JPH09325340A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH09325340A
JPH09325340A JP14550396A JP14550396A JPH09325340A JP H09325340 A JPH09325340 A JP H09325340A JP 14550396 A JP14550396 A JP 14550396A JP 14550396 A JP14550396 A JP 14550396A JP H09325340 A JPH09325340 A JP H09325340A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
pixel electrode
display element
common electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14550396A
Other languages
Japanese (ja)
Inventor
Takeshi Oyama
毅 大山
Nobuko Fukuoka
暢子 福岡
Norihiro Yoshida
典弘 吉田
Toshihiro Ninomiya
利博 二ノ宮
Masumi Okamoto
ますみ 岡本
Masahito Ishikawa
正仁 石川
Yasuharu Tanaka
康晴 田中
Hitoshi Hado
仁 羽藤
Masahito Shoji
雅人 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14550396A priority Critical patent/JPH09325340A/en
Publication of JPH09325340A publication Critical patent/JPH09325340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a moving picture of excellent display quality by making the visual field wide and operation fast as to the liquid crystal display element which has high contrast and superior gradations and shock resistance and is low in driving voltage. SOLUTION: On an array substrate 12, a common electrode 18 and pixel electrodes 27 are formed, and liquid crystal molecules 14a are switched with a lateral electric field which is parallel to the array substrate 12 to obtain a wide field angle; and an orientation film is processed for circular orientation as shown by 32a-32c; and the liquid crystal molecules 14a when switched are rotated from the initial state of the circular orientation shown by 32a-32c to the electric field direction to shorten a response time and make the response fast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示素子に係
り特に基板間に封入されるネマチック液晶を基板と平行
な横方向にスイッチングして成る液晶表示素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display element, and more particularly to a liquid crystal display element formed by switching nematic liquid crystal sealed between substrates in a lateral direction parallel to the substrates.

【0002】[0002]

【従来の技術】近年、薄型軽量且つ低消費電力という利
点を有する事から、腕時計、電卓等の小型のものから、
ワードプロセッサやディスクトップパーソナルコンピュ
ータの様なパーソナルOA機器、投影型テレビ、小型テ
レビ等の大型の装置にいたる表示装置の表示手段とし
て、液晶表示素子(以下LCDと略称する。)が多用さ
れている。
2. Description of the Related Art In recent years, because of the advantages of thinness, light weight and low power consumption, small items such as wrist watches and calculators are
2. Description of the Related Art A liquid crystal display element (hereinafter abbreviated as LCD) is often used as a display unit of a display device such as a personal OA device such as a word processor or a desktop personal computer, a large-sized device such as a projection television, a small television.

【0003】一般にこれら液晶表示素子は、ツイストネ
マチック液晶を薄膜トランジスタ(以下TFTと略称す
る。)により駆動し層厚方向に旋光するアクティブマト
リクス型液晶表示素子、あるいは270°の捩じれ配向
のネマチック液晶をXY方向の電極にて駆動し層厚方向
に旋光する単純マトリクス型液晶表示素子に大別されて
いた。しかしながらこれら液晶表示素子はいずれも液晶
分子の旋光性を利用し、ツイストネマチィック状態から
ホメオトロピック状態に転移させて駆動するため応答時
間が遅いため、動画を表示する場合の表示品位が劣り、
しかも視野角が狭いという問題を有していた。
In general, these liquid crystal display elements are active matrix type liquid crystal display elements in which twisted nematic liquid crystal is driven by a thin film transistor (hereinafter abbreviated as TFT) to rotate light in the layer thickness direction, or nematic liquid crystal with twisted orientation of 270 ° is XY. It was roughly classified into a simple matrix type liquid crystal display element which is driven by electrodes in the direction of rotation and rotates in the layer thickness direction. However, all of these liquid crystal display elements utilize the optical rotatory power of liquid crystal molecules, and since the response time is slow because they are driven by transitioning from the twist nematic state to the homeotropic state, the display quality when displaying a moving image is poor,
Moreover, there is a problem that the viewing angle is narrow.

【0004】このため、基板と平行な横方向でのスイッ
チング特性により広視野角を得る、強誘電性液晶あるい
は、反強誘電性液晶を用いた液晶表示素子も検討されて
いる。しかしながらこの様な液晶表示素子の内、前者に
あっては階調表示に適さず又耐衝撃性が弱く、後者にあ
っては高い駆動電圧を要し、コントラストを得にくいと
いう問題を有することから、近年これらと同様の効果を
ネマチック液晶で実現する様、図13に示すように、ア
レイ基板1に極性の異なるストライプ状の第1の電極2
及び第2の電極3を設置し、両電極2、3間に電圧を印
加しアレイ基板1と平行な横方向の電界Eにて液晶分子
4を、図14(a)に示す初期状態のホモジニアス配向
から図14(b)に示す様に、アレイ基板1と平行面に
て電界E方向に徐々に回転しスイッチングする液晶表示
素子が開発されている。
Therefore, a liquid crystal display element using a ferroelectric liquid crystal or an antiferroelectric liquid crystal, which obtains a wide viewing angle due to a switching characteristic in a lateral direction parallel to the substrate, is also under study. However, among such liquid crystal display devices, the former is not suitable for gradation display and has a low impact resistance, and the latter requires a high driving voltage and thus has a problem that it is difficult to obtain contrast. In order to realize the same effects as these with nematic liquid crystals in recent years, as shown in FIG. 13, stripe-shaped first electrodes 2 having different polarities are formed on an array substrate 1.
And a second electrode 3 is installed, and a voltage is applied between the electrodes 2 and 3 to cause the liquid crystal molecules 4 to move in a horizontal electric field E parallel to the array substrate 1 to move the liquid crystal molecules 4 to a homogeneous state in the initial state shown in FIG. As shown in FIG. 14B, a liquid crystal display element has been developed which is gradually rotated in the direction of the electric field E on the plane parallel to the array substrate 1 from the orientation and switches.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記、ネ
マチック液晶組成物の液晶分子をアレイ基板に平行に回
転しスイッチングする液晶表示素子にあっては、スイッ
チングが層厚方向でなく、アレイ基板に平行な方向であ
り、層厚方向では液晶分子の変化が無いことから、斜め
に見た場合でもリタデーションの変化が余り無く広視野
角を得られるものの、図14(a)に示す様に第1及び
第2の電極2、3と略平行にホモジニアス配向された液
晶分子4を図14(b)に示す様に電界E方向に略90
°回転するには時間を要し、その応答時間が遅いという
問題を生じていた。
However, in the liquid crystal display device in which the liquid crystal molecules of the nematic liquid crystal composition are rotated in parallel with the array substrate to perform switching, the switching is not in the layer thickness direction but in the array substrate. Since the liquid crystal molecules do not change in the layer thickness direction, the wide viewing angle can be obtained without much change in retardation even when viewed obliquely, but as shown in FIG. The liquid crystal molecules 4 homogeneously aligned substantially parallel to the electrodes 2 and 3 of No. 2 in the direction of the electric field E as shown in FIG.
° It took a long time to rotate, and the response time was slow.

【0006】そこで本発明は上記問題を除去するもの
で、ネマチック液晶組成物を用いる液晶表示素子におい
て、液晶分子を基板と平行な横方向にスイッチングする
事により、広視野角を得ると共に、液晶分子の電界方向
へのスイッチング時間の短縮を図る事により、応答の高
速化を得られ、動画にあっても良好な表示品位を得られ
る液晶表示素子を提供する事を目的とする。
Therefore, the present invention eliminates the above problems. In a liquid crystal display device using a nematic liquid crystal composition, the liquid crystal molecules are switched in the lateral direction parallel to the substrate to obtain a wide viewing angle and the liquid crystal molecules. It is an object of the present invention to provide a liquid crystal display element which can obtain a high response speed and can obtain a good display quality even in a moving image by reducing the switching time in the electric field direction.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
する為の手段として、対向して設けられる一対の基板の
間にネマチック液晶組成物を封入してなる液晶表示素子
において、前記一対の基板のいずれかに形成される櫛型
の画素電極と、前記一対の基板のいずれかに設けられ、
前記一対の基板の法線方向から見て、前記画素電極と間
隙を介し交互に配置されるスリット状の共通電極と、前
記ネマチック液晶組成物を円弧状に配向するよう配向処
理される配向膜とを設けるものである。
Means for Solving the Problems As a means for solving the above problems, the present invention provides a liquid crystal display device in which a nematic liquid crystal composition is sealed between a pair of substrates provided facing each other. A comb-shaped pixel electrode formed on any of the substrates, and provided on any of the pair of substrates,
When viewed from the normal direction of the pair of substrates, a slit-shaped common electrode that is alternately arranged with the pixel electrode with a gap, and an alignment film that is alignment-treated to align the nematic liquid crystal composition in an arc shape. Is provided.

【0008】上記構成により本発明は、層厚方向におけ
るハイブリッド配列の様に、液晶分子を基板と平行な横
方向において円弧状に配向し電極に対して斜めに配向す
る事により、初期状態から電界方向にスイッチングされ
る迄の液晶分子の回転時間を短縮し、応答を高速化し、
高速且つ広視野角であり高い表示品位にて動画を表示可
能な液晶表示素子を得るものである。
With the above structure, according to the present invention, like a hybrid arrangement in the layer thickness direction, the liquid crystal molecules are oriented in an arc shape in the lateral direction parallel to the substrate and are oriented obliquely with respect to the electrodes, so that the electric field is changed from the initial state. The rotation time of liquid crystal molecules before switching to the direction is shortened, the response is speeded up,
A liquid crystal display device capable of displaying a moving image with high display quality at high speed and wide viewing angle.

【0009】[0009]

【発明の実施の形態】以下、本発明の第1の実施の形態
を図1乃至図5を参照して説明する。10は液晶表示素
子であり、サイズ150μm×50μmの1画素を駆動
する駆動素子としてTFT11を用いるアレイ基板12
及び、対向基板13から成る一対の基板間には、ネマチ
ック液晶組成物14として誘電異方性が正極性であるZ
LI−3926(Δn=0.2030)((株)メルク
ジャパン製)が封入されている。尚、15、16は図4
に示す様に直交ニコルに組み合わされる偏光板である。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described below with reference to FIGS. Reference numeral 10 denotes a liquid crystal display element, and an array substrate 12 using a TFT 11 as a driving element for driving one pixel of size 150 μm × 50 μm
Further, between the pair of substrates composed of the counter substrate 13, Z having a positive dielectric anisotropy as the nematic liquid crystal composition 14 is formed.
LI-3926 (Δn = 0.030) (manufactured by Merck Japan Co., Ltd.) is enclosed. 15 and 16 are shown in FIG.
It is a polarizing plate that is combined in a crossed Nicols as shown in.

【0010】ここでアレイ基板12は、透明なガラスか
らなる絶縁基板17上に、インジウム錫酸化物(以下I
TOと略称する。)からなる共通電極18が成膜され、
その上に酸化シリコン(SiO2 )膜からなる電極絶縁
膜20を介しTFT11が形成されている。即ち、電極
絶縁膜20上のタリウム(Ta)からなるゲート電極2
1上には酸化シリコン(SiO2 )からなるゲート絶縁
膜22を介しアモルファスシリコン(a−Si)からな
る半導体層23及び窒化シリコン(SiNx )からなる
保護層24が形成され、この半導体層23及び保護層2
4からなるチャネル領域を挾み、アモルファスシリコン
(a−Si)からなるオーミック層26を介し、画素電
極27と接続されるアルミニウム(Al)からなるソー
ス電極28、信号線30と一体のドレイン電極31が設
けられている。
Here, the array substrate 12 is formed by forming an indium tin oxide (hereinafter, I) on an insulating substrate 17 made of transparent glass.
Abbreviated as TO. A common electrode 18 made of
A TFT 11 is formed on top of this with an electrode insulating film 20 made of a silicon oxide (SiO 2 ) film interposed therebetween. That is, the gate electrode 2 made of thallium (Ta) on the electrode insulating film 20.
A semiconductor layer 23 made of amorphous silicon (a-Si) and a protective layer 24 made of silicon nitride (SiNx) are formed on the substrate 1 via a gate insulating film 22 made of silicon oxide (SiO 2 ). Protective layer 2
The source electrode 28 made of aluminum (Al) connected to the pixel electrode 27 through the ohmic layer 26 made of amorphous silicon (a-Si) and the drain electrode 31 integrated with the signal line 30. Is provided.

【0011】ここで画素電極27は、ITOからなりゲ
ート絶縁膜22上にて櫛型に形成されており、更に共通
電極18及び画素電極27上には紫外線照射により配向
性を得られるポリイミドからなり、1画素中に3個の円
形配向32a〜32cが形成される配向膜33が印刷さ
れている。これにより、ネマチック液晶組成物14中の
液晶分子14aは、アレイ基板12に平行且つ円形配向
32a〜32cに沿って一周の円を形成する様配向され
る。尚、その層厚方向にあっては液晶分子14aは、ア
レイ基板に対してそれぞれ平行に配向されている。
Here, the pixel electrode 27 is made of ITO and is formed in a comb shape on the gate insulating film 22, and further, the common electrode 18 and the pixel electrode 27 are made of polyimide which can be oriented by ultraviolet irradiation. An alignment film 33 in which three circular alignments 32a to 32c are formed in one pixel is printed. As a result, the liquid crystal molecules 14a in the nematic liquid crystal composition 14 are aligned in parallel with the array substrate 12 and form a circle along the circular alignments 32a to 32c. The liquid crystal molecules 14a are oriented parallel to the array substrate in the layer thickness direction.

【0012】一方対向基板13は、透明なガラスからな
る絶縁基板34上に赤(R)、緑(G)、青(B)のス
トライプ状のカラーフィルタ36を有している。
On the other hand, the counter substrate 13 has red (R), green (G), and blue (B) stripe color filters 36 on an insulating substrate 34 made of transparent glass.

【0013】次に液晶表示素子10の製造方法について
述べる。先ずアレイ基板12にあっては、絶縁基板17
上にスパッタ法によりITOを成膜しその上に電極絶縁
膜20を全面被覆する。次いでスパッタ法によりタリウ
ム(Ta)を成膜し、フォトレジスト(図示せず)をマ
スクとしてエッチング加工するフォトリソグラフィ技術
を用い、ゲート電極21及びこれと一体の走査線21a
をパターン形成する。
Next, a method of manufacturing the liquid crystal display element 10 will be described. First, in the array substrate 12, the insulating substrate 17
An ITO film is formed thereon by a sputtering method, and the electrode insulating film 20 is entirely covered on the ITO film. Next, a gate electrode 21 and a scanning line 21a integrated with the gate electrode 21 are formed by using a photolithography technique in which a film of thallium (Ta) is formed by a sputtering method and a photoresist (not shown) is used as a mask for etching.
Is patterned.

【0014】次にプラズマCVD法により酸化シリコン
(SiO2 )膜、アモルファスシリコン(a−Si)
膜、窒化シリコン(SiNx )膜を順次積層形成し、窒
化シリコン(SiNx )膜、アモルファスシリコン(a
−Si)膜をフォトリソグラフィ技術にてパターン形成
し半導体層23及び保護層24を形成する。続いて半導
体層23上にプラズマCVD法によりアモルファスシリ
コン(a−Si)膜を形成し、エッチング加工してオー
ミック層26をパターン形成し、更に蒸着法によりアル
ミニウム(Al)膜を成膜した後、フォトエッチング加
工しソース電極28、信号線30及びドレイン電極31
をパターン形成しTFT11を形成する。
Next, a silicon oxide (SiO 2 ) film and amorphous silicon (a-Si) are formed by the plasma CVD method.
A film and a silicon nitride (SiNx) film are sequentially laminated to form a silicon nitride (SiNx) film and amorphous silicon (a
The -Si) film is patterned by the photolithography technique to form the semiconductor layer 23 and the protective layer 24. Then, an amorphous silicon (a-Si) film is formed on the semiconductor layer 23 by a plasma CVD method, an ohmic layer 26 is patterned by etching, and an aluminum (Al) film is further formed by a vapor deposition method. The source electrode 28, the signal line 30, and the drain electrode 31 are processed by photo etching.
Is patterned to form the TFT 11.

【0015】この後、ゲート絶縁膜22上にスパッタ法
によりITOを成膜し、フォトエッチング加工し櫛型の
画素電極27をパターン形成する。更に、ゲート絶縁膜
22及び電極絶縁膜20をスリット状にエッチング加工
し、共通電極18が櫛型の画素電極27の間に介在する
様露出形成した後、ポリイミドを印刷して配向膜33を
成膜する。
After that, an ITO film is formed on the gate insulating film 22 by a sputtering method, and photo-etching is performed to form a comb-shaped pixel electrode 27 in a pattern. Further, the gate insulating film 22 and the electrode insulating film 20 are etched into a slit shape and exposed so that the common electrode 18 is interposed between the comb-shaped pixel electrodes 27, and then polyimide is printed to form the alignment film 33. To film.

【0016】更に配向膜33に、画素毎に3個の円形に
偏光させることが出来るマスク(図示せず)を介して紫
外線を照射して、3個の円形配向32a〜32cが形成
される様、配向処理する。
Further, the alignment film 33 is irradiated with ultraviolet rays through a mask (not shown) capable of polarizing three circles for each pixel so that three circular alignments 32a to 32c are formed. , Orientation treatment.

【0017】次に対向基板13にあっては、絶縁基板3
4上に赤(R)、緑(G)、青(B)の順に顔料をスピ
ンコートした後、パターン露光、現像を繰り返し、スト
ライプ状のカラーフィルタ36を形成する。
Next, in the counter substrate 13, the insulating substrate 3
After the pigments are spin-coated on the surface 4 in the order of red (R), green (G), and blue (B), pattern exposure and development are repeated to form a stripe-shaped color filter 36.

【0018】続いて、液晶層厚が2.5μmと成るよ
う、アレイ基板12上に粒径2.2μmのシリカ(触媒
化成(株)製)35を分散密度50個/mm2 と成るよ
う乾式散布法にて散布した後、アレイ基板12及び対向
基板13を対向して組み立てセル化し、その間隙にネマ
チック液晶組成物14を注入し封止する。そして両基板
12、13に矢印r方向、矢印s方向の偏光軸を有する
偏光板15、16を取着して液晶表示素子10とする。
この液晶表示素子10にあっては、液晶層厚が薄く、又
ネマチック液晶組成物14のΔnが大きいことから、液
晶層の複屈折性による透過率が高められる。
Then, a dry type silica (Catalyst Kasei Co., Ltd.) 35 having a particle size of 2.2 μm is formed on the array substrate 12 so that the liquid crystal layer thickness is 2.5 μm so that the dispersion density is 50 particles / mm 2. After spraying by the spraying method, the array substrate 12 and the counter substrate 13 are opposed to each other to form an assembled cell, and the nematic liquid crystal composition 14 is injected into the gap and sealed. Then, polarizing plates 15 and 16 having polarization axes in the arrow r direction and the arrow s direction are attached to both substrates 12 and 13 to complete the liquid crystal display element 10.
In this liquid crystal display element 10, since the liquid crystal layer is thin and the Δn of the nematic liquid crystal composition 14 is large, the transmittance due to the birefringence of the liquid crystal layer is increased.

【0019】次に作用について述べる。液晶表示素子1
0にて共通電極18及び画素電極27に電圧を印加しな
いオフ時にあっては、配向膜33が円形に配向処理され
ている事からネマチック液晶組成物14の液晶分子14
aは図4に示すように1画素中の3個の円形配向32a
〜32cに沿って配列され、両電極18、27に対して
斜めに配列しており、偏光板15側から入射された光
は、層厚方向に進むに従い複屈折効果により円偏光し、
液晶表示素子10を透過し偏光板16側から出射され
る。一方、共通電極18及び画素電極27間に電圧を印
加すると、矢印s方向の電界によりネマチック液晶組成
物14の液晶分子14aは図5に示す様に電界方向に配
列され、偏光板16の偏光軸と同方向を向くため、偏光
板15側からの入射光は変調されずに偏光板16に吸収
され出射されない。
Next, the operation will be described. Liquid crystal display element 1
At the time of 0, when the voltage is not applied to the common electrode 18 and the pixel electrode 27, the alignment film 33 is circularly aligned at the time of OFF, so that the liquid crystal molecules 14 of the nematic liquid crystal composition 14 are aligned.
a is three circular orientations 32a in one pixel as shown in FIG.
32c and are obliquely arranged with respect to both electrodes 18 and 27, and the light incident from the polarizing plate 15 side is circularly polarized by the birefringence effect as it advances in the layer thickness direction,
The light passes through the liquid crystal display element 10 and is emitted from the polarizing plate 16 side. On the other hand, when a voltage is applied between the common electrode 18 and the pixel electrode 27, the liquid crystal molecules 14a of the nematic liquid crystal composition 14 are aligned in the electric field direction as shown in FIG. Since the light is directed in the same direction as, the incident light from the polarizing plate 15 side is not modulated and absorbed by the polarizing plate 16 and is not emitted.

【0020】そしてこの液晶表示素子10にて動画を表
示し応答時間を測定した所、立ち上がりが8msec、
立ち下がりが20msecと極めて速い値を得られた。
又視野角の特性は上下左右60°以上においてコントラ
スト10:1以上の広い視野角を得られた。
Then, when a moving image is displayed on the liquid crystal display device 10 and the response time is measured, the rise time is 8 msec.
The fall was 20 msec, which was an extremely fast value.
As for the viewing angle characteristics, a wide viewing angle with a contrast of 10: 1 or more was obtained in the vertical and horizontal directions of 60 ° or more.

【0021】このように構成すれば、広視野角を得るた
め、ネマチック液晶組成物14をアレイ基板12と平行
方向にスイッチングする際、初期状態にて液晶分子14
aが共通電極18及び画素電極27に対して斜めとなる
円形配向32a〜32cに沿って配列される事から、ス
イッチング時、液晶分子14aは、従来に比し短時間で
電界方向へ回転出来、応答時間の短縮により表示が高速
化され、広視野角でありながら、動画にあっても良好な
表示品位を得られる。又、強誘電性液晶や反強誘電性液
晶に比し高いコントラストを得られると共に耐衝撃性及
び階調性に優れ、駆動電圧も低減される。
According to this structure, when the nematic liquid crystal composition 14 is switched in the direction parallel to the array substrate 12 in order to obtain a wide viewing angle, the liquid crystal molecules 14 are initially formed.
Since a is arranged along the circular alignments 32a to 32c that are oblique to the common electrode 18 and the pixel electrode 27, the liquid crystal molecules 14a can rotate in the electric field direction in a shorter time than in the conventional case during switching, The display speed is increased due to the shortened response time, and a good display quality can be obtained even in a moving image while having a wide viewing angle. Further, compared to the ferroelectric liquid crystal and the anti-ferroelectric liquid crystal, a high contrast can be obtained, the shock resistance and the gradation are excellent, and the driving voltage is reduced.

【0022】[比較例]これに比し、液晶分子14aが
90°ツイストと成るよう、第1の実施の形態における
配向膜33を、図12に示す様に共通電極18及び画素
電極27と平行な矢印w方向に配向処理して[比較例]
とし、動画を表示して応答時間を測定した所、立ち上が
りが80msec、立ち下がりが120msecとテレ
ビのフレーム周波数30Hzより遅く成り、画像がぼや
けてしまった。
[Comparative Example] Compared with this, the alignment film 33 in the first embodiment is parallel to the common electrode 18 and the pixel electrode 27 as shown in FIG. 12 so that the liquid crystal molecules 14a have a 90 ° twist. [Comparative example]
Then, when a response time was measured by displaying a moving image, the rising edge was 80 msec and the falling edge was 120 msec, which was slower than the television frame frequency of 30 Hz, and the image was blurred.

【0023】次に本発明の第2の実施の形態を図6を参
照して説明する。本実施の形態は第1の実施の形態にお
ける液晶分子14aの初期状態の配向方向が異なるもの
の、他は第1の実施の形態と同一である事から、同一部
分については同一符号を付しその説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. Although the present embodiment is different from the first embodiment in the alignment direction of the initial state of the liquid crystal molecules 14a, the other parts are the same as the first embodiment, and therefore, the same parts are denoted by the same reference numerals. The description is omitted.

【0024】即ち、アレイ基板12上面に印刷される配
向膜37は、配向処理時、隣接する共通電極18及び画
素電極27の間隙毎に、閉じた小円形配向38を形成す
る事が出来るマスクを介し紫外線を照射され、両電極1
8、27の間隙に小円形配向38を有する様形成されて
いる。
That is, the alignment film 37 printed on the upper surface of the array substrate 12 is a mask capable of forming a closed small circular alignment 38 for each gap between the adjacent common electrode 18 and pixel electrode 27 during the alignment process. Both electrodes are irradiated with ultraviolet rays through 1
It is formed to have a small circular orientation 38 in the gap of 8, 27.

【0025】これにより、液晶表示素子10において初
期状態にあっては、配向膜37が小円形配向38を有す
る様に配向処理されている事から、ネマチック液晶組成
物14の液晶分子14aは図6に示すように共通電極1
8及び画素電極27間で小円形配向38に沿って配列さ
れ、両電極18、27に対して斜めに配列しており、入
射された光は、層厚方向を複屈折効果により透過する。
一方、共通電極18及び画素電極27間に電圧を印加す
ると、矢印s方向の電界により液晶分子14aは第1の
実施の形態の図5に示すのと同様に電界方向に配列さ
れ、偏光板16の偏光軸と同方向を向くため、入射光は
変調されずに偏光板16に吸収され透過しない。
As a result, in the initial state of the liquid crystal display element 10, since the alignment film 37 is subjected to the alignment treatment so as to have the small circular alignment 38, the liquid crystal molecules 14a of the nematic liquid crystal composition 14 are shown in FIG. Common electrode 1 as shown in
8 and the pixel electrode 27 are arranged along a small circular orientation 38 and are obliquely arranged with respect to both electrodes 18 and 27, and incident light is transmitted through the layer thickness direction by a birefringence effect.
On the other hand, when a voltage is applied between the common electrode 18 and the pixel electrode 27, the liquid crystal molecules 14a are aligned in the direction of the electric field by the electric field in the direction of the arrow s as in the first embodiment shown in FIG. Since it is oriented in the same direction as the polarization axis of, the incident light is not modulated and is absorbed by the polarizing plate 16 and does not pass therethrough.

【0026】そしてこの液晶表示素子10にて動画を表
示し応答時間を測定した所、立ち上がりが10mse
c、立ち下がりが25msecと極めて速い値を得られ
た。又視野角の特性は上下左右60°以上においてコン
トラスト10:1以上の広い視野角を得られた。
Then, when a moving image is displayed on the liquid crystal display element 10 and the response time is measured, the rise time is 10 mse.
c, the fall was 25 msec, which was an extremely fast value. As for the viewing angle characteristics, a wide viewing angle with a contrast of 10: 1 or more was obtained in the vertical and horizontal directions of 60 ° or more.

【0027】このように構成すれば、第1の実施の形態
と同様、高コントラストを得られると共に、階調性及び
耐衝撃性に優れ駆動電圧の低減も可能なネマチック液晶
組成物14を用いた液晶表示素子10において広視野角
を得られると共に、初期状態にて液晶分子14aが共通
電極18及び画素電極27に対して斜めとなる様小円形
配向38に沿って配列される事から、スイッチング時の
応答時間が短縮され、応答の高速化を得られ、広視野角
でありながら動画にあっても良好な表示品位を得られ
る。
With this structure, as in the first embodiment, the nematic liquid crystal composition 14 is used which can obtain high contrast and is excellent in gradation and impact resistance and capable of reducing driving voltage. In the liquid crystal display element 10, a wide viewing angle can be obtained, and in the initial state, the liquid crystal molecules 14a are arranged along the small circular alignment 38 so as to be inclined with respect to the common electrode 18 and the pixel electrode 27. The response time is shortened, the response speed is increased, and good display quality can be obtained even in a moving image with a wide viewing angle.

【0028】次に本発明の第3の実施の形態を図7乃至
図9を参照して説明する。本実施の形態は第1の実施の
形態において、アレイ基板12と平行な横方向の電界に
より液晶分子を横方向にスイッチングさせるため、スリ
ット状の共通電極18をアレイ基板12では無く対向基
板13側に設けるものであり、他は第1の実施の形態と
同一である事から、同一部分については同一符号を付し
その説明を省略する。即ちアレイ基板40の絶縁基板1
7上には、第1の実施の形態における共通電極18及び
電極絶縁膜20が形成されること無く、ゲート電極2
1、アモルファスシリコン(a−Si)からなる半導体
層23等を有するTFT11及び櫛型の画素電極27が
形成され、更に紫外線照射により1画素中に3個の円形
配向32a〜32cが形成される様配向処理される配向
膜33が印刷されている。
Next, a third embodiment of the present invention will be described with reference to FIGS. In the present embodiment, liquid crystal molecules are switched laterally by an electric field in the lateral direction parallel to the array substrate 12 in the first embodiment. Therefore, the slit-shaped common electrode 18 is provided not on the array substrate 12 but on the opposite substrate 13 side. Since the other parts are the same as those of the first embodiment, the same parts are designated by the same reference numerals and the description thereof will be omitted. That is, the insulating substrate 1 of the array substrate 40
The common electrode 18 and the electrode insulating film 20 according to the first embodiment are not formed on the gate electrode 2 on the gate electrode 2
1. The TFT 11 having the semiconductor layer 23 made of amorphous silicon (a-Si) and the like and the comb-shaped pixel electrode 27 are formed, and further, three circular orientations 32a to 32c are formed in one pixel by ultraviolet irradiation. The alignment film 33 to be subjected to the alignment treatment is printed.

【0029】一方対向基板41は、絶縁基板34上の赤
(R)、緑(G)、青(B)のストライプ状のカラーフ
ィルタ36上に、絶縁膜39を介し、スパッタ法により
形成されるITO膜をストライプ状且つ絶縁基板34の
法線方向から見て画素電極27と交互に且つ平行に隣接
される様フォトエッチング加工してなる共通電極42が
形成され、更に紫外線照射により配向膜33と同様に1
画素中に3個の円形配向32a〜32cが形成される様
配向処理される配向膜43が印刷されている。この様な
アレイ基板40及び対向基板41を第1の実施の形態と
同様に対向配置し、間隙にネマチック液晶組成物14を
封入し、1画素が300μm×100μmの液晶表示素
子44を形成する。
On the other hand, the counter substrate 41 is formed on the insulating substrate 34 on the red (R), green (G), and blue (B) stripe-shaped color filters 36 via the insulating film 39 by the sputtering method. A common electrode 42 is formed by photo-etching the ITO film in a stripe shape so as to be adjacent to the pixel electrodes 27 alternately and in parallel when viewed from the normal line direction of the insulating substrate 34. Similarly 1
An alignment film 43 is printed so that three circular alignments 32a to 32c are formed in each pixel. The array substrate 40 and the counter substrate 41 as described above are arranged so as to face each other as in the first embodiment, and the nematic liquid crystal composition 14 is sealed in the gap to form a liquid crystal display element 44 in which one pixel is 300 μm × 100 μm.

【0030】これにより、液晶表示素子44にて初期状
態にあっては、配向膜33、43によりネマチック液晶
組成物14の液晶分子14aは第1の実施の形態と同様
に1画素で3つの円形配向32a〜32cに沿って配列
され、画素電極27及び共通電極42に対して斜めに配
列しており、入射された光は、層厚方向を複屈折効果に
より透過し出射する。一方、共通電極42及び画素電極
27間に電圧を印加すると、矢印s方向の電界により液
晶分子14aは第1の実施の形態の図5に示すのと同様
に電界方向に配列され、偏光板16の矢印s方向の偏光
軸と同一方向を向くため、入射光は変調されずに偏光板
16に吸収され出射されない。
As a result, in the initial state of the liquid crystal display element 44, the liquid crystal molecules 14a of the nematic liquid crystal composition 14 due to the alignment films 33 and 43 have three circles in one pixel as in the first embodiment. The light is arranged along the orientations 32a to 32c and obliquely arranged with respect to the pixel electrode 27 and the common electrode 42, and the incident light is transmitted and emitted in the layer thickness direction by the birefringence effect. On the other hand, when a voltage is applied between the common electrode 42 and the pixel electrode 27, the liquid crystal molecules 14a are aligned in the electric field direction by the electric field in the direction of the arrow s as in the first embodiment shown in FIG. Since it is oriented in the same direction as the polarization axis in the direction of arrow s, the incident light is not modulated and is absorbed by the polarizing plate 16 and is not emitted.

【0031】そしてこの液晶表示素子42にて動画を表
示し応答時間を測定した所、立ち上がりが6msec、
立ち下がりが16msecと極めて速い値を得られた。
又視野角の特性は上下左右60°以上においてコントラ
スト10:1以上の広い視野角を得られた。
Then, when a moving image is displayed on the liquid crystal display element 42 and the response time is measured, the rise time is 6 msec.
The fall was 16 msec, which was an extremely fast value.
As for the viewing angle characteristics, a wide viewing angle with a contrast of 10: 1 or more was obtained in the vertical and horizontal directions of 60 ° or more.

【0032】このように構成すれば、第1の実施の形態
と同様、高コントラストを得られ耐衝撃性及び階調性に
優れ駆動電圧の低減も可能なネマチック液晶組成物14
を用いた液晶表示素子44において広視野角を得られる
と共に、スイッチング時の応答時間が短縮され、応答の
高速化を得られ、動画にあっても良好な表示品位を得ら
れる。
According to this structure, as in the first embodiment, the nematic liquid crystal composition 14 having high contrast, excellent impact resistance and gradation, and capable of reducing driving voltage is obtained.
In the liquid crystal display element 44 using, a wide viewing angle can be obtained, the response time at the time of switching can be shortened, the response speed can be increased, and good display quality can be obtained even in a moving image.

【0033】尚本発明は上記実施の形態に限られるもの
でなく、その趣旨を変えない範囲での変更は可能であっ
て、例えば基板と平行な横方向電界を生じさせるための
共通電極及び画素電極のサイズや数等任意であるが、開
口率を向上するためには、より細く且つより少ない事が
望ましく、基板の法線方向から見た時に共通電極及び画
素電極が占める割合が、表面積の2/3以下である事が
望ましい。又、液晶表示素子のセル厚やネマチック液晶
組成物の材質等も任意であり、その誘電率異方性は正、
負のいずれでも良いし、ネマチック液晶組成物に色素を
混ぜるゲストホスト液晶組成物であっても良い。
The present invention is not limited to the above-described embodiment, and modifications can be made without departing from the spirit of the invention. For example, a common electrode and a pixel for generating a lateral electric field parallel to the substrate. The size and number of electrodes are arbitrary, but in order to improve the aperture ratio, it is desirable that the electrodes are thinner and smaller, and the ratio of the common electrode and the pixel electrode when viewed from the normal direction of the substrate is It is desirable that it is 2/3 or less. Further, the cell thickness of the liquid crystal display element, the material of the nematic liquid crystal composition, etc. are arbitrary, and the dielectric anisotropy is positive,
It may be either negative or a guest-host liquid crystal composition in which a dye is mixed with a nematic liquid crystal composition.

【0034】更に初期状態における液晶分子の配向方向
も円形に限定されること無く図10に示す第1の変形例
の様に共通電極46及び画素電極47の間隙にて液晶分
子48を半円形に配向したりあるいは、図11に示す第
2の変形例の様に共通電極50及び画素電極51の間隙
にて液晶分子52を1/4円形に配向する等しても良
い。又液晶表示素子の駆動もTFTによらず、MIM
(金属・絶縁膜・金属)を用いたアクティブマトリクス
液晶表示素子や、シンプルマトリクス液晶表示素子等で
あっても良い。
Further, the orientation direction of the liquid crystal molecules in the initial state is not limited to the circular shape, and the liquid crystal molecules 48 are semicircular in the gap between the common electrode 46 and the pixel electrode 47 as in the first modification shown in FIG. Alternatively, as in the second modification shown in FIG. 11, the liquid crystal molecules 52 may be aligned in a quarter circle in the gap between the common electrode 50 and the pixel electrode 51. Also, the liquid crystal display element is driven by MIM regardless of the TFT.
It may be an active matrix liquid crystal display element using (metal / insulating film / metal), a simple matrix liquid crystal display element, or the like.

【0035】[0035]

【発明の効果】以上説明したように本発明によれば、ネ
マチック液晶組成物を基板と平行の横方向にスイッチン
グする事から広視野角化を得られると共に、スイッチン
グを行う際の液晶分子の初期状態が、電極に対して斜め
の円弧状に配向されており電圧印加により電界方向に回
転し易く、スイッチングの応答時間が短縮され、応答の
高速化を実現出来、動画にあっても良好な表示品位を得
られる。しかも良好なコントラストを得られると共に階
調性及び耐衝撃性にも優れており、又、駆動電圧が低い
事から経済性向上も図られる。
As described above, according to the present invention, since the nematic liquid crystal composition is switched in the lateral direction parallel to the substrate, a wide viewing angle can be obtained, and the initial phase of liquid crystal molecules at the time of switching is obtained. The state is oriented in an arc shape oblique to the electrode, it is easy to rotate in the direction of the electric field by applying a voltage, the switching response time is shortened, the response speed can be increased, and a good display is displayed even in a moving image. You can get dignity. Moreover, good contrast can be obtained, and gradation and impact resistance are excellent. Further, since the driving voltage is low, economic efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態のアレイ基板を示す
概略平面図である。
FIG. 1 is a schematic plan view showing an array substrate according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の図1のA−A´線
から見た液晶表示素子の概略断面図である。
FIG. 2 is a schematic cross-sectional view of the liquid crystal display element taken along the line AA ′ in FIG. 1 according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態の図1のB−B´線
から見た液晶表示素子の概略断面図である。
FIG. 3 is a schematic cross-sectional view of the liquid crystal display element taken along the line BB ′ in FIG. 1 according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態の配向膜の配向状態
を示す説明図である。
FIG. 4 is an explanatory diagram showing an alignment state of an alignment film according to the first embodiment of the present invention.

【図5】本発明の第1の実施の形態の電圧印加時におけ
る液晶分子を示す説明図である。
FIG. 5 is an explanatory diagram showing liquid crystal molecules when a voltage is applied according to the first embodiment of the present invention.

【図6】本発明の第2の実施の形態の配向膜の配向状態
を示す説明図である。
FIG. 6 is an explanatory diagram showing an alignment state of an alignment film according to a second embodiment of the present invention.

【図7】本発明の第3の実施の形態のアレイ基板を示す
概略平面図である。
FIG. 7 is a schematic plan view showing an array substrate according to a third embodiment of the present invention.

【図8】本発明の第3の実施の形態の対向基板を示す概
略平面図である。
FIG. 8 is a schematic plan view showing a counter substrate according to a third embodiment of the present invention.

【図9】本発明の第3の実施の形態の液晶表示素子を示
す概略断面図である。
FIG. 9 is a schematic cross-sectional view showing a liquid crystal display element of a third embodiment of the present invention.

【図10】本発明の第1の変形例の配向状態を示す説明
図である。
FIG. 10 is an explanatory diagram showing an alignment state of a first modified example of the present invention.

【図11】本発明の第2の変形例の配向状態を示す説明
図である。
FIG. 11 is an explanatory diagram showing an alignment state of a second modified example of the present invention.

【図12】比較例の配向方向を示す説明図である。FIG. 12 is an explanatory diagram showing an alignment direction of a comparative example.

【図13】従来の装置を示し(a)はその初期状態を示
す概略断面図、(b)はその電圧印加時を示す概略断面
図である。
13A is a schematic cross-sectional view showing an initial state of a conventional device, and FIG. 13B is a schematic cross-sectional view showing a voltage application thereof.

【図14】従来の装置を示し(a)はその初期状態にお
ける液晶分子を示す説明図、(b)はその電圧印加時に
おける液晶分子を示す説明図である。
14A and 14B show a conventional device, and FIG. 14A is an explanatory diagram showing liquid crystal molecules in an initial state thereof, and FIG. 14B is an explanatory diagram showing liquid crystal molecules when a voltage is applied thereto.

【符号の説明】[Explanation of symbols]

10…液晶表示素子 11…TFT 12…アレイ基板 13…対向基板 14…ネマチック液晶組成物 15、16…偏光板 18…共通電極 27…画素電極 32a〜32c…円形配向 33…配向膜 10 ... Liquid crystal display element 11 ... TFT 12 ... Array substrate 13 ... Counter substrate 14 ... Nematic liquid crystal composition 15, 16 ... Polarizing plate 18 ... Common electrode 27 ... Pixel electrodes 32a to 32c ... Circular alignment 33 ... Alignment film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二ノ宮 利博 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 岡本 ますみ 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 石川 正仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 田中 康晴 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 庄子 雅人 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toshihiro Ninomiya Toshihiro Ninomiya 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Incorporated company Toshiba Yokohama Works (72) Inventor Masumi Okamoto 8-story, Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Ceremony Company Toshiba Yokohama Works (72) Inventor Masahito Ishikawa 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock Company Toshiba Yokohama Office (72) Inventor Yasuharu Tanaka 8-Shin-Sugita-cho, Isogo-ku, Yokohama Kanagawa Toshiba Yokohama office (72) Inventor Hitoshi Hato 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock company Toshiba Yokohama office (72) Inventor Masato Shoko 8-Shin-Sugita-cho, Isogo-ku, Yokohama, Kanagawa stock company Toshiba Yokohama In the office

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 対向して設けられる一対の基板の間にネ
マチック液晶組成物を封入してなる液晶表示素子におい
て、 前記一対の基板のいずれかに形成される櫛型の画素電極
と、前記一対の基板のいずれかに設けられ、前記一対の
基板の法線方向から見て、前記画素電極と間隙を介し交
互に配置されるスリット状の共通電極と、前記ネマチッ
ク液晶組成物を円弧状に配向するよう配向処理される配
向膜とを具備する事を特徴とする液晶表示素子。
1. A liquid crystal display device comprising a nematic liquid crystal composition enclosed between a pair of substrates provided facing each other, comprising: a comb-shaped pixel electrode formed on one of the pair of substrates; A slit-shaped common electrode which is provided on any one of the substrates and which is alternately arranged with the pixel electrode with a gap, when viewed from the normal direction of the pair of substrates, and the nematic liquid crystal composition is aligned in an arc shape. A liquid crystal display device, comprising:
【請求項2】 画素電極及び共通電極が同一の基板に形
成され、任意の画素電極及び及びこの任意の画素電極に
隣接する共通電極との間隙において前記基板と平行な電
界を生じる事を特徴とする請求項1に記載の液晶表示素
子。
2. The pixel electrode and the common electrode are formed on the same substrate, and an electric field parallel to the substrate is generated in a gap between the pixel electrode and the common electrode adjacent to the arbitrary pixel electrode. The liquid crystal display element according to claim 1.
【請求項3】 配向膜が、ネマチック液晶組成物を円形
に配向する様配向処理される事を特徴とする請求項1又
は請求項2のいずれかに記載の液晶表示素子。
3. The liquid crystal display element according to claim 1, wherein the alignment film is subjected to alignment treatment so as to align the nematic liquid crystal composition in a circular shape.
【請求項4】 配向膜が、画素電極及びこの画素電極に
隣接する共通電極の間隙内において、ネマチック液晶組
成物を円形に配向する様配向処理される事を特徴とする
請求項1乃至請求項3のいずれかに記載の液晶表示素
子。
4. The alignment film is subjected to an alignment treatment so as to align the nematic liquid crystal composition in a circular shape in the gap between the pixel electrode and the common electrode adjacent to the pixel electrode. 3. The liquid crystal display element according to any one of 3 above.
【請求項5】 配向膜が、画素電極及びこの画素電極に
隣接する共通電極の間隙内において、ネマチック液晶組
成物を半円形に配向する様配向処理される事を特徴とす
る請求項1又は請求項2のいずれかに記載の液晶表示素
子。
5. The alignment film is subjected to an alignment treatment so as to align the nematic liquid crystal composition in a semicircular shape in the gap between the pixel electrode and the common electrode adjacent to the pixel electrode. Item 3. The liquid crystal display device according to item 2.
【請求項6】 画素電極及び共通電極がそれぞれ異なる
基板に形成される事を特徴とする請求項1に記載の液晶
表示素子。
6. The liquid crystal display device according to claim 1, wherein the pixel electrode and the common electrode are formed on different substrates.
【請求項7】 配向膜が、ネマチック液晶組成物を円形
に配向する様配向処理される事を特徴とする請求項6に
記載の液晶表示素子。
7. The liquid crystal display device according to claim 6, wherein the alignment film is subjected to alignment treatment so as to align the nematic liquid crystal composition in a circular shape.
【請求項8】 配向膜が、画素電極及び一対の基板の法
線方向から見て前記画素電極に隣接する共通電極の間隙
内において、ネマチック液晶組成物を円形に配向する様
配向処理される事を特徴とする請求項6又は請求項7の
いずれかに記載の液晶表示素子。
8. The alignment film is subjected to an alignment treatment so as to align the nematic liquid crystal composition in a circular shape within the gap between the pixel electrode and the common electrode adjacent to the pixel electrode when viewed in the normal direction of the pair of substrates. The liquid crystal display element according to claim 6, wherein the liquid crystal display element is a liquid crystal display element.
【請求項9】 配向膜が、画素電極及び一対の基板の法
線方向から見て前記画素電極に隣接する共通電極の間隙
内において、ネマチック液晶組成物を半円形に配向する
様配向処理される事を特徴とする請求項6に記載の液晶
表示素子。
9. The alignment film is subjected to an alignment treatment so as to align the nematic liquid crystal composition in a semicircular shape in the gap between the pixel electrode and the common electrode adjacent to the pixel electrode when viewed from the normal direction of the pixel electrode. The liquid crystal display device according to claim 6, wherein the liquid crystal display device is a liquid crystal display device.
JP14550396A 1996-06-07 1996-06-07 Liquid crystal display element Pending JPH09325340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14550396A JPH09325340A (en) 1996-06-07 1996-06-07 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14550396A JPH09325340A (en) 1996-06-07 1996-06-07 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH09325340A true JPH09325340A (en) 1997-12-16

Family

ID=15386772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14550396A Pending JPH09325340A (en) 1996-06-07 1996-06-07 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH09325340A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045430A1 (en) * 1998-03-06 1999-09-10 Hitachi, Ltd. Liquid crystal display
US6469765B1 (en) 1999-06-16 2002-10-22 Nec Corporation Liquid crystal display and method of performing display operation
US7002656B2 (en) 2003-12-11 2006-02-21 Lg.Philips Lcd Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device
US7006188B2 (en) 2003-12-11 2006-02-28 Lg.Philips Lcd Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7110079B2 (en) 2003-12-16 2006-09-19 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of fabricating the same
US7177001B2 (en) 2003-12-11 2007-02-13 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device and method of fabricating the same
US7202928B2 (en) 2003-10-16 2007-04-10 Lg. Philips Lcd Co., Ltd Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7227607B2 (en) 2003-12-11 2007-06-05 Lg.Philips Lcd Co., Ltd Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7262825B2 (en) 2003-12-11 2007-08-28 Lg.Philips Lcd Co., Ltd. Liquid crystal cell process for circular electrode in-plane switching mode liquid crystal display device and said device
US7339645B2 (en) 2003-12-11 2008-03-04 Lg.Philips Lcd. Co., Ltd. In-plane switching mode liquid crystal display device including field generating electrodes having a curved shape and method of fabricating the same
US7440060B2 (en) 2003-12-17 2008-10-21 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
JP2009169427A (en) * 2009-04-16 2009-07-30 Sharp Corp Liquid crystal display device
JP2010145872A (en) * 2008-12-19 2010-07-01 Sony Corp Liquid crystal panel and electronic device
JP2013171187A (en) * 2012-02-21 2013-09-02 Japan Display Inc Display device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045430A1 (en) * 1998-03-06 1999-09-10 Hitachi, Ltd. Liquid crystal display
US6469765B1 (en) 1999-06-16 2002-10-22 Nec Corporation Liquid crystal display and method of performing display operation
US7202928B2 (en) 2003-10-16 2007-04-10 Lg. Philips Lcd Co., Ltd Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7528920B2 (en) 2003-10-16 2009-05-05 Lg Display Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7006188B2 (en) 2003-12-11 2006-02-28 Lg.Philips Lcd Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7177001B2 (en) 2003-12-11 2007-02-13 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device and method of fabricating the same
US7002656B2 (en) 2003-12-11 2006-02-21 Lg.Philips Lcd Co., Ltd. Array substrate for in-plane switching mode liquid crystal display device
US7227607B2 (en) 2003-12-11 2007-06-05 Lg.Philips Lcd Co., Ltd Array substrate for in-plane switching mode liquid crystal display device and method of fabricating the same
US7262825B2 (en) 2003-12-11 2007-08-28 Lg.Philips Lcd Co., Ltd. Liquid crystal cell process for circular electrode in-plane switching mode liquid crystal display device and said device
US7339645B2 (en) 2003-12-11 2008-03-04 Lg.Philips Lcd. Co., Ltd. In-plane switching mode liquid crystal display device including field generating electrodes having a curved shape and method of fabricating the same
US7420642B2 (en) 2003-12-11 2008-09-02 Lg Display Co., Lcd Array substrate for in-plane switching mode liquid crystal display device
US7420641B2 (en) 2003-12-11 2008-09-02 Lg Display Co., Ltd. Method of forming an array substrate for in-plane switching mode liquid crystal display device
US7561237B2 (en) 2003-12-11 2009-07-14 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device and method of fabricating the same
US7110079B2 (en) 2003-12-16 2006-09-19 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of fabricating the same
US7440060B2 (en) 2003-12-17 2008-10-21 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
JP2010145872A (en) * 2008-12-19 2010-07-01 Sony Corp Liquid crystal panel and electronic device
JP2009169427A (en) * 2009-04-16 2009-07-30 Sharp Corp Liquid crystal display device
JP4637248B2 (en) * 2009-04-16 2011-02-23 シャープ株式会社 Liquid crystal display device
JP2013171187A (en) * 2012-02-21 2013-09-02 Japan Display Inc Display device

Similar Documents

Publication Publication Date Title
JP3811811B2 (en) Fringe field switching mode liquid crystal display
NL1008688C2 (en) Method for producing two domains in a layer, and liquid crystal display device and method for manufacturing the same.
US9488867B2 (en) Liquid crystal display device
JP3296426B2 (en) Liquid crystal display device and method of manufacturing the same
JP2001242466A (en) Multi-domain liquid crystal display device
JPH09325340A (en) Liquid crystal display element
JPH10307291A (en) Liquid crystal display panel
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
JPH0876125A (en) Liquid crystal display device
TWI223119B (en) Liquid crystal display device
JPH0922025A (en) Liquid crystal display device
JP2004151525A (en) Liquid crystal display
TWI231873B (en) Liquid crystal display
JP3746333B2 (en) Liquid crystal display
JPH07253578A (en) Liquid crystal display device
JPH0263019A (en) Optical modulating element
JPS60117283A (en) Improvement in liquid crystal display unit
JPH09127494A (en) Liquid crystal display and preparation thereof
JP4104374B2 (en) Color liquid crystal display
KR20070002677A (en) Liquid crystal display device
JPH0682787A (en) Liquid crystal display element
KR20000073286A (en) Vertical Aligned LCD with Wide Viewing Angle
JP2003195312A (en) Liquid crystal display unit with biased bending vertical alignment mode
KR100257975B1 (en) Large viewing angle liquid crystal display device
JPH08313896A (en) Liquid crystal display device