進行時,該分離 裝置可具有各種不同之設計。該分離以藉由降膜蒸發自、 短程蒸發器或薄膜蒸發器或此等裝置之組合來進行爲佳。 -25- (22) (22)200418785 該種組合之優點係爲(例如)仍溶解之合成氣體及主要部 分之產物及未反應起始物質可在第一步驟中自含有觸媒之 烷二醇碳酸酯溶液分離(例如降膜蒸發器或急驟蒸發器) ’而殘留烷二醇碳酸酯之移除及產物與未反應起始物質之 分離則可於第二步驟中進行(例如組合兩塔)。 本發明方法之兩變化形式A及B中,已去除觸媒、 過量合成氣體及主要部分溶劑(即環狀碳酸酯或其多種之 混合物)的反應器輸出物較佳係進一步分離成醛類(醇類 )、烯烴、溶劑及副產物。如前文所示,此可藉(例如) 蒸餾達成。已自反應輸出物或與醛化產物分灕之烯烴及/ 或溶劑(烷二醇碳酸酯及/或非極性溶劑)可再循環至該 醛化反應。 前述本發明方法變化形式係包括分離反應器輸出物及 選擇性醛化產物;此可藉(例如)蒸餾進行。然而,亦可 使用其他分離方法,例如描述於(尤其是)WO 0 1 /6 824 7 、EP 0 922 691、WO 99/38832、US 5 64 8 5 5 4 及 US 5 138 101中之萃取,或描述於(尤其是)DE 1 9 5 3 64 1、GB ]3】 2076、NL 870088 1、DE 3842819、WO 9419 1 04、DE 1 9 6 3 2 6 0 0及E P 1 1 0 3 3 0 3中之滲透。當該分離係工業化地 進行時,可採用各種方法。該分離以藉降膜蒸發器、短程 蒸發器或薄膜蒸發器或此等裝置之組合進行爲佳。萃取分 離以連續地進行爲佳。可設計爲單階方法或以多階方法形 式逆流或交流地操作。 在所有方法變化形式中,包含觸媒之級份皆以再循環 -26- (23) 200418785 至醛化反應爲佳。此點當然與溶解有觸媒之 關。 當該標的產物並非醛本身,而是自其衍 除去合成氣體及觸媒且可能除去溶劑之反應 在烯烴分離之前或之後進行氫化,之後藉蒸 生純醇。 本發明方法可分單階或多階進行。此情 化反應之後可接著第二醛化階段,亦在較激 例如高溫及/或高壓)下將難以醛化之內部 內部高度分支鏈烯烴)轉化成所需之醛。然 係先使用未反應烯烴及醛化產物(醛及醇) 再循環至相同醛化階段或送至第二醛化階段 之醛化階段。此情況下,該第二醛化階段可 觸媒系統(即不同觸媒金屬或經配位體改質 進行。亦可(較佳係)於此階段中添加較高 反應烯烴,以使相對難以醛化成所需產物之 所有情況下,皆需將前述量之環狀碳酸酯添 化階段。 本發明方法中,所使用之乙烯型不飽和 括自第一醛化反應之反應器輸出物所得而爲 不飽和化合物形式的化合物。此情況下,可 產物混合物或僅使用其一部分,尤其是包含 一階段之未反應烯烴化合物的部分。此方法 佳的是第一醛化反應係於經配位體改質之觸 級份的組成無 生之醇時,已 產物混合物可 餾加工處理產 況下,第一醛 烈反應條件( 嫌烴(尤其是 而,較佳情況 ,未反應烯烴 或甚至更後段 使用完全不同 之觸媒金屬) 濃度觸媒於未 烯烴轉化。在 加於更段之醛 化合物亦可包 未反應乙烯型 使用整體反應 大部分來自第 變化形式中較 媒存在下進行 -27- (24) (24)200418785 【實施方式】 以下實施例僅用以說明本發明,而不限制由說明& $ 請專利範圍所定義的範圍。 實施例1 (變化形式A ) 5 6 0克丙二醇碳酸酯、5 60克三-正丁烯及0.0888克 或0.0225克壬酸铑(II )(對應於以反應器內容物質量計 爲5 ppm或20 ppm之錢濃度)放置於氮氛圍下於2公升 攪動壓熱器中。該壓熱器隨之後合成氣體(CO/H2 1:1莫 耳)加壓,加熱至所需之反應溫度。加熱期間偵測反應器 溫度。反應溫度係爲1 3 (TC至1 8 0。(:。反應壓力係爲2 6 0 巴。反應期間,於壓力控制下導入其他合成氣體。5小時 之後’停止實驗,反應器冷卻至環境溫度。反應器輸出物 始終由兩相構成,且不含铑沉澱物。 相分離容器中所分離之較輕烴相的組成係藉氣體層析 U、Ό 戚―層析Z結果及反應條件(諸如溫度及錢濃度) 係列示於表1。 -28- (25) 200418785 表1 : 三-正丁烯於2 6 0巴及各種溫度下醛化5小時。所記錄之 比例(以質量%計)與較輕烴相有關,該相已移除任何所 含羧酸酯及觸媒。實驗6中,再次使用使實驗5之反應器 輸出物進行加工處理所得的觸媒溶液。 編號 T/°C c(Rh)/ C13-醛 C 1 3 -醇 C 12- 高沸物 ppm /% /% HC/°/〇 /% 1 13 0 5 2 7 1 72 0 2 130 20 5 5 4 40 1 3 1 50 20 68 14 17 1 4 180 5 48 33 14 5 5 1 80 2 0 59 3 2 8 1 6 1 8 0 20 61 30 8 1Variation A In this variation of the method, the output of the two-phase reactor from the aldehydeization reaction is separated by phase separation into a fraction mainly containing catalysts and cyclic carbonates and mainly containing aldehydeization products and unreacted olefins or ethylene Fractions of type unsaturated compounds are preferred. This method variation can be used when using alternative non-polar solvents. The non-polar solvent may be the same as the starting olefin, so that the aldolization reaction does not proceed to complete conversion (for example, only up to 95%, preferably .90%, especially 80%) and / or may be used during the aldolization reaction and / Or add other olefins to the reaction mixture afterwards. Variation A of the method of the present invention is illustrated in FIG. 1, but the method is not limited to this embodiment: the synthesis gas (1), the olefin (2), and the aldolization dissolved in a cyclic carbonate or a mixture of a plurality of cyclic carbonates The catalyst (3) reacts in the aldehydeization reactor (4). The reactor output (5) may be optionally removed in a decompression vessel (6) from the excess synthesis gas (7). The liquid stream (8) obtained in this way is used for separation in the separation device (9) to produce a heavy phase (1 0), which contains the main part of the cyclic carbonate and catalyst, and high-boiling by-products, and the light phase. (11), which comprises an aldehyde product, unreacted hydrocarbons and (if used) a non-polar solvent. The phase separation can be performed at a temperature of 0 t to 130 ° C ', preferably 10 ° C to 60 ° C. Phase separation can be performed, for example, in a settling volume -23- (20) (20) 200418785. The phase separation in the separation device (9) is preferably performed under a synthesis gas at a pressure of 1 to 350 bar (preferably 15 to 270 bar), but is the same as that used in the aldehydeization reactor (4). It is particularly good to perform under pressure. The separation device (9) may optionally be performed by a heat exchanger to cool the production liquid stream (5) (not shown in Fig. 1). In the selective separation stage (: 2), the catalyst residue can be taken out from the liquid stream (1 1). The liquid flow (! 丨) or (1 3) then leads to the separation stage (1 4). In this case, the reaction products (acid and alcohol) and unreacted olefin (15) are separated and sent to a further processing or hydrogenation step. The olefins that have been separated from the liquid stream (15) can be returned to the same reactor or sent to a selective further reaction stage. Fraction 6), which is also separated, contains, for example, residual cyclic carbonates, reaction products, any other non-polar solvents added, and boiling point by-products. The fraction (1 6) can be discarded or recycled back to the aldehydeization reactor (4). The process of discarding unwanted by-products is preferably performed before recycling. The catalyst separation in the separation device (9) can be performed at least partially (1 6) and / or at least partially fresh; (: Greek smoke (2) is directly fed into the liquid stream (8). The extraction is preferably performed continuously and may be a single-stage extraction or operated countercurrently, co-currently, or alternatingly in a multi-stage process. The discharge stream containing the catalyst is, for example, from the liquid stream (10) or from the separation stage (1 2), can be processed by known methods to recover the catalyst metal in a reusable form. Variation B In this variation of the method, the uniform reactor output of the aldolization reaction is separated by distillation to include mainly aldolization. Relatively low-boiling fractions of products and possibly unreacted olefins or ethylene-24- (21) (21) 200418785 unsaturated compounds, and high-boiling fractions mainly containing cyclic carbonates and catalysts. Variations of the method of the invention The B series is illustrated in FIG. 2, and the method is not limited to this embodiment: the synthesis gas (1), the olefin (2), and the aldehyde catalyst (3) dissolved in a cyclic carbonate or a mixture of various cyclic carbonates are based on The reaction is carried out in an aldolization reactor (4). The output of the device can be used to remove excess synthesis gas (7) in the decompression vessel (6). The liquid stream (8) obtained in this way can be separated in the separation device (9) to produce a cyclic carbonate containing the main part and the catalyst High-boiling phase (1 0), and low-boiling phase (n) containing the aldehyde product, unreacted olefins and (if used) non-polar solvent. The catalyst-containing fraction (1 0) is recycled to the aldehyde This reactor may be processed by processing steps, where high-boiling by-products and / or catalyst degradation products are removed (not shown in Figure 2). The fraction (1 1) may be used in the separation step (1 2), as appropriate. Removal of catalyst residues. The liquid stream 1 3 is then sent to the vapor phase (1 4). In this case, the aldehydes (aldehydes and alcohols) (1 6) are distilled from unreacted olefins (1 5 ) Separation. The discharge stream containing the catalyst (such as the liquid stream (] 〇) or from the separation stage (12)) can be obtained by methods known to those skilled in the art (such as from W 0 0 2/2 0 4 5 1 Or US 5,208; 19 4)) processing to recover the catalyst metal in reusable form. The unreacted olefin (1 5) can be sent back to the same aldolization reactor or into a selective second reaction stage. When the process is carried out industrially, the separation device can have various designs. The separation is based on It is better to perform by falling film evaporation, short-path evaporator or thin film evaporator or a combination of these devices. -25- (22) (22) 200418785 The advantage of this combination is, for example, the synthetic gas that is still dissolved And the main part of the product and unreacted starting materials can be separated from the catalyst-containing alkanediol carbonate solution in the first step (such as a falling film evaporator or a flash evaporator) and the residual alkanediol carbonate is removed. Separation of the product from the unreacted starting material can be performed in the second step (for example, combining two columns). In the two variants A and B of the method of the present invention, the reactor output from which the catalyst, excess synthesis gas, and major solvents (ie, cyclic carbonate or a mixture of multiple thereof) have been removed is preferably further separated into aldehydes ( Alcohols), olefins, solvents and by-products. As indicated earlier, this can be achieved by, for example, distillation. The olefins and / or solvents (alkanediol carbonates and / or non-polar solvents) that have been separated from the reaction output or from the aldolization product can be recycled to the aldolization reaction. The aforementioned variation of the method of the present invention includes separating the reactor output and the selective aldehyde product; this can be performed, for example, by distillation. However, other separation methods can also be used, such as the extractions described in, inter alia, WO 0 1/6 824 7, EP 0 922 691, WO 99/38832, US 5 64 8 5 5 4 and US 5 138 101, Or described in (especially) DE 1 9 5 3 64 1, GB] 3] 2076, NL 870088 1, DE 3842819, WO 9419 1 04, DE 1 9 6 3 2 6 0 0 and EP 1 1 0 3 3 0 3 infiltration. When the separation is performed industrially, various methods can be adopted. The separation is preferably performed by a falling film evaporator, a short-path evaporator or a thin film evaporator or a combination of these devices. The extraction and separation are preferably performed continuously. It can be designed as a single-stage method or operated countercurrently or alternatingly in a multi-stage method. In all method variations, the catalyst-containing fraction is preferably recycled -26- (23) 200418785 to the aldolization reaction. This is of course related to the dissolution of the catalyst. When the target product is not the aldehyde itself, but the reaction from which the synthesis gas and catalyst are removed and possibly the solvent is removed, the hydrogenation is performed before or after the olefin separation, and then the pure alcohol is distilled off. The method of the invention can be performed in single or multiple stages. This reaction can be followed by a second aldolization stage, which also converts internally highly branched alkenes, which are difficult to be aldolized, to the desired aldehyde at relatively high temperatures (e.g., high temperature and / or high pressure). However, the unreacted olefins and the aldolization products (aldehydes and alcohols) are first recycled to the same aldolization stage or sent to the second aldolization stage. In this case, the second aldehyde formation stage can be performed by the catalyst system (that is, different catalyst metals or modified by ligands. It is also possible (preferably) to add higher reactive olefins at this stage to make it relatively difficult In all cases where the aldehyde is converted to the desired product, the aforementioned amount of cyclic carbonate must be added. In the method of the present invention, the ethylenic unsaturation used is obtained from the reactor output of the first aldehyde reaction. The compound is in the form of an unsaturated compound. In this case, the product mixture or only a part thereof may be used, especially a part containing a one-stage unreacted olefin compound. This method is preferred in that the first aldolization reaction is based on a ligand When the composition of the modified touch fraction is free of raw alcohol, the product mixture can be distilled and processed under production conditions. The first aldehyde reaction conditions (such as hydrocarbons (especially, preferably, unreacted olefins or even later) Use a completely different catalyst metal) Concentration catalyst for unolefin conversion. The aldehyde compounds added to more sections can also include unreacted ethylene type. The overall reaction is mostly from the first variation -27- (24) (24) 200418785 in the presence of a medium-to-medium medium [Embodiment] The following examples are only used to illustrate the present invention, and not to limit the scope defined by the description & patent scope. Example 1 ( Variation A) 560 g of propylene glycol carbonate, 5 60 g of tri-n-butene and 0.0888 g or 0.0225 g of rhodium (II) nonanoate (corresponding to 5 ppm or 20 ppm based on the mass of the reactor contents) Concentration) placed in a 2 liter agitated autoclave under a nitrogen atmosphere. The autoclave was then pressurized with a synthetic gas (CO / H2 1: 1 mol) and heated to the desired reaction temperature. The reaction was detected during heating Temperature of the reactor. The reaction temperature is 1 3 (TC to 180. The reaction pressure is 2 600 bar. During the reaction, other synthesis gases are introduced under pressure control. After 5 hours, the experiment is stopped and the reactor is cooled down. To ambient temperature. The output of the reactor is always composed of two phases and does not contain rhodium precipitates. The composition of the lighter hydrocarbon phase separated in the phase separation vessel is obtained by gas chromatography U, ―-chromatographic Z results and reactions Conditions (such as temperature and money concentration) are shown in Table 1. -28- (25) 200418785 Table 1: Tri-n-butene is aldehydeized for 5 hours at 260 bar and various temperatures. The recorded proportions (in% by mass) are related to the lighter hydrocarbon phase which has removed any carboxylic acid esters contained And catalyst. In Experiment 6, the catalyst solution obtained by processing the reactor output of Experiment 5 was used again. Number T / ° C c (Rh) / C13-aldehyde C 1 3 -alcohol C 12- high boiling Ppm /% /% HC / ° / 〇 /% 1 13 0 5 2 7 1 72 0 2 130 20 5 5 4 40 1 3 1 50 20 68 14 17 1 4 180 5 48 33 14 5 5 1 80 2 0 59 3 2 8 1 6 1 8 0 20 61 30 8 1

貫施例2 (變化形式B ) 二-正丁燒‘(5 6 0克)依實施例1之方式進行醛化。 實驗7至1 3之反應器輸出物始終係由單一相構成,且不 含(錢)沉澱物。與實施例1相反地,反應器輸出物係在 不加處理之情況下藉氣體層析分析。氣體層析之結果及反 應條件(諸如溫度、壓力及鍺濃度)係列於表2中。 -29- (26) 200418785 表2 : 二-正丁烯於各種不同壓力、鍺濃度及溫度下之醒化。戶斤 記錄之比例(以質量°/。計)係反應器輸出物$ ,組$,胃_ 出物已移除所含之碳酸酯及觸媒。 編號 T/°C p/巴 c(Rh)/p C8- C9-醛 C9-醇 pm HC/% /% /% 7 150 50 40 67.5 30.4 2.1 8 150 250 40 3.1 87.6 3.3 9 170 150 5 26.3 66.6 27.1 10 1 70 250 5 4.5 78.1 17.4 11 1 70 250 40 4.0 20.5 75.5 12 180 50 40 66.8 17.5 15.7 13 180 1 50 40 9.9 2 3.3 66.8Example 2 (Variation B) Di-n-butyrate '(560 g) was aldehydeized in the same manner as in Example 1. The reactor output of experiments 7 to 13 always consisted of a single phase and did not contain (money) precipitates. In contrast to Example 1, the reactor output was analyzed by gas chromatography without treatment. The results of gas chromatography and the reaction conditions (such as temperature, pressure, and germanium concentration) are shown in Table 2. -29- (26) 200418785 Table 2: Awake of di-n-butene under various pressures, germanium concentrations and temperatures. The recorded proportion (in mass ° /.) Is the output of the reactor $, the group $, and the carbonate and catalyst contained in the stomach _ output have been removed. T / ° C p / bar c (Rh) / p C8- C9-aldehyde C9-alcohol pm HC /% /% /% 7 150 50 40 67.5 30.4 2.1 8 150 250 40 3.1 87.6 3.3 9 170 150 5 26.3 66.6 27.1 10 1 70 250 5 4.5 78.1 17.4 11 1 70 250 40 4.0 20.5 75.5 12 180 50 40 66.8 17.5 15.7 13 180 1 50 40 9.9 2 3.3 66.8

實施例3 (習用方法) 二-正丁烯如實施例2般進行醛化,不同處係使用五 丁烷取代丙二醇碳酸酯作爲溶劑。實驗1 4之反應器輸出 物出示大量黑色(铑)沉澱物。該醛及未反應烯烴隨之於 薄膜蒸發器中自含有觸媒之溶液分離出來,該觸媒溶液使 用於另一 化中(實驗1 5 )。氣體層析之結果及反應條 件(諸如溫度、壓力及铑濃度)係列於表2中。 -30- (27) 200418785 表3 : 二-正丁烯於1 5 0 °C及2 5 0巴下於五丁烷中醛化。所記錄 之比例(以質量%計)係爲反應器輸出物之組成,該輸出 物已移除所含之五丁烷、副產物及觸媒。實驗1 5中,再 次使用實驗1 4中藉蒸餾加工處理所得的觸媒溶液。 編號 T/°C p/巴 c(Rh)/p C8- C9-醛 C9-醇 pm H C / % /% /% 14 1 50 250 40 75.4 23.4 1.2 15 150 250 未知 9 1.5 7.8 0.7Example 3 (conventional method) Di-n-butene was aldehydeized as in Example 2, except that pentabutane was used as a solvent instead of propylene glycol carbonate. The reactor output of Experiment 14 showed a large amount of black (rhodium) precipitate. The aldehyde and unreacted olefin were then separated from the catalyst-containing solution in a thin-film evaporator, and the catalyst solution was used in another chemical process (Experiment 15). The results of gas chromatography and the reaction conditions (such as temperature, pressure, and rhodium concentration) are shown in Table 2. -30- (27) 200418785 Table 3: Di-n-butene is aldehydeized in pentabutane at 150 ° C and 250 bar. The recorded ratio (in mass%) is the composition of the reactor output, which has been removed from pentabutane, by-products and catalysts. In Experiment 15 the catalyst solution obtained by distillation in Experiment 14 was used again. T / ° C p / bar c (Rh) / p C8- C9-aldehyde C9-alcohol pm H C /% /% /% 14 1 50 250 40 75.4 23.4 1.2 15 150 250 Unknown 9 1.5 7.8 0.7

實驗1至1 3中完全未出現鍺沉澱物係表示作爲溶劑 之烷二醇碳酸酯對於铑化合物具有特別之.安定化效果。相 反地,在對照實驗中使用烷作爲溶劑時,有相當量之鍺沉 澱,且當觸媒再循環時,發現活性大幅降低(實驗1 4及 1 5 )。實驗1 6中,來自實驗5之觸媒相係使用於新的醛 化中。在實驗準確度的範圍內,烯烴轉化率保持定値。 實驗證明本發明方法針對所需之醛類提供遠較爲高之 化學選擇性,此外,可使觸媒在技術上簡易地再循環,而 不會明顯失活。 【圖式簡單說明】 圖1係說明本發明方法變化形式a,而圖2係說明本 發明方法變化形式B。 -31 - (28) 200418785 【主要元件對照表】 1 合成氣體 2 烯烴 3 溶解於環狀碳酸酯或多種環狀碳酸酯之混合物中的 醛化觸媒 4 醛化反應器 5 反應器輸出 6 減壓容器 7 過量合成氣f 8 液流 9 分離裝置 1 0 重質相 11 輕質相 1 2 分離階段 13 液流 14 分離階段 15 液流 16 分離之級份The absence of germanium precipitation at all in Experiments 1 to 13 indicates that the alkanediol carbonate as a solvent has a special stabilization effect on the rhodium compound. In contrast, when alkane was used as a solvent in the control experiments, a considerable amount of germanium precipitated, and when the catalyst was recycled, it was found that the activity was greatly reduced (Experiments 14 and 15). In Experiment 16 the catalyst phase from Experiment 5 was used in the new aldehyde formation. Within the range of experimental accuracy, the olefin conversion rate remains fixed. Experiments have proved that the method of the present invention provides far higher chemical selectivity for the desired aldehydes. In addition, the catalyst can be technically easily recycled without significant deactivation. [Brief Description of the Drawings] Fig. 1 illustrates a variation a of the method of the present invention, and Fig. 2 illustrates a variation B of the method of the present invention. -31-(28) 200418785 [Comparison of main components] 1 Synthetic gas 2 Olefins 3 Aldehyde catalyst dissolved in cyclic carbonate or a mixture of cyclic carbonates 4 Aldehyde reactor 5 Reactor output 6 Subtract Pressure vessel 7 Excess synthesis gas f 8 Liquid stream 9 Separation device 1 0 Heavy phase 11 Light phase 1 2 Separation stage 13 Liquid stream 14 Separation stage 15 Liquid stream 16 Separated fractions

-32--32-

Claims (1)

(1) 200418785 拾、申請專利範圍 1. 一種使用包含至少一種元素週期表第 屬之未改質觸媒使具有3至24個碳原子之 化合物進行催化性醛化的方法,其中該醒化 I之環狀碳酸酯存在下進行 8至1 0族金 乙烯型不飽和 係於具有通式(1) 200418785 Scope of patent application 1. A method for catalytically aldehyde-modifying a compound having 3 to 24 carbon atoms using an unmodified catalyst containing at least one element of the Periodic Table, wherein the chemical compound I Group 8 to 10 gold ethylene type unsaturated system in the presence of cyclic carbonate 其中 ' R1、R2、R3、R4係相同或相異,且各係 至2 7個碳原子之經取代或未經取代的脂族 族、脂族-脂環族、脂族_芳族或脂環族-芳族 η 係爲〇至5, Χ 係爲具有1至27個碳原子之二 經取rt脂族、脂環族、芳族、脂族—脂環族写 基, 該碳酸酯之比例係爲該反應混合物之至 2·如申請專利範圍第〗項之方法,其中 R4及X係經選自〇、N、NH、N_院基及N_ 氯、溴、碘、-OH、-〇R、_CN、_c ( 〇 )烷 Ο -烷基之相同或相異取代基所取代。 ^ ·如申請專利範圍第〗項之方法,其中 爲Η或具有1 、月旨環族、芳 烴基, 價經取代或不 g脂族-芳族烴 少1重量%。 R】、R2 、 R3 、 二烷基、氟、 基或-C ( 0 ) 該醛化係於以 -33- (2) (2)200418785 反應混合物計係由5至5 0重量%之溶劑存在下進行,該 溶劑相較於該環狀碳酸酯I係非極性,且與環狀碳酸酯I 不相溶混。 4 ·如申請專利範圍第1至3項中任一項之方法,其中 來自醛化之反應產物係使用與該環狀碳酸酯I不相溶混之 非極性溶劑萃取。 5 ·如申請專利範圍第3項之方法,其中使用具有1至 5 0個碳原子之經取代或不經取代烴類或具有3至24個碳 原子之烯烴作爲非極性溶劑。 6.如申請專利範圍第1至3項中任一項之方法,其中 該醛化係於作爲觸媒之HRh ( CO ) 3存在下進行。 7 _如申請專利範圍第1至3項中任一項之方法,其中 來自醛化反應之反應產物混合物係分離成主要包含觸媒及 該環狀碳酸酯之級份及主要包含醛化產物之級份。 8 .如申請專利範圍第1至3項中任一項之方法,其中 該包含觸媒之級份係再循環至該醛化反應。 9 ·如申請專利範圍第1至3項中任一項之方法,其中 所使用之環狀碳酸酯係爲乙二醇碳酸酯、丙二醇碳酸醋或 丁二醇碳酸酯或其混合物。 1 0 ·如申請專利範圍第1至3項中任一項之方法,其 中該未反應乙烯型不飽和化合物係自反應器輸出物或與酸 化產物分離,且送回相同醛化反應,或送至第二醛化反應 〇 1 1 ·如申請專利範圍第1至3項中任一項之方法,其 -34 - (3) 200418785 中所使用之乙烯型不飽和化合物係爲得自第一醛化反應之 反應器輸出物而爲未反應乙烧型化合物形式的化合物。 1 2 .如申請專利範圍第1 1項之方法,其中所使用之乙 烯型不飽和化合物係爲得自在經配位體改質之觸媒存在下 進行之第一醛化反應的反應器輸出物,而爲未反應乙烯型 不飽和化合物形式的化合物。 -35-Where 'R1, R2, R3, R4 are the same or different, and each is a substituted or unsubstituted aliphatic, aliphatic-alicyclic, aliphatic_aromatic or aliphatic of 27 carbon atoms. The cyclic-aromatic η system is 0 to 5, and the χ system is two having 1 to 27 carbon atoms. The aliphatic, cycloaliphatic, aromatic, aliphatic-alicyclic writing group is rt. The ratio is from 2 to 2. of the reaction mixture. The method according to item 1 of the scope of the patent application, wherein R4 and X are selected from 0, N, NH, N_ group and N_ chlorine, bromine, iodine, -OH,- 〇R, _CN, _c (〇) alk0-alkyl are substituted with the same or different substituents. ^ · The method according to the item in the scope of patent application, wherein is Η or has 1, 1, or 2 ring, aromatic hydrocarbon group, valence substituted or non-g aliphatic-aromatic hydrocarbon is less than 1% by weight. R], R2, R3, dialkyl, fluorine, radical, or -C (0) The aldolization is based on the -33- (2) (2) 200418785 reaction mixture in the presence of 5 to 50% by weight of solvent The solvent is non-polar compared to the cyclic carbonate I and is immiscible with the cyclic carbonate I. 4. The method according to any one of claims 1 to 3, wherein the reaction product from the aldolization is extracted with a non-polar solvent that is immiscible with the cyclic carbonate I. 5. The method according to item 3 of the patent application, wherein a substituted or unsubstituted hydrocarbon having 1 to 50 carbon atoms or an olefin having 3 to 24 carbon atoms is used as the non-polar solvent. 6. The method according to any one of claims 1 to 3, wherein the aldolization is performed in the presence of HRh (CO) 3 as a catalyst. 7 _ The method according to any one of claims 1 to 3, wherein the reaction product mixture from the aldehyde reaction is separated into a fraction mainly containing the catalyst and the cyclic carbonate and a fraction mainly containing the aldehyde product Fractions. 8. The method according to any one of claims 1 to 3, wherein the catalyst-containing fraction is recycled to the aldolization reaction. 9. The method according to any one of claims 1 to 3, wherein the cyclic carbonate used is ethylene glycol carbonate, propylene glycol carbonate or butanediol carbonate or a mixture thereof. 10 · The method according to any one of claims 1 to 3, wherein the unreacted ethylenically unsaturated compound is separated from the reactor output or separated from the acidified product, and sent back to the same aldehydeization reaction, or sent To the second aldehyde reaction 011. As in the method of any one of claims 1 to 3, the ethylenically unsaturated compound used in -34-(3) 200418785 is obtained from the first aldehyde The reactor output of the chemical reaction is a compound in the form of an unreacted ethylenic compound. 12. The method according to item 11 of the scope of patent application, wherein the ethylenically unsaturated compound used is a reactor output obtained from a first aldehyde reaction carried out in the presence of a ligand-modified catalyst And is a compound in the form of an unreacted ethylenically unsaturated compound. -35-
TW092123454A 2002-08-31 2003-08-26 Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the pte in the presence of cyclic carbonic esters TWI293950B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10240253 2002-08-31
DE10327435A DE10327435A1 (en) 2002-08-31 2003-06-18 Catalytic hydroformylation of olefins, e.g. internal, highly branched olefins, to aldehydes and alcohols, using unmodified group 8-10 metal, e.g. rhodium, catalyst, is carried out in presence of cyclic (cyclo)alkylene or arylene carbonate

Publications (2)

Publication Number Publication Date
TW200418785A true TW200418785A (en) 2004-10-01
TWI293950B TWI293950B (en) 2008-03-01

Family

ID=31197552

Family Applications (2)

Application Number Title Priority Date Filing Date
TW092123468A TWI319393B (en) 2002-08-31 2003-08-26 Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters
TW092123454A TWI293950B (en) 2002-08-31 2003-08-26 Process for preparing aldehydes by hydroformylation of olefinically unsaturated compounds, catalyzed by unmodified complexes of metals of groups 8 to 10 of the pte in the presence of cyclic carbonic esters

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW092123468A TWI319393B (en) 2002-08-31 2003-08-26 Process for the hydroformylation of olefinically unsaturated compounds, in particular olefins, in the presence of cyclic carbonic esters

Country Status (5)

Country Link
JP (1) JP5340205B2 (en)
AT (1) ATE456549T1 (en)
DE (3) DE10327434A1 (en)
TW (2) TWI319393B (en)
ZA (1) ZA200501710B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793216B (en) * 2017-12-07 2023-02-21 美商陶氏科技投資公司 Hydroformylation process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006442A1 (en) 2007-02-05 2008-08-07 Evonik Oxeno Gmbh Mixture of diesters of Dianhydrohexitolderivaten with carboxylic acids of the empirical formula C8H17COOH, process for preparing these diesters and use of these mixtures
DE102008006400A1 (en) 2008-01-28 2009-07-30 Evonik Oxeno Gmbh Mixtures of diisononyl esters of terephthalic acid, process for their preparation and their use
DE102008050564B4 (en) 2008-09-22 2011-01-20 Curt Niebling Mold and method for high-pressure forming of a single-layer or multi-layer laminate
DE102009028975A1 (en) 2009-08-28 2011-03-03 Evonik Oxeno Gmbh Ester derivatives of 2,5-furandicarboxylic acid and their use as plasticizers
DE102010021892B4 (en) 2010-05-28 2014-03-20 Curt Niebling jun. Method and device for laminating a 3D support part with a laminate
DE102015012242B4 (en) 2015-09-18 2019-06-19 Leonhard Kurz Stiftung & Co. Kg Method and device for producing a laminated with a laminate 3D substrate
DE102016004047B4 (en) 2016-04-04 2017-10-19 Niebling Gmbh Method and mold for hot forming a flat thermoplastic laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008124A1 (en) * 1995-08-25 1997-03-06 E.I. Du Pont De Nemours And Company Hydroformylation process
JPH11189563A (en) * 1997-12-25 1999-07-13 Kuraray Co Ltd Preservation of hydroformylated product
DE19842368A1 (en) * 1998-09-16 2000-03-23 Oxeno Olefinchemie Gmbh Process for the preparation of higher oxo alcohols from olefin mixtures by two-stage hydroformylation
DE19954665B4 (en) * 1999-11-13 2004-02-12 Celanese Chemicals Europe Gmbh Process for the hydroformylation of olefinically unsaturated compounds
DE10031518A1 (en) * 2000-06-28 2002-01-10 Basf Ag Process for the preparation of hydroformylation products of propylene and of acrylic acid and / or acrolein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793216B (en) * 2017-12-07 2023-02-21 美商陶氏科技投資公司 Hydroformylation process

Also Published As

Publication number Publication date
DE10327435A1 (en) 2004-03-04
JP5340205B2 (en) 2013-11-13
TWI293950B (en) 2008-03-01
TW200417540A (en) 2004-09-16
DE50312386D1 (en) 2010-03-18
JP2010138189A (en) 2010-06-24
DE10327434A1 (en) 2004-03-04
ZA200501710B (en) 2005-11-30
ATE456549T1 (en) 2010-02-15
TWI319393B (en) 2010-01-11

Similar Documents

Publication Publication Date Title
KR100988732B1 (en) Method for producing aldehydes by means of hydroformylation of olefinically unsaturated compounds, said hydroformylation being catalysed by unmodified metal complexes in the presence of cyclic carbonic acid esters
TW574197B (en) Multistage process for the preparation of oxo aldehydes and/or alcohols
JP3878414B2 (en) Improved separation process
KR100693575B1 (en) Improved Metal-ligand Complex Catalyzed Processes
EP2488539B1 (en) Gas phase hydroformylation process
JP5340205B2 (en) Process for the preparation of aldehydes by hydroformylation of olefinically unsaturated compounds catalyzed by unmodified metal complexes in the presence of cyclic carboxylic esters
CN109937090B (en) Method for processing hydroformylation catalyst solutions
EP2001829B1 (en) Tuning product selectivity in catalytic hyroformylation reactions with carbon dioxide expanded liquids
JP6571652B2 (en) Hydroformylation process
JP6329136B2 (en) Hydroformylation process
US8822734B2 (en) Single solvent gas expanded hydroformylation process
JP4280625B2 (en) Method
JP2015523909A5 (en)
EP2699350B1 (en) Methods to store transition metal organophosphorous ligand based catalysts
JP4288173B2 (en) Method for producing aldehyde
JP2841689B2 (en) Purification method of valeraldehyde
TW202126385A (en) Processes for recovery of rhodium from a hydroformylation process
TW509694B (en) Improved metal-ligand complex catalyzed processes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees