TWI236174B - Organic-inorganic light emitting diode structure - Google Patents

Organic-inorganic light emitting diode structure Download PDF

Info

Publication number
TWI236174B
TWI236174B TW93124524A TW93124524A TWI236174B TW I236174 B TWI236174 B TW I236174B TW 93124524 A TW93124524 A TW 93124524A TW 93124524 A TW93124524 A TW 93124524A TW I236174 B TWI236174 B TW I236174B
Authority
TW
Taiwan
Prior art keywords
organic
bis
emitting diode
inorganic light
poly
Prior art date
Application number
TW93124524A
Other languages
Chinese (zh)
Other versions
TW200608615A (en
Inventor
Hsueh-Shih Chen
Ming-Chen Sun
Jwo-Huei Jou
Chien-Ming Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW93124524A priority Critical patent/TWI236174B/en
Application granted granted Critical
Publication of TWI236174B publication Critical patent/TWI236174B/en
Publication of TW200608615A publication Critical patent/TW200608615A/en

Links

Abstract

The present invention provides an organic-inorganic light emitting diode structure, comprising a substrate, a first electrode on the substrate, an organic-inorganic emitting layer on the first electrode and a second electrode on the organic-inorganic emitting layer. The organic-inorganic emitting layer comprises plurality of organic-inorganic quantum dots dispersing in a polymer. The organic-inorganic quantum dot comprises a ZnX (X is selected from the group consisting of S, Se, Te and combinations thereof) quantum dot and an organic material covering the ZnX quantum dot surface.

Description

1236174 玖、發明說明: 【發明所屬之技術領域】 本發明係有關於一種發光二極體’且特別有關於一種有機 無機複合發光二極體。 【先前技術】 有機發光二極體(0rganic Light Emitting Di〇de,簡稱 OLED )顯示器乃為一種利用有機化合物作為發光材料的平板 顯示器(Flat Panel Display );其發光機制為電致發光 (electroluminescence,簡稱EL ),所以又稱有機電致發光顯 示器(Organic Electroluminescence Device,簡稱 OLED)或有 機電放射顯示器(Organic Electroemissive Device,簡稱 〇ED ), 其結構如第1圖所示,包含基材1 〇、陽極電極20、電洞傳輸 層(Hole Transport Layer,簡稱 HTL ) 30、電致發光層 (Electroluminescent Layer,簡稱 EL ) 40、電子傳輸層(Electron Transport Layer,簡稱ETL ) 50與陰極電極60 ;當於此結構外 加一電壓時,電子51與電洞31將會藉由電子傳輸層50與電 洞傳輸層30傳輸至電致發光層40,然後在電致發光層40中再 結合(recombination )而放出光,簡單地說,就是一種由電生 成光的裝置。 其中的基材可為玻璃基材或塑膠基材,基材為塑膠材質的 有機發光二極體具有可撓區性;此外,由於電子與電洞僅在電 致發光層中再結合發出光,而此電致發光層非常薄,甚至可只 為單層分子層的塗佈,故結合的速度非常快,使響應時間 (response time)非常短;另外,面版可由4微米的微顯示器 (microdiaplay)做到1〇〇吋的大面版,應用非常廣,且無液晶 1236174 而t之的;’且具有高解析度、輕、薄等多項優點,總 兄疋一種相當理想的顯示器類型。 =!:是由有機材質所組成,而有機材料穩== 用壽命已可達上萬前有機發光材料使 料卻T 些使料命較長的有機發光材 斗p有色偏的問題,如紅色變成橘· 發光材料本身外部量子效率(ex丨色,此外,由於所使用的 子文革(eXternal quan比m efficiency)的 件二也就是元件所發出的光能相對於所輸入元 = 高’此會_ 又仅奵於顯不姦而吕相當重要,但由於有機發 材料在發光光譜中所具有的半高寬(跡鬚^ &諸 imum’簡稱FWHM)皆很寬,無法具高色彩純度的特f, 長的選擇有限。這些問題皆會造成有加發光二極體應 【發明内容】 有鐘於此,本發明的目就是提供一種有機無機發光二極體 結構’藉由有機無機複合量子點的使用,改善發光二極體的穩 定度、發光效率及發光波長。 “ 為達上述目的,本發明提供一種有機無機發光二極體之結 構,包括二基材;第一電極位於上述基材上;有機無機發光; 位於上述第-電極上,且此有機無機發光層包含複數個有機無 機複合量子點分散於高分子中,且每一有機無機複合量子點包 括ZnX (x係擇自於s、Se、Te與其組合物所組成之族群中) 1236174 j » 量子點與有機分子包覆該量子’ 有機無機發光層上。 m弟一電極位於上述 機複ίΐ:,在習知之有機發光二極體結構中,使用-有機益 子點做為發光材料,此特徵之發光二極體具有下列優 提高,(L由:Λ=ΓΓ存在’使得發光元件的财熱性 问,、穩疋性,使使用壽命增加。 發明之發光元件的發光效率高於一般使用高分子或 二子的有機發光二極體(即PLED與oled)的發光 且也比單獨使用量子點之發光元件的發光效率還高。 峰”(3)!:ί機材料的發光波·原本就比有機材料的發光波 β r所疋發光色彩純度較純,加上量子點的發光波缘更-==:得色彩純度高的發光元件;此外,藉由控制μ 發光顏色或尺寸,即可得不同發光顏色的發光元件,故 ^光顏色的廷擇性相當廣泛。 【實施方式】 【實施方式1】 第2圖為本發明實施方式i中之有機無機發光二極體之結 0,由下而上依序為基材u〇、陽極 ㈣、電致發光们40盘陰極電極_丨击… Μ傳輸層 』桎電極160。其中陰極電極16〇可包 二/广之_ ’例如圖η包括第-陰極電極⑹ 二、二丢極電極162 ’·且有複數個有機無機複合量子點⑷均 ^ ’形成_發光層Μ〇’此有機無機複 ㈣Γ )量子點⑷與有機材料124,且有 機材料142包覆量子點ι41表面。 百 1236174 承上所述之有機無機發光二極體,由於此有機無機發光二 極體為下方發光,故所使用的基材110與陽極電極120需為透 明材質;在本實施方式中,基材110為玻璃基材或塑膠基材, 且以塑膠基材所製成的有機發光二極體會具有可撓區性的優 點;而陽極電極120為銦錫氧化物(indium tin oxide,簡稱 ITO),銦錫氧化物為一種導電材質,常用在有機發光二極體 中。陰極電極160為金屬電極,如Ca、Ag、Li、LiF、Mg、Α1 與其組合物。位於陽極電極120上的電洞傳輸層130為 N,N’-di(naphthalen)-N,N’-diphenyl-benzidine ( NPB )、N,N’-bis (naphthalen-l-y^-N^N^bisCpheny^benzidine ( α-ΝΡΒ ) ^ N?N5-di (naphthalene-l-yl)N5N5-diphenyl-959,-dimethyl-fluorene( DMFL-NPB )、N,N’-di(naphthalene-l-yl)-N,N’-diphenyl-spiro ( Spiro, NPB ) 、N,N’-Bis-(3-methylphenyl)-N,N’_bis-(plienyl)_benzidine (TPD )、N,N’_bis-(3-methylphenyl)-N,N’,bis-(phenyl)_spiro (Spiro-TPD)、N,N’-bis-(3-methylphenyl)-N,N’-bis-(plieiiyl)-9, 9-diphenyl-fluorene (DMFL-TPD) ' l,3-bis(carbazol-9-yl)-benzene ( MCP )、l,3,5-tris(carbazol-9-yl)-benzene ( TCP )、N,N, N’5N’-tetrakis(naphth-l-yl)-benzidine ( TNB )、poly (N-vinyl carbazole) (PVK)。電致發光層140為本發明最重要的一層, 其中量子點141為ZnX ( X係擇自於S、Se、Te與其組合物所 組成之族群中),且此ZnX量子點尚可摻雜其它元素,如過渡 元素、iS素或其組合,以改變此量子點的發光效率與發光波長 等特性;此外,不同的量子點尺寸也會影響其發光效率與發光 波長;另外,包覆量子點141表面的有機材料142為脂肪酸或 磷脂;量子點141與有機材料142構成有機無機複合量子點 143,此有機無機複合量子點143可藉一分子間作用力均勻分 1236174 散於高分子144中,此高分子144為導電高分子,此導電高分 子為發光高分子或共軛高分子,為 poly(2-mthoxy-5-(2f-ethylhexyloxy)-154-phenylenevinylene) (MEH-PPV) - poly[2-Methoxy-5-(2f-ethylhexyloxy)-l,4- phenyl enevinylene-c 〇-454 f-bisphenylene vinyl ene] (MEH-BP-PPV)、poly[(9,9-dioctylfluoren_2,7-diyl),co_(l,4-diphenylene-vinylene-2-methoxy-5- {2-ethylhexyloxy} benzene)] (PF-BV-MEH) 、poly[(9,9-dioctylfluoren-2,7_diyl)-co-(2,5-dimethoxybenzen-l?4-diyl)] ( PF-DMOP) 、p〇ly[(9,9-dihexylfluoren-2?7-diyl)-alt-co-(benzen-l?4-diyl)] ( PFH)、poly [(959-dihexylfluoren-257-diyl)-co-(9-ethylcarbazol-257-diyl)] (PFH-EC ) " poly[(9,9-dihexylfluoren-2?7-diyl)-alt-co-(2- methoxy-5-{2-ethylhexyloxy}phenylen-l54-diyl)] ( PFH-MEH)、 poly[(9,9-dioctylfluoren-2,7-diyl)(PFO)、poly[(9,9-di-n-octylfluoren-2?7-diyl)-co-(l,4-vinylenephenylene)] ( PF-PPV) ^ poly[(939-dihexylfluoren-257-diyl)-alt-co-(benzen-l ?4-diyl)] (PF-PH )、poly[(9,9-dihexylfluoren-2,7-diyl)-alt-co_(9,9’-spirobifluoren-2,7_diyl)](PF_SP)、poly(N,N’-bis(4-butylphenyl)-N,N’-bis(phenyl)benzidine( poly-TPD )、poly(N,N’_ bis(4-butylphenyl)-N?Nf-bis(phenyl)benzidine ( poly-TPD-POSS)、poly[(959-dihexylfluoren-2,7_diyl)_co-(N,N’_di(4-butylphenyl)-N,N’-diphenyl-4,4’-diyl-l,4-diaminobenzene)]( TAB-PFH) " N?N,-pis(phenanthren-9-yl)-N3N'-diphenylbenzidine (PPB)。 如第2圖所示之有機無機發光二極體,其製造方法如下: 提供基材110 ;形成陽極電極120於基材110上;形成電洞傳 1236174 輸層130於陽極電極120上;形成電致發光層140於上述電洞 傳輸層130上;以及形成依序第一陰極電極161與第二陰極電 極162於電致發光層140上,構成陰極電極160。 承上所述之有機無機發光二極體之製造,其中陽極電極 120、電洞傳輸層130、第一陰極電極161與第二陰極電極162 的形成皆利用習知之製造方法;但本發明特色之電致發光層 140之詳細製法如下:將包覆脂肪酸或磷脂之ZnSe量子點與 MEH-PPV、MEH-BP-PPV、PF、PF-BV-MEH、PF-DMOP、PFH、 PFH-EC、PFH-MEH、PFO、PFOB、PF-PPV、PF-PH、PF-SP、 poly-TPD、poly-TPD-POSS、TAB-PFH、PPB 混合,混合方式 為先將高分子以10 mg/ml溶於甲苯溶劑中,其後再將量子點以 高分子:量子點材料為1 ·· 0、1 : 0_025、1 : 〇.〇5之重量比例 摻混於前述之高分子溶液中,形成一混合溶液;再將此混合溶 液旋轉塗佈於電洞傳輸層130上,此旋轉塗佈方式為在充滿氮 氣之手套箱内,將前述混合液滴於銦锡氧化物透明導電玻璃 上,並使用旋轉塗佈機,以4000 rpm之旋塗轉速旋塗20秒, 以將高分子膜製備於銦錫氧化物透明導電玻璃上。將鍵好的高 分子膜置於真空烘箱中烘乾,此真空烘箱的真空度為1 〇_3 torr,再經70〜80°C與5小時的熱處理後,即形成電致發光層 140。 【實施方式2】 第5圖為本發明實施方式2中之有機無機發光二極體之結 構圖,由下而上依序為基材210、陽極電極220、電洞傳輸層 230、電致發光層240、電子傳輸層250與陰極電極260。其中 陰極電極260可包含一個或一個以上之電極,例如圖示中包括 11 1236174 第一陰極電極261與第二陰極電極262 ;且有複數個有機無機 複合量子點243均勻分散在高分子244中,形成電致發光層 240,此有機無機複合量子點243包括(無機)量子點241與 有機材料224,且有機材料242包覆量子點241表面。 承上所述之有機無機發光二極體,由於此有機無機發光二 極體為下方發光,故所使用的基材210與陽極電極220需為透 明材質;在本實施方式中,基材210為玻璃基材或塑膠基材, 且以塑膠基材所製成的有機發光二極體會具有可撓區性的優 點;陽極電極220為與銦錫氧化物(indium tin oxide,簡稱 ITO),銦錫氧化物為一種導電材質,常用在有機發光二極體 中。陰極電極260為金屬電極,如Ca、AgLi、LiF、Mg、Α1 與其組合物。位於陽極電極220上的電洞傳輸層230為 N,N’-di(naphthalen)-N,N’-diphenyl-benzidine ( NPB )、N,N’-bis (naphthalen-l-yl)-N,N’-bis(phenyl)benzidine ( α-ΝΡΒ)、N,N’-di (naphthalene-1 -yl)N,N5-diphenyl-9,9,-dimethyl-fluorene( DMFL-NPB )、N,N’-di(naphthalene-l-yl)-N,N’-diphenyl-spiro ( Spiro-NPB ) ^ N5Nf-Bis-(3-methylphenyl)-N5Nf-bis-(phenyl)-benzidine (TPD)、N,N’-bis麵(3-methylphenyl)-N,N’-bis-(phenyl)-spiro( Spiro-TPD)、N,N’-bis-(3-methylphenyl)-N,N’-bis-(phenyl)-9,9-diphenyl-fluorene( DMFL-TPD) ^ 1 ?3-bis(carbazol-9-yl)-benzene (MCP)、l,3,5-tris(carbazol-9-yl)-benzene ( TCP)、N,N,N’,N’_ tetrakis(naphth-l-yl)-benzidine( TNB ) - poly (N-vinyl carbazole) (PVK)。電致發光層240為本發明最重要的一層,其中量子 點241為ZnX (X係擇自於S、Se、Te與其組合物所組成之族 群中),且此ZnX量子點尚可摻雜其它元素,如過渡元素、鹵 素或其組合,以改變此量子點的發光效率與發光波長等特性; 12 1236174 · > 此外,不同的量子點尺寸也會影響其發光效率與發光波長;另 外,包覆量子點241表面的有機材料242為脂肪酸或磷脂;量 子點241與有機材料242構成有機無機複合量子點243,此有 機無機複合量子點243可藉一分子間作用力均勻分散於高分子 244中,此高分子244為導電高分子,此導電高分子為發光高 分子 或共輛 高分子 , 為 poly(2-mthoxy»5-(2f-ethylhexyloxy)-1 ?4-phenylenevinylene)( MEH-PPV) 、poly[2-Methoxy-5-(2’-ethylhexyloxy)-l,4-phenylenevinylene-co-4?4f-bisphenylenevinylene] ( MEH-BP-PPV ) Λ poly[(9,9-dioctylfluoren-2?7-diyl)-co-(1,4-diphenylene-vinylene-2-methoxy-5-{2-ethylhexyloxy}benzene)] ( PF-BV-MEH) 、poly[(9,9-dioctylfluoren-2,7-diyl)-co-(2,5-dimethoxybenzen-l54-diyl)] ( PF-DMOP) 、poly[(9,9-dihexylfluoren-2,7-diyl)-alt-co-(benzen-l,4-diyl)] ( PFH)、poly [(959-dihexylfluoren-2?7-diyl)-co-(9-ethylcarbazol-257-diyl)]( PFH-EC )' poly[(959-dihexylfluoren-257-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy}phenylen-l54-diyl)]( PFH-MEH) > poly[(9,9-dioctylfluoren-2,7-diyl)( PFO )、poly[(9,9-di-n-octylfluoren-2,7-diyl)-co-(l54-vinylenephenylene)] ( PF-PPV)、poly[(9,9-dihexylfluoren-2,7-diyl)㈣alt-co-(benzen-l,4-diyl)]( PF-PH )、poly [(939-dihexylfluoren-2?7-diyl)-alt-co-(959f-spirobifluoren-257-di yl)] ( PF-SP ) - poly(N5Nf-bis(4-butylphenyl)-N?N?-bis(phenyl) benzidine (poly-TPD)、poly(N,N’-bis(4-butylphenyl)_N,N’· bis(phenyl)benzidine ( poly-TPD-POSS )、poly[(9,9-dihexylfluoren-257-diyl)-co-(N5Nf-di(4-butylphenyl)-N5Nf-diphe nyl-454?-diyl-154-diaminobenzene)] ( TAB-PFH) 、N,N’-pis 13 1236174 (phenanthren-9-yl)-N5N,-diphenylbenzidine ( PPB ) 〇 位於電致 發光層240上的電子傳輸層250為tris-(8-hydroxyquinoline) aluminum ( Alq3 ) " bis-(2-methyl-8-quinolinolate)-4- (phenylphenolato)-aluminium ( BAlq3 ) ^ 2?9-dimethyl-4?7-diphenyl-l310-phenanthroline ( BCP)、4,4,-bis(carbazol-9_yl) biphenyl( CBP )、3-(4-Biphenylyl)-4-phenyl-5-tert_butylphenyl-l, 2,4-triazole ( TAZ ) 〇 如第5圖所示之有機無機發光二極體,其製造方法如下: 提供基材210 ;形成陽極電極220於基材210上;形成電洞傳 輸層230於陽極電極220上;形成電致發光層240於上述電洞 傳輸層230上;形成電子傳輸層250於電致發光層240上;以 及形成依序第一陰極電極261與第二陰極電極262於電子傳輸 層250上,構成陰極電極260。 承上所述之有機無機發光二極體之製造,其中陽極電極 220、電洞傳輸層230、電子傳輸層250、第一陰極電極261與 第二陰極電極262的形成皆利用習知之製造方法;但本發明特 色之電致發光層240之詳細製法如下:將包覆脂肪酸或磷脂之 ZnSe 量子點與 MEH-PPV、MEH-BP-PPV、PF、PF-BV-MEH、 PF-DMOP、PFH、PFH-EC、PFH-MEH、PFO、PFOB、PF-PPV、 PF-PH、PF-SP、poly-TPD、poly-TPD-POSS、TAB-PFH、PPB 混合,混合方式為先將高分子以10 mg/ml溶於甲苯溶劑中,其 後再將量子點以高分子:量子點材料為1 : 0、1 : 0.025、1 : 0.05之重量比例摻混於前述之高分子溶液中,形成一混合溶 液;再將此混合溶液旋轉塗佈於電洞傳輸層230上,此旋轉塗 佈方式為在充滿氮氣之手套箱内,將前述混合液滴於電洞傳輸 層230上,並使用旋轉塗佈機,以4000 rpm之旋塗轉速旋塗 14 1236174 • » 20秒’以將高分子膜製備於電洞傳輸層23()上。將鑛好的高分 子膜置於真空烘箱中烘乾,此真空供箱的真空度為ι〇 3她, 再經7〇〜阶與5小時的熱處理後,即形成電致發光層240。 【實施方式3】 第8圖為本發明實施方式3中之有機無機發光二極體之結 構圖,由下而上依序為基材31〇、陽極電極32〇、電致發光声 34〇、電子傳輸層35〇與陰極電極⑽。其中陰極電極鳩可包 含^固或-個以上之電極,例如圖示中包括第一陰極電極361 與第二陰極電極362 ;且有複數個有機無機複合量子點⑷均 句f散在高分子Μ中’形成電致發光層340,此有機無機複 合ϊ子點343包括(無機)量子點341與有機材料324,且有 機材料342包覆量子點341表面。 氣上所述之有機無機發光二極體,由於此有機益 二 極體為下方發光,故所使用的基材31G與陽極電極似需㈣ 明材貝,在本貫施方式中,基材31G為玻璃基材或塑膠基材, 且以塑膠基材所製成的有機發光二極體會具有可撓區性的優 點;陽極電極320為與銦錫氧化物(indium如。服,簡稱 ITO) ’麵錫氧化物為一種導電材質,常用在有機發光二極體 中。陰極電極360為金屬電極,如LiF、八卜u、q、哗、α§ 與其組合物。電致發光層34〇為本發明最重要的—層,其中量 子點341為ZnX (X係擇自於s、Se、Te與其組合物所組成之 族群令),且此ZnX量子點尚可摻雜其它元素,如過渡元素、 由素或其組合,以改變此量子點的發光效率與發光波長等特 性.;此外,不同的量子點尺寸也會料其發光效率與發光波 長,另外’包覆量子點341表面的有機材料342為脂肪酸或磷 15 1236174 脂;量子點341與有機材料342構成有機無機複合量子點343, 此有機無機複合量子點343可藉一分子間作用力均勻分散於高 分子344中,此高分子344為導電高分子,此導電高分子為發 光高分 子或共 I厄 高分子 , 為 poly(2-mthoxy-5-(2r-ethylhexyloxy)-1,4-phenylenevinylene)( MEH-PPV)、poly[2-Methoxy-5-(2’-ethylhexyloxy)-l,4-phenylenevinylene-co-434l-bisphenylenevinylene] ( MEH-BP-PPV) 、poly[(9,9-dioctylfluoren-2,7_diyl)-co-(l,4-diphenylene-vinylene-2-methoxy-5- {2-ethylhexyloxy} benzene)] (PF-BV-MEH)、poly[(9,9_dioctylfluoren-2,7-diyl)-co-(2,5-dimethoxybenzen-l?4-diyl)] ( PF-DMOP)、poly[(9,9-dihexylfluoren-2,7-diyl)-alt-co-(benzen-l,4-diyl)]( PFH )、poly[( 9,9-dihexylfluoren-2,7-diyl)-co-(9_ethylcarbazol_2,7-diyl)]( PFH-EC )、poly[(9,9-dihexylfluoren-2,7-diyl)-al1>co-(2_methoxy-5-{2-ethylhexyloxy}phenylen-l54-diyl)]( PFH-MEH) ^ poly[(9,9-dioctylfluoren-257-diyl)( PFO) ' poly[(959-di-n-octylfluoren-257-diyl)-co-(l?4-vinylenephenylene)] ( PF-PPV) 、poly[(9,9- dihexylfluoren-2,7_diyl)-alt-co-(benzen-l,4-diyl)]( PF-PH )、poly [(9,9-dihexyl fluoren-2,7-diyl)-alt-co-(9,9’-spirobifluoren-2,7-di yl)] ( PF-SP ) ' poly(N5Nf-bis(4-butylphenyl)-N5N,-bis(phenyl) benzidine (poly-TPD)、poly(N,N’-bis(4-butylphenyl)_N,N’_ bis(phenyl)benzidine ( poly-TPD-POSS )、poly[(9,9-dihexylfluoren-257-diyl)-co-(N,Nf-di(4-butylphenyl)-N,Nf-diphe nyl-4,4’-diyl-l,4-diaminobenzene)] ( TAB-PFH) 、N,N’-pis (phenanthren-9_yl)-N,N’-diphenylbenzidine ( PPB )。位於電致 發光層240上的電子傳輸層350為tris-(8-hydroxyquinoline) 16 1236174 aluminum ( Alq3 ) ' bis-(2-methyl-8-quinolinolate)-4- (phenylphenolato)-aluminium (BAlq3)、2,9_dimethyl-4,7-diphenyl-1510-phenanthroline ( BCP )、4,4’-bis(carbazol-9-yl)biphenyl (CBP) ^ 3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-l5254-triazole ( TAZ )。 如第8圖所示之有機無機發光二極體,其製造方法如下: 提供基材310 ;形成陽極電極320於基材310上;形成電致發 光層340於上述陽極電極320上;形成電子傳輸層350於電致 發光層340上;以及形成依序第一陰極電極361與第二陰極電 極362於電子傳輸層350上,構成陰極電極360。 承上所述之有機無機發光二極體之製造,其中陽極電極 320、電子傳輸層350、第一陰極電極361與第二陰極電極362 的形成皆利用習知之製造方法;但本發明特色之電致發光層 340之詳細製法如下:將包覆有機材料之ZnSe量子點與 MEH-PPV、MEH-BP-PPV、PF、PF_BV-MEH、PF_DM0P、PFH、 PFH_EC、PFH-MEH、PFO、PFOB、PF-PPV、PF-PH、PF-SP、 poly-TPD、poly-TPD-POSS、TAB_PFH、PPB 混合,且此有機 無激發光二極體於此高分子中的濃度分別為0、0.25、0.5 mg/ml,混合方式為先將高分子以1 〇 mg/ml溶於甲苯溶劑中, 其後再將量子點以高分子:量子點材料為1 : 0、1 : 0.025、1 : 0·05之重量比例摻混於前述之高分子溶液中,形成一混合溶 液;再將此混合溶液旋轉塗佈於陽極電極320上,此旋轉塗佈 方式為在充滿氮氣之手套箱内,將前述混合液滴於陽極電極 320上,並使用旋轉塗佈機,以4000 rpm之旋塗轉速旋塗20 秒,以將高分子膜製備於陽極電極320上。將鍍好的高分子膜 置於真空烘箱中烘乾,此真空烘箱的真空度為1(T3 torr,再經 17 1236174 70〜80°C與5小時的熱處理後,即形成電致發光層340。 為使本發明之上述和其他目的、特徵和優點能更明顯易 懂’下文特舉出較佳實施例,並配合所附圖式,作詳細說明如 下: 【實施例1】 請參閱第2圖,首先進行銦錫氧化物透明導電玻璃120的清 潔,先將銦錫氧化物透明導電玻璃120以專用清潔劑仔細搓洗, 再於50°C之超音波振盪於稀釋之專用清潔劑、去離子水、異丙醇、 去離子水、丙酮、異丙醇中依序各震盪15分鐘,再以氮氣吹乾備 用。再將銦錫氧化物透明導電玻璃120浸入80°C之體積比例為5 : 1 : 1的離子水:過氧化氫:氫氧化銨的溶液中40分鐘。 接下來,將電洞傳輸材料與甲苯混合,形成10 mg/ml之電洞 傳輸溶液;再將有機發光高分子材料與曱苯混合,形成5 mg/ml 之有機發光高分子溶液;然後再將量子點材料混入發光高分子溶 液中,形成發光高分子:量子點材料重量比為1 ·· 〇、1 : 〇.〇25、1 : 0.05之發光高分子與量子點混合溶液。接著將配製好的電洞傳輸 溶液以及發光高分子與量子點混合溶液以〇·45 μιη孔徑的針筒過 濾器純化,至溶液無明顯顆粒懸浮其中為止。 在充滿氮氣之手套箱内將電洞傳輸溶液滴於銦錫氧化物透明 導電玻璃120上,並利用旋轉塗佈機以4000 rpm之旋塗轉速旋塗 20秒,即形成電洞傳輸層130於銦錫氧化物透明導電玻璃120上。 將鍍好的電洞傳輸層130置於真空烘箱裡進行退火處理12小時, 其真空度為1〇·3 torr且溫度為70°C。 接著將發光高分子與量子點混合溶液利用上述之旋塗步驟鍍 製發光高分子層140於電洞傳輸層上,並利用上述之烘乾步驟施 18 1236174 . ^ 以退火處理。 接下來分別以0·5及1 nm/sec之蒸鍍速率製作鈣金屬陰 與銀保護層162。 【比較實施例1】 此實施例之有機發光二極體之結構及製造方法,除無有機 無機複合量子點143存在外,其餘之結構與製造方法與實施例 1相同。 接下來將測量實施例1與比較實施例i之有機無機發光 極體的效能。1236174 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a light-emitting diode 'and particularly to an organic-inorganic composite light-emitting diode. [Prior technology] Organic light emitting diode (OLED) display is a flat panel display using organic compounds as light-emitting materials; its light-emitting mechanism is electroluminescence (abbreviated as electroluminescence) EL), so it is also called Organic Electroluminescence Device (OLED) or Organic Electroemissive Device (OLED). Its structure is shown in Figure 1. It includes a substrate 1 〇, an anode Electrode 20, Hole Transport Layer (HTL) 30, Electroluminescent Layer (EL) 40, Electron Transport Layer (ETL) 50 and cathode electrode 60; here When a voltage is applied to the structure, the electrons 51 and holes 31 will be transmitted to the electroluminescent layer 40 through the electron transport layer 50 and the hole transport layer 30, and then recombination in the electroluminescence layer 40 will emit light. Simply put, it is a device that generates electricity from electricity. The substrate may be a glass substrate or a plastic substrate, and the organic light emitting diode made of a plastic material has flexibility. In addition, since electrons and holes are only combined to emit light in the electroluminescent layer, This electroluminescent layer is very thin, and even can be coated by a single molecular layer, so the binding speed is very fast, so that the response time is very short. In addition, the panel can be used by a 4 micron micro display (microdiaplay ) To achieve a large 100-inch panel, the application is very wide, and no liquid crystal 1236174 and t; 'and has a number of advantages such as high resolution, light, thin, etc., a total brother of a very ideal type of display. = !: It is composed of organic materials, and the organic materials are stable. == Use organic light-emitting materials that have a lifetime of tens of thousands of years ago to make the materials, but some organic light-emitting materials that have a longer life expectancy, such as red. Become orange · The external quantum efficiency (ex 丨 color of the luminescent material itself). In addition, because of the second sub-cultural revolution (eXternal quan ratio m efficiency) used, the light energy emitted by the element is relative to the input element = high. _ It is important only to show that it is not treacherous, but because the full width at half maximum (the trace must ^ & Zhumum 'for short) of organic hair materials in the luminescence spectrum is very wide, it is not possible to have high color purity. Special f, long choices are limited. All these problems will lead to the application of light-emitting diodes. [Summary of the Invention] The purpose of the present invention is to provide an organic-inorganic light-emitting diode structure. The use of dots improves the stability, luminous efficiency, and luminous wavelength of the light-emitting diode. "In order to achieve the above purpose, the present invention provides a structure of an organic-inorganic light-emitting diode, which includes two substrates; the first electrode is located above On the substrate; organic-inorganic light-emitting; located on the first electrode, and the organic-inorganic light-emitting layer comprises a plurality of organic-inorganic composite quantum dots dispersed in a polymer, and each organic-inorganic composite quantum dot includes ZnX (x is selected from In the group consisting of s, Se, Te, and their composition) 1236174 j »Quantum dots and organic molecules cover the quantum 'organic inorganic light-emitting layer. An electrode is located at the above-mentioned organic complex: In the conventional organic light-emitting In the structure of the diode, -organic beneficial points are used as the light-emitting material. This feature of the light-emitting diode has the following advantages, (L by: Λ = ΓΓ exists' makes the light-emitting element's financial and thermal stability, stability, The luminous efficiency of the light-emitting element of the invention is higher than that of organic light-emitting diodes (ie, PLEDs and OLEDs) that generally use polymers or dions, and also has higher luminous efficiency than light-emitting elements using quantum dots alone. Peak "(3) !: The luminous wave of the luminescent material is originally purer than the luminous wave β r of organic material. The luminous color purity is pure, and the luminous wave edge of the quantum dot is more pure.-==: Glow In addition, by controlling the luminous color or size of μ, light-emitting elements with different luminous colors can be obtained, so the selectivity of the luminous color is quite extensive. [Embodiment 1] [Embodiment 1] Figure 2 is the implementation of the present invention The junction 0 of the organic-inorganic light-emitting diode in the method i is, from bottom to top, the substrate u 0, the anode ㈣, and the electroluminescent 40-disk cathode electrode _ 丨 click ... Μtransmission layer ′ 桎 electrode 160. Among them The cathode electrode 160 can include two / wide _ 'For example, the figure η includes the first-cathode electrode ⑹ two, two dipole electrodes 162 ′ · and there are a plurality of organic-inorganic composite quantum dots ⑷ ^' formation _ emitting layer Μ〇 ' The organic-inorganic complex (?) Quantum dots ⑷ and the organic material 124, and the organic material 142 covers the surface of the quantum dot ι41. Hundred 1236174 inherits the organic-inorganic light-emitting diode described above. Since this organic-inorganic light-emitting diode emits light from below, the substrate 110 and the anode electrode 120 used must be transparent materials. In this embodiment, the substrate 110 is a glass substrate or a plastic substrate, and an organic light emitting diode made of the plastic substrate has the advantage of flexibility; and the anode electrode 120 is indium tin oxide (ITO), Indium tin oxide is a conductive material and is commonly used in organic light emitting diodes. The cathode electrode 160 is a metal electrode, such as Ca, Ag, Li, LiF, Mg, A1, and a combination thereof. The hole transport layer 130 on the anode electrode 120 is N, N'-di (naphthalen) -N, N'-diphenyl-benzidine (NPB), N, N'-bis (naphthalen-ly ^ -N ^ N ^ bisCpheny ^ benzidine (α-ΝΡΒ) ^ N? N5-di (naphthalene-l-yl) N5N5-diphenyl-959, -dimethyl-fluorene (DMFL-NPB), N, N'-di (naphthalene-l-yl) -N, N'-diphenyl-spiro (Spiro, NPB), N, N'-Bis- (3-methylphenyl) -N, N'_bis- (plienyl) _benzidine (TPD), N, N'_bis- (3 -methylphenyl) -N, N ', bis- (phenyl) _spiro (Spiro-TPD), N, N'-bis- (3-methylphenyl) -N, N'-bis- (plieiiyl) -9, 9-diphenyl -fluorene (DMFL-TPD) 'l, 3-bis (carbazol-9-yl) -benzene (MCP), 1,3,5-tris (carbazol-9-yl) -benzene (TCP), N, N, N'5N'-tetrakis (naphth-l-yl) -benzidine (TNB), poly (N-vinyl carbazole) (PVK). The electroluminescent layer 140 is the most important layer of the present invention, in which the quantum dots 141 are ZnX ( X is selected from the group consisting of S, Se, Te and the combination thereof), and the ZnX quantum dots can still be doped with other elements, such as transition elements, iS elements or combinations thereof, to change the quantum dots Luminous efficiency and luminous wavelength and other characteristics; In addition, different quantum dot sizes also affect its luminous efficiency and luminous wavelength; In addition, the organic material 142 covering the surface of the quantum dot 141 is a fatty acid or a phospholipid; the quantum dot 141 and the organic material 142 constitute Organic-inorganic composite quantum dots 143. The organic-inorganic composite quantum dots 143 can be evenly dispersed in a polymer 144 by an intermolecular force. The polymer 144 is a conductive polymer, and the conductive polymer is a light-emitting polymer or a co-polymer. Conjugate polymer, poly (2-mthoxy-5- (2f-ethylhexyloxy) -154-phenylenevinylene) (MEH-PPV)-poly [2-Methoxy-5- (2f-ethylhexyloxy) -l, 4-phenyl enevinylene- c 〇-454 f-bisphenylene vinyl ene] (MEH-BP-PPV), poly [(9,9-dioctylfluoren_2,7-diyl), co_ (l, 4-diphenylene-vinylene-2-methoxy-5- {2 -ethylhexyloxy} benzene)] (PF-BV-MEH), poly [(9,9-dioctylfluoren-2,7_diyl) -co- (2,5-dimethoxybenzen-l? 4-diyl)] (PF-DMOP), p〇ly [(9,9-dihexylfluoren-2? 7-diyl) -alt-co- (benzen-l? 4-diyl)] (PFH), poly [(959-dihexylfluoren-257-diyl) -co- (9-ethylcarbazol-257-diyl)] (PFH-E C) " poly [(9,9-dihexylfluoren-2? 7-diyl) -alt-co- (2- methoxy-5- {2-ethylhexyloxy} phenylen-l54-diyl)] (PFH-MEH), poly [(9,9-dioctylfluoren-2,7-diyl) (PFO), poly [(9,9-di-n-octylfluoren-2? 7-diyl) -co- (l, 4-vinylenephenylene)] (PF -PPV) ^ poly [(939-dihexylfluoren-257-diyl) -alt-co- (benzen-l? 4-diyl)] (PF-PH), poly [(9,9-dihexylfluoren-2,7-diyl ) -alt-co_ (9,9'-spirobifluoren-2,7_diyl)] (PF_SP), poly (N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine (poly-TPD ), Poly (N, N'_ bis (4-butylphenyl) -N? Nf-bis (phenyl) benzidine (poly-TPD-POSS), poly [(959-dihexylfluoren-2,7_diyl) _co- (N, N '_di (4-butylphenyl) -N, N'-diphenyl-4,4'-diyl-l, 4-diaminobenzene)] (TAB-PFH) " N? N, -pis (phenanthren-9-yl)- N3N'-diphenylbenzidine (PPB). The organic-inorganic light-emitting diode shown in FIG. 2 is manufactured as follows: Provide a substrate 110; form an anode electrode 120 on the substrate 110; form a hole pass 1236174; transport a layer 130 on the anode electrode 120; An electroluminescent layer 140 is formed on the hole transporting layer 130; and a first cathode electrode 161 and a second cathode electrode 162 are sequentially formed on the electroluminescent layer 140 to form a cathode electrode 160. According to the manufacturing of the organic-inorganic light-emitting diode described above, the anode electrode 120, the hole transport layer 130, the first cathode electrode 161, and the second cathode electrode 162 are formed using a conventional manufacturing method; The detailed manufacturing method of the electroluminescent layer 140 is as follows: ZnSe quantum dots coated with fatty acids or phospholipids and MEH-PPV, MEH-BP-PPV, PF, PF-BV-MEH, PF-DMOP, PFH, PFH-EC, PFH -MEH, PFO, PFOB, PF-PPV, PF-PH, PF-SP, poly-TPD, poly-TPD-POSS, TAB-PFH, PPB. The mixing method is to first dissolve the polymer at 10 mg / ml In the toluene solvent, the quantum dots are then blended with the polymer: quantum dot material at a weight ratio of 1 ·· 0, 1: 0_025, 1: 0.05, to form a mixed solution. And then spin-coating the mixed solution on the hole-transport layer 130, and the spin-coating method is to drop the aforementioned mixed liquid on the indium tin oxide transparent conductive glass in a glove box filled with nitrogen, and use spin-coating Cloth machine, spin-coating at a spin-coating speed of 4000 rpm for 20 seconds to prepare a polymer film in indium tin oxide transparent Electricity on glass. The bonded high molecular film is dried in a vacuum oven, and the vacuum degree of the vacuum oven is 10 to 3 torr. After the heat treatment at 70 ~ 80 ° C and 5 hours, the electroluminescent layer 140 is formed. [Embodiment 2] FIG. 5 is a structural diagram of an organic-inorganic light-emitting diode in Embodiment 2 of the present invention. The substrate 210, the anode electrode 220, the hole transport layer 230, and electroluminescence are in order from bottom to top. The layer 240, the electron transport layer 250, and the cathode electrode 260. The cathode electrode 260 may include one or more electrodes, for example, 11 1236174 is shown in the figure as the first cathode electrode 261 and the second cathode electrode 262; and a plurality of organic-inorganic composite quantum dots 243 are uniformly dispersed in the polymer 244. An electroluminescent layer 240 is formed. The organic-inorganic composite quantum dot 243 includes (inorganic) quantum dots 241 and an organic material 224, and the organic material 242 covers the surface of the quantum dot 241. According to the organic-inorganic light-emitting diode described above, since the organic-inorganic light-emitting diode emits light from below, the substrate 210 and the anode electrode 220 used must be transparent materials; in this embodiment, the substrate 210 is Glass substrate or plastic substrate, and organic light-emitting diodes made of plastic substrate will have the advantage of flexibility. The anode electrode 220 is indium tin oxide (ITO), indium tin oxide. Oxide is a conductive material and is commonly used in organic light emitting diodes. The cathode electrode 260 is a metal electrode, such as Ca, AgLi, LiF, Mg, A1, and a combination thereof. The hole transporting layer 230 on the anode electrode 220 is N, N'-di (naphthalen) -N, N'-diphenyl-benzidine (NPB), N, N'-bis (naphthalen-l-yl) -N, N'-bis (phenyl) benzidine (α-ΝΡΒ), N, N'-di (naphthalene-1 -yl) N, N5-diphenyl-9,9, -dimethyl-fluorene (DMFL-NPB), N, N '-di (naphthalene-l-yl) -N, N'-diphenyl-spiro (Spiro-NPB) ^ N5Nf-Bis- (3-methylphenyl) -N5Nf-bis- (phenyl) -benzidine (TPD), N, N'-bis surface (3-methylphenyl) -N, N'-bis- (phenyl) -spiro (Spiro-TPD), N, N'-bis- (3-methylphenyl) -N, N'-bis- ( phenyl) -9,9-diphenyl-fluorene (DMFL-TPD) ^ 1? 3-bis (carbazol-9-yl) -benzene (MCP), 1,3,5-tris (carbazol-9-yl) -benzene (TCP), N, N, N ', N'_tetrakis (naphth-l-yl) -benzidine (TNB) -poly (N-vinyl carbazole) (PVK). The electroluminescent layer 240 is the most important layer of the present invention, in which the quantum dots 241 are ZnX (X is selected from the group consisting of S, Se, Te, and a combination thereof), and the ZnX quantum dots can still be doped with other Element, such as transition element, halogen, or a combination thereof, to change the luminous efficiency and luminous wavelength of this quantum dot; 12 1236174 · > In addition, different quantum dot sizes also affect its luminous efficiency and luminous wavelength; The organic material 242 covering the surface of the quantum dot 241 is a fatty acid or a phospholipid; the quantum dot 241 and the organic material 242 constitute an organic-inorganic composite quantum dot 243. The organic-inorganic composite quantum dot 243 can be uniformly dispersed in the polymer 244 by an intermolecular force. This polymer 244 is a conductive polymer, and this conductive polymer is a light-emitting polymer or a common polymer, which is poly (2-mthoxy »5- (2f-ethylhexyloxy) -1? 4-phenylenevinylene) (MEH-PPV) , Poly [2-Methoxy-5- (2'-ethylhexyloxy) -l, 4-phenylenevinylene-co-4? 4f-bisphenylenevinylene] (MEH-BP-PPV) Λ poly [(9,9-dioctylfluoren-2? 7 -diyl) -co- (1,4-diphenylene-vinylene-2-methoxy-5- {2-ethy lhexyloxy} benzene)] (PF-BV-MEH), poly [(9,9-dioctylfluoren-2,7-diyl) -co- (2,5-dimethoxybenzen-l54-diyl)] (PF-DMOP), poly [(9,9-dihexylfluoren-2,7-diyl) -alt-co- (benzen-l, 4-diyl)] (PFH), poly [(959-dihexylfluoren-2? 7-diyl) -co- ( 9-ethylcarbazol-257-diyl)] (PFH-EC) 'poly [(959-dihexylfluoren-257-diyl) -alt-co- (2-methoxy-5- {2-ethylhexyloxy} phenylen-l54-diyl)] (PFH-MEH) > poly [(9,9-dioctylfluoren-2,7-diyl) (PFO), poly [(9,9-di-n-octylfluoren-2,7-diyl) -co- (l54 -vinylenephenylene)] (PF-PPV), poly [(9,9-dihexylfluoren-2,7-diyl) ㈣alt-co- (benzen-l, 4-diyl)] (PF-PH), poly [(939- dihexylfluoren-2? 7-diyl) -alt-co- (959f-spirobifluoren-257-di yl)] (PF-SP)-poly (N5Nf-bis (4-butylphenyl) -N? N? -bis (phenyl) benzidine (poly-TPD), poly (N, N'-bis (4-butylphenyl) _N, N '· bis (phenyl) benzidine (poly-TPD-POSS), poly [(9,9-dihexylfluoren-257-diyl ) -co- (N5Nf-di (4-butylphenyl) -N5Nf-diphe nyl-454? -diyl-154-diaminobenzene)] (TAB-PFH) 、 N, N'-pis 13 1236174 (phenanthren-9-yl) -N5N, -diphenylbenzi Dine (PPB) 〇The electron transport layer 250 on the electroluminescent layer 240 is tris- (8-hydroxyquinoline) aluminum (Alq3) " bis- (2-methyl-8-quinolinolate) -4- (phenylphenolato) -aluminium (BAlq3) ^ 2? 9-dimethyl-4? 7-diphenyl-l310-phenanthroline (BCP), 4,4, -bis (carbazol-9_yl) biphenyl (CBP), 3- (4-Biphenylyl) -4-phenyl -5-tert_butylphenyl-l, 2,4-triazole (TAZ) 〇 The organic-inorganic light-emitting diode shown in FIG. 5 is manufactured as follows: a substrate 210 is provided; an anode electrode 220 is formed on the substrate 210; Forming a hole transport layer 230 on the anode electrode 220; forming an electroluminescent layer 240 on the hole transport layer 230; forming an electron transport layer 250 on the electroluminescent layer 240; and forming a first cathode electrode 261 and The second cathode electrode 262 forms a cathode electrode 260 on the electron transport layer 250. The organic-inorganic light-emitting diodes described above are manufactured, in which the formation of the anode electrode 220, the hole transport layer 230, the electron transport layer 250, the first cathode electrode 261 and the second cathode electrode 262 is performed by a conventional manufacturing method; However, the detailed manufacturing method of the electroluminescent layer 240 featured in the present invention is as follows: ZnSe quantum dots coated with fatty acids or phospholipids and MEH-PPV, MEH-BP-PPV, PF, PF-BV-MEH, PF-DMOP, PFH, PFH-EC, PFH-MEH, PFO, PFOB, PF-PPV, PF-PH, PF-SP, poly-TPD, poly-TPD-POSS, TAB-PFH, PPB are mixed. The mixing method is to first mix the polymer with 10 mg / ml is dissolved in a toluene solvent, and the quantum dots are then mixed with the polymer: quantum dot material in a weight ratio of: 0, 1: 0.025, 1: 0.05 to form a mixture The mixed solution is spin-coated on the hole-transporting layer 230. The spin-coating method is to drop the mixed liquid on the hole-transporting layer 230 in a glove box filled with nitrogen and use spin-coating. Machine, spin coating 14 1236174 • »20 seconds' at a spin speed of 4000 rpm to prepare the polymer film in the hole Transport layer 23 (). The mined high-molecular-weight film is dried in a vacuum oven, and the vacuum degree of the vacuum supply box is ιθ3. After further heat treatment of 70 ~ stage and 5 hours, the electroluminescent layer 240 is formed. [Embodiment 3] FIG. 8 is a structural diagram of an organic-inorganic light-emitting diode in Embodiment 3 of the present invention. The substrate 31o, the anode electrode 32o, and the electroluminescent sound 34o, The electron transport layer 35 and the cathode electrode ⑽. The cathode electrode may include solid or more than one electrode, for example, the first cathode electrode 361 and the second cathode electrode 362 are included in the figure; and there are a plurality of organic-inorganic composite quantum dots. 'Electroluminescent layer 340 is formed, and this organic-inorganic composite electron dot 343 includes (inorganic) quantum dots 341 and organic material 324, and organic material 342 covers the surface of quantum dot 341. The organic-inorganic light-emitting diode described above is a light-emitting organic diode, so the substrate 31G used as the anode electrode needs to be made of bright materials. In this embodiment, the substrate 31G It is a glass substrate or a plastic substrate, and an organic light emitting diode made of the plastic substrate will have the advantage of flexibility. The anode electrode 320 is made of indium tin oxide (ITO, such as ITO). Surface tin oxide is a conductive material and is commonly used in organic light emitting diodes. The cathode electrode 360 is a metal electrode, such as LiF, buu, q, wow, α§, and combinations thereof. The electroluminescent layer 34 is the most important layer of the present invention, in which the quantum dots 341 are ZnX (X is selected from the group consisting of s, Se, Te and their combinations), and the ZnX quantum dots can still be doped. Miscellaneous other elements, such as transition elements, elements, or combinations thereof, to change the characteristics of the luminous efficiency and luminous wavelength of this quantum dot. In addition, different quantum dot sizes may also be expected to have their luminous efficiency and luminous wavelength. The organic material 342 on the surface of the quantum dot 341 is a fatty acid or phosphorus 15 1236174 lipid; the quantum dot 341 and the organic material 342 form an organic-inorganic composite quantum dot 343. The organic-inorganic composite quantum dot 343 can be uniformly dispersed in the polymer by an intermolecular force. In 344, the polymer 344 is a conductive polymer, and the conductive polymer is a light-emitting polymer or a co-polymer, and is poly (2-mthoxy-5- (2r-ethylhexyloxy) -1,4-phenylenevinylene) (MEH -PPV), poly [2-Methoxy-5- (2'-ethylhexyloxy) -l, 4-phenylenevinylene-co-434l-bisphenylenevinylene] (MEH-BP-PPV), poly [(9,9-dioctylfluoren-2, 7_diyl) -co- (l, 4-diphenylene-vinylene-2-methoxy-5- {2-ethylhexylo xy} benzene)] (PF-BV-MEH), poly [(9,9_dioctylfluoren-2,7-diyl) -co- (2,5-dimethoxybenzen-l? 4-diyl)] (PF-DMOP), poly [(9,9-dihexylfluoren-2,7-diyl) -alt-co- (benzen-l, 4-diyl)] (PFH), poly [(9,9-dihexylfluoren-2,7-diyl) -co -(9_ethylcarbazol_2,7-diyl)] (PFH-EC), poly [(9,9-dihexylfluoren-2,7-diyl) -al1 > co- (2_methoxy-5- {2-ethylhexyloxy} phenylen-l54-diyl )] (PFH-MEH) ^ poly [(9,9-dioctylfluoren-257-diyl) (PFO) 'poly [(959-di-n-octylfluoren-257-diyl) -co- (l? 4-vinylenephenylene) ] (PF-PPV), poly [(9,9- dihexylfluoren-2,7_diyl) -alt-co- (benzen-l, 4-diyl)] (PF-PH), poly [(9,9-dihexyl fluoren -2,7-diyl) -alt-co- (9,9'-spirobifluoren-2,7-di yl)] (PF-SP) 'poly (N5Nf-bis (4-butylphenyl) -N5N, -bis ( phenyl) benzidine (poly-TPD), poly (N, N'-bis (4-butylphenyl) _N, N'_bis (phenyl) benzidine (poly-TPD-POSS), poly [(9,9-dihexylfluoren-257 -diyl) -co- (N, Nf-di (4-butylphenyl) -N, Nf-diphe nyl-4,4'-diyl-l, 4-diaminobenzene)] (TAB-PFH) 、 N, N'- pis (phenanthren-9_yl) -N, N'-diphenylbenzidine (P PB). The electron transport layer 350 on the electroluminescent layer 240 is tris- (8-hydroxyquinoline) 16 1236174 aluminum (Alq3) 'bis- (2-methyl-8-quinolinolate) -4- (phenylphenolato) -aluminium (BAlq3), 2,9_dimethyl-4,7-diphenyl-1510-phenanthroline (BCP), 4,4'-bis (carbazol-9-yl) biphenyl (CBP) ^ 3- (4-Biphenylyl) -4-phenyl-5-tert -butylphenyl-l5254-triazole (TAZ). The organic-inorganic light-emitting diode shown in FIG. 8 is manufactured as follows: a substrate 310 is provided; an anode electrode 320 is formed on the substrate 310; an electroluminescent layer 340 is formed on the anode electrode 320; and an electron transport is formed. The layer 350 is on the electroluminescent layer 340; and a first cathode electrode 361 and a second cathode electrode 362 are sequentially formed on the electron transport layer 350 to form a cathode electrode 360. According to the manufacturing of the organic-inorganic light-emitting diode described above, the anode electrode 320, the electron transport layer 350, the first cathode electrode 361, and the second cathode electrode 362 are formed using a conventional manufacturing method; The detailed manufacturing method of the electroluminescent layer 340 is as follows: ZnSe quantum dots coated with organic materials and MEH-PPV, MEH-BP-PPV, PF, PF_BV-MEH, PF_DM0P, PFH, PFH_EC, PFH-MEH, PFO, PFOB, PF -PPV, PF-PH, PF-SP, poly-TPD, poly-TPD-POSS, TAB_PFH, PPB are mixed, and the concentration of this organic non-excited photodiode in this polymer is 0, 0.25, 0.5 mg / ml, the mixing method is to first dissolve the polymer at 10 mg / ml in toluene solvent, and then dissolve the quantum dots as the polymer: the quantum dot material is 1: 0, 1: 0.025, 1: 0. 05 weight It is blended with the polymer solution in the proportion to form a mixed solution. The mixed solution is spin-coated on the anode electrode 320. The spin coating method is to drop the aforementioned mixed liquid in a glove box filled with nitrogen. On the anode electrode 320 and spin-coated using a spin coater at a spin coating speed of 4000 rpm 20 seconds, to the preparation of the polymer film on the anode electrode 320. The coated polymer film is dried in a vacuum oven. The vacuum degree of the vacuum oven is 1 (T3 torr, and after 17 1236174 70 ~ 80 ° C and 5 hours heat treatment, the electroluminescent layer 340 is formed. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the following describes the preferred embodiments in detail with the accompanying drawings, as follows: [Embodiment 1] Please refer to Section 2 In the figure, the indium tin oxide transparent conductive glass 120 is cleaned first. The indium tin oxide transparent conductive glass 120 is carefully scrubbed with a special cleaning agent, and then sonicated at 50 ° C with a diluted special cleaning agent and deionized. Shake sequentially in water, isopropanol, deionized water, acetone, and isopropanol for 15 minutes, and then blow dry with nitrogen for backup. Then immerse the indium tin oxide transparent conductive glass 120 at 80 ° C in a volume ratio of 5: 1: 1 in ionized water: hydrogen peroxide: ammonium hydroxide solution for 40 minutes. Next, the hole transport material is mixed with toluene to form a 10 mg / ml hole transport solution; and then the organic light-emitting polymer material Mixed with toluene to form 5 mg / ml Organic light-emitting polymer solution; and then mixing the quantum dot material into the light-emitting polymer solution to form a light-emitting polymer: the light-emitting polymer with a weight ratio of quantum dot material of 1 ·· 〇, 1: 〇.〇25, 1: 0.05 and Quantum dot mixed solution. Next, the prepared hole transport solution and the mixed solution of luminescent polymer and quantum dot were purified with a syringe filter with a pore size of 0.45 μm, until no obvious particles were suspended in the solution. Under nitrogen-filled gloves The hole transport solution was dropped on the indium tin oxide transparent conductive glass 120 in the box, and spin-coated with a spin coater at a spin speed of 4000 rpm for 20 seconds to form a hole transport layer 130 transparent to the indium tin oxide. Conductive glass 120. The plated hole transport layer 130 is placed in a vacuum oven and annealed for 12 hours, with a vacuum of 10.3 torr and a temperature of 70 ° C. The light-emitting polymer is then mixed with quantum dots. The solution was plated with a light-emitting polymer layer 140 on the hole transporting layer by the spin coating step described above, and 18 1236174 was applied by the above drying step. ^ Annealed. The next steps were 0.5 and 1 nm / se, respectively. The calcium metal anion and silver protective layer 162 was produced by the evaporation rate of c. [Comparative Example 1] The structure and manufacturing method of the organic light emitting diode of this example, except for the absence of the organic-inorganic composite quantum dot 143, the rest of the structure The manufacturing method is the same as that of Example 1. Next, the efficiency of the organic-inorganic light-emitting diodes of Example 1 and Comparative Example i will be measured.

第3圖為具有機無機複合量子點之有機無機發光二極體與 不具有機無機複合量子點之有機發光二極體的電壓電流圖。圖 中顯示在相同電壓下,具有機無機複合量子點之有機無機發: 二極體之電流大於比不具有機無機複合量子點之有機發^二 極體之電流,此與量子點表面於低電流密度時,形成電^與^ 洞之載子陷阱(carrier trap),並於量子點表面造成一局部電場 效應所致,此電場效應可增進電荷載子注入速率,導致一較Z 之電子/電洞覆合(recombination)比例,也使得具有機無= 合兩子點之有機發光二極體具有較佳之發光效能。 第4圖為具有機無機複合量子點之有機無機發光二極體與 不具有機無機複合量子點之有機發光二極體的電壓流明圖。圖 中顯示在相同電壓下,具有機無機複合量子點之有機無機發: 二極體之流明值大於比不具有機無機複合量子點之有機發光 二極體之流明值’故此兩發光二極體處於相同電壓時,本發明 之有機無機發光二極體的發光效率大於習知之有機發光^極 體的發光效率,·此外,實施例丨之有機無機發光二極體之最大 19 1236174 流明值為2200 cd/m2左右,而比較實施例1之有機發光二極體 之最大流明值只約為1200 cd/m2左右,差了 l〇〇〇cd/m2左右, 表示本發明之發光二極體發光效能確實比習知之發光二極體 效能更好。 【實施例2】 請參閱第5圖,首先進行銦錫氧化物透明導電玻璃220的清 潔,先將銦錫氧化物透明導電玻璃220以專用清潔劑仔細搓洗, 再於50°C之超音波振盪於稀釋之專用清潔劑、去離子水、異丙醇、 去離子水、丙酮、異丙醇中依序各震盪15分鐘,再以氮氣吹乾備 用。再將銦錫氧化物透明導電玻璃220浸入80°C之體積比例為5 : 1 : 1的離子水:過氧化氫:氫氧化銨的溶液中40分鐘。 接下來,將電洞傳輸材料與甲苯混合,形成10 mg/ml之電洞 傳輸溶液;再將有機發光高分子材料與曱苯混合,形成5 mg/ml 之有機發光高分子溶液;然後再將量子點材料混入發光高分子溶 液中,形成發光高分子:量子點材料重量比為1 : 〇、1 : 〇.〇25、1 : 0.05之發光高分子與量子點混合溶液。接著將配製好的電洞傳輸 溶液以及發光高分子與量子點混合溶液以0.45 μιη孔徑的針筒過 濾器純化,至溶液無明顯顆粒懸浮其中為止。 在充滿氮氣之手套箱内將電洞傳輸溶液滴於銦錫氧化物透明 導電玻璃220上,並利用旋轉塗佈機以4000 rpm之旋塗轉速旋塗 20秒,即形成電洞傳輸層230於銦錫氧化物透明導電玻璃上。將 鍍好的電洞傳輸層置230於真空烘箱裡進行退火處理12小時,其 真空度為1CT3 torr且溫度為70°C。 接著將發光高分子與量子點混合溶液利用上述之旋塗步驟鍍 製發光高分子層240於電洞傳輸層上,並利用上述之烘乾步驟施 20 1236174 以退火處理。 接下來利用真空熱蒸鍍裝置將電子傳輪材料以〇1 nm /sec之 蒸鑛速率㈣於發光高分子層上㈣成電子傳輸層㈣:最後再分 別以0.5及1 nm /sec之蒸鐘速率製作_金屬陰極261與銀保護層 262 〇 / 【比較實施例2】 此實施例之有機發光二極體之結構及製造方法,除無有機 無機複合量子點243存在外,其餘之結構與製造方法與實施例 2相同。 接下來將測量實施例2與比較實施例2之有機無機發光二 極體的效能。 第6圖為具有機無機複合量子點之有機無機發光二極體與 不具有機無機複合量子點之有機發光二極體的電_明圖。圖 甲顯示在相同電壓下,具有機無機複合量子點之有機益機發光 二極體之流明值大於比不纟有機無機複合量子點之有機發光 二極體之流明值’故此兩發光二極體處於相同電料,本發明 之有機無機發光二極體的發光效率大於習知之有機發光二極 體的發光效率’·此外’實施例2之有機無機發光二極體之;大 流明值為4000 cd/m2左右’而比較實施例2之有機發光二極體 之最大流明值只約為1000 cd/m2左右,差了 3〇〇〇cd/m2左右, 表示本發明之發光二極體發光效能確實比習知之發光二極體 效能更好。 _ 第7圖為具有機無機複合量子點之有機無機發光二極體與 不具有機無機複合量子點之有機發光二極體的级 圖,此圖顯示PPV與量子點光譜之加成作用。 光“ 1236174 【實施例3】 凊芩閱第8圖,首先進行銦錫氧化物透明導電玻璃32〇的清 /糸,先將銦錫氧化物透明導電破璃32〇以專用清潔劑仔細搓洗, 再於50 C之超音波振盪於稀釋之專用清潔劑、去離子水、異丙醇、 去離子水、丙酮、異丙醇中依序各震I 15分鐘,再以氮氣吹乾備 用。再將銦錫氧化物透明導電玻璃32〇浸入8〇。〇之體積比例為5 : 1 : 1的離子水:過氧化氫:氳氧化銨的溶液中40分鐘。 接下來,將有機發光高分子材料與甲苯混合,形成5 mg/ml2 有機發光高分子溶液;然後再將量子點材料混入發光高分子溶液 中’形成發光高分子:量子點材料重量比為丨:〇、丨:〇 〇25、Ί : 0_05之發光冋为子與i子點混合溶液。接著將配製好的發光高分. 子與ϊ子點混合溶液以0.45 μιη孔徑的針筒過濾器純化,至溶液無 明顯顆粒懸浮其中為止。 ^ 在充滿氮氣之手套箱内將發光高分子與量子點混合溶液滴於 銦錫氧化物透明導電玻璃320上,並利用旋轉塗佈機以4〇〇〇卬㈤ 之旋塗轉速旋塗20秒,即形成發光高分子層340於銦錫氧化物透 明導電玻璃320上。將鍍好的發光高分子層34〇置於真空烘箱裡 進行退火處理12小時,其真空度為i〇-3 torr且溫度為7〇它。 接下來利用真空熱蒸鍍裝置將電子傳輸材料以〇」nm /sec之 蒸鍍速率鍍製於發光高分子層350上以形成電子傳輸層360;最後 再分別以0.5及1 nm/sec之蒸鑛速率製作妈金屬陰極361與銀保 護層362。 第9圖為不同比例有機無機複合量子點之有機無機發光二 極體的電壓流明圖,此有機無機複合量子點於高分子中所佔的 22 « i 1236174 比例分別為5 mg/mh ! 〇叫/如、i 5邮細與2〇 mg/mi。圖中 顯示在相同電壓下,濃度越高的有機無機複合量子點的存在, 其流明值越高,表示其發光效率越好,但在濃度由Μ叫編 ^ 2〇 mg/ml後,流明值反而降低,此現象可利用奈米理論中的 濃度消光(concentration quenching)解釋。 第10圖為不同比例有機無機複合量子點之有機無機發光二 極體的電流密度流明圖,此有機無機複合量子點於高分子中所 佔的比例分別為 5 mg/m卜 10 mg/nd、15 mg/ml 與 2〇 mg/ml。 圖中顯示在相同電流密度下,濃度越高的有機無機複合量子點 的存在,其流明值越高,表示其發光效率越好,但在濃度由1〇 mg/ml至15mg/ml後,流明值反而降低,此現象可利用奈米理 論中的濃度消光(concentration quenching)解釋。 · 【比較實施例3】 此實施例之有機發光二極體之結構及製造方法,除無有機 無機複合量子點343存在外,其餘之結構與製造方法與實施例 3相同。 接下來將測罝貫施例3與比較貫施例3之有機無機發光二 極體的效能。 第11圖為具有機無機複合量子點之有機無機發光二極體與 不具量子點之有機發光二極體的電壓流明圖。圖中顯示在相同 電壓下,具有機無機複合量子點之有機無機發光二極體之流明 值大於比不具有機無機複合量子點之有機發光二極體之流明 值,故此兩發光二極體處於相同電壓時,本發明之有機無機發 光二極體的發光效率大於習知之有機發光二極體的發光效 率;此外,在實施例3中之有機無機發光二極體只要添加濃度 23 1236174 為0.25 mg/mi有機無機複合量子點於高分子中,其流明值(約 ^ 6500 cd/m2)就會高於比較實施例3之無添加有機無機複合 量子點的有機發光二極體,所以只要低濃度的添加就會產生^ 好=效用;〃若有機無機複合量子點的添加濃度達i5如時 (請參閱第9圖)’其流明值即達85〇〇 cd/m2以上,與無添加 有機無機複合量子點之習知有機發光二極體之流明值二; 2000 cd/m2 以上。 第12圖為具有機無機複合量子點之有機無機發光二極體與 不具量子點之有機發光二極體的電流密度流明圖。圖中顯示在 相同電流錢下,具有機無機複合量子點之有機無機發光二㉟ 體之流明值大於比不具有機無機複合量子點之有機發光二極 體之流明值’故此兩發光二極體處於相同電流密度時,本發明_ 之有機無機發光二極體的發光效率大於習知之有機發光二極 體的發光效率;此外,在實施例3中之有機無機發光二極體只 要添加濃度為0.25 mg/ml有機無機複合量子點於高分子甲,其 流明值(約為6500 cd/m2)就會高於比較實施例3之無添加^ 機無機複合量子點的有機發光二極體,所以只要低濃度的添加 就會產生更好的效用;若有機無機複合量子點的添加濃度達b mg/ml枯(凊餐閱第1〇圖),其流明值即達cd/m2以上,鲁孀 與無添加有機無機複合量子點之習知有機發光二極體之流明 值相距2000 cd/m2以上。 雖然本發明已揭露較佳實施例如上,然其並非用以限定本 =明,任何熟習此技藝者,在不脫離本發明之精神和範圍内, 當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之 申請專利範圍所界定者為準。 24 1236174 【圖式簡單說明】 二極體之結構圖。 1與實施例1之有機無機發光 第1圖為習知之有機發光 第2圖為本發明實施方式 極體之結構圖。 <有機無機發光 之有機無機發光 第3圖為本發明實施例1與比較實施例 二極體之電壓電流圖。 第4圖為本發明實施例1與比較實施例 二極體之電壓流明圖。 第5圖為本發明實施方式2與實施例2之有機無機發光 極體之結構圖。 ' 第6圖為本發明實施例2與比較實施例2之有機無機發光 二極體之電壓流明圖。 ^ 第7圖為本發明實施例2與比較實施例2之有機無機發光 二極體之電致發光光譜圖。 第8圖為本發明實施方式3與實施例3之有機無機發光二 極體之結構圖。 第9圖為本發明實施例3之有機無機發光二極體之電壓漭 明圖。 、Fig. 3 is a voltage-current diagram of an organic-inorganic light-emitting diode with an organic-inorganic composite quantum dot and an organic-light-emitting diode without an organic-inorganic composite quantum dot. The figure shows the organic-inorganic hair with organic-inorganic composite quantum dots at the same voltage: the current of the diode is greater than the current of the organic hair-free diode with no organic-inorganic composite quantum dots, which is lower than the surface of the quantum dot. At current density, carrier traps of holes ^ and ^ are formed, and a local electric field effect is caused on the surface of the quantum dots. This electric field effect can increase the charge carrier injection rate, resulting in an electron / The hole recombination ratio also makes organic light-emitting diodes with organic matter = combined dots have better luminous efficacy. Fig. 4 is a voltage lumens diagram of an organic-inorganic light-emitting diode with an organic-inorganic composite quantum dot and an organic-light-emitting diode without an organic-inorganic composite quantum dot. The figure shows the organic-inorganic hair with organic-inorganic composite quantum dots at the same voltage: the lumen value of the diode is greater than the lumen value of organic light-emitting diodes without organic-inorganic composite quantum dots, so the two light-emitting diodes At the same voltage, the light-emitting efficiency of the organic-inorganic light-emitting diode of the present invention is greater than the light-emitting efficiency of the conventional organic-light-emitting diode. In addition, the maximum value of the organic-inorganic light-emitting diode of Example 丨 is 19 1236174 lumens of 2200. cd / m2, and the maximum lumen value of the organic light-emitting diode of Comparative Example 1 is only about 1200 cd / m2, which is about 100 cd / m2, which indicates that the light-emitting diode of the present invention has luminous efficacy. It is indeed better than the known light-emitting diode. [Example 2] Please refer to FIG. 5. First, the indium tin oxide transparent conductive glass 220 is cleaned. The indium tin oxide transparent conductive glass 220 is carefully scrubbed with a special cleaning agent, and then ultrasonically oscillated at 50 ° C. Shake the diluted special detergent, deionized water, isopropanol, deionized water, acetone, and isopropanol for 15 minutes in sequence, and then blow dry with nitrogen for later use. Then, the indium tin oxide transparent conductive glass 220 was immersed in a solution of ion water: hydrogen peroxide: ammonium hydroxide with a volume ratio of 5: 1: 1 at 80 ° C for 40 minutes. Next, the hole-transport material was mixed with toluene to form a 10 mg / ml hole-transport solution; the organic light-emitting polymer material was mixed with toluene to form a 5 mg / ml organic light-emitting polymer solution; and then The quantum dot material is mixed into the light emitting polymer solution to form a light emitting polymer: a light emitting polymer and quantum dot mixed solution having a weight ratio of the quantum dot material of 1: 〇, 1: 0.02, and 1: 0.05. Then, the prepared hole transport solution and the mixed solution of light-emitting polymer and quantum dots were purified with a syringe filter with a pore size of 0.45 μm, until no obvious particles were suspended in the solution. The hole transporting solution was dropped on the indium tin oxide transparent conductive glass 220 in a glove box filled with nitrogen, and spin-coated with a spin coater at a spin coating speed of 4000 rpm for 20 seconds to form a hole transporting layer 230 on Indium tin oxide on transparent conductive glass. The plated hole transport layer was placed in a vacuum oven and annealed for 230 hours. The vacuum degree was 1CT3 torr and the temperature was 70 ° C. Next, the light-emitting polymer and quantum dot mixed solution is plated on the hole-transporting layer by the above-mentioned spin coating step, and the above-mentioned drying step is applied to 20 1236174 for annealing treatment. Next, a vacuum thermal evaporation device is used to deposit the electron transfer wheel material on the light-emitting polymer layer at an evaporation rate of 0.1 nm / sec to form an electron transport layer. Finally, the evaporation clock is 0.5 and 1 nm / sec, respectively. Rate production_Metal cathode 261 and silver protective layer 262 〇 / [Comparative Example 2] The structure and manufacturing method of the organic light emitting diode of this example, except for the absence of organic-inorganic composite quantum dots 243, the rest of the structure and manufacturing The method is the same as in Example 2. Next, the efficiency of the organic-inorganic light-emitting diodes of Example 2 and Comparative Example 2 will be measured. Fig. 6 is an electrical diagram of an organic-inorganic light-emitting diode with an organic-inorganic composite quantum dot and an organic-light-emitting diode without an organic-inorganic composite quantum dot. Figure A shows that at the same voltage, the lumen value of organic light-emitting diodes with organic-inorganic composite quantum dots is greater than the lumen value of organic light-emitting diodes that are less than organic-inorganic composite quantum dots. The light-emitting efficiency of the organic-inorganic light-emitting diode of the present invention is greater than the light-emitting efficiency of the conventional organic-light-emitting diode of the same electric material. In addition, the organic-inorganic light-emitting diode of Example 2 has a large lumen value of 4000 cd / m2 'and the maximum lumen value of the organic light-emitting diode of Comparative Example 2 is only about 1000 cd / m2, which is about 3,000 cd / m2 worse, indicating that the light-emitting diode of the present invention has a real luminous efficacy. Better performance than conventional light-emitting diodes. _ Figure 7 is a level diagram of organic-inorganic light-emitting diodes with organic-inorganic composite quantum dots and organic-light-emitting diodes without organic-inorganic composite quantum dots. This figure shows the additive effect of PPV and quantum dot spectra. Light "1236174 [Example 3] As shown in Fig. 8, first perform cleaning / cleaning of the indium tin oxide transparent conductive glass 32o. First, carefully scrub the indium tin oxide transparent conductive glass 32o with a special cleaning agent. Then, sonicate at 50 C in a diluted special detergent, deionized water, isopropyl alcohol, deionized water, acetone, and isopropyl alcohol for 15 minutes in sequence, and then blow dry with nitrogen. The indium tin oxide transparent conductive glass 32 was immersed in a solution having a volume ratio of 5: 1 to 5: 1: 1 in an ionized water: hydrogen peroxide: rhenium ammonium oxide solution for 40 minutes. Next, the organic light-emitting polymer material and Toluene was mixed to form a 5 mg / ml2 organic light-emitting polymer solution; then the quantum dot material was mixed into the light-emitting polymer solution to form a light-emitting polymer: quantum dot material weight ratio of 丨: 〇, 丨: 〇〇25, Ί: 0_05 is a mixed solution of ions and i-dots. Then the prepared luminescent high-score mixture solution is purified with a syringe filter with a pore size of 0.45 μm, until no obvious particles are suspended in the solution. ^ In the hands full of nitrogen The mixed solution of the light-emitting polymer and quantum dots was dropped on the indium tin oxide transparent conductive glass 320 in the box, and spin-coated with a spin coating machine at a spin-coating speed of 4,000 Å for 20 seconds to form a light-emitting polymer. The layer 340 is on the indium tin oxide transparent conductive glass 320. The plated light-emitting polymer layer 34o is annealed in a vacuum oven for 12 hours, and its vacuum degree is i0-3 torr and the temperature is 70o. Next, a vacuum thermal evaporation device was used to deposit an electron-transporting material on the light-emitting polymer layer 350 at a deposition rate of 0 nm / sec to form an electron-transporting layer 360; and finally, the vapor-transmission was performed at 0.5 and 1 nm / sec. Mine metal cathode 361 and silver protective layer 362 are made. Figure 9 is a voltage lumens diagram of organic-inorganic light-emitting diodes with organic-inorganic composite quantum dots in different proportions. The proportion of this organic-inorganic composite quantum dot in the polymer 22 «i 1236174 is 5 mg / mh! 〇Call / Such as, i 5 post and 20 mg / mi. The figure shows that at the same voltage, the higher the concentration of the organic-inorganic composite quantum dots, the higher the lumens value, the better the luminous efficiency. However, after the concentration is edited by M ^^ 20mg / ml, the lumens value Instead, this phenomenon can be explained by concentration quenching in nano theory. Figure 10 shows the current density lumens of organic-inorganic light-emitting diodes with different ratios of organic-inorganic composite quantum dots. The proportion of this organic-inorganic composite quantum dot in the polymer is 5 mg / m, 10 mg / nd, 15 mg / ml and 20 mg / ml. The figure shows that under the same current density, the higher the concentration of the organic-inorganic composite quantum dots, the higher the lumen value, which indicates that the luminous efficiency is better, but after the concentration is from 10 mg / ml to 15 mg / ml, the lumen The value decreases instead, and this phenomenon can be explained by concentration quenching in nano theory. [Comparative Example 3] The structure and manufacturing method of the organic light emitting diode of this example are the same as those of Example 3 except that no organic-inorganic composite quantum dot 343 exists. Next, the efficiency of the organic-inorganic light-emitting diode of Example 3 and Comparative Example 3 will be measured. Fig. 11 is a voltage lumens diagram of an organic-inorganic light-emitting diode with an organic-inorganic composite quantum dot and an organic-light-emitting diode without a quantum dot. The figure shows that at the same voltage, the lumens of organic-inorganic light-emitting diodes with organic-inorganic composite quantum dots are greater than the lumens of organic-light-emitting diodes without organic-inorganic composite quantum dots, so the two light-emitting diodes are at At the same voltage, the light-emitting efficiency of the organic-inorganic light-emitting diode of the present invention is greater than the light-emitting efficiency of the conventional organic-light-emitting diode; in addition, the organic-inorganic light-emitting diode in Example 3 only needs to add a concentration of 23 1236174 to 0.25 mg / mi organic-inorganic composite quantum dots in the polymer, the lumen value (about ^ 6500 cd / m2) will be higher than that of the organic light-emitting diode without the addition of organic-inorganic composite quantum dots in Comparative Example 3, so as long as the concentration is low ^ Good = effectiveness; 〃If the concentration of organic-inorganic composite quantum dots reaches i5 as usual (see Figure 9), its lumen value will be more than 8500cd / m2, and no added organic-inorganic Luminescence value of conventional organic light-emitting diodes of compound quantum dots is two; 2000 cd / m2 or more. Fig. 12 is a current density lumen diagram of an organic-inorganic light-emitting diode with an organic-inorganic composite quantum dot and an organic-light-emitting diode without a quantum dot. The figure shows that under the same current money, the lumen value of organic-inorganic light-emitting diodes with organic-inorganic composite quantum dots is greater than the lumen value of organic light-emitting diodes without organic-inorganic composite quantum dots. At the same current density, the luminous efficiency of the organic-inorganic light-emitting diode of the present invention is greater than that of the conventional organic light-emitting diode; in addition, the organic-inorganic light-emitting diode in Example 3 only needs to be added at a concentration of 0.25 mg / ml organic-inorganic composite quantum dots in polymer A, the lumen value (approximately 6500 cd / m2) will be higher than that of organic light-emitting diodes without organic inorganic composite quantum dots in Comparative Example 3, so as long as Adding a low concentration will produce a better effect; if the concentration of the organic-inorganic composite quantum dots reaches b mg / ml withered (see Figure 10), the lumen value will be above cd / m2. The conventional organic light-emitting diodes without the addition of organic-inorganic composite quantum dots have a lumen value of 2000 cd / m2 or more. Although the present invention has disclosed the preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be determined by the scope of the attached patent application. 24 1236174 [Schematic description of the diagram] Structure diagram of the diode. Organic and Inorganic Luminescence of 1 and Example 1 FIG. 1 is a conventional organic light emission FIG. 2 is a structural diagram of a polar body according to an embodiment of the present invention. < Organic-Inorganic Luminescence, Organic-Inorganic Luminescence, Fig. 3 is a voltage-current diagram of a diode of Example 1 and Comparative Example of the present invention. Fig. 4 is a graph of voltage lumens of the diodes of Example 1 and Comparative Example of the present invention. Fig. 5 is a structural diagram of organic-inorganic light-emitting diodes according to Embodiments 2 and 2 of the present invention. 'Figure 6 is a voltage lumens diagram of the organic-inorganic light-emitting diode of Example 2 and Comparative Example 2 of the present invention. ^ Figure 7 is an electroluminescence spectrum diagram of the organic-inorganic light-emitting diode of Example 2 and Comparative Example 2 of the present invention. Fig. 8 is a structural diagram of organic-inorganic light-emitting diodes according to Embodiments 3 and 3 of the present invention. FIG. 9 is a voltage diagram of the organic-inorganic light-emitting diode according to Embodiment 3 of the present invention. ,

第10圖為本發明實施例3之有機無機發光二極體之電流穷 度流明圖。 μ山 第11圖為本發明實施例3與比較實施例3之有機無機發光 二極體之電壓流明圖。Fig. 10 is a current lumens diagram of the organic-inorganic light emitting diode according to the third embodiment of the present invention. Fig. 11 is a graph of the voltage lumens of the organic-inorganic light-emitting diodes of Example 3 and Comparative Example 3 of the present invention.

第12圖為本發明實施例3與比較實施例3之有機無機發光 二極體之電流密度流明圖。 X 【符號說明】 25 1236174 10、110、210、310〜基材 20、120、220、320〜陽極電極 30、130、230〜電洞傳輸層 3 1〜電洞 40、140、240、340〜電致發光層 141、 241、341〜量子點 142、 242、342〜有機材料 143、 243、343〜有機無機複合量子點 144、 244、344〜高分子 50、250、350〜電子傳輸層 釀飞 51〜電子 60、160、260、360〜陰極電極 161、 261、361〜第一陰極電極 · 162、 262、362〜第二陰極電極Fig. 12 is a current density lumens diagram of the organic-inorganic light-emitting diode of Example 3 and Comparative Example 3 of the present invention. X [Symbol description] 25 1236174 10, 110, 210, 310 ~ substrate 20, 120, 220, 320 ~ anode electrode 30, 130, 230 ~ hole transport layer 3 1 ~ hole 40, 140, 240, 340 ~ Electroluminescent layers 141, 241, 341 to quantum dots 142, 242, 342 to organic materials 143, 243, 343 to organic-inorganic composite quantum dots 144, 244, 344 to polymers 50, 250, 350 to electron transport layers 51 ~ Electronics 60, 160, 260, 360 ~ Cathode electrodes 161, 261, 361 ~ First cathode electrode 162, 262, 362 ~ Second cathode electrode

2626

Claims (1)

9 1236174 拾、申請專利範圍·· 1.一種有機無機發光二極體之結構,包括·· 一基材; 一第一電極位於上述基材上; 、> 一有機無機發光層位於上述第一電極上,且此有機無機發 光層包含複數個有機無機複合量子點分散於一高分子中,且每 一有機無機複合量子點包括一 Znx (x係擇自於s、Se、化與 …且口物所組成之族群中)量子點與—有機分子包覆該量子點 表面;以及 电蚀位於上述有π巧工。2·如申請專利範圍第丨項所述之有機無機發光二極體之名 1其中該基材為透明基材。 3·如申請專·圍第2項所述之有機無機發光二極體之矣 /、中該透明基材為玻璃基材或塑膠基材。 申t專利範圍第1項所述之有機無機發光二極體之駕 /、中該第一電極為透明電極。 相範圍第4項所述之有機無機發光二極體之結 -r該弟一電極為銦錫氧化物(汀〇 )。 1如中申4專:範圍第1項所述之有機無機發光二極體之結 其中该第二電極為金屬電極。 圍第6項所述之有機無機發光二極體之結 /、Τ η亥金屬電極係擇自於 組合物所組成之族群中。 1 g、Ca、A:l、Ag與其 8·如申請專利範圍第 構,豆中哕Ζηχ胃 、述之有機無機發光二極體之結 稱,、甲4 znXS子點尚摻雜苴 9·如申請專利範圍第8項 古 、逃之有機無機發光二極體之結 構 構 構 構 構 構 27 1236174 構’其中該其它元素為過渡元素、由素或其組合。 10·如申請專利範圍第1項所述之有機無機發光二極體之 結構,其中該有機分子為脂肪酸或磷脂。 11·如申請專利範圍第1項所述之有機無機發光二極體之 結構,其中該高分子為導電高分子。 12·如申請專利範圍第11項所述之有機無機發光二極體之 結構,其中該導電高分子為發光高分子或共軛高分子。 13.如申請專利範圍第11項所述之有機無機發光二極體之 結構’其中該導電高分子為卩〇1乂(2-1111:11〇\;7-5-(2’-61:11;71116171〇叉7)-l,4_phenylenevinylene) ( MEH-PPV)、poly[2-Methoxy-5_(2丨-ethylhexyloxy)-l ?4-phenylenevinylene-c 〇-454 f-bisphenylene viny lene] ( MEH-BP-PPV )、poly[(9,9-dioctylfluoren_2,7_diyl)-co-(1,4-diphenylene-vinylene-2-methoxy-5- {2-ethylhexyloxy}benze ne)] ( PF-BV-MEH) ^ poly[(959-dioctylfluoren-2?7-diyl)-co-(2,5-dimethoxybenzen-l54-diyl)] ( PF-DMOP) 、p〇ly[(9,9-dihexylfluoren-257-diyl)-alt-co-(benzen-l54-diyl)]( PFH ) ^ poly[( 959-dihexylfluoren-257-diyl)-co-(9-ethylcarbazol-2,7-diyl)]( PFH-EC )、poly[(9,9-dihexylfluoren_2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy}phenylen-l54-diyl)]( PFH-MEH) > poly[(9,9-dioctylfluoren-2,7-diyl)( PFO )、poly[(959-di-n-octylfluoren-2,7-diyl)-co-(l ,4-vinylenephenylene)] ( PF-PPV ) 、poly[(9,9- dihexylfluoren-257-diyl)-alt-co-(benzen-l ?4-diyl)]( PF-PH ) - poly [(939-dihexylfluoren-257-diyl)-alt-co-(9?9f-spirobifluoren-2?7-di yl)] ( PF-SP ) ^ poly(N5N,-bis(4-butylphenyl)-N?Nf-bis(phenyl) benzidine (poly-TPD)、poly(N,N’_bis(4-butylphenyl)_N,N’-bis (phenyl)benzidine ( poly-TPD-POSS ) ' poly[(9)9-dihexylfluoren- 28 1236174 2?7-diyl)-co-(N5N,-di(4-butylphenyl)-N?N,-diphenyl-4?4'-diyl-1 ?4 -diaminobenzene)]( TAB-PFH)或 N5N’-pis(phenantliren-9-yl),N, N'-diphenylbenzidine ( PPB ) o 14.如申請專利範圍第1項所述之有機無機發光二極體之 結構,尚包括: 一電洞傳輸層位於該第一電極上;以及 一電子傳輸層位於該有機無機發光層上。 15.如申請專利範圍第14項所述之有機無機發光二極體之 結構,其中該電洞傳輸層為队>1’-(11(11&卩]11;]1&1611)->1,>1’-(11卩116]171-benzidine ( NPB )、N,N’-bis(naphtlialen-l-yl)-N,N’-bis(phenyl) benzidine ( α_ΝΡΒ)、N,N’-di(naphthalene-l_yl)N,N’-diphenyl,9, 95-dimethyl-fluorene ( DMFL-NPB) - N5N5-di(naphthalene-1-yl) -N,N’-diphenyl-spiro ( Spiro-NPB)、N,N’-Bis-(3-methylphenyl) "N3N,-bis-(phenyl)-benzidine ( TPD)^ N?N5-bis-(3-methylphenyl) -N,N’-bis-(phenyl)-spiro(Spiro-TPD)、N,N’-bis-(3-methylphenyl)-N3N,-bis-(phenyl)-939-diphenyl-fluorene ( DMFL-TPD ) 、l,3-bis(carbazol-9-yl)-benzene ( MCP )、1,3,5-tris9 1236174 Patent application scope 1. Structure of an organic-inorganic light-emitting diode, including a substrate; a first electrode on the substrate; and an organic-inorganic light-emitting layer on the first On the electrode, and the organic-inorganic light-emitting layer includes a plurality of organic-inorganic composite quantum dots dispersed in a polymer, and each organic-inorganic composite quantum dot includes a Znx (x system is selected from s, Se, chemical and ... In the group of objects) quantum dots and-organic molecules cover the surface of the quantum dots; 2. The name of the organic-inorganic light-emitting diode as described in item 丨 of the scope of application patents 1 wherein the substrate is a transparent substrate. 3. The organic-inorganic light-emitting diode described in item 2 of the application, and the transparent substrate is a glass substrate or a plastic substrate. The first electrode of the organic-inorganic light-emitting diode described in claim 1 of the patent scope is a transparent electrode. The junction of the organic-inorganic light-emitting diode according to item 4 of the phase range -r The first electrode is indium tin oxide (tingo). 1 The junction of the organic-inorganic light-emitting diode as described in the first item of the scope of Zhongshen 4: wherein the second electrode is a metal electrode. The organic-inorganic light-emitting diodes described in item 6 /, and the TnH metal electrode are selected from the group consisting of the composition. 1 g, Ca, A: 1, Ag, and 8 · As stated in the scope of the patent application, the 哕 Zηχ stomach in beans, the organic-inorganic light-emitting diode described above, and 4 znXS sub-dots are still doped with 苴 9 · For example, the scope of application for the patent No. 8 ancient and fugitive organic inorganic light-emitting diode structure is 1212174174, where the other element is a transition element, element or combination thereof. 10. The structure of the organic-inorganic light-emitting diode according to item 1 of the scope of the patent application, wherein the organic molecule is a fatty acid or a phospholipid. 11. The structure of the organic-inorganic light-emitting diode according to item 1 of the scope of the patent application, wherein the polymer is a conductive polymer. 12. The structure of the organic-inorganic light-emitting diode according to item 11 in the scope of the patent application, wherein the conductive polymer is a light-emitting polymer or a conjugated polymer. 13. The structure of the organic-inorganic light-emitting diode described in item 11 of the scope of the patent application, wherein the conductive polymer is 卩 〇1 乂 (2-1111: 11〇 \; 7-5- (2'-61: 11; 711116171〇 Fork 7) -l, 4_phenylenevinylene) (MEH-PPV), poly [2-Methoxy-5_ (2 丨 -ethylhexyloxy) -l? 4-phenylenevinylene-c 〇-454 f-bisphenylene viny lene] (MEH -BP-PPV), poly [(9,9-dioctylfluoren_2,7_diyl) -co- (1,4-diphenylene-vinylene-2-methoxy-5- {2-ethylhexyloxy} benze ne)] (PF-BV-MEH ) ^ poly [(959-dioctylfluoren-2? 7-diyl) -co- (2,5-dimethoxybenzen-l54-diyl)] (PF-DMOP), poll [(9,9-dihexylfluoren-257-diyl ) -alt-co- (benzen-l54-diyl)] (PFH) ^ poly [(959-dihexylfluoren-257-diyl) -co- (9-ethylcarbazol-2,7-diyl)] (PFH-EC), poly [(9,9-dihexylfluoren_2,7-diyl) -alt-co- (2-methoxy-5- {2-ethylhexyloxy} phenylen-l54-diyl)] (PFH-MEH) > poly [(9,9 -dioctylfluoren-2,7-diyl) (PFO), poly [(959-di-n-octylfluoren-2,7-diyl) -co- (l, 4-vinylenephenylene)] (PF-PPV), poly [( 9,9- dihexylfluoren-257-diyl) -alt-co- (benzen-l? 4-diyl)] (PF-PH)-poly [(939-dihex ylfluoren-257-diyl) -alt-co- (9? 9f-spirobifluoren-2? 7-di yl)) (PF-SP) ^ poly (N5N, -bis (4-butylphenyl) -N? Nf-bis ( phenyl) benzidine (poly-TPD), poly (N, N'_bis (4-butylphenyl) _N, N'-bis (phenyl) benzidine (poly-TPD-POSS)) 'poly [(9) 9-dihexylfluoren- 28 1236174 2? 7-diyl) -co- (N5N, -di (4-butylphenyl) -N? N, -diphenyl-4? 4'-diyl-1? 4 -diaminobenzene)) (TAB-PFH) or N5N'- pis (phenantliren-9-yl), N, N'-diphenylbenzidine (PPB) o 14. The structure of the organic-inorganic light-emitting diode described in item 1 of the patent application scope, further comprising: a hole-transport layer On the first electrode; and an electron transport layer on the organic inorganic light emitting layer. 15. The structure of the organic-inorganic light-emitting diode according to item 14 of the scope of the patent application, wherein the hole transport layer is a team > 1 '-(11 (11 & 卩) 11;] 1 & 1611)-> 1, > 1 '-(11 卩 116] 171-benzidine (NPB), N, N'-bis (naphtlialen-l-yl) -N, N'-bis (phenyl) benzidine (α_ΝΡΒ), N, N'-di (naphthalene-l_yl) N, N'-diphenyl, 9, 95-dimethyl-fluorene (DMFL-NPB)-N5N5-di (naphthalene-1-yl) -N, N'-diphenyl-spiro (Spiro -NPB), N, N'-Bis- (3-methylphenyl) " N3N, -bis- (phenyl) -benzidine (TPD) ^ N? N5-bis- (3-methylphenyl) -N, N'-bis -(phenyl) -spiro (Spiro-TPD), N, N'-bis- (3-methylphenyl) -N3N, -bis- (phenyl) -939-diphenyl-fluorene (DMFL-TPD), 1,3-bis (carbazol-9-yl) -benzene (MCP), 1,3,5-tris (carbazol-9-yl)-benzene( TCP )、N,N,N’,N’-tetrakis(naphth-l -yl)-benzidine ( TNB )、poly (N-vinyl carbazole) ( PVK ) o 16.如申請專利範圍第14項所述之有機無機發光二極體之 結構,其中該電子傳輸層為 tris-(8-hydroxyquinoline) aluminum (Alq3 ) " bis-(2-methyl-8-quinolinolate)-4-(phenylphenolato)- aluminium ( BAlq3 ) ^ 259-dimethyl-437-diphenyl-l310-phenanthroline(BCP)、4,4’-bis(carbazol-9_yl)biphenyl(CBP)、 3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-l 5254-triazole (TAZ)。 29 1236174 17·如申請專利範圍第1項所述之有機無機發光二極體之 結構,尚包括: 一電洞傳輸層位於該第一電極上。 18·如申請專利範圍第17項所述之有機無機發光二極體之 結構,其中該電洞傳輸層為 N,N’-di(naphthalen)_N,N’-diplienyl-benzidine ( NPB )、N,Nf-bis(naphthalen-l-yl)-N,Nf-bis(phenyl) benzidine ( α-ΝΡΒ)、N,N’-di(naphthalene-l-yl)N,N,-diphenyl-9, 9,-dimethyl-fluorene ( DMFL-NPB ) ^ N5N5-di(naphthalene-l-yl)-N,N’-diphenyl_spiro( Spiro-NPB )、N,N’-Bis-(3-methylphenyl)_N, N’-bis_(phenyl)-benzidine ( TPD )、N,N’-bis-(3-methylphenyl)-N, N’-bis-(phenyl)-spiro ( Spiro-TPD)、N,N’-bis-(3-methylphenyl) N,N’-bis-(phenyl)-9,9-diphenyl-fluorene(DMFL-TPD)、l,3-bis (carbazol-9-yl)-benzene(MCP)、l,3,5-tris(carbazol-9-yl)-benzene (TCP)、N,N,N’,N’-tetrakis(naphth-l-yl)-benzidine (TNB )、poly (N-vinyl carbazole) ( PVK ) o 19. 如申請專利範圍第1項所述之有機無機發光二極體之 結構,尚包括: 一電子傳輸層位於該有機無機發光層上。 20. 如申請專利範圍第19項所述之有機無機發光二極體之 結構,其中該電子傳輸層為 tris_(8-hydroxyquinoline) aluminum (Alq3 ) " bis-(2-methyl-8-quinolinolate)-4-(phenylphenolato)- aluminium(BAlq3)、2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline(BCP)、4,4’-bis(carbazol-9-yl)biphenyl(CBP)、 3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-l ?254-triazole (TAZ)。 30(carbazol-9-yl) -benzene (TCP), N, N, N ', N'-tetrakis (naphth-l -yl) -benzidine (TNB), poly (N-vinyl carbazole) (PVK) o 16. The structure of the organic-inorganic light-emitting diode according to item 14 of the scope of the patent application, wherein the electron transport layer is tris- (8-hydroxyquinoline) aluminum (Alq3) " bis- (2-methyl-8-quinolinolate)- 4- (phenylphenolato)-aluminium (BAlq3) ^ 259-dimethyl-437-diphenyl-l310-phenanthroline (BCP), 4,4'-bis (carbazol-9_yl) biphenyl (CBP), 3- (4-Biphenylyl)- 4-phenyl-5-tert-butylphenyl-l 5254-triazole (TAZ). 29 1236174 17. The structure of the organic-inorganic light-emitting diode described in item 1 of the scope of patent application, further comprising: a hole transport layer on the first electrode. 18. The structure of the organic-inorganic light-emitting diode according to item 17 in the scope of the patent application, wherein the hole transport layer is N, N'-di (naphthalen) _N, N'-diplienyl-benzidine (NPB), N , Nf-bis (naphthalen-l-yl) -N, Nf-bis (phenyl) benzidine (α-NP), N, N'-di (naphthalene-l-yl) N, N, -diphenyl-9, 9 , -dimethyl-fluorene (DMFL-NPB) ^ N5N5-di (naphthalene-l-yl) -N, N'-diphenyl_spiro (Spiro-NPB), N, N'-Bis- (3-methylphenyl) _N, N ' -bis_ (phenyl) -benzidine (TPD), N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -spiro (Spiro-TPD), N, N'-bis- ( 3-methylphenyl) N, N'-bis- (phenyl) -9,9-diphenyl-fluorene (DMFL-TPD), 1,3-bis (carbazol-9-yl) -benzene (MCP), 1,3, 5-tris (carbazol-9-yl) -benzene (TCP), N, N, N ', N'-tetrakis (naphth-l-yl) -benzidine (TNB), poly (N-vinyl carbazole) (PVK) o 19. The structure of the organic-inorganic light-emitting diode described in item 1 of the scope of patent application, further comprising: an electron-transporting layer on the organic-inorganic light-emitting layer. 20. The structure of the organic-inorganic light-emitting diode according to item 19 in the scope of the patent application, wherein the electron transport layer is tris_ (8-hydroxyquinoline) aluminum (Alq3) " bis- (2-methyl-8-quinolinolate) -4- (phenylphenolato)-aluminium (BAlq3), 2,9-dimethyl-4,7-diphenyl-l, 10-phenanthroline (BCP), 4,4'-bis (carbazol-9-yl) biphenyl (CBP) , 3- (4-Biphenylyl) -4-phenyl-5-tert-butylphenyl-l? 254-triazole (TAZ). 30
TW93124524A 2004-08-16 2004-08-16 Organic-inorganic light emitting diode structure TWI236174B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93124524A TWI236174B (en) 2004-08-16 2004-08-16 Organic-inorganic light emitting diode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93124524A TWI236174B (en) 2004-08-16 2004-08-16 Organic-inorganic light emitting diode structure

Publications (2)

Publication Number Publication Date
TWI236174B true TWI236174B (en) 2005-07-11
TW200608615A TW200608615A (en) 2006-03-01

Family

ID=36648981

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93124524A TWI236174B (en) 2004-08-16 2004-08-16 Organic-inorganic light emitting diode structure

Country Status (1)

Country Link
TW (1) TWI236174B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269230B2 (en) 2010-12-16 2012-09-18 National Yunlin University Of Science And Technology Multilayer-doped organic light emitting diode structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742602B (en) * 2020-04-09 2021-10-11 崑山科技大學 High efficiency quantum dot light-emitting diode and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269230B2 (en) 2010-12-16 2012-09-18 National Yunlin University Of Science And Technology Multilayer-doped organic light emitting diode structure

Also Published As

Publication number Publication date
TW200608615A (en) 2006-03-01

Similar Documents

Publication Publication Date Title
Kalyani et al. Novel materials for fabrication and encapsulation of OLEDs
Gong et al. Electrophosphorescence from a polymer guest–host system with an Iridium complex as guest: Förster energy transfer and charge trapping
Cai et al. High‐efficiency solution‐processed small molecule electrophosphorescent organic light‐emitting diodes
TWI334741B (en) Cascaded organic electroluminescent devices
TWI481089B (en) Long lifetime phosphorescent organic light emitting device (oled) structures
JP5886945B2 (en) OLED with multi-component light emitting layer
US8963132B2 (en) Solution processable doped triarylamine hole injection materials
JP4086817B2 (en) Organic EL device
Chang et al. High-efficiency organic electroluminescent device with multiple emitting units
US20100224859A1 (en) Organic Light-Emitting Diodes with Electrophosphorescent-Coated Emissive Quantum Dots
Duggal et al. Solution-processed organic light-emitting diodes for lighting
JP2009534846A (en) Multiple dopant light emitting layer organic light emitting device
TW201014450A (en) Method of manufacture of a multi-layer phosphorescent organic light emitting device, and articles thereof
TW200814849A (en) Charge transporting layer for organic electroluminescent device
US9023420B2 (en) Composite organic/inorganic layer for organic light-emitting devices
WO2017216557A1 (en) Methods for the production of organic electronic devices
US20120049164A1 (en) Cross-Linked Hole Transport Layer With Hole Transport Additive
Zhao et al. High efficient white organic light-emitting diodes based on triplet multiple quantum well structure
Parthasarathy et al. Organic light emitting devices: From displays to lighting
TWI242038B (en) Organic electroluminescent device
He et al. Ultra-high-efficiency electrophosphorescent pin OLEDs with double emission layers
Earmme et al. Highly efficient phosphorescent light-emitting diodes by using an electron-transport material with high electron affinity
TWI236174B (en) Organic-inorganic light emitting diode structure
Jang et al. Mimicked Host–Dopant System Using Exciplexes in the Organic Light-Emitting Diodes
Srivastava et al. Organic Light Emitting Diodes-Recent Advancements