1292587 九、發明說明: 發明之頜域 本發明係關於一種光阻層結構,特別是一種用於半導體製程 中微小尺寸圖案之轉移的複合光阻層結構。 背景說明 一般而言,半導體製程中的黃光製程(photolithographicprocess) 與蝕刻製程是用來定義積體電路中的各種電子單元以及内連線等 結構。隨著積體電路的積集度需求日益提昇,黃光製程中的曝光 光源已從g-line(436nm)或I-line(365nm)逐漸地朝向利用深紫外光 區域的光線,例如波長為248nm以及193nm的曝光光源。對於波長 越短的光源而言,其所相對應的光阻的厚度則越薄,然而,光阻 的厚度太薄會導致其無法抵後續的蝕刻。因此,對於利用短波 長的曝光光源的黃光製程而言,尋求一適當的光阻層結構以供黃 光製程以及钱刻製程使用是必須的。 請參考圖-,圖一為習知光阻層結構示意圖。如圖一所示, 半V體片10包含有一基底12、一抗反射層14與一光阻層16。 由於曝光光源的波長與聚焦深娜_ of f_,DQF)成正比,為 了精確地將光罩上糊雜移至光阻層湖,光崎16的厚度必 1292587 ^己姆絲_波長,因崎於深斜絲軸絲(如小於 nm而έ ’光阻層_厚度則不能太厚,以確保接近光阻柳 的表面端或是其底端的光阻分子都有約略相同的聚焦。然而,在 後績的侧製財,光阻層16的功用之—即是作為基底!2_刻 遮罩光阻層16的厚度過制無法有效地抵擋磁彳製程的侵襲。 β、請參考圖二,圖二為習知另一種光阻層結構示意圖,其目的 是為了克服上述之問題。如圖二所示,—半導體晶片%包含一基 底22、一氮氧石夕層24、一抗反射層26以及一光阻層28。其中氮氧 石夕層24係做為-硬罩幕(hard聰幻,以彌補光阻層28的厚度過薄而 無法抵撞侧製㈣槪之缺失。料,當鮮上賴案轉移至 基底22内之後’氮氧石夕層24、抗反射層26及光阻層糊隨後被去 除’然而,氮氧矽層24的移除步驟往往會破壞基底22的結構。 此外,光阻層异度不足的解決方法還包括,一是利用雙層光 阻結構技術(U.s· Pat· No· 6,323,287),另一是利用丁81(^31«^; image)技術(U.S· Pat· No· 6,296,989)。不過這兩種方法都必須引入 新的光阻材料,例如,在TSI技術中,光阻層係為一含矽 (silicon-containing)光阻材料。而此勢必會增加製程的複雜性與 困難度,此外,新光阻材料的引入也會增加製程的成本,因此尋 求一適當的光阻層結構以供黃光製程以及蝕刻製程使用是必須 的0 6 !292587 發明概述 本發明的目的是提供一種用於半導體製程中微小尺寸圖案之 轉移的複合光阻層結構,以解決前述問題。 依據本發明之目的,在本發明的較佳實施例之中提供一種複 合光阻層結構,該複合光阻層結構包含有一第一有機層,設於一 待蝕刻面上,一犧牲層,設於該第一有機層上,以及一第二有機 層’设於該犧牲層上。其中該第一有機層係利用易以電漿去除之 有機材料所触’以避免在—圖案娜過針傷害到該待侧面。 本發明提供-種複合光阻層結構,其包含有一第一有機層、 -無機的犧牲層以及-第二有機層。由於犧牲層與第―有機層的 存在’該第二有機層厚度係可依照曝光光源的波長來調整,而不 會有光阻層過_減不錄刻之缺失,因此,鮮上的預定圖 案可以精確轉㈣轉體^上,並且可賴—祕的臨界尺 dimensiGn’叫控制。此外,第—有機層可視為一硬罩 幕其可輕易地利用书漿去除之,並且第一有機層的去除對基材 的傷害相當地輕微。 發明之詳細說明 月 > 考圖一圖—為本發明之複合光阻層結構示意圖。如圖 1292587 二所不,複合光阻層30包含一第一有機層3〇a、一犧牲層3〇b設於 第有機層30a上以及一第二有機層3(^設於犧牲層鳩上。其中第 一有機層30a與第二有機層3〇c皆為有機材料,而犧牲層3〇b則是無 機材料。 其中,第一有機層30a係可輕易地利用電漿去除之,第一有機 層30a可由有機低介電常數材料(例如SiLKTM)所構成,此外,其亦 可由SOG(Spin-ongiass)層所構成,而上述電漿可以是氧氣、氮氣、 氫風、氬氣、CxFy、CxHyFz或氦氣等電漿。犧牲層勘的組成可以 是無機抗反赌料,例滅氧切(SiQN)以錄切,此外,犧 牲層30b亦可由硬罩幕材料所構成,例如氮化石夕以及氧化石夕。而第 二有,層3〇c係可為一有機光阻層’其可為正光阻以及負光阻,此 外’第二有機層3Ge並不限定於有機絲材料,其亦可由適用於電 子束微影技师_beam lithGgraphy)之械娜成。❿複合光阻 層3〇可適胁料體製程巾的任—黃光触,因此第一有機層 30a、犧牲層30b與第二有機層3〇c的厚度乃是依據製程的需要而加 以調整,此點應為習知此項技藝者所熟知。 請參考圖四(A)至圖四(F),圖四⑷至圖四⑻係為利用複合光 阻層30於_製程之示意圖。如圖四⑷所示,—轉體晶片她 含一舰祕底42,磁複合雜層陶姐待糊基底歡 上,其中待_基底42包含有石夕基底、金屬基底與介電層等。首 先,如圖四⑻與圖四(C)所示,進行一曝光製程以及—_製程, 1292587 以將光罩上的預定圖案轉移至第二有機層3_。接著,第二 有機層3嫩為-姓朗罩,對犧牲層通進行—乾侧製程,以 將第二有機⑽狀_轉移至犧牲層3_。此外,在本 發明之另-實施例之中,亦可利用電子束微影技術於第二有機層 3〇c内形成該預定圖案。 日 、,接著’如圖四⑼至圖啤)所示,進行—非等向性侧製程, 並利用犧牲層3Gb做為-綱遮罩,以將犧牲層3_的預定圖案 轉移至第-有機層3_。接著,再_犧牲層施與第一有機層 30a做為-侧遮罩,並進行—侧製程,⑽第—錢層施^ 犧牲層勘⑽就随轉移至待_基底a之内。其巾,在侧 職刻基底42的過程中,齡層3〇b會一併被去除。當第一有機層 3〇a内的預定圖案轉移至待働j基底42之内後,隨即去除第一有^ 層3〇a ’至此’光罩上的圖案便成功地轉移至待侧基底内。其 中’第-有機層30a可視為-硬罩幕,其可以彌補第二有機層撕 的厚度不足㈣紐猶狀缺陷,因此,本㈣之複合光阻層 3〇可用於深紫外光區域之曝光光源(如波長小於248nm的雷射: ^此外,傳統的硬罩幕材料(如氮化石夕或氧化石夕)之去除步驟通 =在®^槽内進行’而此步驟往往會嚴重傷害朗輪刻基底42。但, 第-有機層3〇a只需要利用電漿即可去除之,其對待钱刻基底42的 傷害較輕微。 明’考圖i ’圖五為本發明之另一實施例之複合光阻層結構 1292587 示意圖。如圖五所示,一複合光阻層50包含一第一有機層5〇a、一 犧牲層50b设於弟一有機層5〇a上、一抗反射層5〇c設於犧牲層5〇b 上、以及一第一有機層50d設於抗反射層5〇c上。其中第一有機層 50a係由有機低介電常數材料或sqg所構成,其可輕易地利用電漿 去除。犧牲層50b係由由硬罩幕材料所構成,其包含有氮化矽以及 氧化石夕。抗反射層50〇係為有機抗反射材料(〇1^&11丨(:|:)〇杜〇111八以^, 例如聚醯亞胺(polyimide)及其類似物,此外,抗反射層5〇c亦可由 無機抗反射材料所構成,例如氮化矽或氮氧化矽(si〇N)。而第二 有機層50d係可為一有機光阻層,其可為正光阻以及負光阻,此 外,第二有機層50d並不限定於械細材料,#亦可由適用於電 子束微影技術(e-beam lithography)之有機材料所構成。而抗反射層 5〇c係用來防止人射光線經由基材再反射回光阻層,㈣成駐二 (standing wave)於第二有機層駕内,進而導致光阻線寬的改變。 如前所述,複合光阻層5G亦可適用於半導體製程中的任一黃光製 程,因此第-有機層5〇a、犧牲層娜、抗反射層撕與第二有機層 5〇d的厚度乃疋依據製&的需要而加以調整,此點應為習知此項技 藝者所熟知。 、 ⑽交於習知技術,本發明提供一種複合光阻層結構,其包含 有一第-有機層、-無機的犧牲層以及—第二有機層。該第二有 f層厚度射配合曝光光_波絲婦,並藉由調整犧牲層與 有機層的厚度,以提供-足解度的複合光阻層結構以抵擔 刻製程之侵钱,因此,光罩上的預定圖案可以精確地轉移至半 1292587 導體晶片上,並且可獲得一較佳的臨界尺寸(critical dimensi〇n,CD) 控制。此外,第一有機層可視為一硬罩幕,但其可輕易地利用電 漿去除之,並且第一有機層的去除步驟不會對基材造成嚴重的傷 害0 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明專利之涵蓋範圍。 圖示之簡單說明 圖一為習知光阻層結構示意圖。 圖二為習知另一種光阻層結構示意圖。 圖二為本發明之複合光阻層結構示意圖。 之示意 圖四(A)至圖四(F)係為利用複合光阻層30於蝕刻製程 圖0 圖五為本發明之另一實施例之複合光阻層結構示意圖 1292587 圖示之符號說明 ίο半導體晶片 14抗反射層 20半導體晶片 24氮氧矽層 28 光阻層 30a第一有機層 30c第二有機層 42基底 50a第一有機層 50c抗反射層 12基底 16光阻層 22基底 26抗反射層 30複合光阻層 30b犧牲層 40半導體晶片 50複合光阻層 50b犧牲層 50d第二有機層 121292587 IX. INSTRUCTIONS: Jawfield of the Invention The present invention relates to a photoresist layer structure, and more particularly to a composite photoresist layer structure for the transfer of minute size patterns in a semiconductor process. BACKGROUND OF THE INVENTION In general, photolithographic processes and etching processes in semiconductor processes are used to define various electronic components and interconnects in integrated circuits. With the increasing demand for integrated circuits, the exposure source in the yellow light process has gradually moved from g-line (436 nm) or I-line (365 nm) to light using deep ultraviolet light, for example, the wavelength is 248 nm. And an exposure source of 193 nm. For a light source with a shorter wavelength, the thickness of the corresponding photoresist is thinner. However, the thickness of the photoresist is too thin to cause subsequent etching. Therefore, for a yellow light process using an exposure source of short wavelength, it is necessary to seek a suitable photoresist layer structure for use in a yellow process and a process. Please refer to the figure - Figure 1 is a schematic diagram of the structure of the conventional photoresist layer. As shown in FIG. 1, the half V body sheet 10 includes a substrate 12, an anti-reflection layer 14 and a photoresist layer 16. Since the wavelength of the exposure source is proportional to the depth of focus _of f_, DQF), in order to accurately move the opaque paste to the lake of the photoresist layer, the thickness of the kisaki 16 must be 1292587 ^ hex wire _ wavelength, because of the Deep oblique wire (such as less than nm and έ 'photoresist layer _ thickness can not be too thick to ensure that the surface of the photoresist or the bottom of the photoresist molecules have about the same focus. However, after The side of the performance, the function of the photoresist layer 16 - that is, as the base! 2_ the thickness of the mask photoresist layer 16 can not effectively resist the attack of the magnetic 彳 process. β, please refer to Figure 2, The second is a schematic diagram of another conventional photoresist layer structure, the purpose of which is to overcome the above problems. As shown in FIG. 2, the semiconductor wafer % comprises a substrate 22, a oxynitride layer 24, an anti-reflection layer 26, and A photoresist layer 28, wherein the oxynitride layer 24 is used as a hard mask (hardy to compensate for the thickness of the photoresist layer 28 being too thin to be able to withstand the side system (four) flaws. After the transfer to the substrate 22, the oxynitride layer 24, the anti-reflective layer 26 and the photoresist layer paste are subsequently removed. 'However, the removal step of the oxynitride layer 24 tends to damage the structure of the substrate 22. In addition, the solution to the insufficient retardation of the photoresist layer includes: First, the use of a double-layer photoresist structure technology (Us·Pat No) 6,323,287), the other is the use of Ding 81 (^31«^; image) technology (US Pat. No. 6,296,989). However, both methods must introduce new photoresist materials, for example, in TSI technology, light The resist layer is a silicon-containing photoresist material, which will inevitably increase the complexity and difficulty of the process. In addition, the introduction of new photoresist materials will increase the cost of the process, so seek a suitable photoresist. The layer structure is necessary for the yellow light process and the etching process. 6 6 292 587 SUMMARY OF THE INVENTION It is an object of the present invention to provide a composite photoresist layer structure for the transfer of minute size patterns in a semiconductor process to solve the aforementioned problems. The object of the present invention is to provide a composite photoresist layer structure including a first organic layer disposed on a surface to be etched, and a sacrificial layer disposed on the preferred embodiment of the present invention. The a first organic layer and a second organic layer are disposed on the sacrificial layer, wherein the first organic layer is touched by an organic material that is easily removed by plasma to avoid damage to the pattern The present invention provides a composite photoresist layer structure comprising a first organic layer, an inorganic sacrificial layer, and a second organic layer. The second organic layer is present due to the presence of the sacrificial layer and the first organic layer The thickness can be adjusted according to the wavelength of the exposure light source, without the photoresist layer being over-subtracted from the lack of recording. Therefore, the predetermined pattern on the fresh can be accurately rotated (four), and the criticality can be Ruler dimensiGn' called control. In addition, the first organic layer can be regarded as a hard mask which can be easily removed by the book slurry, and the removal of the first organic layer is relatively mild to the substrate. DETAILED DESCRIPTION OF THE INVENTION Month > Figure 1 is a schematic view of the structure of the composite photoresist layer of the present invention. As shown in FIG. 1292587, the composite photoresist layer 30 includes a first organic layer 3〇a, a sacrificial layer 3〇b is disposed on the first organic layer 30a, and a second organic layer 3 is disposed on the sacrificial layer. The first organic layer 30a and the second organic layer 3〇c are both organic materials, and the sacrificial layer 3〇b is an inorganic material. The first organic layer 30a can be easily removed by using plasma, first The organic layer 30a may be composed of an organic low dielectric constant material (for example, SiLKTM), and may also be composed of a SOG (Spin-ongiass) layer, and the plasma may be oxygen, nitrogen, hydrogen, argon, CxFy, A plasma such as CxHyFz or helium. The composition of the sacrificial layer may be an inorganic anti-counterfeit material, such as oxygen-cutting (SiQN) for recording, and the sacrificial layer 30b may also be composed of a hard mask material, such as a nitrided stone. And the second layer, the layer 3〇c can be an organic photoresist layer, which can be a positive photoresist and a negative photoresist, and the second organic layer 3Ge is not limited to the organic silk material, and It can be made by the equipment suitable for the electron beam lithography technician _beam lithGgraphy. The ❿ composite photoresist layer 3 〇 can be adapted to the yellow-light touch of the mask, so the thicknesses of the first organic layer 30a, the sacrificial layer 30b and the second organic layer 3〇c are adjusted according to the needs of the process. This point should be familiar to those skilled in the art. Please refer to FIG. 4(A) to FIG. 4(F). FIG. 4(4) to FIG. 4(8) are schematic diagrams of using the composite photoresist layer 30 in the process. As shown in Fig. 4 (4), the swivel wafer contains a ship's secret bottom 42 and the magnetic composite heterogeneous layer is served on the base of the paste. The base 42 contains a stone base, a metal base and a dielectric layer. First, as shown in Fig. 4 (8) and Fig. 4 (C), an exposure process and a process, 1292587, are performed to transfer the predetermined pattern on the photomask to the second organic layer 3_. Next, the second organic layer 3 is tender-named, and the sacrificial layer is subjected to a dry-side process to transfer the second organic (10)-like state to the sacrificial layer 3_. Further, in another embodiment of the present invention, the predetermined pattern may be formed in the second organic layer 3?c by electron beam lithography. Day, and then, as shown in Fig. 4 (9) to Fig. beer, the non-isotropic side process is performed, and the sacrificial layer 3Gb is used as a-mesh mask to transfer the predetermined pattern of the sacrificial layer 3_ to the first- Organic layer 3_. Then, the sacrificial layer is applied to the first organic layer 30a as a side mask, and the side process is performed, and (10) the first layer of the sacrificial layer is transferred to the substrate a. In the case of the towel, the age layer 3〇b is removed together during the side-cutting of the substrate 42. After the predetermined pattern in the first organic layer 3〇a is transferred into the substrate 42 to be 働j, the first layer 3'a' is removed and the pattern on the reticle is successfully transferred to the substrate to be side. . Wherein the 'first-organic layer 30a can be regarded as a hard mask, which can make up for the thickness of the second organic layer torn (4), and thus the composite photoresist layer 3 of the present invention can be used for exposure in the deep ultraviolet region. Light source (such as a laser with a wavelength of less than 248 nm: ^ In addition, the removal step of the traditional hard mask material (such as nitride or oxidized stone eve) pass = in the ^ ^ slot 'and this step will often seriously damage the Lang The substrate 42 is engraved. However, the first-organic layer 3〇a only needs to be removed by using plasma, and the damage to the substrate 42 is relatively slight. FIG. 5 is another embodiment of the present invention. Schematic diagram of a composite photoresist layer structure 1292587. As shown in FIG. 5, a composite photoresist layer 50 includes a first organic layer 5〇a, a sacrificial layer 50b is disposed on the organic layer 5〇a, and an anti-reflection layer. 5〇c is disposed on the sacrificial layer 5〇b, and a first organic layer 50d is disposed on the anti-reflective layer 5〇c. The first organic layer 50a is composed of an organic low dielectric constant material or sqg, which may be The plasma removal is easily utilized. The sacrificial layer 50b is composed of a hard mask material containing nitriding And the oxidized stone eve. The anti-reflective layer 50 is an organic anti-reflective material (〇1^&11丨(:|:)〇〇〇111 八, such as polyimide and the like, In addition, the anti-reflective layer 5〇c may also be composed of an inorganic anti-reflective material such as tantalum nitride or niobium oxynitride (si〇N), and the second organic layer 50d may be an organic photoresist layer, which may be a positive light. Resistivity and negative photoresist, in addition, the second organic layer 50d is not limited to the mechanical fine material, and # may also be composed of an organic material suitable for e-beam lithography. The anti-reflection layer 5〇c It is used to prevent human light from being reflected back to the photoresist layer through the substrate, and (4) standing wave in the second organic layer drive, which leads to a change in the line width of the photoresist. As mentioned above, the composite photoresist The layer 5G can also be applied to any yellow light process in the semiconductor process, so the thickness of the first organic layer 5〇a, the sacrificial layer, the anti-reflective layer and the second organic layer 5〇d are based on the & It should be adjusted as needed, and this point should be well known to those skilled in the art. (10) In the prior art, the present invention provides A composite photoresist layer structure comprising a first organic layer, an inorganic sacrificial layer, and a second organic layer. The second f layer thickness is combined with the exposure light, and the sacrificial layer is adjusted by The thickness of the organic layer is to provide a composite photoresist layer structure with sufficient resolution to withstand the engraving process, so that the predetermined pattern on the reticle can be accurately transferred to the half 1292587 conductor wafer, and a comparison can be obtained. Good critical dimension (CD) control. In addition, the first organic layer can be regarded as a hard mask, but it can be easily removed by plasma, and the removal step of the first organic layer is not The material is causing serious injury. The above is only a preferred embodiment of the present invention, and all the equivalent changes and modifications made by the scope of the present invention should be covered by the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view of a conventional photoresist layer structure. FIG. 2 is a schematic view showing another structure of a photoresist layer. 2 is a schematic structural view of a composite photoresist layer of the present invention. FIG. 4(A) to FIG. 4(F) are diagrams showing the use of the composite photoresist layer 30 in the etching process. FIG. 5 is a schematic structural view of a composite photoresist layer according to another embodiment of the present invention. Wafer 14 anti-reflection layer 20 semiconductor wafer 24 oxynitride layer 28 photoresist layer 30a first organic layer 30c second organic layer 42 substrate 50a first organic layer 50c anti-reflection layer 12 substrate 16 photoresist layer 22 substrate 26 anti-reflection layer 30 composite photoresist layer 30b sacrificial layer 40 semiconductor wafer 50 composite photoresist layer 50b sacrificial layer 50d second organic layer 12