TWI293134B - Biased bending vertical alignment mode liquid crystal display - Google Patents

Biased bending vertical alignment mode liquid crystal display Download PDF

Info

Publication number
TWI293134B
TWI293134B TW90132607A TW90132607A TWI293134B TW I293134 B TWI293134 B TW I293134B TW 90132607 A TW90132607 A TW 90132607A TW 90132607 A TW90132607 A TW 90132607A TW I293134 B TWI293134 B TW I293134B
Authority
TW
Taiwan
Prior art keywords
liquid crystal
substrate
crystal display
electrode
slit
Prior art date
Application number
TW90132607A
Other languages
Chinese (zh)
Inventor
Lee Seok-Lyul
Original Assignee
Hannstar Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hannstar Display Corp filed Critical Hannstar Display Corp
Priority to TW90132607A priority Critical patent/TWI293134B/en
Priority to JP2002143454A priority patent/JP4541633B2/en
Application granted granted Critical
Publication of TWI293134B publication Critical patent/TWI293134B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Description

1293134 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示器(liquid CIyStal display, LCD) ’更特別地是,本發明係關於一種偏向彎曲垂直對準模 式液曰日顯示裔(biased bending vertical alignment mode liquid crystal display)。 【先前技術】 液晶顯示器(LCD)係由兩基板以及設置於兩基板間的液 晶層所組成。光線係由施加於液晶層的電場強度控制下來傳 送。1293134 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display (LCD). More particularly, the present invention relates to a biased vertical alignment mode. Biased bending vertical alignment mode liquid crystal display). [Prior Art] A liquid crystal display (LCD) is composed of two substrates and a liquid crystal layer disposed between the substrates. The light is transmitted by the intensity of the electric field applied to the liquid crystal layer.

扭轉式向列型液晶顯示器(切istecj nematic LCD,TN LCD)乃是目前最受歡迎的液晶顯示器,其包含一透明矩陣基 板與一透明相對基板;一對透明電極,其分別形成於透明基 板的内表面且互相面對,俾以驅動介於其間之液晶層;以及 一對偏極化板,其分別附著於透明基板的外表面。在液晶顯 不器的關閉狀態(off state)下,也就是說,在電場並未施 加於透明電極的狀態下,液晶層的液晶分子之方向係垂直對 準於基板。 很不幸地,傳統的扭轉式向列型液晶顯示器之對比率 (cxmtmstratio)在一般的黑暗模式下並不夠高,其係因為入射 光在關閉狀態下並未完全地被阻檔。為了要消除這個問題並 增加液晶顯示器的視角(viewangle),已經有多種的液晶顯示 器模式被提出。這一類新的液晶顯示器模式之一例子為熟知 的垂直對準(vertical alignment,VA)模式。如同這個名稱^暗 示者,液晶分子正常而言係垂直對準於基板的内表面,而^ Ί293134 ,電場存在的情形下會旋轉90度以呈平行於基板。這個液 晶顯示器模式創造出具有極寬視角與高對比率的顯示器,且 具有較高亮度與25毫秒的反應時間的額外好處。此外,這 個液晶顯示器也可消耗較少的功率。 在垂直對準模式到來之後’ 一種用以將位於次能階之液 晶分子對準之新技術被提出,其利用紫外光以取代慣用的研 ^(mbbing)。這項技術需要對每個液晶細胞加人金字塔形 突出物,而每個液晶細胞的表面形成一個分離的象限 (d_in) ’在射液晶分子健其它象限的液晶分子成不同 型式的對準。這項技術經由確鮮餘限的每—個象限在一 晝素細胞通道光線内與基板呈某—角度而非直角,而以減少 免度的代價增大了液晶顯示ϋ的視角。所得結果為在液晶顯 =的視角上產生-個全面性的增加,且在視角增加時不改 =同日林需要研磨,並且簡倾程與降爐晶受到污 ,的可祕。找項技鶴垂直鱗模式結合後,所形成的 喊不盗即為熟知❹錄限垂直鱗(·ιω_ώ赠細 ^nent,MVA)模式液晶顯示器,其在所有方向上產生 M0的視角且具有約300:1的高對比率。 然而,用以控制液晶分子傾斜方向之該金字塔形突出 物,係為造成液晶顯示器低良 有其趨勢發展-種絲鱗成柄Γ 因此 應時間、較大的視角、較高 Ί293134 【發明内容】 前述的目的可經由提供一液晶顯示器來完成,其包含一 第一基板、與該第一基板相對之一第二基板,以及一液晶 層’其由具一負介電異向性(negative dieiecrtric anisotropy)之液晶分子所組成且設置於該第一基板與該 第二基板之間。該第一基板包含一共同電極(c〇mm〇n electrode)且該第二基板包含一開關元件,如一薄膜電晶體 (thin film transistor,TFT)。該薄膜電晶體包含一閘極 電極、源極/汲極電極(訊號電極)、一閉極、絕緣層,形成於 该閘極電極上方、-半導體層,形成於—部份的閘極絕緣層 上位於該閘極電極上方之處;以及一保護膜,其覆蓋該第二 基板的整體表面。該第二基板更包含—晝素電極(細丄 ele伽de),其設置於該關元件上方且連接至該開關元 件,其上形成一縫隙於該_電極上方,俾以將晝素電極分 告1J成複數個分段電極部。 ^當沒有電場施加於液晶層時’液晶層中的液晶分子之方 向係垂直對準於基板的表面’蚊位於縫紅方附近的液晶 分子係平行對準於基板的表面以形成_昏暗狀態(μ state)。當有足釣的電場施加於液晶層時,液晶分子之方向 係平行對準於基板的表面以形成—明亮狀態杨加对制。 前述之說贿本發明之優點及_,得藉由下面實 細例配口下爛不詳細說明,俾得_更深人之瞭解。 Ϊ293134 【實施方式】 、本發明之一典型實施例將藉由底下的討論配合所附的 圖^加以詳細綱。應_岐底下實施綱敘述與本發明 之耗例僅為解說用’其不欲成為毫無遺漏的揭露且並非可限 制為精確的型式。 第一圖顯示根據本發明之液晶顯示器在昏暗狀態下之 電極結構以及液晶分子的對準方式,而第二瞧示根據本發 明之液晶顯示器在明亮狀態下之電極結構以及液晶分子的 對準方式。如第一圖與第二圖所示,一矩陣基板1〇與一相 對基板11,其由-透明絕緣材質如玻璃所組成,係彼此間相 互隔開。兩透明電極12與13,其由一透明導電材質如銦錫 氧化物(indium-tin-oxide,1丁0)所組成,乃是分別形成於玻璃 基板10與11的内表面。一液晶層,其由具一負介電異 向性的扭轉式液晶分子101所組成,乃是設置於矩陣基板1〇 與相對基板11之間。在基板10與11之外表面上,一解偏 極片(analyzer)與一偏極片(p〇larizer,兩者皆未顯示於圖中) 係分別附者於矩陣基板10與相對基板11的上表面。偏極片 係分別將入射於液晶層1〇〇與離開液晶層1〇〇的光線做偏極 化。偏極片的偏極化方向係彼此間互相垂直。一光源(背光) 係设置於液晶顯示器的背面以當作一光學快門(未顯示)。另 一方面,矩陣基板10更具有一彩色濾光片(未顯示)。 如第一圖與第二圖所示,用以具體化本發明之液晶顯示 器係由一矩陣基板ίο、一相對基板η以及設置於矩陣基板 10與一相對基板Π之一液晶層1〇〇所組成。—共同電極u 係提供以覆盡矩陣基板10的整個表面,並且一書素電極13 1293134 係提供於該相對基板η的内表面。根據本發明之一較佳實 轭例’液晶顯示器的晝素區域係由複數個掃描電極】*(亦稱 如極電極)以及複數個訊號電極ls(亦稱為源極/沒極電極) 乂 =匕排列所形成之一矩陣所組成。閘極電極μ與訊號電極 15皆為一開關元件如一薄膜電晶體(TFT)的一部份,其形成 於相對基板11上且連接至晝素電極13。複數個缝隙Μ係形 成於晝素電極I3上位於閘極電極14中央的上方處。當缝隙 16形成於晝素電極13上時,晝素電極13係分割為複數個分 段電極部。相同的電壓訊號必須施加到分段電極部上,並且 在這些分段電極部必須建立起一電氣連接以將這些 極部連接起來。 ~ 第一圖顯示液晶顯示器之昏暗狀態,其為電場並未施加 於液晶層100之上。形成於閘極電極14上方且具有縫隙16 之晝素電極13係提供於由閘極電極14與正交之訊號電極15 所組成之矩陣上方。液晶層100之液晶分子係垂直對準於基 板10與11的内表面,但在縫隙16上方附近之液晶分子 平行對準於基板10與11的内表面。由偏極片所產生之偏極 光係通過與基板10與11呈平行對準之液晶層部份,藉以形 成一昏暗狀態。 如之前所討論’在未施加電場的情況下,意即,電極 12與13之間沒有電壓差’液晶分子ιοί係垂直對準於基板 10與11的内表面。然而,在閘極電極14上方之晝素電極 13之缝隙16附近的液晶分子係平行對準於基板10與丨丨的 内表面。因為閘極電極14與共同電極12間的電壓差係維持 地足夠高以保持傾斜的液晶分子101平行於基板1〇與U的 "T293134 1〇〇 101^ 上方每一子101的排列方向,乃是沿著由閑極電極μ 部所定義的一平面而有所不同。 =貞13椒物場於液晶層 #.二 中液晶層100中的液晶分子101 i陣基板10螺旋扭轉9〇° ’且液晶層100 H自γΓ化。由偏郎所產生的偏極光通過液晶層 。/、自身的偏振係根據液晶層100的方向變化旋轉9〇 由^fT~^’通過解偏極片的光線將會形成—明亮狀態。 由弟-圖可看出若是-狀的賴差被施 與分段電極部13之間,液晶分子而將會容易且迅=平 行對準於基板10與11的内表面,因而產生-明亮顯示。 ^圖顯示根據本發明之一較佳實施例之液晶顯示器 之旦素區域。如第三圖所示,閘極線14係水平或橫向延伸 且與訊號線15交錯湖以形成―晝素矩陣,每—個畫素位 ,閘極線14與訊號線15的交界處。-薄膜電晶體(WT)乃 是被提供於每健素_近轉為-_元件。晝素電極13 係以矩陣的方式提供,且每個係經由薄膜電晶體連接至閘極 線14與訊號線15。複數個縫隙16係提供於晝素電極13上 j將晝素雜13分f|j賴數個分段電極部。—赚物(未顯 不)係提供於轉基板與相雌板間以產生—嶋:。具有一負 介電異向性之液晶分子碰由—注人口注人難中。接著將 5玄庄入口賴’且—對偏極板_騎其侧的基板上以完 成液晶顯示器的製造。 第四圖顯示根據本發明之—較佳實施例之液晶顯示器 1293134 之一截面圖。如第四圖所千, 2 一門P物川H斤由—金屬或—有機材質所組成 之ω 200係形成於薄膜電晶體3〇上 1〇與f嫩11間產生一間隙。一液晶層⑽係設 二==〇之相對基板11與具有-彩色濾光片(未顯 30勺人一二綱之間形成於相對基板11上之薄膜電晶體 4 /一 f°電14、—間極絕緣層32,形成於閉極電極 14上、-非晶石夕半導體層33,形成於位於該閉極電極μ上 方的編S緣層32上,以及峨f極(源極/汲極電 極)⑷與342形成於非晶石夕半導體層%上方。一保護膜5〇 覆蓋在相對基板11的整縣面上。—晝素電極13係形成於 晝素區中且透過保護膜5G中之—接_(未顯示)連接至没 極區342…缝隙ι6係形成於晝素電極13上位於開極電極 14 1處’,晝素電極13分割為複數個分段電極部。 第五圖與第六圖分別展示本發明之液晶顯示器之液晶 分子在昏暗狀態下與在明亮狀下料制之軟體模擬結 果。由第五圖可清楚地瞭解除了在縫隙上方附近的液晶分子 係與基板表面呈平行剩料,液晶分子躲直對準於基板 的表面以形成-昏暗顯示。在第六圖中,將可迅速瞭解地是 ,晶分子係與基板表面呈平行排顺形成—明亮顯示。應注 思的是’第五ϋ與第六圖之液晶顯示I!之液晶分子對準排列 之軟體模賊果分別具有與第—酸帛二_同的輪廊,其 可更進一步地§登貫本發明之液晶顯示器功能的實用性。 ,如上所述,根據本發明之液晶顯示器之液晶分子的方向 係由液晶層上之電場強度來決定。藉由將相對基板上之晝素 電極分割成複數個分段電極部以產生位於閘極電極上方之 1293134 缝隙,液晶顯示器之昏暗狀態與明亮狀態便可經由以分段電, 極部與共同電極間之電場來控制液晶分子的排列而迅速且 容易地達成。將本發明與習用之多重象限垂直對準技術相比 較,本發明確實地將矩陣基板上的突出物給移除,並且液晶 顯示器之液晶分子的對準方法,可經由適當地施加電場於共 同電極以及與閘極電極重疊之分段的晝素電極之間而形^ 昏暗狀態與明亮狀態來達成。由於將突出物移除之故,可瞭 解的是本發明在反應時間、視角、良率與製造成本上係為有 利的。 ' ,縱使本發明已由上述之實施例詳細敘述而可由熟 Φ 悉本技藝之人士任施匠思而為諸般修飾,然皆不脫如附申請 專利範圍所欲保護者。 ^A twisted nematic liquid crystal display (TENSCJ nematic LCD, TN LCD) is currently the most popular liquid crystal display, comprising a transparent matrix substrate and a transparent opposite substrate; a pair of transparent electrodes respectively formed on the transparent substrate The inner surfaces face each other to drive the liquid crystal layer interposed therebetween; and a pair of polarized plates attached to the outer surface of the transparent substrate, respectively. In the off state of the liquid crystal display, that is, in the state where the electric field is not applied to the transparent electrode, the direction of the liquid crystal molecules of the liquid crystal layer is vertically aligned with respect to the substrate. Unfortunately, the contrast ratio (cxmtmstratio) of a conventional twisted nematic liquid crystal display is not high enough in the normal dark mode because the incident light is not completely blocked in the off state. In order to eliminate this problem and increase the viewing angle of the liquid crystal display, various liquid crystal display modes have been proposed. An example of this new type of liquid crystal display mode is the well-known vertical alignment (VA) mode. As the name suggests, the liquid crystal molecules are normally aligned perpendicularly to the inner surface of the substrate, and ^ 293134, in the presence of an electric field, is rotated 90 degrees to be parallel to the substrate. This liquid crystal display mode creates a display with a very wide viewing angle and high contrast ratio with the added benefit of higher brightness and 25 milliseconds of response time. In addition, this LCD display can consume less power. After the arrival of the vertical alignment mode, a new technique for aligning liquid crystal molecules at the secondary energy level has been proposed, which uses ultraviolet light to replace the conventional mbbing. This technique requires the addition of pyramidal protrusions to each of the liquid crystal cells, and the surface of each liquid crystal cell forms a separate quadrant (d_in)' alignment of the liquid crystal molecules in the other quadrants of the liquid crystal molecules. This technique increases the viewing angle of the liquid crystal display by reducing the degree of freedom of the liquid crystal display by reducing the degree of freedom in each of the quadrants of the sufficiency limit. The result is a comprehensive increase in the viewing angle of the liquid crystal display, and does not change when the viewing angle is increased. = the same day forest needs to be ground, and the simple tilting process and the falling furnace crystal are contaminated, which is secret. After finding the vertical scale pattern of the skill crane, the formed shouting is a well-known vertical scale (·ιω_ώ 细 ^ ent, MVA) mode liquid crystal display, which produces a M0 angle of view in all directions and has an approximate A high contrast ratio of 300:1. However, the pyramid-shaped protrusion for controlling the tilt direction of the liquid crystal molecules has a tendency to cause a low level of liquid crystal display - the silk scale is stalked, so time should be, a larger angle of view, higher Ί 293134 [Summary of the Invention] The foregoing object can be achieved by providing a liquid crystal display comprising a first substrate, a second substrate opposite to the first substrate, and a liquid crystal layer having a negative dielectric anisotropy (negative dieie crtric anisotropy) The liquid crystal molecules are composed of and disposed between the first substrate and the second substrate. The first substrate comprises a common electrode and the second substrate comprises a switching element, such as a thin film transistor (TFT). The thin film transistor includes a gate electrode, a source/drain electrode (signal electrode), a closed electrode, and an insulating layer formed on the gate electrode, and the semiconductor layer is formed on a portion of the gate insulating layer Where the upper portion is above the gate electrode; and a protective film covering the entire surface of the second substrate. The second substrate further includes a halogen electrode, which is disposed above the off element and connected to the switching element, and a gap is formed on the electrode, and the germanium electrode is divided into 1J is formed into a plurality of segmented electrode portions. ^ When no electric field is applied to the liquid crystal layer, 'the direction of the liquid crystal molecules in the liquid crystal layer is perpendicular to the surface of the substrate'. The liquid crystal molecules in the vicinity of the red square of the mosquito are aligned in parallel with the surface of the substrate to form a dark state ( μ state). When an electric field of foot fishing is applied to the liquid crystal layer, the direction of the liquid crystal molecules is aligned in parallel with the surface of the substrate to form a bright state. The above mentioned advantages and _ of the invention of the invention can be explained by the following examples. Ϊ 293134 [Embodiment] An exemplary embodiment of the present invention will be described in detail by the following discussion in conjunction with the accompanying drawings. The simplifications of the present invention and the present invention are merely illustrative and are not intended to be exhaustive and are not limited to precise types. The first figure shows the electrode structure and the alignment of the liquid crystal molecules in the dark state of the liquid crystal display according to the present invention, and the second electrode shows the electrode structure and the alignment of the liquid crystal molecules in the bright state of the liquid crystal display according to the present invention. . As shown in the first and second figures, a matrix substrate 1A and a counter substrate 11 are composed of a transparent insulating material such as glass and are spaced apart from each other. The two transparent electrodes 12 and 13 are composed of a transparent conductive material such as indium-tin oxide (1?0), which are formed on the inner surfaces of the glass substrates 10 and 11, respectively. A liquid crystal layer composed of a torsional liquid crystal molecule 101 having a negative dielectric anisotropy is disposed between the matrix substrate 1A and the opposite substrate 11. On the outer surfaces of the substrates 10 and 11, a depolarizer and a polarizer (both not shown) are attached to the matrix substrate 10 and the opposite substrate 11, respectively. Upper surface. The polarizing film respectively polarizes light incident on the liquid crystal layer 1 and away from the liquid crystal layer 1〇〇. The polarization directions of the polarizers are perpendicular to each other. A light source (backlight) is disposed on the back of the liquid crystal display to serve as an optical shutter (not shown). On the other hand, the matrix substrate 10 further has a color filter (not shown). As shown in the first and second figures, the liquid crystal display for embodying the present invention comprises a matrix substrate ίο, an opposite substrate η, and a liquid crystal layer 1 disposed on the matrix substrate 10 and an opposite substrate. composition. The common electrode u is provided to cover the entire surface of the matrix substrate 10, and a pixel electrode 13 1293134 is provided on the inner surface of the opposite substrate η. According to a preferred embodiment of the present invention, the pixel region of the liquid crystal display is composed of a plurality of scanning electrodes* (also referred to as pole electrodes) and a plurality of signal electrodes ls (also referred to as source/polar electrodes). = 匕 Alignment formed by a matrix formed. Both the gate electrode μ and the signal electrode 15 are part of a switching element such as a thin film transistor (TFT) formed on the opposite substrate 11 and connected to the halogen electrode 13. A plurality of slit rafts are formed on the halogen electrode I3 at a position above the center of the gate electrode 14. When the slit 16 is formed on the halogen electrode 13, the halogen electrode 13 is divided into a plurality of segment electrode portions. The same voltage signal must be applied to the segmented electrode sections, and an electrical connection must be established at these segmented electrode sections to connect the poles. ~ The first figure shows the dim state of the liquid crystal display, which is that the electric field is not applied to the liquid crystal layer 100. A halogen electrode 13 formed above the gate electrode 14 and having the slit 16 is provided over a matrix composed of the gate electrode 14 and the orthogonal signal electrode 15. The liquid crystal molecules of the liquid crystal layer 100 are vertically aligned with the inner surfaces of the substrates 10 and 11, but liquid crystal molecules near the upper side of the slits 16 are aligned in parallel with the inner surfaces of the substrates 10 and 11. The polarized light generated by the polarizer is passed through a portion of the liquid crystal layer aligned in parallel with the substrates 10 and 11, thereby forming a dark state. As previously discussed, 'where no electric field is applied, that is, there is no voltage difference between the electrodes 12 and 13'. The liquid crystal molecules are vertically aligned with the inner surfaces of the substrates 10 and 11. However, the liquid crystal molecules in the vicinity of the slit 16 of the halogen electrode 13 above the gate electrode 14 are aligned in parallel with the inner surfaces of the substrate 10 and the crucible. Because the voltage difference between the gate electrode 14 and the common electrode 12 is maintained high enough to keep the inclined liquid crystal molecules 101 parallel to the arrangement direction of each of the sub-101 above the substrate 1 and U<T293134 1〇〇101^, It is different along a plane defined by the muting electrode μ. = 贞 13 pepper field in the liquid crystal layer #. 2 liquid crystal molecules in the liquid crystal layer 100 i array substrate 10 helically twisted 9 〇 ° ' and the liquid crystal layer 100 H from γ 。. The polarized light generated by the neutron passes through the liquid crystal layer. /, its own polarization is rotated according to the direction of the liquid crystal layer 100. The light passing through the depolarized pole piece will be formed into a bright state by ^fT~^'. It can be seen from the figure that if the -like difference is applied between the segmented electrode portions 13, the liquid crystal molecules will be easily and quickly aligned in parallel with the inner surfaces of the substrates 10 and 11, thus producing a - bright display . The figure shows a denier region of a liquid crystal display according to a preferred embodiment of the present invention. As shown in the third figure, the gate lines 14 extend horizontally or laterally and are interdigitated with the signal line 15 to form a "cell" matrix, each pixel location, the junction of the gate line 14 and the signal line 15. A thin film transistor (WT) is provided for each nutrient_near-to-element. The halogen electrodes 13 are provided in a matrix, and each is connected to the gate line 14 and the signal line 15 via a thin film transistor. A plurality of slits 16 are provided on the halogen electrode 13 and j is divided into a plurality of segmented electrode portions by 13 minutes f|j. - Earnings (not shown) are provided between the transfer substrate and the phase plate to produce -嶋:. Liquid crystal molecules with a negative dielectric anisotropy are difficult to encounter. Next, the 5 Xuanzhuang entrance is placed on the substrate on the side of the polarizing plate to complete the manufacture of the liquid crystal display. The fourth figure shows a cross-sectional view of a liquid crystal display 1293134 in accordance with a preferred embodiment of the present invention. As shown in the fourth figure, 2, a P-Pengchuan H-jin consists of a metal or organic material, and the ω 200 system is formed on the thin film transistor 3〇. A gap is formed between the 1〇 and the f11. A liquid crystal layer (10) is provided with two opposite substrates 11 and a color filter (a thin film transistor formed on the opposite substrate 11 between 30 and 20 scoops). An inter-electrode insulating layer 32 is formed on the closed-electrode electrode 14 and formed on the S-edge layer 32 above the closed-electrode electrode μ, and the 峨f-pole (source/汲) The electrode electrodes (4) and 342 are formed on the amorphous semiconductor layer %. A protective film 5 is covered on the entire surface of the opposite substrate 11. The halogen electrode 13 is formed in the halogen region and penetrates the protective film 5G. The middle-connected_ (not shown) is connected to the non-polar region 342... the slit ι6 is formed on the halogen electrode 13 at the open electrode 14 1 ', and the halogen electrode 13 is divided into a plurality of segmented electrode portions. The figure and the sixth figure respectively show the simulation results of the liquid crystal molecules of the liquid crystal display of the present invention in a dark state and in a bright material. The liquid crystal molecules and the substrate except the upper side of the slit can be clearly understood from the fifth figure. The surface is parallel and the liquid crystal molecules are aligned to the surface of the substrate to form - dim In the sixth figure, it will be quickly understood that the crystal molecular system is formed in parallel with the surface of the substrate - bright display. It should be noted that the liquid crystal display of the fifth and sixth liquid crystals I! The molecular alignment arbitrarily has the same porch as the first acid squirrel, which can further slap the utility of the liquid crystal display function of the present invention. As described above, according to the present invention The direction of the liquid crystal molecules of the liquid crystal display is determined by the electric field strength on the liquid crystal layer. The liquid crystal display is formed by dividing the halogen electrode on the opposite substrate into a plurality of segmented electrode portions to generate a 1293134 slit above the gate electrode. The dim state and the bright state can be quickly and easily achieved by controlling the alignment of the liquid crystal molecules by the electric field between the segment electrode and the pole electrode and the common electrode. Comparing the present invention with the conventional multiple quadrant vertical alignment technique, The invention surely removes the protrusions on the matrix substrate, and the alignment method of the liquid crystal molecules of the liquid crystal display can be performed by appropriately applying an electric field to the common electrode and The dark electrode state and the bright state are achieved between the segmented halogen electrodes in which the electrode electrodes overlap. The removal of the protrusions makes it possible to understand the reaction time, viewing angle, yield and manufacturing cost of the present invention. It is to be understood that the present invention has been described in detail by the above-described embodiments and can be modified by those skilled in the art, and is not intended to be protected by the appended claims. ^

12 1293134 【圖式簡單說明】 第-圖顯示根據本發明之液晶顯示器在昏暗狀態(她 state)下之電極結構以及液晶分子的街準方式; 第二圖顯示根據本發明之液晶顯示器在明亮狀態(white state)下之電極結構以及液晶分子的對準方式· 第_圖為根據本發明之—触實施例之液晶顯示器之 旦素區域之一平面圖; 第四圖顯示根據本發明之一較佳實施例之液晶顯示器 之一截面圖;12 1293134 [Simplified description of the drawings] The first figure shows the electrode structure and the alignment method of the liquid crystal molecules in the dark state of the liquid crystal display according to the present invention; the second figure shows that the liquid crystal display according to the present invention is in a bright state. Electrode structure under (white state) and alignment of liquid crystal molecules · FIG. 1 is a plan view of a denier region of a liquid crystal display according to the present invention; FIG. 4 is a view showing a preferred embodiment of the present invention. A cross-sectional view of a liquid crystal display of an embodiment;

乐五_示本發明之液晶顯示器在昏暗狀態下么一軟 體相:擬結果;以及 弟六圖顯示本發明之液晶顯示 么一軟 體模擬結果。 【主要TL件符號說明】 矩陣基板10 相對基板11 共同電極12 晝素電極13 閘極電極14 訊號電極15 縫隙16 薄膜電晶體30 液晶層1〇〇 液晶分子;[〇1 13 1293134 間隔物200 閘極絕緣層32 半導體層33 源極/汲極電極341,342 保護膜50Le _ shows the soft phase of the liquid crystal display of the present invention in a dim state: a pseudo-result; and the six-figure diagram shows a software simulation result of the liquid crystal display of the present invention. [Description of main TL parts] Matrix substrate 10 Relative substrate 11 Common electrode 12 Alizarin electrode 13 Gate electrode 14 Signal electrode 15 Slit 16 Thin film transistor 30 Liquid crystal layer 1 〇〇 Liquid crystal molecule; [〇1 13 1293134 Spacer 200 gate Polar insulating layer 32 semiconductor layer 33 source/drain electrode 341, 342 protective film 50

1414

Claims (1)

1293134 園 九、申請專利範 1· 一種液晶顯禾器,美勹· —第一基杈,包人: -第二麵,包::ΡΓ電極:一 於該開關元件上,Β4 坪關元件以及一第二電極,其係設置 液晶分子且設置於哕第、開關元件;一液晶層,包含複數個 -第-縫隙:::基板與該第二基板之間;以及 縫隙係覆蓋在一閘極線乐〜鏠隙係形成於該第二電極上,該第一 且該第二縫隙_的、^/第二縫隙則未覆蓋於該閘極線上, 加於液晶層的電場而改鐵77子’其與該第二基板的夾角,會隨施 2·如申請專利範圍第u 負介電異向性。 、夜曰曰顯示器,其中該液晶分子具有一 3.如申請專利範圍第〗 一 第—基板與該第二基板間產,更包含—間隔物以在該 4·如申請專利範圍第3項之液晶顯 屬與一有機材質其中-種所組成。…、中姻隔物係由一金 5·如申請專利範圍第〗項之液晶顯示哭, 分別附著於霉—基板瓣:基板I更…偏極化板,其 6.如申請專利範圍第】項之液晶顯示器, 二基板係由-翻導電材質所組成。 4 土板與遠第 7·如申請專利範圍第6項之液晶顯示哭, 、、中該透明導電材質係 1293134 為一銦錫氧化物。 8. —種液晶顯示器,其包含: 一第一基板,包含一共同電極; 一第二基板,包含複數條閘極線、複數條訊號線、複數個 晝素電極形成於由該閘極線與該訊號線所定義之晝素區中;以及 一液晶層,包含複數個液晶分子且設置於該第一基板與該 第二基板之間; 其中,每一該晝素電極上具有一第一缝隙與一第二缝隙, 該第一缝隙係覆蓋在該等閘極線之一上,該第二縫隙則未覆蓋於 該等閘極線上,且該第二缝隙附近的液晶分子,其與該第二基板 的炎角,會隨施加於液晶層的電場而改變。 9. 如申請專利範圍第8項之液晶顯示器,其中該液晶分子具有一 負介電異向性。 10. 如申請專利範圍第8項之液晶顯示器,其中該第二基板更包 含一閘極絕緣層,其形成於該閘極線上方。 11. 如申請專利範圍第10項之液晶顯示器,其中該第二基板更包 含一半導體層,其形成於一部份之閘極絕緣層上位於該閘極線上 方之處。 12. 如申請專利範圍第8項之液晶顯示器,更包含一間隔物以在 該第一基板與該第二基板間產生一間隙。 13. 如申請專利範圍第12項之液晶顯示器,其中該間隔物係由一 1293134 金屬與一有機材質其中一種所組成。 · 14. 如申請專利範圍第8項之液晶顯示器,更包含兩偏極化板, 其分別附著於該第一基板與該第二基板上。 15. 如申請專利範圍第8項之液晶顯示器,其中該共同電極與該 晝素電極係係由一透明導電材質所組成。 16. 如申請專利範圍第15項之液晶顯示器,其中該透明導電材 質係為一銦錫氧化物。1293134 Park 9, application for patent vane 1 · A liquid crystal display device, the United States · - first base, package people: - second side, package:: ΡΓ electrode: one on the switch element, Β 4 ping off components and a second electrode, which is provided with liquid crystal molecules and disposed on the first and second switching elements; a liquid crystal layer comprising a plurality of -first-gap::: between the substrate and the second substrate; and a slit covering the gate a line-to-gap system is formed on the second electrode, and the first and second slits of the second slit _ are not covered on the gate line, and the electric field applied to the liquid crystal layer is changed to 77 'The angle with the second substrate will be the same as the negative dielectric anisotropy of the application. a nightingale display, wherein the liquid crystal molecule has a 3. As claimed in the patent scope, a substrate is produced between the substrate and the second substrate, and further includes a spacer to be in the third item of the patent application scope. The liquid crystal is composed of an organic material and one of them. ..., the middle of the marriage system is made of a gold 5 · as the liquid crystal display of the scope of the patent application, crying, respectively attached to the mold - substrate valve: substrate I more ... polarized plate, 6. If the scope of patent application The liquid crystal display of the item, the two substrates are composed of - turn conductive material. 4 The earth plate and the farthing 7· The liquid crystal display of the sixth item of the patent application scope is crying, and the transparent conductive material 1293134 is an indium tin oxide. 8. A liquid crystal display, comprising: a first substrate comprising a common electrode; a second substrate comprising a plurality of gate lines, a plurality of signal lines, and a plurality of pixel electrodes formed by the gate lines a liquid crystal layer comprising a plurality of liquid crystal molecules disposed between the first substrate and the second substrate; wherein each of the halogen electrodes has a first slit And a second slit, the first slit is covered on one of the gate lines, the second slit is not covered on the gate lines, and the liquid crystal molecules in the vicinity of the second slit are The inflammatory angle of the two substrates changes with the electric field applied to the liquid crystal layer. 9. The liquid crystal display of claim 8, wherein the liquid crystal molecule has a negative dielectric anisotropy. 10. The liquid crystal display of claim 8, wherein the second substrate further comprises a gate insulating layer formed over the gate line. 11. The liquid crystal display of claim 10, wherein the second substrate further comprises a semiconductor layer formed on a portion of the gate insulating layer on the gate line. 12. The liquid crystal display of claim 8, further comprising a spacer to create a gap between the first substrate and the second substrate. 13. The liquid crystal display of claim 12, wherein the spacer is composed of a 1293134 metal and an organic material. 14. The liquid crystal display of claim 8, further comprising two polarizing plates attached to the first substrate and the second substrate, respectively. 15. The liquid crystal display of claim 8, wherein the common electrode and the halogen electrode system are composed of a transparent conductive material. 16. The liquid crystal display of claim 15, wherein the transparent conductive material is an indium tin oxide. 17 1293134 七、 指定代表圖: (一) 本案指定代表圖為:第一圖。 (二) 本代表圖之元件符號簡單說明: 矩陣基板10 相對基板11 共同電極12 晝素電極13 閘極電極14 訊號電極15 缝隙16 薄膜電晶體30 液晶層100 液晶分子101 間隔物200 閘極絕緣層32 半導體層33 源極/汲極電極341,342 保護膜50 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式 無017 1293134 VII. Designated representative map: (1) The representative representative of the case is: the first figure. (b) The symbol of the representative figure is briefly described: matrix substrate 10 opposite substrate 11 common electrode 12 halogen electrode 13 gate electrode 14 signal electrode 15 slit 16 thin film transistor 30 liquid crystal layer 100 liquid crystal molecule 101 spacer 200 gate insulation Layer 32 Semiconductor layer 33 Source/drain electrodes 341, 342 Protective film 50 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention.
TW90132607A 2001-12-27 2001-12-27 Biased bending vertical alignment mode liquid crystal display TWI293134B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW90132607A TWI293134B (en) 2001-12-27 2001-12-27 Biased bending vertical alignment mode liquid crystal display
JP2002143454A JP4541633B2 (en) 2001-12-27 2002-05-17 Liquid crystal display with deflection vertical alignment mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90132607A TWI293134B (en) 2001-12-27 2001-12-27 Biased bending vertical alignment mode liquid crystal display

Publications (1)

Publication Number Publication Date
TWI293134B true TWI293134B (en) 2008-02-01

Family

ID=27607982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90132607A TWI293134B (en) 2001-12-27 2001-12-27 Biased bending vertical alignment mode liquid crystal display

Country Status (2)

Country Link
JP (1) JP4541633B2 (en)
TW (1) TWI293134B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302322C (en) * 2003-11-24 2007-02-28 友达光电股份有限公司 Transistor liquid crystal display with multi-domain perpendicular direction matching mode
CN100373250C (en) * 2005-05-12 2008-03-05 友达光电股份有限公司 Multi-zone vertical alignment nematic type liquid crystal display panel and driving method thereof
CN102722043B (en) * 2011-03-30 2014-11-05 瀚宇彩晶股份有限公司 Vertical alignment liquid crystal display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230097A (en) * 1994-02-18 1995-08-29 Sanyo Electric Co Ltd Liquid crystal display device
JPH08179341A (en) * 1994-12-22 1996-07-12 Matsushita Electric Ind Co Ltd Liquid crystal display device and its driving method
JP2001343651A (en) * 2000-03-31 2001-12-14 Sharp Corp Liquid crystal display device and method of manufacture
WO2001073507A1 (en) * 2000-03-27 2001-10-04 Hitachi, Ltd. Liquid crystal display device

Also Published As

Publication number Publication date
JP4541633B2 (en) 2010-09-08
JP2003195312A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
TWI253537B (en) Liquid crystal display device of latitudinal electric field type having protruded spacer
CN102253552B (en) Liquid crystal display
JP3408491B2 (en) Liquid crystal display device and manufacturing method thereof
KR20080050851A (en) Liquid crystal display panel
JPH086025A (en) Liquid crystal electro-optic device, projection type display system using the same and method for driving liquid crystal electro-optic device
JP3538149B2 (en) Reflection type liquid crystal display device and manufacturing method thereof
TW200919016A (en) Liquid crystal display device
TW201120518A (en) Liquid crystal display device
TW200539317A (en) Transflective liquid crystal display
JP2009104172A (en) Liquid crystal display device
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
TWI223119B (en) Liquid crystal display device
TWI282477B (en) A method of improving the viewing angle of a vertically aligned liquid crystal display device, a method used for a compensation film for a liquid crystal display device, a display device and manufacturing method thereof
WO2016090751A1 (en) Liquid crystal display panel
TWI237728B (en) Liquid crystal display
JPH09325340A (en) Liquid crystal display element
TWI293134B (en) Biased bending vertical alignment mode liquid crystal display
TW548456B (en) Continuous domain inversed TN LCD device and the fabrication method thereof
CN106125441B (en) Low-driving-voltage blue-phase liquid crystal display in narrow viewing angle mode
KR20110076370A (en) Blue phase mode lcd
TWI308246B (en) An active matrix liquid crystal display
JPH028821A (en) Active matrix substrate
TWI282012B (en) Liquid crystal display of low driving voltage
TWI266116B (en) Active matrix liquid crystal display
TWI282458B (en) In plane switching liquid crystal display

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent