JPH07230097A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH07230097A
JPH07230097A JP2115294A JP2115294A JPH07230097A JP H07230097 A JPH07230097 A JP H07230097A JP 2115294 A JP2115294 A JP 2115294A JP 2115294 A JP2115294 A JP 2115294A JP H07230097 A JPH07230097 A JP H07230097A
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
display
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2115294A
Other languages
Japanese (ja)
Inventor
Tokuo Koma
徳夫 小間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2115294A priority Critical patent/JPH07230097A/en
Publication of JPH07230097A publication Critical patent/JPH07230097A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To prevent the display screen of the liquid crystal display device which has a vertical orientation ECB mode from becoming rough owing to the appearance of discrenation by specifying the orientation vector of a liquid crystal director. CONSTITUTION:On a display electrode 11, an orientation control electrode 19 which is united with a gate line 18 and along a diagonal is provided, and the potential difference between the orientation control electrode 19 and a common electrode is set larger than the potential difference between the display electrode 11 and common electrode. Consequently, the electric field in a cell is controlled to determine the vectorial angle of the orientation vector, thereby preventing discrenation. Further, an axis of polarization is set at right angles or in parallel to a substrate side and then a priority visual angle direction is set to the up- down and right-left directions of the screen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ECB(Electrically
Controlled Birefringence:電圧制御復屈折)方式の
液晶表示装置に関し、特に、液晶ダイレクターの配向を
制御することにより、良好な視角特性と高表示品位を達
成した液晶表示装置に関する。
The present invention relates to an ECB (Electrically
The present invention relates to a liquid crystal display device of the Controlled Birefringence (voltage controlled birefringence) system, and particularly to a liquid crystal display device that achieves good viewing angle characteristics and high display quality by controlling the orientation of the liquid crystal director.

【0002】[0002]

【従来の技術】液晶表示装置は小型、薄型、低消費電力
などの利点があり、OA機器、AV機器などの分野で実
用化が進んでいる。特に、スイッチング素子として、薄
膜トランジスタ(以下、TFTと略す)を用いたアクテ
ィブマトリクス型の液晶表示装置は、精細な動画表示が
可能となりTVのディスプレイなどに使用されている。
2. Description of the Related Art Liquid crystal display devices have advantages such as small size, thin shape, and low power consumption, and are being put to practical use in fields such as OA equipment and AV equipment. In particular, an active matrix type liquid crystal display device using a thin film transistor (hereinafter abbreviated as TFT) as a switching element is capable of displaying a fine moving image and is used for a TV display or the like.

【0003】液晶表示装置は、ガラスなどの透明基板上
に所定の電極パターンが設けられてなるTFT基板と、
共通電極を有する対向基板が、厚さ数μmの液晶層を挟
んで貼り合わされ、更にこれを、偏光軸が互いに直交す
る2枚の偏光板で挟み込むことによって構成される。特
に、両基板表面に垂直配向処理としてポリイミドなどの
高分子膜を形成してラビングを行い、液晶層として、負
の誘電率異方性を有するネマチック液晶を用いることに
より、液晶ダイレクターの初期配向を基板の法線方向に
対して10°以内のプレチルト角に設定し、更に、カラ
ー化のために光路上の所定の位置にカラーフィルターを
付加したものはVAN(Vertically aligned nematic)
型と呼ばれる。
A liquid crystal display device includes a TFT substrate in which a predetermined electrode pattern is provided on a transparent substrate such as glass,
A counter substrate having a common electrode is laminated with a liquid crystal layer having a thickness of several μm sandwiched therebetween, and further sandwiched between two polarizing plates whose polarization axes are orthogonal to each other. In particular, by forming a polymer film such as polyimide as a vertical alignment treatment on both substrate surfaces and performing rubbing, and by using a nematic liquid crystal having a negative dielectric anisotropy as the liquid crystal layer, the initial alignment of the liquid crystal director VAN (Vertically aligned nematic) with a pretilt angle within 10 ° to the substrate normal direction and a color filter added at a predetermined position on the optical path for colorization.
Called type.

【0004】TFT基板は、複数のゲートライン及びド
レインラインが交差配置された交点にTFTを形成し、
マトリクス状に配置された表示電極に接続させた構造を
有している。ゲートラインは線順次に走査選択されて、
同一走査線上のTFTを全てONとし、これと同期した
データ信号をドレインラインを介して各表示電極に供給
する。共通電極もまた、ゲートラインの走査に同期して
電位が設定され、対向する各表示電極との電位差で液晶
を駆動して画素容量を形成する。例えばTFT基板側か
ら入射された白色光は、第1の偏光板により直線偏光に
変化する。電圧無印加時には、この入射直線偏光は液晶
層中で複屈折を受けず、第2の偏光板によって遮断され
表示は黒となる(ノーマリ・ブラック・モード)。そし
て、液晶層に所定の電圧を印加すると、誘電率異方性が
負の液晶ダイレクターは、配向ベクトルを電界方向との
なす角を直角に近付ける方向に変化する。液晶はまた、
屈折率に異方性を有するため、入射直線偏光が複屈折を
受け楕円偏光となり、光が偏光板を透過するするように
なる。透過光強度は印加電圧に依存するため、印加電圧
を画素ごとに調整することにより階調表示が可能とな
り、各画素の明暗(白黒)が全体として表示画像に視認
される。
In the TFT substrate, TFTs are formed at intersections where a plurality of gate lines and drain lines are arranged so as to cross each other.
It has a structure connected to display electrodes arranged in a matrix. The gate lines are line-sequentially scanned and selected,
All the TFTs on the same scanning line are turned on, and a data signal synchronized with this is supplied to each display electrode via the drain line. The potential of the common electrode is also set in synchronization with the scanning of the gate line, and the liquid crystal is driven by the potential difference between the display electrodes facing each other to form the pixel capacitance. For example, white light incident from the TFT substrate side is changed into linearly polarized light by the first polarizing plate. When no voltage is applied, this incident linearly polarized light does not undergo birefringence in the liquid crystal layer, is blocked by the second polarizing plate, and the display becomes black (normally black mode). Then, when a predetermined voltage is applied to the liquid crystal layer, the liquid crystal director having a negative dielectric anisotropy changes so that the angle formed by the orientation vector and the electric field direction approaches a right angle. The liquid crystal is also
Since the refractive index has anisotropy, the incident linearly polarized light undergoes birefringence to become elliptically polarized light, and the light passes through the polarizing plate. Since the transmitted light intensity depends on the applied voltage, gradation display is possible by adjusting the applied voltage for each pixel, and the brightness (black and white) of each pixel is visually recognized in the display image as a whole.

【0005】[0005]

【発明が解決しようとする課題】ネマチック相の液晶ダ
イレクターは、電圧印加時の配向ベクトルが電界方向に
対する角度のみで束縛され、電界方向を軸とした方位角
は解放されている。そのため、TFT基板は表面に電極
による凹凸が有り表面配向処理が不均一になっているこ
とや、液晶セル内の電極間の電位差による横方向の電界
が存在していることなどの原因により配向ベクトルが互
いに異なった領域が生じる。即ち、部分的にも配向ベク
トルの異常が存在すると、液晶の連続体性のために、こ
れに従うような方位角を有する配向ベクトルがある領域
に渡って広がる。このようなことがセルの複数個所で起
きれば、電界方向とのなす角が同じでありながら、方位
角が異った配向ベクトルを有する領域が複数生じる。こ
れらの領域の境界線は透過率が他と異なており、ディス
クリネーションと呼ばれる。画素ごとに異なる形状のデ
ィスクリネーションが多発すると、画面にざらつきが生
じたり、期待のカラー表示が得られないなどの問題が招
かれる。
In the nematic liquid crystal director, the orientation vector when a voltage is applied is restricted only by the angle with respect to the electric field direction, and the azimuth angle about the electric field direction is released. Therefore, the TFT substrate has irregularities on the surface due to the unevenness of the surface alignment treatment, and the horizontal direction electric field due to the potential difference between the electrodes in the liquid crystal cell causes the alignment vector. Regions different from each other occur. That is, if the orientation vector is partially abnormal, the continuity of the liquid crystal causes the orientation vector having the azimuth angle to follow the continuity to spread over a certain region. If such a phenomenon occurs at a plurality of locations in the cell, a plurality of regions having orientation vectors having different azimuth angles while having the same angle with the electric field direction are generated. The boundary line between these regions has a different transmittance from others, and is called disclination. If many disclinations with different shapes occur for each pixel, problems such as graininess on the screen and failure to obtain the expected color display may occur.

【0006】また、各領域の配向ベクトルが、表示領域
中で不規則になると視角依存性が高まる問題がある。更
に、ラビング時に発生する静電気によって、TFTの閾
値や相互コンダクタンスが変化し、いわゆる静電破壊を
引き起こす問題がある。
Further, if the orientation vector of each area becomes irregular in the display area, there is a problem that the viewing angle dependency increases. Further, there is a problem that the threshold value and mutual conductance of the TFT change due to static electricity generated during rubbing, which causes so-called electrostatic breakdown.

【0007】[0007]

【課題を解決するための手段】本発明は前述の課題に鑑
みて成され、対向表面側に所定の導体パターンを有した
薄膜トランジスタ基板と、対向表面側に共通電極を有し
た対向基板が液晶を挟んで貼り合わされ、前記2枚の基
板の対向裏面側には偏光軸方向が互いに直交するように
偏光板が設けられてなる液晶表示装置において、前記薄
膜トランジスタ基板は、透明基板上に積層された透明導
電膜をエッチングすることによりマトリクス状に配置形
成された表示電極と、該表示電極の行間に配置形成され
た複数のドレインラインと、前記表示電極及びドレイン
ラインを被覆して順次積層された半導体層、絶縁膜及び
メタル膜よりなる積層体をエッチングすることにより得
られ、前記表示電極とドレインラインの近接部に部分的
に重畳して薄膜トランジスタを構成する複数のゲートラ
インと、各々の前記表示電極上の対角線に沿った位置
に、該表示電極の駆動に係わる前記ゲートラインと異な
った隣接のゲートラインから延在配置された配向制御電
極とを有した構成である。
The present invention has been made in view of the above problems, and a thin film transistor substrate having a predetermined conductor pattern on the opposite surface side and an opposite substrate having a common electrode on the opposite surface side are made of liquid crystal. In a liquid crystal display device in which a polarizing plate is provided such that the two substrates are sandwiched and bonded to each other, and the polarizing plates are provided so that the polarization axis directions thereof are orthogonal to each other, the thin film transistor substrate is a transparent substrate laminated on a transparent substrate. Display electrodes arranged in a matrix by etching a conductive film, a plurality of drain lines arranged between rows of the display electrodes, and semiconductor layers sequentially covering the display electrodes and the drain lines. The thin film transistor is obtained by etching a laminated body including an insulating film and a metal film, and is partially overlapped with the vicinity of the display electrode and the drain line. And a plurality of gate lines forming a transistor, and an alignment control electrode disposed at a position along a diagonal line on each of the display electrodes, extending from an adjacent gate line different from the gate line for driving the display electrode. It is a configuration having and.

【0008】[0008]

【作用】表示電極上に、表示電極と異なる電位の配向制
御電極を設けることにより、配向制御電極、表示電極及
び共通電極の間の電位差でセル内の電界が制御されて、
配向ベクトルの方位角が指定される。即ち、セル内の電
界を斜めに傾かせて基板の法線方向に対して所定の角度
を持たせ、電圧無印加時の配向ベクトルと電界方向に、
あらかじめ所定の角度を付けておくことにより、液晶の
連続体性に基づく弾性のため、液晶ダイレクターは最短
でこの角度を増す方向へ傾斜する。
By providing an alignment control electrode having a potential different from that of the display electrode on the display electrode, the electric field in the cell is controlled by the potential difference between the alignment control electrode, the display electrode and the common electrode.
The azimuth of the orientation vector is specified. That is, the electric field in the cell is obliquely inclined to have a predetermined angle with respect to the normal direction of the substrate, and the orientation vector and the electric field direction when no voltage is applied,
By setting a predetermined angle in advance, the liquid crystal director tilts in the direction of increasing this angle at the shortest because of elasticity due to continuity of liquid crystal.

【0009】配向制御電極を画素の対角線上に配置する
ことにより、配向制御電極により仕切られる各ゾーンで
は、液晶ダイレクターは互いに対称な配向ベクトルで示
されるように傾斜が制御され、かつ、平面的には、その
投影ベクトルは配向制御電極に直交する方向になる。
By arranging the alignment control electrodes on the diagonal line of the pixel, in each zone partitioned by the alignment control electrodes, the liquid crystal directors are tilted as shown by the alignment vectors symmetrical to each other and are planar. , Its projection vector is in a direction orthogonal to the orientation control electrode.

【0010】[0010]

【実施例】続いて、本発明の実施例を図面を参照しなが
ら説明する。図1は画素部の拡大平面図である。基板上
にITOなどの透明導電物からなる表示電極(11)が
マトリクス状に配置されている。各表示電極(11)の
間には、列間にドレインライン(13)、行間にゲート
ライン(18)が配置され、互いに直交している。各交
点にはTFTが形成され、表示電極(11)に接続して
いる。表示電極(11)上には、ゲートライン(18)
と一体の配向制御電極(19)が延在形成され、表示電
極(11)の1対角線に沿って配置されている。配向制
御電極(19)は該配向制御電極(19)が重畳された
表示電極(11)を駆動するTFTのゲートラインと異
なる側のゲートライン(18)に接続されている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is an enlarged plan view of the pixel portion. Display electrodes (11) made of a transparent conductive material such as ITO are arranged in a matrix on the substrate. A drain line (13) is arranged between columns and a gate line (18) is arranged between rows between the respective display electrodes (11), and they are orthogonal to each other. A TFT is formed at each intersection and is connected to the display electrode (11). A gate line (18) is formed on the display electrode (11).
An alignment control electrode (19) is integrally formed with the display electrode (11) and is arranged along one diagonal line of the display electrode (11). The alignment control electrode (19) is connected to the gate line (18) on the side different from the gate line of the TFT that drives the display electrode (11) on which the alignment control electrode (19) is superimposed.

【0011】以下、図1のA−A線部の断面を示した図
2も参照しながら詳細に説明する。ガラスなどの透明基
板(10)上に、ITOのスパッタリングとフォトエッ
チなどにより、表示電極(11)及びドレインライン
(13)がパターン形成され、それぞれ一部はソース電
極(12)及びドレイン電極(14)として互いに近接
されている。
A detailed description will be given below with reference to FIG. 2 showing a cross section taken along the line AA of FIG. A display electrode (11) and a drain line (13) are patterned on a transparent substrate (10) such as glass by sputtering ITO and photo-etching, and a part thereof is a source electrode (12) and a drain electrode (14). ) Are close to each other.

【0012】ここで、ITOのスパッタリングにおい
て、ターゲットととしてITOに燐などの5族元素を添
加したもを用いることにより、ソース及びドレイン配線
(11,12,13,14)中に燐を含有させておく。
ソース電極(12)及びドレイン電極(14)上には、
a−Si(15)、絶縁膜(16)、ゲート電極(1
7)が順次積層されてTFTを構成している。絶縁膜
(16)はSiNXなどであり、ゲート電極(17)
は、ゲートライン(18)及び配向制御電極(19)と
一体のAlなどからなる。これら、a−Si、Si
X、Alは連続で成膜し、ゲート配線(17,18,
19)の同一マスクでパターニングしている。尚、a−
SiはプラズマCVDで成膜するが、この時、ITO中
の燐がa−Si側へ拡散して界面にN型に高濃度の薄膜
が形成され、ITOとa−Siのオーミックなコンタク
トが得られる。
Here, in the sputtering of ITO, the source and drain wirings (11, 12, 13, 14) are made to contain phosphorus by using a group 5 element such as phosphorus added to ITO as a target. Keep it.
On the source electrode (12) and the drain electrode (14),
a-Si (15), insulating film (16), gate electrode (1
7) are sequentially laminated to form a TFT. The insulating film (16) is, for example, SiN x , and the gate electrode (17)
Is made of Al or the like integrated with the gate line (18) and the orientation control electrode (19). These, a-Si, Si
N X, Al is deposited by successive gate lines (17, 18,
Patterning is performed with the same mask of 19). In addition, a-
Si is formed by plasma CVD. At this time, phosphorus in ITO diffuses to the a-Si side to form a high concentration N-type thin film at the interface, and ohmic contact between ITO and a-Si is obtained. To be

【0013】更に全面に、ポリイミドなどの高分子膜に
垂直配向処理を施した垂直配向膜(20)を被覆してT
FT基板となる。そして、ガラスなどの透明基板(3
0)上に、ITOの共通電極(31)、及び、ポリイド
の垂直配向膜(32)を形成した対向基板を、TFT基
板に貼り合わせ、間隙に負の誘電率異方性を有するネマ
ティック液晶を封入する。更に両基板(10,30)の
外側には、互いに直交する偏光軸が、いずれも配向制御
電極(19)に対して45°の角度になるように2枚の
偏光板で挟みこむことにより、本発明の一実施例である
液晶表示装置が完成される。
Further, the entire surface is covered with a vertical alignment film (20) obtained by subjecting a polymer film of polyimide or the like to vertical alignment treatment, and then T
It becomes an FT substrate. Then, a transparent substrate such as glass (3
0), a common electrode (31) made of ITO and a vertical alignment film (32) made of polyid are formed on the opposite substrate, and the nematic liquid crystal having negative dielectric anisotropy in the gap is attached to the TFT substrate. Encapsulate. Furthermore, by sandwiching the polarization axes orthogonal to each other on the outside of both substrates (10, 30) with two polarizing plates so that they are all at an angle of 45 ° with respect to the alignment control electrode (19), A liquid crystal display device, which is an embodiment of the present invention, is completed.

【0014】配向制御電極(19)はゲートライン(1
8)と一体であり、絶縁膜(16)を挟んだ表示電極
(11)との重畳部で容量を形成する、いわゆる付加容
量型となっている。図3に示すように、ゲート信号(V
G)は、そのOFFレベルを共通電極信号(VC)と同周
波数、同振幅で、かつ、一定の電位差(VCD)を有する
ように設定する。これにより、表示電極(11)と共通
電極(31)との電位差(VLC±)の正負反転に係わら
ず、配向制御電極(19)と共通電極(31)との実効
電位差(VCD)は、表示電極(11)と共通電極(3
1)との実効電位差(VLC)よりも大きくされる。
The orientation control electrode (19) is connected to the gate line (1
8), which is a so-called additional capacitance type, which is integrated with the display electrode (11) sandwiching the insulating film (16) to form a capacitance. As shown in FIG. 3, the gate signal (V
G ) sets its OFF level so that it has the same frequency and amplitude as the common electrode signal (V C ) and has a constant potential difference (V CD ). As a result, the effective potential difference (V CD ) between the alignment control electrode (19) and the common electrode (31) is irrespective of whether the potential difference (V LC ±) between the display electrode (11) and the common electrode (31) is inverted. , The display electrode (11) and the common electrode (3
It is made larger than the effective potential difference (V LC ) from 1).

【0015】この場合、図4に示されるように、配向制
御電極(19)により仕切られた各ゾーンの液晶ダイレ
クター(41)は、配向ベクトルが互いに対称になるよ
うに制御される。図4は、表示電極(11)、配向制御
電極(19)及び共通電極(31)の位置関係を示す模
式的断面図である。配向制御電極(19)と共通電極
(31)との間の電界(40)が強く両外側へ膨張する
ため、配向制御電極(19)のエッジ部近傍では、電界
(40)は表示電極(11)から共通電極(31)へ向
かって、配向制御電極(19)から遠ざかるように斜め
方向に生じる。また、表示電極(11)のエッジ部で
は、電界(40)は表示電極(11)から共通電極(3
1)へ向かって、表示電極(11)の領域内から表示電
極(11)の領域外へ斜め方向に生じる。これら2つの
作用と、液晶の連続体性に基づく弾性により、液晶ダイ
レクター(41)は、電圧印加により、配向ベクトルと
電界方向とのなす角が最短で増大する方向へ傾斜するた
め、図1において、配向制御電極(19)で仕切られた
表示部の2つのゾーンでは、配向ベクトルの平面投影
が、配向制御電極(19)に対して垂直で、かつ、線対
称になるように制御される。
In this case, as shown in FIG. 4, the liquid crystal directors (41) in each zone partitioned by the alignment control electrodes (19) are controlled so that the alignment vectors are symmetrical to each other. FIG. 4 is a schematic cross-sectional view showing the positional relationship between the display electrode (11), the alignment control electrode (19) and the common electrode (31). Since the electric field (40) between the alignment control electrode (19) and the common electrode (31) expands strongly to both outsides, the electric field (40) near the edge of the alignment control electrode (19) causes the display electrode (11). ) To the common electrode (31) in an oblique direction away from the alignment control electrode (19). Further, at the edge of the display electrode (11), the electric field (40) flows from the display electrode (11) to the common electrode (3).
It occurs obliquely from inside the area of the display electrode (11) to outside the area of the display electrode (11) toward 1). Due to these two actions and the elasticity based on the continuity of the liquid crystal, the liquid crystal director (41) tilts in the direction in which the angle formed by the alignment vector and the electric field direction increases at the shortest when a voltage is applied. In the two zones of the display section partitioned by the alignment control electrode (19), the plane projection of the alignment vector is controlled so as to be perpendicular to the alignment control electrode (19) and line-symmetric. .

【0016】従って、画素を配向制御電極(19)で2
分割したそれぞれの領域で、配向ベクトルを制御できる
ので、ディスクリネーションが防止される。また図5に
示すように、各配向制御電極が基板の辺に対して45°
の角度に配置されており、液晶ダイレクターは配向制御
電極に直角の方向へ傾斜する。このため、偏光軸が液晶
ダイレクターの傾斜方向に対して45°の角度になるよ
うに、即ち、基板の辺に対して直角または平行になるよ
うに2枚の偏光板を配置することにより、優先視角方向
を上下左右方向にすることができる。
Therefore, the pixel is divided into two by the orientation control electrode (19).
Since the orientation vector can be controlled in each of the divided areas, disclination is prevented. Further, as shown in FIG. 5, each orientation control electrode is 45 ° with respect to the side of the substrate.
The liquid crystal director is inclined at a right angle to the alignment control electrode. Therefore, by arranging the two polarizing plates so that the polarization axis is at an angle of 45 ° with respect to the tilt direction of the liquid crystal director, that is, at a right angle or parallel to the side of the substrate, The preferential viewing angle direction can be the vertical and horizontal directions.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、画素の
対角線方向に形成された配向制御電極により、表示画素
内の配向ベクトルを配向制御電極に関して対称的に束縛
することができるので、ディスクリネーションの出現が
防止される。また、偏光軸を基板辺に直角または平行方
向に設定することにより、表示画面の上下左右方向に優
先視角方向を有する液晶表示装置が得られる。
As is clear from the above description, the alignment control electrodes formed in the diagonal direction of the pixel can constrain the alignment vector in the display pixel symmetrically with respect to the alignment control electrode. The appearance of nations is prevented. Further, by setting the polarization axis at a right angle or parallel to the substrate side, a liquid crystal display device having a preferential viewing angle direction in the vertical and horizontal directions of the display screen can be obtained.

【0018】更に、ラビングによる表面配向処理が不要
となるので、製造コストが削減されると共に、静電気に
よるTFTの特性悪化が防止される。
Further, since the surface alignment treatment by rubbing is unnecessary, the manufacturing cost is reduced and the deterioration of the TFT characteristics due to static electricity is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る液晶表示装置の平面図で
ある。
FIG. 1 is a plan view of a liquid crystal display device according to an embodiment of the present invention.

【図2】図1のA−A線部分の断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG.

【図3】本発明の液晶表示装置の駆動方法を説明する波
形図である。
FIG. 3 is a waveform diagram illustrating a driving method of the liquid crystal display device of the present invention.

【図4】本発明の作用効果を説明する断面図である。FIG. 4 is a cross-sectional view illustrating the function and effect of the present invention.

【図5】本発明の作用効果を説明する平面図である。FIG. 5 is a plan view illustrating the effects of the present invention.

【符号の説明】[Explanation of symbols]

10,30 透明基板 11 表示電極 12 ソース電極 13 ドレインライン 14 ドレイン電極 15 a−Si 16 絶縁膜 17 ゲート電極 18 ゲートライン 19 配向制御電極 20,32 垂直配向膜 31 共通電極 40 電界 41 液晶ダイレクター 10, 30 transparent substrate 11 display electrode 12 source electrode 13 drain line 14 drain electrode 15 a-Si 16 insulating film 17 gate electrode 18 gate line 19 alignment control electrode 20, 32 vertical alignment film 31 common electrode 40 electric field 41 liquid crystal director

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 対向表面側に所定の導体パターンを有し
た薄膜トランジスタ基板と、対向表面側に共通電極を有
した対向基板が液晶を挟んで貼り合わされ、前記2枚の
基板の対向裏面側には偏光軸方向が互いに直交するよう
に偏光板が設けられてなる液晶表示装置において、 前記薄膜トランジスタ基板は、透明基板上に積層された
透明導電膜をエッチングすることによりマトリクス状に
配置形成された表示電極と、 該表示電極の行間に配置形成された複数のドレインライ
ンと、 前記表示電極及びドレインラインを被覆して順次積層さ
れた半導体層、絶縁膜及びメタル膜よりなる積層体をエ
ッチングすることにより得られ、前記表示電極とドレイ
ンラインの近接部に部分的に重畳して薄膜トランジスタ
を構成する複数のゲートラインと、 各々の前記表示電極上の対角線に沿った位置に、該表示
電極の駆動に係わる前記ゲートラインと異なった隣接の
ゲートラインから延在配置された配向制御電極とを有す
ることを特徴とする液晶表示装置。
1. A thin film transistor substrate having a predetermined conductor pattern on the opposite surface side and an opposite substrate having a common electrode on the opposite surface side are bonded together with a liquid crystal sandwiched therebetween, and the opposite back surface sides of the two substrates are adhered to each other. In a liquid crystal display device in which polarizing plates are provided so that polarization axis directions are orthogonal to each other, the thin film transistor substrate is a display electrode arranged and formed in a matrix by etching a transparent conductive film laminated on a transparent substrate. And a plurality of drain lines arranged between the rows of the display electrodes, and a stacked body including a semiconductor layer, an insulating film, and a metal film, which are sequentially stacked to cover the display electrodes and the drain lines. A plurality of gate lines that partially overlap the display electrode and the drain line to form a thin film transistor, and Wherein the position along the diagonal of the display electrodes, a liquid crystal display device characterized by having an extending arranged alignment control electrode from the gate lines of adjacent different said gate lines according to the driving of the display electrodes.
【請求項2】 前記配向制御電極と前記共通電極との実
効電位差は、前記表示電極と前記共通電極との実効電位
差よりも大きく設定されることを特徴とする請求項1記
載の液晶表示装置。
2. The liquid crystal display device according to claim 1, wherein the effective potential difference between the alignment control electrode and the common electrode is set to be larger than the effective potential difference between the display electrode and the common electrode.
【請求項3】 前記2枚の偏光板は、その偏光軸方向が
いずれも前記配向制御電極に対して45°の角度を有し
て設けられていることを特徴とする請求項1または請求
項2記載の液晶表示装置。
3. The polarizing plate according to claim 1, wherein the two polarizing plates are provided such that the polarization axis directions thereof both form an angle of 45 ° with the alignment control electrode. 2. The liquid crystal display device according to item 2.
JP2115294A 1994-02-18 1994-02-18 Liquid crystal display device Pending JPH07230097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115294A JPH07230097A (en) 1994-02-18 1994-02-18 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115294A JPH07230097A (en) 1994-02-18 1994-02-18 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH07230097A true JPH07230097A (en) 1995-08-29

Family

ID=12046941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115294A Pending JPH07230097A (en) 1994-02-18 1994-02-18 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH07230097A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0805373A2 (en) * 1996-05-01 1997-11-05 Nec Corporation Liquid crystal display
EP0884626A2 (en) * 1997-06-12 1998-12-16 Fujitsu Limited Vertically-aligned (VA) liquid crystal display device
US6115093A (en) * 1997-03-31 2000-09-05 Nec Corporation Liquid crystal display device having at least two micro areas of liquid crystal layer capable of being built up from a center of each pixel
US6256082B1 (en) 1997-10-06 2001-07-03 Nec Corporation Liquid crystal display with a liquid crystal orientation controlling electrode and processes for manufacturing and driving thereof
JP2001235752A (en) * 1999-06-25 2001-08-31 Nec Corp Multi-domain liquid crystal display device
US6323926B2 (en) 2000-03-13 2001-11-27 Sharp Kabushiki Kaisha Vertical alignment mode LCD having two different alignment regions
US6407791B1 (en) 1999-06-25 2002-06-18 Nec Corporation Multi-domain liquid crystal display device
US6456352B1 (en) 1999-06-11 2002-09-24 Nec Corporation Liquid crystal display device
US6515719B2 (en) 2000-06-12 2003-02-04 Nec Corporation Liquid crystal display apparatus and manufacturing method for the same
JP2003195312A (en) * 2001-12-27 2003-07-09 Hannstar Display Corp Liquid crystal display unit with biased bending vertical alignment mode
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
JP2008203524A (en) * 2007-02-20 2008-09-04 Toppoly Optoelectronics Corp Multi-domain liquid crystal display
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7583345B2 (en) 1999-10-01 2009-09-01 Samsung Electronics Co., Ltd. Liquid crystal display
US7602456B2 (en) 2006-05-19 2009-10-13 Mikuni Electoron Co. Ltd Method of manufacturing LCD apparatus by using halftone exposure method
US8031286B2 (en) 2001-11-22 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display having a particular arrangement of pixel electrodes
US8094274B2 (en) 2006-06-15 2012-01-10 Mikuni Electoron Co., Ltd. Low-cost large-screen wide-angle fast-response liquid crystal display apparatus
US8310643B2 (en) 2002-06-28 2012-11-13 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992984A3 (en) * 1996-05-01 2011-07-20 NEC Corporation Liquid crystal display
EP0805373A2 (en) * 1996-05-01 1997-11-05 Nec Corporation Liquid crystal display
EP1748311A3 (en) * 1996-05-01 2007-02-21 NEC Corporation Liquid crystal display
EP1748311A2 (en) * 1996-05-01 2007-01-31 NEC Corporation Liquid crystal display
EP0805373B1 (en) * 1996-05-01 2006-11-29 Nec Corporation Liquid crystal display
US6115093A (en) * 1997-03-31 2000-09-05 Nec Corporation Liquid crystal display device having at least two micro areas of liquid crystal layer capable of being built up from a center of each pixel
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US8035785B2 (en) 1997-06-10 2011-10-11 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7826020B2 (en) 1997-06-10 2010-11-02 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7440065B2 (en) 1997-06-10 2008-10-21 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7133111B2 (en) 1997-06-10 2006-11-07 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
EP1930768A1 (en) * 1997-06-12 2008-06-11 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US6724452B1 (en) 1997-06-12 2004-04-20 Fujitsu Display Technologies Corporation Vertically aligned (VA) liquid crystal display device
EP0884626A2 (en) * 1997-06-12 1998-12-16 Fujitsu Limited Vertically-aligned (VA) liquid crystal display device
EP0884626A3 (en) * 1997-06-12 2001-03-21 Fujitsu Limited Vertically-aligned (VA) liquid crystal display device
US7821603B2 (en) 1997-06-12 2010-10-26 Sharp Kabushiki Kaisha Vertically-alligned (VA) liquid crystal display device
US7760305B2 (en) 1997-06-12 2010-07-20 Sharp Kabushiki Kaisha Liquid crystal display device with multiple alignment structures
US7167224B1 (en) 1997-06-12 2007-01-23 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US6661488B1 (en) 1997-06-12 2003-12-09 Fujitsu Limited Vertically-alligned (VA) liquid crystal display device
US7224421B1 (en) 1997-06-12 2007-05-29 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US7227606B2 (en) 1997-06-12 2007-06-05 Sharp Kabushiki Kaisha Vertically-alligned (VA) liquid crystal display device
US6256082B1 (en) 1997-10-06 2001-07-03 Nec Corporation Liquid crystal display with a liquid crystal orientation controlling electrode and processes for manufacturing and driving thereof
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7573554B2 (en) 1998-05-16 2009-08-11 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7697097B2 (en) 1998-08-06 2010-04-13 Lg Display Co., Ltd. Liquid-crystal display and method of its fabrication
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US7304704B2 (en) 1998-08-06 2007-12-04 Lg.Philips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US6456352B1 (en) 1999-06-11 2002-09-24 Nec Corporation Liquid crystal display device
JP2001235752A (en) * 1999-06-25 2001-08-31 Nec Corp Multi-domain liquid crystal display device
US6407791B1 (en) 1999-06-25 2002-06-18 Nec Corporation Multi-domain liquid crystal display device
US8817213B2 (en) 1999-10-01 2014-08-26 Samsung Display Co., Ltd. Liquid crystal display
US7583345B2 (en) 1999-10-01 2009-09-01 Samsung Electronics Co., Ltd. Liquid crystal display
US8456597B2 (en) 1999-10-01 2013-06-04 Samsung Display Co., Ltd. Liquid crystal display
US8174651B2 (en) 1999-10-01 2012-05-08 Samsung Electronics Co., Ltd. Liquid crystal display
US9557612B2 (en) 1999-10-01 2017-01-31 Samsung Display Co., Ltd. Liquid crystal display
US6323926B2 (en) 2000-03-13 2001-11-27 Sharp Kabushiki Kaisha Vertical alignment mode LCD having two different alignment regions
US6515719B2 (en) 2000-06-12 2003-02-04 Nec Corporation Liquid crystal display apparatus and manufacturing method for the same
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US8031286B2 (en) 2001-11-22 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display having a particular arrangement of pixel electrodes
US8248566B2 (en) 2001-11-22 2012-08-21 Samsung Electronics Co., Ltd. Liquid crystal display
JP4541633B2 (en) * 2001-12-27 2010-09-08 瀚宇彩晶股▲ふん▼有限公司 Liquid crystal display with deflection vertical alignment mode
JP2003195312A (en) * 2001-12-27 2003-07-09 Hannstar Display Corp Liquid crystal display unit with biased bending vertical alignment mode
US8743331B2 (en) 2002-06-28 2014-06-03 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8310643B2 (en) 2002-06-28 2012-11-13 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8698990B2 (en) 2002-06-28 2014-04-15 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US9477121B2 (en) 2002-06-28 2016-10-25 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US10620488B2 (en) 2002-06-28 2020-04-14 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US10969635B2 (en) 2002-06-28 2021-04-06 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US7602456B2 (en) 2006-05-19 2009-10-13 Mikuni Electoron Co. Ltd Method of manufacturing LCD apparatus by using halftone exposure method
US8194227B2 (en) 2006-06-15 2012-06-05 Mikuni Electoron Co. Ltd. Method of fabricating a multi-domain vertical alignment (MVA) liquid crystal display
US8305538B2 (en) 2006-06-15 2012-11-06 Mikuni Electoron Co., Ltd. Low-cost large-screen wide-angle fast-response liquid crystal display apparatus
US8094274B2 (en) 2006-06-15 2012-01-10 Mikuni Electoron Co., Ltd. Low-cost large-screen wide-angle fast-response liquid crystal display apparatus
JP4734503B2 (en) * 2007-02-20 2011-07-27 奇美電子股▲ふん▼有限公司 Multi-domain LCD
JP2008203524A (en) * 2007-02-20 2008-09-04 Toppoly Optoelectronics Corp Multi-domain liquid crystal display

Similar Documents

Publication Publication Date Title
JP2975844B2 (en) Liquid crystal display
JP3081608B2 (en) Liquid crystal display
JP3234357B2 (en) Liquid crystal display
JPH07230097A (en) Liquid crystal display device
JP2859093B2 (en) Liquid crystal display
KR101576982B1 (en) liquid crystal display
JP4248835B2 (en) Substrate for liquid crystal display device and liquid crystal display device including the same
JP3081468B2 (en) Liquid crystal display
JP3066255B2 (en) Liquid crystal display
US7982836B2 (en) Liquid crystal display device
US20060012741A1 (en) Vertical alignment liquid crystal display device
US20040169777A1 (en) Liquid crystal display device
JPH0764089A (en) Liquid crystal display device
JP4391634B2 (en) Liquid crystal display
KR100595295B1 (en) Multi domain liquide crystal display device and method for fabricating the same
JP4156342B2 (en) Liquid crystal display
US6057905A (en) Liquid crystal display electrode with a slit formed around the periphery to shield the inner portion from external electric fields
KR100983577B1 (en) Liquid crystal display device
JP2005024676A (en) Liquid crystal display
JP2004163746A (en) Liquid crystal display
US6970224B2 (en) Biased bending vertical alignment mode liquid crystal display
JP2006011400A (en) Liquid crystal display device
JP2003195312A (en) Liquid crystal display unit with biased bending vertical alignment mode
JP2004157257A (en) Substrate for display device and display device equipped with the same
KR100831305B1 (en) Multi-domain liquid crystal display device and Manufacturing Method using the same