TWI293234B - White organic light-emitting diode and fabrication method - Google Patents
White organic light-emitting diode and fabrication method Download PDFInfo
- Publication number
- TWI293234B TWI293234B TW094109045A TW94109045A TWI293234B TW I293234 B TWI293234 B TW I293234B TW 094109045 A TW094109045 A TW 094109045A TW 94109045 A TW94109045 A TW 94109045A TW I293234 B TWI293234 B TW I293234B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- white
- layer
- white light
- dye
- Prior art date
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Description
1293234 九、發明說明: 【發明所屬之技術領域】 •本案係有關於一種白光有機電致發光二極體及製造方法,更明確言之,係特別有 關於一種可改善效能及簡化製程之白光有機電致發光二極體及製造方法。 【先前技術】 有機發光二極體(Organic Light-Emitting Diode,簡稱OLED)顯示器乃是一種 利用有機化合物作為發光材料的平面顯示器,其結構是由陰陽電極包夾具^光特性之 有機薄气^斤構成,由於必須讓光導出,所以使用透明材料,如:氧化銦^、(indiumtim oxide,間稱IT0),作為導電電極,並選擇另一金屬作為另一導電電極;當施以一順 向偏壓電壓,電洞會由陽極注入’而電子則由陰極注入,並因外加電場所造成的電位 差,使電荷載子在薄膜中移動,進而在發光層中產生覆合(rec〇mbinati〇r〇。 部電子電,結合所釋放的能量,將發光層分子激發而形成激發態,當發光分子由激 發態衣變至基態時,其中一定比例的能量以光子的形式放出,所放出的光為有機電致發 光。0LED之發光光色,取決於元件内具有發光特質的有機材料,或在一主體 混入所需光色之有機發光染料而得。 / 0LH)依有機發光材料種類,可區分為小分子材料及高分子材料兩大類: ^小分子0LED是美商柯達(Kodak)公司,在1987年,由鄧青雲等人,率先使用直* 蒸艘方式製成’在其US-A4· 356· 429與US-A-4. 769· 292專利已敘述此〇LED裝置。‘八 子0LED,由英國劍橋大學的研究小組在1990年首次發表,後來移轉至1293234 IX. Description of the invention: [Technical field to which the invention pertains] • This case relates to a white organic electroluminescent diode and a manufacturing method thereof. More specifically, it relates to a white light which can improve performance and simplify the process. Electroluminescent diodes and methods of manufacture. [Prior Art] An Organic Light-Emitting Diode (OLED) display is a flat-panel display using an organic compound as a light-emitting material, and its structure is composed of a yin-yang electrode package. Composition, since the light must be led out, a transparent material such as indium timoxide (indium timoxide) is used as the conductive electrode, and another metal is selected as the other conductive electrode; The voltage is applied, the hole is injected by the anode and the electron is injected by the cathode, and the potential difference caused by the applied electric field causes the charge carrier to move in the film, thereby generating a cladding in the light-emitting layer (rec〇mbinati〇r〇 The electronic electricity, combined with the released energy, excites the molecules of the luminescent layer to form an excited state. When the luminescent molecules change from the excited state to the ground state, a certain proportion of the energy is released in the form of photons, and the emitted light is Electroluminescence. The luminescent color of 0LED depends on the organic material with luminescent properties in the component, or the organic luminescent dye mixed with the desired light color in one body. / 0LH) According to the type of organic light-emitting materials, it can be divided into two categories: small molecule materials and polymer materials: ^ Small molecule 0LED is Kodak, which was first used by Deng Qingyun and others in 1987. This 〇 LED device has been described in the US Pat. No. 4,356,429, the entire disclosure of which is incorporated herein by reference. ‘Eight 0LED, first published in 1990 by the research team of the University of Cambridge, UK, and later transferred to
Technology(CDT)公司,高分子〇LE:D的基本專利US-A5, 247,190由CDT所擁有。古八手 0LED是以溶液製程製作,其優點是可利用塗佈法或喷墨式製造,不需使用大型^二 備,製程可因此大幅簡化,投資較小。此外,使用網印或噴墨印刷時,基板尺限 小,在發展大尺寸顯示器或照明元件上,有極高的吸引力。 近年來,由於白光0LE:D在照明 '平面顯示器、及其他光電產品上的應用 其得到廣泛注意。白光是-系列波長可見光的組合,不像單色光擁有—獨 圍;白光可由紅、綠、藍三種光色組合,白光也可由黃、藍光色兩種組合, 種光色组合;這些組成光色,可以分散在多曾式的發光結構中,各自發光, ^ 一層結構中發光- 福中在早 故而白光0LH)之發光層結構,可區分為多層式及單層式;多層式發光結構之白光 1293234Technology (CDT), the basic patent US-A5, 247, 190 of the polymer 〇 LE: D is owned by CDT. The ancient eight-handed 0LED is made by a solution process. Its advantage is that it can be manufactured by coating or ink-jet. It does not need to use large-scale equipment, so the process can be greatly simplified and the investment is small. In addition, when using screen printing or inkjet printing, the substrate has a small tolerance and is highly attractive for developing large-sized displays or lighting elements. In recent years, due to the application of white light 0LE:D in lighting 'flat displays, and other optoelectronic products, it has received extensive attention. White light is a combination of series-wavelength visible light, unlike monochromatic light--single-side; white light can be composed of red, green and blue light colors, white light can also be combined by yellow and blue light colors, and various light-color combinations; Color, can be dispersed in the multi-type light-emitting structure, each emitting light, ^ light-emitting layer structure in a layer structure - Fuzhong in early and white light 0LH), can be divided into multi-layer and single-layer; multi-layer light-emitting structure White light, 1293234
^ 267 4, f 1332 ^0995)^ APLVol. 64. ρ. 815(1994) ΪΓ备ΐ+斗之該/私j,第Λ頁(1999)提出以電洞阻擔層隔離綠光發光層,並與摻 ^ίί ίί 1 a^^^^:Hatwary 627, 333 ^ US-A20040058193 · Sat 則是由—藍光發光層及一摻有黃光染料之電子或電洞傳 ίΐ ^ 169 〇LED f.£ ^ 1光染料的電洞傳輸層,共同組成白光。然而,由㈣子與電 if而且隨電壓改變而改變,使待載子覆合區合隨著施加電壓 t 構之白統ed,其^色會產生色偏;此外,〃、分子聽 利用真空祭鍍製造,被侷限於小尺寸面板應用。 a ΐ層式構5白5* _,如J· Shi於其US—A 一5683· 823專利及D,她*等 瘺 tt ^ % 624 Ι(2004^* ^ 響 H將小刀子橘、,工光及藍光杂料,或紅光、綠光及藍光染料,同時掺入至小分子主體 ϊ料、光^ed裝置所掺雜的染料比例,相對於主體材料,相微 里之困難,朱料組成成份容易變動,所待光色再現性差、良率低,在 if 色性白光的製作時’同時調控三種或更多種染料分子,加上主體 材料,困難度更南、再現性更低,良率更差,而形成實用障礙。^ 267 4, f 1332 ^0995)^ APLVol. 64. ρ. 815 (1994) ΪΓ ΐ 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗 斗And with ^ ί ίί 1 a ^ ^ ^ ^: Hatwary 627, 333 ^ US-A20040058193 · Sat is by - blue light emitting layer and an electron or hole with yellow dye mixed ΐ ΐ ^ 169 〇 LED f. £ ^ 1 The hole transport layer of the light dye together constitutes white light. However, the (4) sub- and the electric if and change with the voltage change, so that the cladding of the carrier to be combined with the application of the voltage t of the white system ed, its color will produce color shift; in addition, the 听, molecular listening to use vacuum It is limited to small-sized panel applications. a ΐ layer structure 5 white 5 * _, such as J · Shi in its US-A a 5 683 823 patent and D, she * 瘘 tt ^ % 624 Ι (2004 ^ * ^ ring H will be a knife orange, Work light and blue light miscellaneous materials, or red, green and blue light dyes, which are simultaneously incorporated into the small molecule host material, the proportion of dyes doped by the optical device, relative to the host material, the difficulty of the phase, Zhu The composition of the material is easy to change, the color reproduction is poor, and the yield is low. In the production of if-color white light, three or more dye molecules are simultaneously regulated, and the host material is added, and the difficulty is more souther and the reproducibility is lower. The yield is even worse, and a practical obstacle is formed.
Kawamura 等人,於 Journal of Applied Physics 第 92 卷,第 87 頁(2002),接 ΐ 0LED裝^二其白光發光層*以溶液製程*,將紅光、綠光及藍光染料同時推混至 尚分子主體材料中構造,然而,其在亮度、發光效率、及壽命上仍較小分子為差,應 上仍有問題;此外’其光色的安定性、純度亦不佳,此些問題,皆造成白光〇LED g用 的困難。 【發明内容】 本案$目的,旨在提供一種可改善效能及簡化製程之單一發光層白光有機電致發 方法。其中,該白光電致發光層係利用電致發光染料及分子主體材料 上述目的,可在一有機發光裝置中達成,該裝置依序包括下列構成要項: a)—白光電致發光層,其中,此白光發光層,係由一種或多種具發光性或無發光 5 1293234Kawamura et al., in Journal of Applied Physics, Vol. 92, p. 87 (2002), in which the white LED light-emitting layer* is applied in a solution process*, and the red, green and blue dyes are simultaneously pushed together. The structure of the molecular host material, however, its molecular size is still poor in brightness, luminous efficiency, and lifetime, and there should still be problems; in addition, the stability and purity of its light color are not good, and these problems are all The difficulty of causing white light 〇 LED g. SUMMARY OF THE INVENTION The purpose of the present invention is to provide a single light-emitting layer white organic electro-luminescence method which can improve the performance and simplify the process. Wherein, the white electroluminescent layer utilizes an electroluminescent dye and a molecular host material for the above purpose, and can be achieved in an organic light-emitting device, the device sequentially comprising the following constituent items: a) a white photo-emitting layer, wherein The white light emitting layer is composed of one or more kinds of luminescent or non-emitting light 5 1293234
丨正替換頁 光轉,黃、藍電致發光祕,或其他任 〇此刀子主體·減而組成自光的電致發光染料所構成,赠液製程製作。 b)—鄰接白光電致發光層第一表面的第一電極; 〇-鄰接ό光電致發光層第二絲的第二電極。 本案之白光OLED具有下列優點: 1·=子材料取代高分子材料作為發光轉及主縣材,有效提升白光瞻之發光 • t案之早-發光層白光QLED ’有效改善果施加電壓改變而產生的白絲色偏移現 3’ 空ίίίϋΐ,液製程製作小分子型漏,製程較為簡易,製作 成^低並可在大面積上應用;尤其,在純白光光色的調控,更顯其優勢。 4·以洛液製程製備分子型白光OLED,可同暗揖用-二十, ,染料及合適之主體材料,衫真頻n υ濃度同時控制之困難’使所製得之白先=佳= 5.本案可輕易且精準的調控各光色染料至任何所需之濃度,再現性極佳。 【實施方式】 掺>、曰2^^^光$:取決於裝置内具有發光特質的有機材料,餘―主縣材中, fj"圖,先機發光染料而得;在先前技藝之有機發光二極體結構1〇〇中,如 ^150 · 17011 其奸由?必2讓光導出’故基材與陽極電極需為透明材質;基材可為玻璃基材或塑膠 ϋ丄ΐ???基材所製成的_具有可撓曲的特性。習知之陽極*可透光及具導ί 明孟氧匕物形成,ΙΤΟ及銦鋅氧化物(in(jium zine oxide,簡稱 IZO) ',因 ^ 良好 銦的電,,已被廣泛地作為陽極材料,不過亦可使用其他材質,例如:λ銘或 鎮ί1、以及氧化職。電洞注人層可幫助電洞注人及改善後續有機 Τ曰ΓΓΛ。適用於電洞注入層的材料包括但不限於PEDOT、PED〇T:PSS、CuPc、 電子傳μ ^ΓΜΤΜΤΑ、及TlQPG與上述材料之衍生物。用於本案幫助電子傳輸的 宰限於,、TAZ、BCP、AlQ3及PBD與上述材料之衍生物。用於本 =巧子電子注人層材料可為—低功函數金屬或金顧化合物,可為但不限 但摘二CD、Li2〇及MgF2。本案所使用的陰電極原則上可為任何金屬材料, 用之陰極材料必需是具備低功函數(<4 〇eV)之金屬,以利電子金屬材料,但適用 6丨 替换 替换 替换 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光 光b) - a first electrode adjoining the first surface of the white electroluminescent layer; and a second electrode adjacent to the second filament of the electroluminescent layer. The white light OLED of the present invention has the following advantages: 1·=sub-material replaces the polymer material as the light-emitting turn and the main county material, effectively improving the light of the white light. • The early-light-emitting layer white light QLED' effectively improves the voltage applied by the fruit. The white silk color shift is now 3' empty ίίίϋΐ, the liquid process makes small molecular type leakage, the process is relatively simple, and the production is low and can be applied on a large area; in particular, the regulation of pure white light color makes its advantages even more obvious. . 4. Preparation of molecular type white OLED by the Lok process, which can be used with the dark - -20, dyes and suitable host materials, the difficulty of controlling the concentration of the shirt at the same time, so that the white one is good = good = 5. This case can easily and accurately control each light color dye to any desired concentration, and the reproducibility is excellent. [Embodiment] Doping >, 曰2^^^光$: Depends on the organic material with luminescent properties in the device, Yu-main county material, fj" map, first machine luminescent dye; in the previous art organic In the structure of the light-emitting diode, such as ^150 · 17011, it must be made of light, so the substrate and anode electrode should be transparent; the substrate can be glass substrate or plastic? The _ made of the substrate has flexible properties. The well-known anode * can be transparent and has a conductive 匕 孟 匕 匕 ΙΤΟ ΙΤΟ ΙΤΟ 铟 铟 铟 铟 铟 铟 铟 铟 铟 铟 铟 铟 铟 铟 铟 in in in in in in in in in in in in in in in in , , , , , , , , , Materials, but other materials can be used, such as: λ Ming or Zhen ί1, and Oxidation. The hole injection layer can help the hole to inject and improve the subsequent organic Τ曰ΓΓΛ. The materials suitable for the hole injection layer include Not limited to PEDOT, PED〇T: PSS, CuPc, electron transfer μΓΜΤΜΤΑ, and TlQPG and derivatives of the above materials. The use of this material to help electron transport is limited to, TAZ, BCP, AlQ3 and PBD and the derivative of the above materials. The material used for the present invention may be a low work function metal or a gold compound, but may be, but not limited to, two CDs, Li2 and MgF2. The cathode electrode used in this case may in principle be For any metal material, the cathode material used must be a metal with a low work function (<4 〇eV) for electronic metal materials, but for 6
之陰極材料必需是具備低功函數(M.OeV)之金屬,以利電子的形成及注入,包括但不 受限於Ca、Ag、Li、Mg、A1或上述金屬之組合。 1293234 产案之白光發光層係由一種或多種具發光性或無發光性之分子主體材料及紅、 綠、藍電致發染料,黃、藍電致發光染料,或其他任何可與此分子主體材料搭配而組 今,光的電致發光染料所構成,以溶液製程製作,以溶液製程製作;適用的紅、綠、、 藍光發光染料包括但不侷限於如:紅光染料為DCM、DCM2、DCJT、DCJTB、PtOEP、The cathode material must be a metal having a low work function (M.OeV) for electron formation and implantation, including but not limited to Ca, Ag, Li, Mg, A1 or a combination of the above metals. 1293234 The white light emitting layer of the production case consists of one or more molecular host materials with or without luminescence and red, green and blue electroluminescent dyes, yellow and blue electroluminescent dyes, or any other substance that can be associated with this molecule. The materials are combined with the light electroluminescent dye, which is prepared by a solution process and prepared by a solution process; applicable red, green, and blue light-emitting dyes include, but are not limited to, red dyes such as DCM and DCM2. DCJT, DCJTB, PtOEP,
Eu(DBM)3(Phen)、Rubrene、及 Btp2lr(acac)、Ir(MDQ)2(acac)、Ir(DBQ)2(acac)、PQIr ,、上述材料之衍生物;綠光染料為c〇umarin6、C545T、DMQA、Ir(mppy)3、Ir(ppy)3盥 亡,#,之衍生物,·藍光染料為 BCzVBi、BCzVB、TBPe、Perylene、DpAVB、DpAVBi二、 jl、FIttr=c、Flr6與上述材料之衍生物;而主體材料則可為電子傳輸材料、電洞傳輸 材料、及電洞阻擋材料或其他具適當能隙,可將電子—電覆^ ^ BCP PF0、DPVB j、BNA、TBAB、AND、及 TPB1 與上述材料之衍生物。 圖2為本案所提之白光〇LED裝置2〇〇結構圖。此〇LED梦詈,由 乂“程▲匕搭配而組成白光的電致發 質時,基材21〇可為透明f不透或陽極材質,當為陰極材 極=猶極材質時,紐 1293234 I ^ .1姻正替換 頁 £ 600圖光0⑽裝置7^於,裝置,白光議裝 ϊ Γ〇輸材料_及電子傳輸材料670摻混於白光電致發光層65〇中;此白 電極690',由下而上依序為基材_、第一電極620、白光電致發光層650、及第二 琶圖光0LED裝置700結構圖。相較於裝置,白光_裝 ί 7^ Λ,輸材料及電子傳輸材料770摻混於白光電致發光層75〇中;此白 電極79f置,由下而上依序為基材710、第一電極720、白光電致發光層750、及第二Eu(DBM)3(Phen), Rubrene, and Btp2lr(acac), Ir(MDQ)2(acac), Ir(DBQ)2(acac), PQIr, derivatives of the above materials; green dyes are c〇 Umarin6, C545T, DMQA, Ir(mppy)3, Ir(ppy)3盥,#, derivatives, ·blue dyes are BCzVBi, BCzVB, TBPe, Perylene, DpAVB, DpAVBi II, jl, FIttr=c, Flr6 And the derivative of the above materials; and the host material may be an electron transport material, a hole transport material, and a hole blocking material or other suitable energy gap, and the electron-electric coating ^ ^ BCP PF0, DPVB j, BNA, TBAB, AND, and TPB1 are derivatives of the above materials. FIG. 2 is a structural diagram of a white light 〇 LED device 2〇〇 proposed in the present application. This 詈LED nightmare, when the 程 程 匕 匕 而 组成 组成 组成 组成 组成 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材 基材I ^ .1 marriage replacement page £ 600 light 0 (10) device 7 ^, device, white light assembly Γ〇 Γ〇 material _ and electron transport material 670 blended in white photoluminescent layer 65 ;; this white electrode 690 'From bottom to top, the substrate _, the first electrode 620, the white photo luminescent layer 650, and the second illuminating OLED device 700 are structurally arranged. Compared to the device, white light_装 7 7^ Λ, The transmission material and the electron transporting material 770 are blended in the white electroluminescent layer 75〇; the white electrode 79f is disposed, and the substrate 710, the first electrode 720, the white photoluminescent layer 750, and the two
梦署:8 所5另;白光0⑽裝置_結構圖。相較於200〜700裝置,白光0LED i ann 在^一電極820與白光電致發光層850之間,增加了一電洞注入層830 ;白 Ϊμ m 820 ' 830 'Dream Office: 8 different 5; white light 0 (10) device _ structure. Compared with the 200~700 device, a white light OLED 'an' is added between the electrode 820 and the white photoluminescent layer 850, and a hole injection layer 830 is added; white Ϊμ m 820 ' 830 '
@ w 2提之另一白光OED裝置900結構圖。相較於800裝置,白光OLED iln 在6L光電致發光層950與第二電極990之間,增加了一電子傳輸層970 ;白 置# 依序為基材910、第一電極920、電洞注入層93〇、白光電致發 光層950、電子傳輸層970、及第二電極990。@w 2 is a structural diagram of another white light OED device 900. Compared with the 800 device, the white light OLED iln adds an electron transport layer 970 between the 6L photoluminescence layer 950 and the second electrode 990; and the white substrate is sequentially implanted into the substrate 910, the first electrode 920, and the hole. The layer 93, the white electroluminescent layer 950, the electron transport layer 970, and the second electrode 990.
ϋ〇 ί本气所提之另一白光0LED裝置1000結構圖。相較於90〇裝置,白光0LED m電子傳輸層1070與第二電極1090之間,增加了 一電子注入層1080 ;忐白 由下而上依序為基材10101、第一電極1020、電洞3主入層1030、白光 電致毛光層1050、電子傳輸層1〇7〇、電子注入層ι〇8〇、及第二電極1〇9〇。 壯班H為本案所提之另一白光0LED裝置1100結構圖。相較於1000裝置,白光0LED $^,1100'在白光電致發光層1150與電子傳輸層117〇之間,增加了一電洞阻擋層 llbj+此白光1100裝置,由下而上依序為基材mo、第一電極I120、電洞注入層H30、 白〒發光層1150、電洞阻擋層1160、電子傳輸層1170、電子注入層nso、及第 二電極1190。 圖12為本案所提之另一白光〇led裝置1200結構圖。相較於11 〇〇裝置,白光〇LED 裝置1200’在電洞注入膺1230與白光電致發光層1250之間,增加了一電洞傳輸層 1240、此白光1200裝置,由下而上依序為基材121〇、第一電極122〇、電洞注入層ι23〇、 電洞傳輸層1240、白光電致發光層1250、電洞阻擔層1260、電子傳輸層1270、電子 注入層1280、及第二電極1290。 8 1293234 n:—1~— --n 年月轉.(更)正替換頁j 【比較範例1】 交齡L1依照先前技藝所製成之產生白* 〇led裝置,其是以高分子作為主體 1刀120於A工纟照圖11戶斤示構成,依序為:基材1110 ;形成陽才虽電極 Π50 1120 ± •形成電子僂於;;17ί11 洞阻擔層1160於上述白光電致發光層1丨5〇上; 丄傳5 樣雜1160上;形成電子注人層·於上述電洞阻 擋層1170上,以及形成一陰極電極ι19〇於電子注入層118〇上。 棘會上?置f製作步驟為··將電洞注入材料PED0T : PSS,利用旋 ίί佈先洗淨的1τ。透明導電玻璃上,形成一厚度為4G奈米的電洞注 &層’白光層之製備’是先將所欲摻混之紅光染料Btp2Ir(acac)、綠H料 先^^ 均勻摻混於高分子PVK主體材料中,摻混方式為: 、容子Ϊίϋϊ料,宅升15毫克(15mg/mL)及每毫升1毫克(1呢/mL) 5 中丄形成二均勻混合之捲液;隨後再將此混合溶液以旋轉塗佈 :二二白5發光層於刖述已製備電洞塾入層PED0T : PSS之1Τ0透明導電玻璃上; 氣之手套箱内’將前述混合液滴於-已製備好電洞注入 二之祕物透明導電玻璃上,利職轉塗佈機,以2, 5GGrPm之旋塗轉速,旋塗20 U備二,J發光ί於電洞傳輸層i。最後將已旋塗白光發光層的元件,置於真空 中丄ϊ1 空經1小時12(rc的去溶劑熱處理過程,即形成白光電致發 ,^ 15 Balq3 > 20 Alqa ^ 0. 5 ^ ^的電=注入層LiF、及120奈米的陰電極鋁,於1〇-5T〇rr真空壓力下,利用真空蒸鍍 製於前述白光電致發光層上,即完成比較範例1之白光0LED裝置了以 PR650spcctrometer量測裝置電致發光特性。 ’驅動電壓(定義為亮度>1燭光/平方公 5(伏特)、2. 6(燭光/安培)、及3, 060(燭 如表一所示,比較範例1之白光OLED裝置 尺時之電壓)、最大效率、及最大亮度,依序為6. 光/平方公尺)。 1293234 (表一) 有機電致發光二極體染料濃度 (藍) (綠) (紅) 範例:FIrpic JrCppy^ :BtpJr(acac) 驅動 電壓 (V) 最大效能 (cd/A) (lm/W) 最大亮度 (cd/m2) CIE色座標 (7伏特時) 備註 1 12 ΟΛ 0.35 6.5 2.6/1.3 3060 (0.“3,〇.3s) 參考資料 2 12 ΟΛ 0.35 U 3.5/1.7 “00 (0.38,0.36) 目前發明 3 12 ΟΛ 0.35 4 3.9/1.8 5070 Ι°·37(0.38) 目前發明 12 ΟΛ 0.3S 4.25 7.9/3.7 6870 (0.35,0.38) 目前發明 5 12 ΟΛ 0.35 U 11.3/5.6~ 15200 (0.34,0.39) 目前發明 6 12 0.2 0.2 4 9.3/4.2~ 12600 (0 30,0.38) 目前發明 7 12 0.2 0.35 4 8.8/4.2 12500 (0.35.0.37) 目前發明 8 12 0.2 0.5 4.25 8.4/3.8 8700 (0.39,〇.36 厂 目前發明 9 12 0.0 0.35 4.75 6.6/2.9 9600 ,0 ^,0.35) 目前發明 10 12 0.3 0.35 U 11/17 13100 丨 〇.'0.38) 目前發明 11 12 0Λ 0.35 4.25 11.8/5.7 13840 (0 3、〇乂0) 目前發明 12 12 0.5 0.35 4.25 13.7/6Λ 15250 丨 0.35,0“) 目前發明 13 12 0.6 0.35 U 13.9/6.3 15410 1〇35,〇乂3 丨 目前發明 14 12 0.7 0.35 4.25 K.7/7.1 16220 (0-35,0Λ5) 目前發明 15 10 0Λ 0.35 U5 11.5/4.5 13U0 (0.33,040} 目前發明 16 12 0Λ 0.35 US 11.8/B.1 13820 1°-^,0.39) 目前發明 17 K 0Λ 0.35 4.75 12.7/5.3 12970 10 ^,0.38) 目前發明 18 16 0Λ 0.35 5 13.1/5.5 13“0 (〇· 乂,(K〇) 目前發明 19 12 0.2 0.35 4.5 2.8/1.1 5250 (0.艽,〇乂1丨 目前發明 +:比較OLED效能以相同的紅色、綠色、藍色染料濃度,但分抵製造。Ϋ〇 ί Another physical white OLED device 1000 structure diagram proposed by the gas. Compared with the 90-inch device, an electron injecting layer 1080 is added between the white light OLED LED transport layer 1070 and the second electrode 1090; the white is sequentially from the bottom to the substrate 10101, the first electrode 1020, and the hole 3 main entry layer 1030, white photo-induced light layer 1050, electron transport layer 1〇7〇, electron injection layer 〇8〇, and second electrode 1〇9〇. Zhuangban H is another structural diagram of the white light OLED device 1100 proposed in this case. Compared with the 1000 device, the white light 0LED $^, 1100' is between the white photoluminescent layer 1150 and the electron transport layer 117, and a hole blocking layer llbj + the white light 1100 device is added, which is based on the bottom-up sequence. The material mo, the first electrode I120, the hole injection layer H30, the chalk light-emitting layer 1150, the hole barrier layer 1160, the electron transport layer 1170, the electron injection layer nso, and the second electrode 1190. FIG. 12 is a structural diagram of another white light 〇 led device 1200 proposed in the present application. Compared with the 11 〇〇 device, the white light 〇 LED device 1200 ′ between the hole injection 膺 1230 and the white photo luminescent layer 1250, a hole transport layer 1240, the white light 1200 device is added, from bottom to top. a substrate 121 〇, a first electrode 122 〇, a hole injection layer ι 23 〇, a hole transport layer 1240, a white photo luminescent layer 1250, a hole blocking layer 1260, an electron transport layer 1270, an electron injection layer 1280, and Second electrode 1290. 8 1293234 n:—1~— --n year month turn. (more) positive replacement page j [Comparative example 1] Ageing L1 is produced according to the prior art to produce a white* 〇led device, which is based on a polymer The main body 1 knife 120 is constructed according to the figure of Figure A, in the order of: substrate 1110; the formation of the anode is the electrode Π 50 1120 ± • forming an electron 偻;; 17ί11 hole resist layer 1160 in the above white photoelectric The luminescent layer is on the surface of the electron-injecting layer 1160; the electron-injecting layer is formed on the hole-blocking layer 1170, and a cathode electrode 119 is formed on the electron-injecting layer 118. The spine will be placed on the production process. The hole is injected into the material PED0T: PSS, and the 1τ is washed first by the spin. On the transparent conductive glass, a hole injection layer with a thickness of 4G nanometers is formed. The preparation of the white light layer is to first uniformly blend the red light dye Btp2Ir (acac) and green H material to be blended. In the polymer PVK host material, the blending method is: , Rongzi Ϊ ϋϊ ϋϊ, house liter 15 mg (15 mg / mL) and 1 mg per ml (1 / mL) 5 丄 丄 forming a uniform mixture of the liquid; Then, the mixed solution is spin-coated: a dichroic white 5 luminescent layer is described on the transparent conductive glass of the PED0T: PSS which has been prepared for the hole; in the glove box of the gas, the aforementioned mixture is dropped into the Prepare the hole into the transparent transparent conductive glass of the second hole, and transfer the coating machine to the rotation speed of 2, 5GGrPm, spin-coat 20 U, and J light in the hole transmission layer i. Finally, the component which has been spin-coated with the white light-emitting layer is placed in a vacuum for 1 hour and 12 hours (the solvent-heat treatment process of rc is formed, that is, white light is generated, ^ 15 Balq3 > 20 Alqa ^ 0. 5 ^ ^ The electric=injection layer LiF and the 120 nm negative electrode aluminum were vacuum-deposited on the white electroluminescent layer under a vacuum pressure of 1〇-5T〇rr, that is, the white light OLED device of the comparative example 1 was completed. The electroluminescence characteristics of the device were measured by PR650spcctrometer. 'Drive voltage (defined as brightness > 1 candle / square 5 (volts), 2.6 (candle / amp), and 3, 060 (candle as shown in Table 1) , compare the voltage of the white light OLED device of the first example, the maximum efficiency, and the maximum brightness, in order of 6. light / square meter. 1293234 (Table 1) Organic electroluminescent diode dye concentration (blue) (green) (red) Example: FIrpic JrCppy^ : BtpJr (acac) Drive voltage (V) Maximum performance (cd/A) (lm/W) Maximum brightness (cd/m2) CIE color coordinates (7 volt hours) Remark 1 12 ΟΛ 0.35 6.5 2.6/1.3 3060 (0. “3, 〇.3s) Reference 2 12 ΟΛ 0.35 U 3.5/1.7 “00 (0.38, 0.36) Pre-invention 3 12 ΟΛ 0.35 4 3.9/1.8 5070 Ι°·37 (0.38) Current invention 12 ΟΛ 0.3S 4.25 7.9/3.7 6870 (0.35, 0.38) Current invention 5 12 ΟΛ 0.35 U 11.3/5.6~ 15200 (0.34, 0.39 Present invention 6 12 0.2 0.2 4 9.3/4.2~ 12600 (0 30,0.38) Current invention 7 12 0.2 0.35 4 8.8/4.2 12500 (0.35.0.37) Current invention 8 12 0.2 0.5 4.25 8.4/3.8 8700 (0.39, 〇 .36 Factory present invention 9 12 0.0 0.35 4.75 6.6/2.9 9600 , 0 ^, 0.35) Current invention 10 12 0.3 0.35 U 11/17 13100 丨〇. '0.38) Current invention 11 12 0Λ 0.35 4.25 11.8/5.7 13840 (0 3. 〇乂0) Current invention 12 12 0.5 0.35 4.25 13.7/6Λ 15250 丨0.35,0") Current invention 13 12 0.6 0.35 U 13.9/6.3 15410 1〇35, 〇乂3 丨 Current invention 14 12 0.7 0.35 4.25 K .7/7.1 16220 (0-35,0Λ5) Current invention 15 10 0Λ 0.35 U5 11.5/4.5 13U0 (0.33,040} Current invention 16 12 0Λ 0.35 US 11.8/B.1 13820 1°-^, 0.39) 17 K 0Λ 0.35 4.75 12.7/5.3 12970 10 ^,0.38) Current invention 18 16 0Λ 0.35 5 13.1/5.5 13"0 (〇· 乂, (K〇) Present invention 19 12 0.2 0.35 4.5 2.8/1.1 5250 (0.艽,〇乂1丨 Current invention +: Compare OLED performance with the same red, green, and blue dye concentrations, but offset manufacturing.
【範例2〜5】 小分子 料,範例2~5之白謂刚,乃選用 首先將主體分子材料及各光閊染料分別以每毫升15亳克( 克(lmg/❹容於曱苯溶劑中,並以攪拌匙經2 均升& 需已均句溶解之各光色^ 士士祖饮皮盏I du、句勻之’谷液。本發明於實施範例2〜5中所選用之主體分子[Example 2~5] Small molecular material, the white form of the sample 2~5 is selected, firstly, the main molecular material and each of the photo-dye dyes are respectively 15 g/ml (gmg (lmg/❹ in the terpene solvent). And use the stirring spoon to pass 2 liters & the required color of each of the dissolved words ^ 士士祖饮皮盏 I du, sentence uniform '谷液. The invention is selected in the examples 2 to 5 molecule
IrCDDV^t^ R? \TCTi' TAZ ' ^ CBP ; Flrpic(M) ^ ppy 3U0 Btp2Ir(acac)(紅),>辰度則分別為 12wt%、〇· 4 wt%、及 〇. 35 wt%。 10 1293234IrCDDV^t^ R? \TCTi' TAZ ' ^ CBP ; Flrpic(M) ^ ppy 3U0 Btp2Ir(acac)(red), > Chen is 12wt%, 〇·4 wt%, and 〇. 35 wt %. 10 1293234
本發明採用IT0(indium—tin oxide)透明導電玻璃作為陽極基材,复清洗步驟 如下:首先,將IT0賴浸泡於適當比例之水及清潔劑中w以超音g ί再予於去離子水、_、及異丙醇中,分別再以超音波振盡20 “The invention adopts IN0 (indium-tin oxide) transparent conductive glass as an anode substrate, and the steps of re-cleaning are as follows: First, the IT0 immersion is immersed in an appropriate proportion of water and detergent, and then superimposed to deionized water. , _, and isopropyl alcohol, respectively, vibrate by ultrasonic 20"
白气0LED裝置,製作步驟為:將電洞注入材料pED〇T : pss,利用旋轉塗佈機, 在一充滿氮氣之手套箱内,以4,000rpm之旋塗轉速,旋塗於上述已預先洗淨的丨扣透 明導電玻璃上’形成一厚度為40奈米的電洞注入層;隨後將已混合均勻之白光溶液, 以2, 500rpm之旋塗轉,,旋塗20秒,製備一白光發光層於上述電洞傳輸層上;最後 將已旋塗白光發光層的元件,置於真空烘箱中,於l〇-3t〇rr真空下,經j小時丨2〇艽的 去溶劑熱處理過程,即形成白光電致發光層;之後,依序將15奈米的電洞阻礙層BA1 20奈米的電子傳輸層Αίφ、0.5奈米的電子注入層LiF、及12〇奈米的陰電極鋁,於 10 Torr真空壓力下,利用真空蒸鍍法,鍍製於前述白光電致發光層上,即完成比較範 例1之白光0LED裝置。以PR650 spectrometer量測裝置電致發光特性。 ^ 圖13所示為比較範例1及範例2〜5之白光〇LED裝置之亮度-電壓特性圖。比較 範例1及範例2〜5所選用之主體分子材料,依序為高分子ρνκ及小分子〇1(^、1^1^、1[八2、 CBP;有機發光染料Flirpic、Ir(ppy)3、及Btp2Ir(acac)之濃度,則分別固定為uwto/o、 〇· 4 wt%、及0· 35 wt°/。。相較於選用高分子PVK之比較範例,範例2〜5以小分子作為主 體材f之白光裝置可獲得較佳的發光亮度;其中,以CBP作為主體材料時,具最佳的 發光亮度。如^一所示,範例2〜5以小分子mCP、TCTA、TAZ、及CBP作為主體材料時, 白光裝置最大亮度,相較於比較範例1之高分子PVK的3, 060(燭光/平方公尺);最大 電流效率,則由2. 6(燭光/安培),分別提升至3· 5、3. 9、7. 9、及11. 3(燭光/安培): 裝置的驅動電壓則由高分子PVK的6.5下降至4(伏特)。上述結果顯示出,本案之白光 0LED裝置,以小分子取代高分子做為主體材料,可有效提升白光〇1^])裝置發光效能。The white gas OLED device is prepared by injecting a hole into the material pED〇T: pss, and spin-coating the above-mentioned pre-washed in a nitrogen-filled glove box at a spin speed of 4,000 rpm using a spin coater. On the net buckle transparent conductive glass, a hole injection layer with a thickness of 40 nm was formed; then the white light solution which had been uniformly mixed was rotated at 2,500 rpm, and spin-coated for 20 seconds to prepare a white light emitting light. The layer is on the above-mentioned hole transport layer; finally, the component which has been spin-coated with the white light-emitting layer is placed in a vacuum oven, and under a vacuum of l〇-3t〇rr, a desolvation heat treatment process of j〇艽2j, ie, Forming a white photoluminescence layer; thereafter, sequentially, 15 nm of the hole blocking layer BA1 20 nm electron transport layer Αίφ, 0.5 nm electron injection layer LiF, and 12 〇 nanometer cathode electrode aluminum The white light OLED device of Comparative Example 1 was completed by vacuum evaporation at 10 Torr under vacuum pressure on the white electroluminescent layer. The electroluminescence properties of the device were measured with a PR650 spectrometer. ^ Figure 13 is a graph showing the luminance-voltage characteristics of the white light-emitting LED device of Comparative Example 1 and Examples 2 to 5. Compare the main molecular materials selected in Example 1 and Examples 2 to 5, followed by the polymer ρνκ and the small molecule 〇1 (^, 1^1^, 1[8, CBP; organic luminescent dye Flirpic, Ir(ppy) 3. The concentration of Btp2Ir(acac) is fixed to uwto/o, 〇·4 wt%, and 0·35 wt°/. Compared with the comparative example of polymer PVK, examples 2~5 are small. The white light device with the molecule as the main material f can obtain better light-emitting brightness; wherein, when CBP is used as the host material, the light-emitting brightness is optimal. As shown in Fig. 1, examples 2 to 5 are small molecules mCP, TCTA, TAZ. And CBP as the main material, the maximum brightness of the white light device is 3, 060 (candle / square meter) of the polymer PVK of Comparative Example 1, and the maximum current efficiency is 2.6 (candle / ampere). Increased to 3.5, 3.9, 7.9, and 11.3 (candle/ampere): The driving voltage of the device is reduced from 6.5 to 4 (volts) of polymer PVK. The above results show that the case The white light 0LED device uses small molecules instead of polymer as the main material, which can effectively improve the luminous efficacy of the white light 〇1^]) device.
【範例6〜18】 相較於範例5,範例6〜18之白光0LED裝置,除所摻混之紅、綠、藍光色染料濃 度不同之,範例6〜18之白光裝置結構及製備方式,皆相同於範例5所述。 如表一之範例6〜8所示,當固定Flirpic和Ir(ppy)3於CBP中的濃度為12wt%與 0. 35wt%,改變 BtpdKacac)濃度時,隨著 Btp2Ir(acac)濃度從 〇. 2wt%增加至 0· 5 wt% 時’裝置最大電流效率及能量效率,會由9· 3(燭光/安培)及4.2(流明/瓦特)分別降至 8. 4(濁光/安培)及3.8(流明/瓦特);最大亮度方面,則由12,600(燭光/平方公尺)下 隆至8, 700(燭光/平方公尺)。此現象歸因於,Btp2Ir(acac)相對於FIrpic及Ir(ppy)3 有著較差的發光效能,而隨著紅光染料Btp2Ir(acac)濃度的增加,將有更多的 BtpdKacac)分子參與電致發光,而降低了能量轉移至具較高發光效能之FIrpic及 11 1293234 S8. 日修(更:)正t凑1 Ir(ppy)3的機率,因而導敲右充農置的發充致宽丁^卞-降情形 ttri;祀例7,9〜14所不,當固定FI卬ic*BtP2lr(acac)於CBP中的濃度為12 Ιί與^ ,改變Ir(PPy)3濃度時,隨著Ir(ppy)3濃度從〇· 5增加至〇· 7 Wt%時, 電ΐ效、率及能量效率,會由8·8(燭光/安培)及4·2(流明/瓦特)分別提升至 斗J 1(流明/瓦等);最大亮度方面,也由12,500(燭光/平方公尺)提 i6二平方公尺。此歸因於Ir(ppy)3濃度的提高,可使白光ο—裝置的 發光效能獲得提升。 之。範例15〜18所示,當固定Ir(ppy)3和Btp2lr(acac)於CBP中的濃度為〇· 4 與0: 35 wt/。’改變FIrpic濃度時,隨著FIrpic濃度從1〇增加至16 wt%時,裝置 會從11· 5增至13· 1(燭光/安培);最大亮度方面,則為134, 〇〇〇=4〇〇(燭 光/平方公尺)。 =本案之白光裝置的驅動電壓約為4〜5伏特;其中,範例14之白光〇LED铲置,可 得一最大的電流效率與能量效率分別為14·7(燭光/安培)和7· 1(流明/瓦特)Γ而最大 亮度則為16,200(濁光/平方公尺);而比較範例5可得一 CIE色座標為(〇 34,〇 35)白 光光色。 ,·[Examples 6 to 18] Compared with the example 5, the white light OLED device of the example 6 to 18, except for the mixed red, green and blue dye concentrations, the white light device structure and preparation method of the examples 6 to 18 are Same as described in Example 5. As shown in Examples 6 to 8 of Table 1, when the concentrations of Flirpic and Ir(ppy)3 in CBP were fixed at 12 wt% and 0.35 wt%, the concentration of BtpdKacac was changed, with the concentration of Btp2Ir(acac) from 〇. When the 2wt% is increased to 0.5% by weight, the maximum current efficiency and energy efficiency of the device will be reduced from 8.3 (candle/amperes) and 4.2 (lumens/watt) to 8.4 (clouding/amperes) and 3.8, respectively. (Lumens/Watt); for maximum brightness, it is raised from 12,600 (candles per square meter) to 8,700 (candles per square meter). This phenomenon is attributed to the fact that Btp2Ir(acac) has poor luminescence efficiency relative to FIrpic and Ir(ppy)3, and as the concentration of red dye Btp2Ir(acac) increases, more BtpdKacac molecules participate in electrolysis. Luminescence, which reduces the probability of energy transfer to FIrpic and 11 1293234 S8 with higher luminous efficacy, and the probability of being more than 1 Ir(ppy)3, thus guiding the hair filling and widening of the right-filled farm Ding ^ 卞 - drop case ttri; 祀 Example 7, 9~14, when the concentration of fixed FI卬ic*BtP2lr(acac) in CBP is 12 Ιί and ^, when changing the concentration of Ir(PPy)3, When the Ir(ppy)3 concentration increases from 〇·5 to 〇· 7 Wt%, the electrical efficiency, rate and energy efficiency are increased from 8.8 (candle/amperes) and 4.2 (lumens/watt) to Bucket J 1 (lumen/watt, etc.); in terms of maximum brightness, it is also i6 two square meters from 12,500 (candles per square meter). This is attributed to an increase in the concentration of Ir(ppy)3, which can improve the luminous efficacy of the white light device. It. As shown in Examples 15 to 18, when the concentrations of Ir(ppy)3 and Btp2lr(acac) in CBP were fixed, 〇·4 and 0:35 wt/. 'When the FIrpic concentration is changed, the device will increase from 11.5 to 13·1 (candle/amperes) as the FIrpic concentration increases from 1〇 to 16 wt%; in terms of maximum brightness, it is 134, 〇〇〇=4 〇〇 (candle / square meter). = The driving voltage of the white light device in this case is about 4~5 volts; among them, the white light 〇 LED shovel of Example 14 can obtain a maximum current efficiency and energy efficiency of 14·7 (candle/amper) and 7.1, respectively. (Lumens/Watt) 最大 and the maximum brightness is 16,200 (cloudy / square meter); and Comparative Example 5 can get a CIE color coordinates (〇34, 〇35) white light color. ,·
圖14所示為範例5〜1〇之白光0LE1D裝置,於7伏特時之電致發光 白光裝置的電致發光光譜在476和616奈米具有兩個波峰,分別為FI ic g BtpdKacac)的特性峰,另一波峰則是在496奈米,電致發光波長涵蓋範圍自38〇 頂 奈米。隨著Ir(ppy)3濃度的增加FIrpic的發光放射強度相較於Btp2Ir( f f,f 之波峰產生紅位移現象,並移至测奈米;此現象著 11^口7)3、/辰度的增加,有更多的11«(1)]^)3分子參與電致發光所致。另外,當針 %此) 的濃度減少時’FIrpic和Ir(ppy)3的放射強度亦會增加,這是由於從主體材料釗FT · 和Ir(ppy)3之能量轉移增加的原因。 ^Φ+ijMrpic 圖15所示為範例7之白光0LEI)裝置,電致發光光譜隨著施加電壓改 施加電壓增加,Btp2Ir(acac)發光強度相較於Finnic和Ir(ppy)3顯示出下降趨熱7,’ J: 致發光光譜呈現輕微的藍位移.圖16所示,為範例7之白光〇LE:D裝置,CIF多成 施加電壓改變情形。此白光裝置於施加電壓從5伏特改變至9伏特時,i 僅從(0· 36, 0. 37)移至(〇· 34, 0. 38),展現出相當妤的光色穩定性。 八 色座才示 【範例19】 12 1293234 年月 1換Μί 相較於前述範例,範例19之白光〇LED裝置,於白光電致發光層及電子值於展 間,少了 一電洞阻擔層ΒΑ1Φ,其寰置結構如圖5所示,依序為:基材1〇1〇 · 電極1020於基材1〇1〇上;形成電洞注人層1〇30於陽極電極1〇2〇上·成 發光層1〇5〇於上述電洞注人層1〇3〇上;形成電子傳輸層m〇於上述白“ = 1050上;形成電子注入層1080於上述電子傳輸層1〇70上;以及形成一 於電子注入層1080上。 丨农狂电租iuyu 圖17所示為範例19之白光〇LE:D亮度-電壓-效率特性圖。如表一所+,梦点M〇 之白光0LE1D裝置,驅動電壓、最大電流效率、及最大亮度,依序為4 ^特、f f 9 光/安培)、及5,250(燭光/平方公尺)。 、仇特)2.8(燭 圖18所示為範例19之白光0LED裝置,於施加電壓為7伏特時之電 圖。所得電致發光波長涵蓋範圍自380到776奈米,其中,發光光譜在波县& 二 奈米處之兩波峰,分別為FIrpic和BtpdKacac)的特性峰,而另一波峰則'是在j f〇:35^^ C〇mffllSSi〇n ^ Eclalrag^ 圖19所示為有無電洞阻擋層ΒΑ1φ對本案白光〇LED電致 洞阻擋層之裝置(範例19),其電致發光光譜的三個主要波峰落在476 θ及^ 0太”半 相對於具電洞阻觀之裝置(範例7),可觀察到—額外“二奈^; 電致發光光譜貢獻是由於電荷載子移至電子傳輸層Α1φ中覆合,產生曰A各 祐 放射出具528奈米波長之綠光所致。也由於,此些部分電荷裁子 二/ 、 具電洞阻擔層之裝置,因而影響白光有機電致發光裝置的光現。曰+ 〇於 此外,對大部分0LED裝置而言,電洞相射於雷孚盔夕奴却 ,子比例,使得過_電洞載子不能被有效_來!合t數g衡g同/ 之加入,可使過剩的電洞載子能有效的被侷限於白光3此f 的機率,因而提升裝置的發光效能。如圖2。所示以二中其^電,5穴 光/平方公尺)],具15奈米電洞阻擋層BAlq3穿置々丨、及5,250(燭 培)、及12, _(濁光/平方公尺)],其曰發光 BAlq3之白光裝置光色穩定性也優於無電洞阻擔層^ 丄:丄’ 洞阻擋層 改變至9伏持時,無電洞阻擔層裝置(範例f9f之之f置合當,加 (〇· 34, 0· 45),而具電洞阻擋層之穿詈(7、色座“ a從(〇· %,〇· 40)移至 (〇. 34, 0· 38),此現象說明了使用適當的^洞阻^材Μ,^H36, 〇· 37)移至 電致發光層中’除了可提升裝置發光效能外,亦態激子於 13 :1293234 冰· 6 -f Ί 年月日修(更)正替換頁丨 此外,由裝置結構及製程參數相同,但非同一批製備之範例5、11、及16的發光 效能及光色亦可得知,以溶液製程製備白光〇LED,具有極佳之效能再現性;其中,裝 置驅動電壓、最大亮度、及光光效率依序為4· 25Ϊ0. 25(伏特)、142601530(燭光/平方 公尺)、及11·6ΐ0.2(燭光/安培);而白光光色則幾乎未變動,維持在(0·34,0·39),展 現出極佳之光色再現性。 押本案於上述範例中,已成功的利用溶液製程,加上使用分子型主體材料,製備了 具^一發光層的白光OLED裝置。此種結構配置及製造方法的白光〇led裝置,有著較 ,簡易的^程、白光光色易於調配、及再現性高之優點;本案所製得的白光〇LED裝置 最大严光壳度可達16,200(濁光/平方公尺);最大電流效率與能量效率則分別為 1^.7(燭光/安培)和7· 1(流明/瓦特);及一 CIE色座標為(〇·34, 0.35)的白光光色。且 畜施加電壓改變時,本案之白光裝置光色僅略微改變,展現出極佳的光色穩定性。Figure 14 shows the white light 0LE1D device of Example 5~1〇. The electroluminescence spectrum of the electroluminescent white light device at 7 volts has two peaks at 476 and 616 nm, respectively, the characteristics of FI ic g BtpdKacac). The peak, the other peak is at 496 nm, and the electroluminescence wavelength ranges from 38 domes to nanometers. With the increase of Ir(ppy)3 concentration, the luminescence intensity of FIrpic is higher than that of Btp2Ir (ff, f peak, and shifts to nanometer; this phenomenon is 11^7)3, / Chen The increase, there are more 11 « (1)] ^) 3 molecules involved in electroluminescence. In addition, the radiation intensity of 'FIrpic and Ir(ppy)3 also increases when the concentration of the needle %) decreases, which is due to an increase in energy transfer from the host materials 钊FT· and Ir(ppy)3. ^Φ+ijMrpic Figure 15 shows the white light 0LEI device of Example 7. The electroluminescence spectrum increases with the applied voltage, and the Btp2Ir(acac) luminescence intensity shows a decreasing trend compared to Finnic and Ir(ppy)3. Heat 7, 'J: The luminescence spectrum exhibits a slight blue shift. As shown in Figure 16, for the white light 〇LE:D device of Example 7, the CIF is applied with a voltage change. When the applied voltage is changed from 5 volts to 9 volts, i is only moved from (0·36, 0.37) to (〇·34, 0. 38), exhibiting a rather ambiguous light color stability. Eight color seat shows [Example 19] 12 1293234 Year 1 change Μ Compared with the above example, the white light 〇 LED device of Example 19 has a hole in the white photoelectroluminescent layer and the electronic value in the booth. Layer ΒΑ1Φ, the 结构 structure is shown in Figure 5, in order: substrate 1〇1〇 · electrode 1020 on the substrate 1〇1〇; forming a hole injection layer 1〇30 on the anode electrode 1〇2 a light-emitting layer 1〇5〇 is formed on the hole injection layer 1〇3〇; an electron transport layer m is formed on the white “=1050; an electron injection layer 1080 is formed on the electron transport layer 1〇70 And forming a layer on the electron injection layer 1080. Figure 17 shows the white light 〇LE:D brightness-voltage-efficiency characteristic diagram of the example 19. As shown in Table 1, the dream point M〇 White light 0LE1D device, drive voltage, maximum current efficiency, and maximum brightness, in order of 4 ^ ft, ff 9 light / ampere, and 5,250 (candle / square meter)., Qiu Te) 2.8 (candle shown in Figure 18 The white light OLED device of Example 19 is an electrogram at a voltage of 7 volts. The resulting electroluminescent wavelength ranges from 380 to 776 nm. In the middle, the two peaks of the luminescence spectrum at the wave county & two nanometers are the characteristic peaks of FIrpic and BtpdKacac, respectively, and the other peak is 'jf〇: 35^^ C〇mffllSSi〇n ^ Eclalrag^ 19 shows a device with or without a hole barrier layer φ1φ for the white light 〇LED electrocavitation barrier layer of the case (Example 19), the three main peaks of the electroluminescence spectrum fall at 476 θ and ^ 0 too "half" The device for obstruction of the hole (example 7) can be observed - additional "two nanometers"; the contribution of electroluminescence spectrum is due to the charge carrier moving to the electron transport layer Α1φ, resulting in 曰A each radiant emission 528 奈The green light of the meter wavelength is also caused by the fact that these partial charge cuts have a device with a hole-resisting layer, thus affecting the light of the white organic electroluminescent device. In the case of the 0LED device, the hole is incident on the Leifu Helmet, but the sub-proportion makes it impossible for the _ hole carrier to be valid _ come! The number of t is equal to the weight of g, and the excess hole can be added. The carrier can be effectively limited to the probability of white light 3, thus improving the luminous efficacy of the device. Shown in the second, its ^ electricity, 5 hole light / square meter)], with a 15 nm hole barrier BAlq3 wearing 々丨, and 5,250 (candle), and 12, _ (cloudy / square meter )], the light color stability of the white light device of the 曰BAlq3 is also better than that of the non-electric hole resist layer ^ 丄: When the hole barrier layer is changed to 9 volts, the holeless resistance layer device (example f9f) In combination, add (〇·34, 0·45), and wear through the hole barrier layer (7, color seat “a from (〇·%, 〇·40) moved to (〇. 34, 0· 38) ), this phenomenon shows that using the appropriate ^ hole resistance material ^, ^H36, 〇 · 37) moved into the electroluminescent layer 'In addition to improving the luminous efficacy of the device, the state excitons at 13:1293234 ice · 6 -f Ί Ί 日 修 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The process of preparing white light 〇LED has excellent performance reproducibility; wherein the device driving voltage, maximum brightness, and light efficiency are sequentially 4.25 Ϊ0. 25 (volts), 142601530 (candles/square meters) And 11 · 6ΐ0.2 (cd / ampere); and a white light is almost no color change, is maintained at (34,0 · 39 · 0), exhibit excellent light show color reproducibility. In the above example, the liquid crystal OLED device having a light-emitting layer was prepared by successfully using a solution process and using a molecular host material. The white light 〇LED device of the structural arrangement and the manufacturing method has the advantages of simple, simple process, easy to adjust white light color, and high reproducibility; the white light 〇 LED device produced in this case has the highest strict light shell degree. 16,200 (cloudiness / square meter); maximum current efficiency and energy efficiency are 1 ^.7 (candle / amp) and 7.1 (lumens / watt); and a CIE color coordinates (〇 · 34, 0.35 ) white light color. When the voltage applied by the animal changes, the light color of the white light device in this case changes only slightly, showing excellent light color stability.
、雖然本案已揭^較佳範例如上,然其並非用以限定本案,任何熟習此技藝者,在不 脫^本案之精神和範圍内,當可作些許之更動與潤飾,因此本案之保護範圍當視後 之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖敘述先行技藝之有機發光二極體裝置1〇〇。 第2圖敘述一種依照本案製作之產生白光有機發光二極體裝置2〇〇。 第3圖敘述另一種依照本案製作之產生白光有機發光二極體裝置3〇{^ 第4圖敘述另一種依照本案製作之產生白光有機發光二極體裝置4〇〇。 第5圖敘述另一種依照本案製作之產生白光有機發光二極體裝置5〇Q。Although the preferred example of the case has been disclosed above, it is not intended to limit the case. Anyone who is familiar with the art can make some changes and refinements in the spirit and scope of the case. Therefore, the scope of protection of this case is This is subject to the definition of the scope of the patent application. [Simple description of the drawing] Fig. 1 illustrates a prior art organic light-emitting diode device. Fig. 2 illustrates a white light emitting organic light emitting diode device 2 according to the present invention. Fig. 3 is a view showing another white light-emitting organic light-emitting diode device manufactured in accordance with the present invention. Fig. 4 is a view showing another white light-emitting organic light-emitting diode device 4 manufactured in accordance with the present invention. Fig. 5 illustrates another white light-emitting organic light-emitting diode device 5〇Q fabricated in accordance with the present invention.
第6圖敘述另一種依照本案製作之產生白光有機發光二極體裝置6〇Q。 第7圖敘述另一種依照本案製作之產生白光有機發光二極體裝置。 第8圖敘述另一種依照本案製作之產生白光有機發光二極體裝置8〇〇。 第9圖敘述另一種依照本案製作之產生白光有機發光二極體裝置g⑼。 第10圖敘述另一種依照本案製作之產生白光有機發光二極體裝置1〇〇〇。 第11圖敘述另一種依照本案製作之產生白光有機發光二極體裝置11〇〇。 第12圖敘述另一種依照本案製作之產生白光有機發光二極體裝置π⑼。 第13圖為比較範例丨及範例2〜5之白光〇LE;D裝置,亮度—電壓特性圖。 第14圖為範例5〜10之白光0LE:D裝置,於施加電壓為7伏特時之電致發光光譜圖。 14 -1293234 卩 6:飞一^ _ ^ 年月日修(更)正贫換;^j ^ 為範例7之白光〇LED裝置,電致發光免譜壓改變情形。Fig. 6 illustrates another white light-emitting organic light-emitting diode device 6〇Q fabricated in accordance with the present invention. Figure 7 illustrates another apparatus for producing a white organic light emitting diode fabricated in accordance with the present invention. Fig. 8 illustrates another white light-emitting organic light-emitting diode device 8 manufactured in accordance with the present invention. Fig. 9 illustrates another white light-emitting organic light-emitting diode device g (9) fabricated in accordance with the present invention. Fig. 10 illustrates another apparatus for producing a white organic light-emitting diode according to the present invention. Fig. 11 illustrates another white light-emitting organic light-emitting diode device 11 manufactured in accordance with the present invention. Fig. 12 illustrates another π(9) device for producing a white organic light-emitting diode according to the present invention. Figure 13 is a comparison example 丨 and the white light 〇LE of the example 2~5; D device, brightness-voltage characteristic diagram. Figure 14 is an electroluminescence spectrum of a white light 0LE:D device of Examples 5 to 10 at an applied voltage of 7 volts. 14 -1293234 卩 6: Fei Yi ^ _ ^ Year and month repair (more) positive lean; ^j ^ is the white light 〇 LED device of Example 7, the electroluminescence spectrum-free change situation.
楚 1 C 圖為範例7之白光OLED裝置,CIE色座標隨施加電壓改變情形。 第17圖為範例5之白光OLED亮度-電壓-效率特性圖。 ' 第18圖為範例5之白光〇LK)裝置,於施加電壓為7伏特時之電致發光光譜圖。 , 第19圖為有無電洞阻擔層BAlq3對白光OLED裝置發光光譜之影響圖。 第20圖為有無電洞阻擋層BAlq3對白光OLED裝置亮度及效率之影響圖。 mi圖,因裝置中各層的厚度差異太大,無法依尺規比例縮放,僅為概略 不出裝置的結構。 【主要元件符號說明】 110、210、310、41G、510、610、71G、810、910、1G1G、111G、1210 〜基材 120、220、320、420、520、620、720、820、920、1020、1120、1220 〜第一電極 830、930、1030、1130、1230〜電洞注入層 140、440、640、740、840、940、1040、1140、1240〜電洞傳輸層 14:1〜電洞Chu 1 C The picture shows the white light OLED device of Example 7, and the CIE color coordinates change with the applied voltage. Figure 17 is a graph showing the brightness-voltage-efficiency characteristics of the white light OLED of Example 5. Figure 18 is an electroluminescence spectrum of a white light 〇LK device of Example 5 at an applied voltage of 7 volts. Figure 19 shows the effect of the presence or absence of a hole-resisting layer BAlq3 on the luminescence spectrum of a white OLED device. Figure 20 is a graph showing the effect of the hole barrier BAlq3 on the brightness and efficiency of a white OLED device. The mi map, because the thickness of each layer in the device is too different, can not be scaled according to the scale, only the structure of the device is not outlined. [Description of main component symbols] 110, 210, 310, 41G, 510, 610, 71G, 810, 910, 1G1G, 111G, 1210 to substrate 120, 220, 320, 420, 520, 620, 720, 820, 920, 1020, 1120, 1220 ~ first electrodes 830, 930, 1030, 1130, 1230 ~ hole injection layers 140, 440, 640, 740, 840, 940, 1040, 1140, 1240 ~ hole transport layer 14: 1 ~ electricity hole
150〜電致發光層 250、350、450、550、650、750、850、950、1050、1150、1250〜白光電玫發光層 560、760、860、960、1060、1160、1260〜電洞阻擋層 170、370、670、770、870、970、1070、1170、1270〜電子傳輸層 Π1〜電子 880、980、1080、1180、1280〜電子注入層 190、290、390、490、590、690、790、890、990、1090、1190、1290〜第二電極 十、申請專利範圍: 15150~ electroluminescent layer 250, 350, 450, 550, 650, 750, 850, 950, 1050, 1150, 1250~ white photoelectric luminescent layer 560, 760, 860, 960, 1060, 1160, 1260~ hole blocking Layers 170, 370, 670, 770, 870, 970, 1070, 1170, 1270 to electron transport layer Π1 to 880, 980, 1080, 1180, 1280 to electron injection layer 190, 290, 390, 490, 590, 690, 790, 890, 990, 1090, 1190, 1290 ~ second electrode ten, the scope of patent application: 15
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW094109045A TWI293234B (en) | 2005-03-24 | 2005-03-24 | White organic light-emitting diode and fabrication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW094109045A TWI293234B (en) | 2005-03-24 | 2005-03-24 | White organic light-emitting diode and fabrication method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200635428A TW200635428A (en) | 2006-10-01 |
TWI293234B true TWI293234B (en) | 2008-02-01 |
Family
ID=45067774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094109045A TWI293234B (en) | 2005-03-24 | 2005-03-24 | White organic light-emitting diode and fabrication method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI293234B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8288187B2 (en) * | 2010-01-20 | 2012-10-16 | Universal Display Corporation | Electroluminescent devices for lighting applications |
-
2005
- 2005-03-24 TW TW094109045A patent/TWI293234B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200635428A (en) | 2006-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kalyani et al. | Novel materials for fabrication and encapsulation of OLEDs | |
Kamtekar et al. | Recent advances in white organic light‐emitting materials and devices (WOLEDs) | |
JP5746269B2 (en) | Organic light-emitting device having phosphorescent-sensitized fluorescent light-emitting layer | |
KR101149703B1 (en) | Organic light emitting diode with nano-dots and fabrication method thereof | |
US20080258606A1 (en) | Light Emitting Device | |
Park et al. | Solution processable single layer organic light-emitting devices with a single small molecular ionic iridium compound | |
CN107452886A (en) | A kind of laminated film and Organic Light Emitting Diode and preparation method thereof | |
Levermore et al. | Deep-blue light emitting triazatruxene core/oligo-fluorene branch dendrimers for electroluminescence and optical gain applications | |
US20040096570A1 (en) | Structure and method of fabricating organic devices | |
CN108807704B (en) | Light-emitting diode based on perovskite composite film and preparation method thereof | |
Gao et al. | 47-Fold EQE improvement in CsPbBr3 perovskite light-emitting diodes via double-additives assistance | |
CN108735910B (en) | pure inorganic perovskite light-emitting diode based on composite exciton recovery layer and preparation method thereof | |
Parthasarathy et al. | Organic light emitting devices: From displays to lighting | |
Pokladko-Kowar et al. | Optoelectronic features of Y-shaped push–pull molecules based on imidazole | |
JP2006310748A (en) | Organic electroluminescence element | |
TWI293234B (en) | White organic light-emitting diode and fabrication method | |
Srivastava et al. | Organic Light Emitting Diodes-Recent Advancements | |
Luo et al. | Efficient Tandem White OLED/LEC Hybrid Devices | |
Park et al. | Electroluminescence property of highly soluble Ir (III) complex utilized by various hole blocking layers in polymer light emitting diodes | |
KR20100112454A (en) | High efficient deep red phosphorescent organic light emitting devices using the double doping technique and a method for manufacturing the same | |
KR100757780B1 (en) | Polymer-based electrophosphorescent devices by controlled morphology of emitting layer | |
Su | Printed Organic Light Emission | |
KR100646292B1 (en) | Efficient white-emitting fluorescent/phosphorescent complex electroluminescent devices via energy transfer from conjugated polymer | |
TWI236174B (en) | Organic-inorganic light emitting diode structure | |
Tomova et al. | Organic light-emitting diodes (OLEDs)–the basis of next generation light-emitting dеvices |