TWI292413B - The composition and synthetic method of nano-dispersed clay vinylester resin - Google Patents
The composition and synthetic method of nano-dispersed clay vinylester resin Download PDFInfo
- Publication number
- TWI292413B TWI292413B TW89112686A TW89112686A TWI292413B TW I292413 B TWI292413 B TW I292413B TW 89112686 A TW89112686 A TW 89112686A TW 89112686 A TW89112686 A TW 89112686A TW I292413 B TWI292413 B TW I292413B
- Authority
- TW
- Taiwan
- Prior art keywords
- clay
- nano
- resin
- vinyl ester
- reaction
- Prior art date
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
1292413 九、發明說明: 【發明所屬之技術領域】 本發明尤指一種奈米化分散黏土乙烯酯樹脂及合成方 法’主要是以合成乙烯酯的方法,獲得奈米化黏土乙烯酯 树月日再以此树知利用反應性稀釋劑如(Styrene)可形成液 態奈米化分散矽酸鹽層在乙烯酯基材中均勻分散,提昇無 機相與有機相相容性,從本發明知此合成有機層狀黏土除 是填充料角色外,亦提供合成反應及催化合成的角色,而 改變奈米化黏土乙烯酯樹脂中樹脂分子鏈形態,使得此樹 脂以硬化劑及加速劑於反應條件下硬化後,所得奈米化複 合材料與物性深受反應過程、各組合物組成、比率、反應 溫度、夾入劑的影響。唯能獲得一同時提昇機械強度、硬 度韌性的奈米化複合材料,所得的含矽酸鹽層黏土呈奈 米Μ散在乙烯酯樹脂可視為—新型有機/無機混成樹脂 ’此樹脂的功能提昇能增進其附加價值。 [先刖技術】 按,—般傳統有機複合材料係擷取兩種以上材料的 自優點所組合而成的材料,因其具有質量輕、強度高、 計自由度大,且能耐天候、耐腐蝕等優異性能, 於航太、艦艇、車輪運輸、軌道、建材、電子 Ζ 動、休閒工業及公共工程用材等 φ — 已成為有機材粗 '級之一。有機高分子添加無機材料如玻璃纖%丨 玻离珠和滑石粉等,此類型之複 _ 與無機相所 十係榻取有機 形成兩相之材料,由於無機材料在 1292413 中無法呈極細微之 得兩者結合起來的 補強效果有一定限 減到lOOnm則相互補 下則相互補強效果 形成混成材料,即 領域之一,若能將 物基材中,將呈現 ,並擁有優良的機 隔特性。 分散(1〜lOOnm )而 複合材料容易碎, 制。因此能將無機 強效果將會更提昇 更達完美。奈米化 是目前相關奈米化 黏土以細微之狀態 趨向均一相,而提 械性質、熱性質、 易形成相分離,這使 亦即兩者間的鏈結的 材的顆粒大小進一步 。若再分散到l〇〇nm以 分散黏土於聚合物中 混成複合材料的重要 (1〜lOOnm)分散於聚合 昇此複合材料透明性 低膨脹係數及氣體阻 是以,針對上述習知使用上所存在之問題點,如何研 發出-種能夠更具理想實用性之創新構造,實有待相關業 界再加以思索突破之目標及方向者。 有鑑於此,發明人本於多年從事相關產品之製造開發 與設計經驗,針對上述之目標,詳加設計與審慎評估後, 終得一確具實用性之本發明。 【發明内容】 本發明係指一種奈米化分散黏土乙烯酯樹脂及合成方 法,其主要係由樹脂經硬化劑硬化,能形成熱固型奈米複 合材料’此樹脂是以(1)·不飽和單羧酸。(2)·環氧樹脂。 (3).有機化層狀黏土及反應觸媒、鏈延長劑的組合以5〇。〇 〜150 C的反應溫度下,方成奈米化黏土乙烯酯,此樹脂可 用含烯基反應稀釋劑,製配成液態樹脂,而可分別應用在 1292413 各種複合材料上,以硬化劑及促進劑形成一新型熱固型奈 米分散黏土在乙烯酯的複合材料。 【實施方式】 因此,本發明擬利用具陽離子型官能基之夾入劑改質 層狀黏土,在欲合成之乙烯酯前導體組合物中進行乙烯酯 的合成,再以含烯基反應性單體烯釋上述反應生成物而配 製成新型奈米化分散黏土 /乙烯酯樹脂複合材料。 天然陽離子型黏土是自然界充足能提供的礦物且價廉 的材料其石夕酸鹽層狀結構有極佳親水性,而阻礙黏土與 聚合物之間相容性,必須改質使黏土礦物表面為親油性或 疏水性,而易於分散在有機溶劑中,且增加黏土與聚合物 的親和性。此乃利用夾入劑來改善黏土界面且使黏土層狀 材的層間距增加,更增加聚合物單體或聚合物本身進入矽 酸鹽層的機會,使得黏土每一矽酸鹽層與聚合物有效接觸 面積,且因有機聚合物分子可能存在與矽酸鹽層的離子鏈 結存在,而使得奈米複合材料的熱性質、機械性質、耐燃 性質等均能獲得良好的改善,抵消傳統無機填充聚合物形 成複合材料時,犧牲複合材料之機械強度及耐衝擊度的缺 失。目前,此類的奈米複合材料中,以Nyl〇n6/ciay奈米複 合材料研究的最徹底,且已將產品商業化,從A.0kada等人1292413 IX. Description of the invention: [Technical field to which the invention pertains] The present invention particularly relates to a nano-dispersed clay vinyl ester resin and a synthetic method 'mainly based on a method for synthesizing vinyl ester to obtain a nano-clay vinyl ester tree. It is known in the present invention that a reactive diluent such as (Styrene) can be used to form a liquid nano-dispersed bismuth silicate layer which is uniformly dispersed in a vinyl ester substrate to enhance the compatibility of the inorganic phase with the organic phase. In addition to the role of filler, layered clay also provides the role of synthetic reaction and catalytic synthesis, and changes the morphology of the resin molecular chain in the nano-clay vinyl ester resin, so that the resin is hardened under the reaction conditions with hardener and accelerator. The obtained nano-composite composite material and physical properties are deeply affected by the reaction process, the composition of each composition, the ratio, the reaction temperature, and the intercalating agent. Only a nano-composite material with simultaneous improvement of mechanical strength and hardness can be obtained. The obtained bismuth-containing layer clay can be regarded as a nano-organic resin. The vinyl ester resin can be regarded as a new type of organic/inorganic hybrid resin. Increase its added value. [First-hand technology] According to the traditional organic composite material, the material is a combination of two or more materials, because of its light weight, high strength, high degree of freedom, and weather resistance and corrosion resistance. Such excellent performance, in the aerospace, ship, wheel transport, rail, building materials, electronic mobilization, leisure industry and public works materials, etc. φ - has become one of the thick grade of organic materials. The organic polymer is added with inorganic materials such as glass fiber, bismuth glass beads and talc powder, etc., and the type of compound _ and the inorganic phase are taken from the organic phase to form a two-phase material, because the inorganic material cannot be extremely fine in 1292413. The reinforcing effect of combining the two has a certain limit reduced to 100 nm, and the complementary effect is complementary to form a mixed material, that is, one of the fields, if it can be present in the substrate, and has excellent machine separation characteristics. Dispersion (1 to 100 nm) and the composite material is easy to break. Therefore, the inorganic strong effect will be improved and perfected. Nanocrystallization is a current state in which the related nano-sized clay tends to be homogeneous, and the mechanical properties, thermal properties, and phase separation are easily formed, which further increases the particle size of the chain between the two. If it is redispersed to l〇〇nm to disperse clay in the polymer, it is important to disperse the composite (1~100 nm) in the polymerization. The transparency of the composite is low, and the coefficient of gas is low. The problem of existence, how to develop an innovative structure that can be more ideal and practical, is waiting for the relevant industry to think about the goals and directions of breakthrough. In view of this, the inventor has been engaged in the manufacturing development and design experience of related products for many years. After detailed design and careful evaluation of the above objectives, the inventor has finally obtained the practical invention. [Description of the Invention] The present invention relates to a nano-dispersed clay vinyl ester resin and a synthetic method thereof, which are mainly hardened by a resin by a hardener to form a thermosetting nano composite material. The resin is based on (1)· Saturated monocarboxylic acid. (2) · Epoxy resin. (3). The combination of the organic layered clay and the reaction catalyst and the chain extender is 5 Å. 〇~150 C at the reaction temperature, the square nano-clay vinyl ester, this resin can be prepared into a liquid resin by using an alkenyl-containing reactive diluent, and can be applied to various composite materials on 1292413, with hardener and promotion. The agent forms a novel thermoset nano-dispersed clay composite in vinyl ester. [Embodiment] Therefore, the present invention intends to use a sandwiching agent having a cationic functional group to modify a layered clay, synthesizing a vinyl ester in a vinyl ester front conductor composition to be synthesized, and further comprising an alkenyl group-containing single The above-mentioned reaction product is released into a novel nano-dispersed clay/vinyl ester resin composite material. Natural cationic clay is a mineral that is abundant in nature and is an inexpensive material. Its layered structure has excellent hydrophilicity, and hinders the compatibility between clay and polymer. It must be modified to make the surface of clay minerals It is lipophilic or hydrophobic, and is easily dispersed in an organic solvent and increases the affinity of the clay to the polymer. This is the use of a sandwiching agent to improve the clay interface and increase the layer spacing of the clay layer, which increases the chance of the polymer monomer or polymer itself entering the silicate layer, making each citrate layer and polymer of the clay The effective contact area, and due to the presence of organic polymer molecules and the ionic chain of the citrate layer, the thermal properties, mechanical properties, and flame resistance of the nanocomposite can be improved, offsetting the traditional inorganic filling. When the polymer forms a composite material, the mechanical strength and impact resistance of the composite material are sacrificed. At present, among these nanocomposites, Nyl〇n6/ciay nanocomposites are the most thoroughly studied and commercialized, from A.0kada et al.
和 Y. Kojima 等人分別在 Acs Symp Series,1995, 585, 55 及 J. Αρρ· P 〇lym. Su,1995, 52. 576所發表知添加5wt %黏土與3〇 %玻璃纖 維的補強效果相近,這疋一般傳統複合材料所不能比擬的 。另他們亦報告了添加4wt %黏土在Nyl〇n6中形成奈米複 1292413 合材料,其拉伸強度均增加55 % ,拉伸模數約增加90 % , 且熱受形 度可幵1〇〇 C ’因此,Nylon6/clay奈米複合 材料現今已商業化,且Nylon6/clay奈米複合材料已被T〇y〇 ta公司用於、&車的時規皮帶保護蓋covers)及阻 氣膜(gas bairies films)目前從許多專利知有關聚合物/黏 土奈米複合材料之系統有 Epoxy/clay,Rubber/clay,PEO/day,Pol yolef in/clay,PCL/clay 等奈米複合材料。 天然黏土礦物結構均由四面體與八面體以不同堆疊方 式所構成,其中層狀天然黏土是以四面體/八面體= 比例組成層狀矽酸層,層與層之間以陽離子如Na+來連接 旦因此,層狀矽酸鹽層有一定陽離子交換當量。此交換當 =選擇80〜15〇meg/l〇〇g(指100g黏土中具有之陽離子交換毫 田里數)之天然黏土應用纟奈米化黏土複合材料中為最佳 ’其中天㈣離子層狀黏土又以Na+ _蒙特納石是最普遍且 價格便宜而被大量使用在此混成材料中,本發明當然以此 天然黏土應用在實施例的研究上,但發明範圍則不在此限 ^此陽離切酸鹽片狀結構,當有水進人鹽層間靜電斥力 二加而增加層間距離’造成層狀黏土遇水膨脹之原因,若 :=離子則陽離子會中和部份片狀結構之負電性,使 =構距離縮短層狀黏土的膨潤性受 液環境中會受到限制。…與層間之多孔性 稽離子交換反應來改變層 機點土。至於進杆㈣工 有機性,即形成有 昇右u 子交換之有機陽離子型夾人劑除接 幵有機化黏土與聚合物單體或聚合物之相容=⑼ 文獻研究顯示會影響到有機黏 在才多 ’钱分子的反應性、分 1292413 散性、熱性質與機械性質帛,因此選擇適當的銨離子有機 分子來當夾入劑形成有機化黏土亦是本發明的重點。 層匕狀黏土乃是一由層與層之間所形成之長廊(gallery) 的5L匕、可歸類為兩種以極細微分散的奈米化複合材料, 即(a)夾入型奈米複合材料,此種型態是單獨伸長的高分 子鏈被夾入強矽酸鹽層中,造成排列整齊具有重現性奈米 距離多層結構,層狀㈣鹽層狀無機材雖保有層狀重現性 ,但巨分子夾入其矽酸鹽層中,仍會形成強的無機鏈結。 (b)脫層型奈米複合材,此係矽酸鹽層產生脫層並且分散 在聚合物基材中,此層狀排列為任-方向,則以X光繞:十 儀分析在⑽^方向並無繞射峰產生,此時石夕酸鹽層狀之間 距離已達到44A(2 0 <2。)以上而得到奈米化分散黏土在乙 烯酉曰樹月曰中。上述二種奈米化材料則以脫層型混成複合材 料之兩相相容性是最高的。 般而σ ’奈米化黏土複合材料具有以下優點 ⑴ 低線性膨脹係數。(2)減少奈米化黏土複合材料吸水性 透氣:。⑶在低無機黏土含量時,能改善其機械性質, 且有高光澤,不趨曲、不浮纖等優點。(4)因黏土具有离. 子鏈向的長度與厚度比值(aspect ratio),所以少量黏土 添加則能大幅改善奈米複合材料之機械性質,但其仍深受 少量夾入劑的影響到此物性及熱性質。儘管奈米黏土 複合材料有上述優點,但受到合成性質,製備條件,夾入 劑選擇,黏土含量及不同聚合物系統等影響,並不一定& 獲=完全一致的性質提昇,因此本發明以上述條件進=:: 關貫施例的開發。 订 1292413 本發明欲進行的熱固型乙烯酯樹脂,係由環氧樹脂與 不飽和單基酸(unsaturated monocarboxyl ic acid)反應合成,然 後以反應性含稀基單體稀釋而成具有不飽和雙鍵的反應性 樹脂稱為乙烯酯樹脂(Vinylester);其中,乙烯酯樹脂係指 含有·· '、 R, 0And Y. Kojima et al., in Acs Symp Series, 1995, 585, 55 and J. Αρρ· P 〇lym. Su, 1995, 52. 576, know that the addition of 5wt% clay and 3〇% glass fiber is similar to the reinforcing effect. This is unmatched by conventional composite materials. They also reported the addition of 4wt% clay to form nanocomb 1292413 in Nyl〇n6, which has a tensile strength increase of 55 %, a tensile modulus of about 90%, and a heat acceptability of 〇〇1〇〇. C 'Therefore, Nylon6/clay nanocomposites are now commercialized, and Nylon6/clay nanocomposites have been used by T〇y〇ta, & timepiece belt cover covers and gas barriers. (gas bairies films) There are many patents related to polymer/clay nanocomposites that have Epoxy/clay, Rubber/clay, PEO/day, Pol yolef in/clay, PCL/clay and other nanocomposites. The natural clay mineral structure is composed of tetrahedrons and octahedrons in different stacking manners. The layered natural clay is composed of tetrahedral/octahedron=proportion layered tannic acid layer, with cations such as Na+ between layers. Therefore, the layered tantalate layer has a certain cation exchange equivalent. This exchange is the best 'in the day (four) ion layer when the natural clay used in the selection of 80~15〇meg/l〇〇g (referring to the cation exchange in the 100g clay) is the best in the nano-clay composite. The clay is further used in this mixed material with Na+_Montena stone being the most common and inexpensive, and the present invention is of course applied to the study of the embodiment using the natural clay, but the scope of the invention is not limited thereto. From the dicerate sheet structure, when there is water in the salt layer, the electrostatic repulsion increases and the interlayer distance increases, causing the layered clay to expand due to water. If: = ion, the cation will neutralize the negative of some of the sheet structure. The swellability of the layered clay is limited in the liquid environment. ... and the porosity between the layers, the exchange of ions to change the layer of soil. As for the organic property of the rod (four), that is, the organic cation type inclusion agent formed by the levitation of the right u sub-exchange is compatible with the polymer monomer or the polymer. (9) Literature studies have shown that it affects the organic viscosity. In the case of the reactivity of the 'money molecule', the 1294213 bulk, thermal and mechanical properties, it is also the focus of the present invention to select an appropriate ammonium ion organic molecule to form the organoclay as a binder. The layered clay is a 5L crucible formed by a layer formed between layers, and can be classified into two kinds of finely dispersed nanocomposites, ie (a) sandwiched nai In the case of a rice composite material, the polymer chain which is elongated alone is sandwiched into the strong bismuth acid layer, resulting in a neatly arranged reproducible nanometer-distance multilayer structure, and the layered (four) salt layered inorganic material retains a layered shape. Reproducibility, but the inclusion of macromolecules in its citrate layer still forms a strong inorganic chain. (b) a delaminated nanocomposite, the phthalate layer is delaminated and dispersed in a polymer substrate, and the layered arrangement is any-direction, and then X-ray is wound: 10 gauge analysis at (10)^ There is no diffraction peak in the direction. At this time, the distance between the layers of the silicate layer has reached 44A (20 < 2), and the nano-dispersed clay is obtained in the vinyl eucalyptus. The above two kinds of nano-materials have the highest compatibility of the two phases in the delaminated hybrid composite. The σ' nano-clay composite has the following advantages: (1) Low linear expansion coefficient. (2) Reducing the water absorption of the nano-clay composite material. (3) When the content of low inorganic clay is low, it can improve its mechanical properties, and has the advantages of high gloss, no warping, no floating fiber and the like. (4) Because clay has a length-to-thickness ratio from the sub-chain direction, a small amount of clay can greatly improve the mechanical properties of the nanocomposite, but it is still affected by a small amount of intercalating agent. Physical and thermal properties. Although nano-clay composites have the above advantages, they are affected by synthetic properties, preparation conditions, inclusion agent selection, clay content and different polymer systems, and are not necessarily <================ The above conditions are entered =:: The development of the relevant example. 1292413 The thermosetting vinyl ester resin to be carried out according to the present invention is synthesized by reacting an epoxy resin with an unsaturated monocarboxylic acid, and then diluted with a reactive dilute monomer to have an unsaturated double The reactive resin of the bond is called a vinyl ester resin (Vinylester); wherein the vinyl ester resin means containing ·· ', R, 0
I II H2C 二 C-R-C - O-CH2-CH-CH2-R,,-I II H2C II C-R-C - O-CH2-CH-CH2-R,,-
II
0H 官能基之主結構;其是由環氧樹脂與不飽和單羧酸聚 合開環反應而形成。其中環氧樹脂有雙酚A型、雙酚他型 、雙酚S型、雙酚F型、酚醛清漆型、聯苯基型、萘型、 酞酸型、六氫酞酸型、苯甲酸型、二縮水甘油醚及乙二醇 型、二縮水甘油醚等環氧樹脂或具有兩個以上環氧基之改 貝树脂。一般常用之不飽和之單羧酸(m〇n〇unsaturated m〇n〇c arboxylic acid)為丙烯酸、甲基丙烯酸、丁烯酸、苯基丙烯 酸、丁烯酸、苯基丙烯、山朵酸、甲基丙烯羧乙酯、順丁 烯一酸鹽、丙稀緩乙酯、二環戊二稀、順丁稀二酸鹽等, 一般以使用耐鹼性優異之甲基丙烯酸、甲基丙烯酸羥酯、 順丁烯二酸鹽、曱基丙烯酸羥丙酯等曱基丙烯酸型之羧酸 為最佳,至於本發明使用稀釋劑為具不飽和鍵的反應性單 體如苯乙烯、甲基苯乙烯、醋酸乙烯、曱基丙烯酸甲酯、 雙乙烯苯或具有不飽和基之反應性單體或2個以上官能基 亞克力系單體專。另乙稀酯硬化時之硬化劑有二醯基過氧 10 1292413 化物頒、_過氧化物類、氫 〜〜、一 ^巫嗎羊L化物 : 虱'%_類、烷基過自旨類及過氧碳酸_類等之有機過 氧:物、Μ如·苯甲醯過氧化物、甲基乙基酮過氧化物、 月缸基過氧化物、二枯基過氧化物、枯烯氫過氧化物等, ::般使用為苯甲龜過氧化物J亦可加入光敏起始劑以 卜線或其他輕射照射起始自由基反應,使乙烯酿硬化 。本發明之促進劑為氮取代基中具有m基之第3級芳 類即可,例如:N,N-二經丙基—對一甲苯胺、N-苯基二乙 醇胺、N-對—苯基二乙醇胺、N,N—雙羥丁基一對一甲苯胺 等’以少量具有效果之N,N—雙經丙基一對一甲苯胺較佳。 :且於乙烯酿樹脂中可視需要添加,⑥合有著色劑顏料、 务外線吸收劑、充填材料、冑變化劑、可塑劑或偶合劑等 ’經上述配方組合而形成之熱固性乙烯S旨樹脂是防飯工程 或塗料或地板材或SMC/BMC複合材料在應用上最佳材料之一 Ο 乙烯酯樹脂之用 的優點外,更結 及耐腐蝕特性的 著2000年的到來 的^^汁’因此, ’為改善此材料 型奈米化黏土乙 奈米化黏土乙稀 土層狀矽酸鹽層 ’已知奈米化石夕 目前’熱固性聚 好加工特性、成本低 、耐高溫性、高強度 材料業的新寵,但隨 來臨,全球生活水準 要求亦擴大,基於此 他性質,本發明以新 料進行開發。此新型 機/無機樹脂,此黏 乙烯酯樹脂中。目前 途相當廣泛,具有良 合環氧樹脂之黏結性 優點,已成強化複合 ,電子資訊化的時代 在此複合材料的性能 的收縮性、脆性及其 烯S旨樹脂及其複合材 酯樹脂可為一新的有 已奈米化均勻分散在 酸鹽層在聚合物的方 11 1292413 法有· (1)直接以適當溶劑及預前體與有機黏土進行分散 奈米化,(2)添加有反應性官能基有機黏土中與有機單體 或I合物進行聚合反應形成奈米複合材料。(3)溶融法使 有聚合物分子直接進入有黏土矽酸鹽層中。本發明則是以 具有反應性官能基夾入劑與乙烯酯先導物進行合成反應形 成乙稀酯再以稀釋劑稀釋成液態含奈米化矽酸鹽層的乙稀 酯樹脂,配合硬化劑,加速劑或偶合劑形成奈米化黏土乙 烯酯複合材料。相關國内外的奈米化黏土乙烯酯樹脂之專 利或其他文獻並未有發表,比較相關則有Giannelis等人於 1996,Sept 1〇,之美國專利’ n〇555467〇的印卿nan〇c〇ap ⑽te的案子,其乃是以酸酐型硬化劑舆環氧樹脂及有機黏 土進行硬化反應形成奈米化黏土環氧樹脂複合材料之開發 本發明之主要目的 乙烯酯樹脂之組成。 本發明之最主要目 烯酯樹脂的方法。 ,係在於提供一種奈米化分散黏土 的,係在於合成奈米化分散黏土乙 〜’你聚備The main structure of the 0H functional group; it is formed by a ring-opening reaction of an epoxy resin with an unsaturated monocarboxylic acid. Among them, epoxy resin is bisphenol A type, bisphenol type, bisphenol S type, bisphenol F type, novolak type, biphenyl type, naphthalene type, decanoic acid type, hexahydrofurfuric acid type, benzoic acid type , diglycidyl ether, epoxy resin such as ethylene glycol type or diglycidyl ether or modified shell resin having two or more epoxy groups. The commonly used unsaturated monocarboxylic acid (m〇n〇unsaturated m〇n〇c arboxylic acid) is acrylic acid, methacrylic acid, crotonic acid, phenylacrylic acid, crotonic acid, phenylpropene, mountain acid, Methyl propylene carboxyethyl ester, maleic acid salt, propylene dilute ethyl ester, dicyclopentadiene dichloride, cis-butyl dicarbonate, etc., generally using methacrylic acid, methacrylic acid hydroxy group excellent in alkali resistance A carboxylic acid of a mercaptoacrylic acid type such as an ester, a maleate or a hydroxypropyl methacrylate is preferred, and as the present invention, a diluent is used as a reactive monomer having an unsaturated bond such as styrene or methylbenzene. Ethylene, vinyl acetate, methyl methacrylate, divinyl benzene or a reactive monomer having an unsaturated group or two or more functional acryl monomers. The hardening agent of the other ethyl ester hardening has dimercapto-peroxy 10 1292413 compound, _ peroxide, hydrogen ~ ~, a ^ witch? sheep L compound: 虱 '% _ class, alkyl over the purpose class And organic peroxygen such as peroxycarbonic acid, such as, for example, benzamidine peroxide, methyl ethyl ketone peroxide, moon-based peroxide, dicumyl peroxide, cumene hydrogen Peroxide, etc., can be used as a benzoic acid peroxide J. A photoinitiator can also be added to initiate a free radical reaction by bubbling or other light irradiation to harden the ethylene. The promoter of the present invention may be a third-order aryl group having a m group in a nitrogen substituent, for example, N,N-dipropyl-p-toluidine, N-phenyldiethanolamine, N-p-benzene. Preferably, N,N-dipropyl propyl-p-tolylamine is preferred as a small amount of an effective N-ethanolamine, N,N-dihydroxybutyl-p-toluidine or the like. And it can be added as needed in the vinyl styrene resin, 6 is a coloring agent pigment, an external absorbent, a filling material, a bismuth change agent, a plasticizer or a coupling agent, etc. The thermosetting ethylene S resin formed by the combination of the above formulas is One of the best materials for the application of anti-rice engineering or paint or flooring or SMC/BMC composites. The advantages of vinyl ester resin, and the corrosion resistance of the 2000s. , 'To improve this material type nano-sized clay, Beneficial clay, B-rare earth layered tantalate layer', known nano-fossils, current 'thermosetting, good processing characteristics, low cost, high temperature resistance, high strength material industry The new darling, but as time comes, the global standard of living is also expanding. Based on this nature, the invention is developed with new materials. This new machine/inorganic resin is found in this urethane resin. At present, it has a wide range of advantages, and it has the adhesive advantage of good epoxy resin. It has been reinforced and compounded. The performance of the composite material in this era of shrinkage, brittleness and its olefin resin and its composite ester resin can be For a new one with nanocrystallization and evenly dispersed in the acid salt layer in the polymer of the 11 1192413 method (1) directly with appropriate solvent and pre-precursor and organic clay dispersion nanocrystallization, (2) added The reactive functional organic clay is polymerized with an organic monomer or a compound to form a nano composite. (3) The melting method allows the polymer molecules to directly enter the clay citrate layer. The invention combines a reactive functional group intercalating agent with a vinyl ester lead to form an ethylene ester and then dilutes it into a liquid nanocrystalline ceric acid layer with a diluent, and is combined with a hardening agent. The accelerator or coupler forms a nano-clay vinyl acetate composite. The patents or other literatures related to domestic and foreign nano-clay vinyl ester resins have not been published. The related ones are Giannilis et al., 1996, Sept 1〇, the US patent 'n〇555467〇's Yinqing nan〇c〇 The case of ap (10) te, which is a composition of a vinyl ester resin which is the main purpose of the present invention, is a hardening reaction of an acid anhydride type hardener, an epoxy resin and an organic clay to form a nano-clay epoxy resin composite material. The most preferred method of the present invention. Is to provide a kind of nano-dispersed clay, which is based on synthetic nano-dispersed clay.
樹脂之複合材料。 藉由上述目的所得之太Resin composite. The result obtained by the above purpose
不米化黏土矽酸鹽層能均勻 方向分散在乙烯酯液能抖 J 脂配料,再接著以Γ:: 有機,無機系混 土 ― 加速劑、硬化劑或偶合劑形成夺米 ,, 再知m此奈米化黏土在r、说舻 材料所提昇功用。除佯拄K ^ t 隹乙烯酉曰 、保持原乙稀g日的特性, 寸安定性及韌性都能撻θ 在收縮性 “,所發明的奈米化黏土乙稀 12 1292413 、C生的用途上增加應用範圍,gp以含乙烯酸類 早-、壞乳樹脂、觸媒及含有具陽離子型官能基之夹入劑 =質有機黏土進行開環反應為主及使有機黏土之㈣鹽層 奈ί化分散的合成反應形成乙烯δ旨的新樹脂,利乙烯酸 類早體以亞克力酸為典型,環氧樹脂有系統(仏咖 n〇1 A ep〇Xy),鄰甲紛系統(⑽〇1 system ep〇xy),齡駿系統(η ovolac system epoxy),或它們的不同系統混合環氧樹脂等, ^具陽離子型有機黏土之夾人劑反應官能基則有酸基、 衣氧基《乙烯基為主等’黏土則以層狀黏土為主。所合 成的奈米化黏土乙烯,樹脂的組成如方法所述相同。所得 奈米化黏土乙_旨樹脂再以含烯基反應稀釋劑製備成液態 樹脂:此樹脂再分別以硬化劑、加速劑或者偶合劑一起形 成奈米化黏土乙稀酯複合材料。 為讓本發明之上述和其他目的、特徵、各優點能更明 顯易懂,本文特舉出數個較佳實施例與比較例,並配合圖 式,詳細說明如下: 本發明所用可嵌入材料為一由矽酸鹽層所組合而成, 其可藉可溶或不可溶於水之含銨離子之夾入劑與含陽離子 之矽酸鹽層形成嵌入而成為一有機黏土,&夾入劑包括有 小分子的單體與大分子預聚合物等,爽入劑的選擇除一定 有一銨離子外,另有環氧基、酸基、乙烯基、醇基等而有 利於進行合成奈米化黏土乙烯酯樹脂之官能基。層狀矽酸 鹽層材之層間陽離子如有Na+,ca+2 ,K+,Mg+2 ,随4+和相 類似,包括它們的混合物。可進行陽離子交換且形成混成 13 1292413 脫層的CEC值(100g黏土可取代交換的毫當量值)約在70〜1 50meg/100g,每一矽酸鹽層是由2:丨四面體/八面體比例組 合而成’其種類有蒙特石,Hectorite,saponite ,nontron ite , beidellitei , Volkonskoite , saponite , sanconite , sobockite , sterensite , svinfordite , vermiculite 等,另有 mica,illite, ledikite等其他系統。上述矽酸鹽層厚約在i 0The non-ricized clay citrate layer can be uniformly dispersed in the vinyl ester liquid to shake the J fat ingredients, and then the Γ:: organic, inorganic mixed soil-accelerator, hardener or coupling agent to form the rice, and then know m This nano-clay is used in r, and the material is improved. In addition to 佯拄K ^ t 隹 酉曰 酉曰 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在To increase the scope of application, gp is mainly composed of vinyl-containing early-, bad-lactating resins, catalysts and inclusions with cationic functional groups. The organic clay is mainly used for ring-opening reaction and the organic clay (4) salt layer is used. The synthetic reaction of dispersing forms a new resin for the purpose of ethylene δ. The vinyl acid precursor is mainly composed of acrylic acid, and the epoxy resin has a system (仏 〇 A A A A , , , , , system) Ep〇xy), η ovolac system epoxy, or their different systems of mixed epoxy resin, etc., the cationic functional group of the cationic organic clay has an acid group, a clothing base "vinyl The main 'clay' is mainly layered clay. The synthesized nano-clayed vinyl, the composition of the resin is the same as described in the method. The obtained nano-sized clay is prepared by using an alkenyl-containing reactive diluent. Liquid resin: this resin is separately used as a hardener, plus The agent or the coupling agent together form a nano-clayed ethylene ester composite material. In order to make the above and other objects, features and advantages of the present invention more apparent, several preferred embodiments and comparative examples are described herein. With reference to the drawings, the following detailed description is as follows: The embeddable material used in the present invention is a combination of a citrate layer which can be mixed with an ammonium ion-containing intercalating agent and a cation-containing crucible which is soluble or insoluble in water. The acid salt layer is formed into an organic clay, and the inclusion agent includes a small molecule monomer and a macromolecular prepolymer, etc., and the choice of the cooling agent must have an ammonium ion, and an epoxy group and an acid. Base, vinyl, alcohol group, etc. are beneficial for the functional group of the synthetic nano-clay vinyl ester resin. The interlayer cation of the layered tantalate layer is Na+, ca+2, K+, Mg+2, with 4 + and similar, including mixtures thereof. Cation exchange can be carried out and the formation of the mixture 13 1292413 delamination CEC value (100 g clay can replace the exchange equivalent value) about 70~1 50meg / 100g, each citrate The layer is made up of 2: 丨 tetrahedral / octahedron ratio It is made of 'Montear, Hectorite, saponite, nontron ite, beidellitei, Volkonskoite, saponite, sanconite, sobockite, sterensite, svinfordite, vermiculite, etc., and other systems such as mica, illite, ledikite, etc. Thick at about i 0
0A ’層與層之間並有層間結合力。經夾入劑改善石夕酸鹽層 狀材料的親油性,不僅提昇黏土的親油性,更增加層與層 之間距離達5A以上,增加合成時反應單體與夾入劑的作用 能力,提昇矽酸鹽層的分散能力。 本發明之主要技術在形成奈米黏土乙烯酯樹脂及合成 方法 a成的反應單體,包括有不飽和單魏酸(含稀基酸 單體)、偶合劑、加速劑等,其中不飽和單羧酸(含烯基 酸單體),種類系統繁多,包括有烯酸類、亞克力酸類 等;在環氧樹脂方面則有雙酚A(BisphenolA)系,酚醛(n( alac)系統,雙酚 F(BiphenylF)系,矽膠(Silicone)系,二官There is an interlayer bonding force between the 0A' layer and the layer. The entrainment agent improves the lipophilicity of the layered material of the sulphate, which not only enhances the lipophilicity of the clay, but also increases the distance between the layers by more than 5A, and increases the ability of the reaction monomer and the intercalating agent during synthesis to enhance The dispersing ability of the citrate layer. The main technology of the present invention is a reaction monomer formed by forming a nano-clay vinyl ester resin and a synthetic method, including unsaturated monoweilic acid (including a dilute acid monomer), a coupling agent, an accelerator, etc., wherein the unsaturated single Carboxylic acid (including alkenyl acid monomer), a variety of systems, including olefinic acids, acrylic acid, etc.; in the epoxy resin, there are bisphenol A (BisphenolA), phenolic (n (alac) system, bisphenol F (BiphenylF) system, Silicone (Silicone), second official
基、四官能基等系統,或它們的混合系統之環氧樹脂等 觸媒則有有機磷化合物、三級胺鹽、有機金 蜀寻,偶合, 則有鈦氧烷類、矽氧烷類等。本發明主要是以含烯美m 酸與環氧樹脂進行合成,形成乙烯酯類之同時八斗:單' Τ ^ σ , 了刀放有機:Ϊ 王示米化分散矽酸鹽層在乙烯酯類樹脂 胳麻大, 曰τ ’達到完β 脫層示米化的目的,至於偶合劑更能提昇有機相與I全 的相容性,進一步提昇此樹脂的物性與應用附加代“、、機’ 述合成新型樹脂再以反應稀釋劑如苯乙烯(styreneg值。- 態樹脂,上述未稀釋與已稀釋熱固型樹 ne)形成、丨 肐應用在塗3 14 1292413 、黏著劑、複合材料等方面± ’形成—有機/無機奈米化 分散混成材料。上述樹脂的硬化反應可用硬化劑,如甲基 乙基酮過氧化物、金屬鹽促進劑、加速劑或偶合劑等,: 成奈米化黏土熱固型複合材料。 比較例1 將等當量莫耳數之雙酚A型環氧樹脂與甲基丙烯酸置 於反應槽中加熱至80 C混合均勻,加人〇· 4 % Tpp(Tripheny 1 phosphine)反應觸媒於100 t開始反應,直至環氧當量大 於10000時開始降溫,同時以苯乙烯稀釋成液態乙烯酯樹脂 (其苯乙稀重量比為45%),所合成之樹脂添加6%辛酸鈷: 0· 4phr ,N-N 二曱基苯胺:〇· 〇3phr,55%MEKP0 : lphr 在常溫 反應硬化成型,並於105 r,2hr做後硬化處理,其抗拉強 度(Flexural strength)(測試方法 ASTM D790)為 973kgf/cm2 ,巴 可(Barcol)硬度達38。 比較例2 將上述配製乙稀醋樹脂直接加入ADA(Aminododecanoic Ac id) 4wt%有機黏土(以含有H2N(CH2)uC00H為夾入劑)形成黏 土 /树月曰複合材料’以弟1圖XRD分析為'^非奈米化分散 的複合材料(第1圖之編號1之圖示於2 0等於4 °仍有 示分散的波峰存在),其抗拉強度Q?lexrual strength)為9 46kg/cm ,巴可(Barcol)硬度為 40。 比較例3 15 1292413 以比較例1的配置乙烯酯樹脂直接加入含雙鏈改質之 CV黏土(含雙鍵銨鹽改質之奈米土)2wt% ,再同一硬化劑 與加速劑形成含黏土熱固型複合材料,以XRD分析(第1 圖編號4之圖示)知為一奈米化黏土,乙稀|旨複合材料, 顯示含雙鏈改質之CV黏土(含雙鍵銨鹽改質之奈米土)參 與硬化反應而能使熱固型樹脂形成奈米化複合材料,但抗 拉強度(Flexrual strength)僅 561kg/cm ,巴可(Barcol)硬度 為35。 實施例1 首先將環氧樹脂(epoxy resin)與MAA(甲基丙稀酸單體 Meth-Acrylic Acid)在與比較例1相同合成反應程序與條件下 ,在反應的同時分別加入lwt%、2wt%、3wt%及4wt%ADA(Amin ododecanoic Acid 改質之奈米土)有機黏土(含 H2N(CH2)iiC00 Η)進行乙稀酯化反應,所得樹脂以styrene稀釋成55/45比例 含黏土 /乙烯酯樹脂,經相同比較例1的硬化反應所得熱 固型複合材料經XRD分析(第1圖中編號2、3 、5分別 代表1 %、2%及4% )皆為一奈米化黏土熱固型奈米化 複合材料,不同添加量ADA(Aminododecanoic Acid改質之奈米 土)其分析抗拉強度與巴可硬度見表1。 在 2wt% ADA(Aminododecanoic Acid 改質之奈米土),其添 加反應時間與抗拉強度(flexural strength)及巴可(Barcol) 硬度關係見表2。 其在恆溫水槽中耐5(TC曱苯試驗與比較例1及重量增 加變化及硬度降低比例見表3。 16 1292413 所合成奈米黏土乙烯酯複合材料與比較例丨與2之耐 衝擊性特性比較,見表4。 士從上述比較例1及2與實施例1知本發明奈米化黏土 樹脂熱固型複合材料不論在機械性質之硬度、機械強度、 韌性於得一奈米化熱固型複合材料時皆能同時呈現增加, 另化學溶劑的阻隔能力及耐化性皆呈現提昇,顯示矽酸鹽 層奈米化分散在乙烯酯樹脂中能使有機相與無機相的優點 能同時在複合材料中見有相乘效果,至於硬度與㈣特性 能同時提昇顯示前者是無機相加入而提昇,後者則是有機 黏土加入改變有機聚合物的分子鏈的分佈與大小,使得韌 性旎提昇’使得以微差熱分析儀(DSC)分析及熱變形濕度測 試儀(HDT)分析原則顯示玻璃轉換溫度及熱變形溫度呈降低 趨勢。 一 實施例2 首先以環氧樹脂(epoxyresin)與MAA(甲基丙烯酸單體 Meth士rylic Acid)及TPP(三苯化麟忏咖邮油〇__在相同且 比車乂例1條件下反應且同時加入2wt%含雙鏈改質之⑺黏土 (含雙鍵銨鹽改質之奈米土)進行合成反應,合成後樹月旨 相同比較例1方法及組成配方硬化形成熱固型奈米化黏土 乙烯S曰複合材料,其抗拉強度(f lexural strength ),玻璃轉 換溫度(Tg)值與巴可(Barc0:l)值與比較例3 ,比較見表5 0 上述結果顯示夹入劑特性,合成過程深切影響此熱固 型奈米化複合材料特性。但奈米化分散矽酸鹽在乙烯酯樹 17 1292413 脂是,順利完& ’物性性質則 系統表佳化物性條件。 要重新調整組合配方可得此 上述戶、施例所揭示者係藉以具體說明本發明,且文中 雖透過特定的術語進行說明,當不能以此限定本發明之專 利範圍;熟悉此項技術領域之人士當可在瞭解本發明之精 神與原則後對其進行變更與修改而達到等效之目的,而此 等變更與修改,皆應涵蓋於如后所述之申請專利範圍所界 定範嚕中。Base systems, tetrafunctional groups, etc., or catalysts such as epoxy resins in their mixed systems, such as organophosphorus compounds, tertiary amine salts, organic gold, and couplings, such as titanols, decanes, etc. . The invention mainly comprises the synthesis of vinyl esters and epoxy resins to form vinyl esters while forming eight buckets: single ' Τ ^ σ , and knife-distributing organic: Ϊ 示 示 米 矽 矽 矽 在 在 在 在 在Resin-like resin, 曰τ 'to achieve the purpose of β delamination and rice, as for the coupling agent can improve the compatibility of the organic phase with I, further enhance the physical properties of the resin and the application of additional generation, 'The synthesis of the new resin is then formed with a reactive diluent such as styrene (styreneg value - state resin, the above undiluted and diluted thermosetting tree ne), used in coating 3 14 1292413, adhesives, composite materials, etc. Aspect ± 'Formation - organic / inorganic nano-dispersion mixed material. The hardening reaction of the above resin can be used as a hardening agent, such as methyl ethyl ketone peroxide, metal salt promoter, accelerator or coupling agent, etc. Clay thermoset composite. Comparative Example 1 Equivalent molar number of bisphenol A epoxy resin and methacrylic acid were placed in a reaction tank and heated to 80 C to mix evenly, adding 4% Tpp (Tripheny) 1 phosphine) reaction catalyst starts at 100 t Should, until the epoxy equivalent is greater than 10000, start to cool down, while diluting styrene into liquid vinyl ester resin (the styrene weight ratio is 45%), the synthesized resin is added 6% cobalt octoate: 0 · 4phr, NN Nonylaniline: 〇· 〇3phr, 55% MEKP0: lphr is hardened at room temperature and hardened at 105 r, 2 hr. Its tensile strength (test method ASTM D790) is 973 kgf/cm2. Barcol hardness reached 38. Comparative Example 2 The above-mentioned formulated ethylene vinegar resin was directly added to ADA (Aminododecanoic Ac id) 4 wt% organic clay (containing H2N(CH2)uC00H as a sandwiching agent) to form clay/tree 曰The composite material 'is analyzed by XRD as '^ non-nano-dispersed composite material (the figure of No. 1 in Fig. 1 is still present in the peak of 2 0 equal to 4 °), and its tensile strength Q ?lexrual strength) is 9 46 kg / cm, Barcol hardness is 40. Comparative Example 3 15 1292413 The vinyl ester resin of Comparative Example 1 is directly added to the CV clay containing double-stranded modification (including double-bond ammonium salt modification) Nitrate soil) 2wt%, then the same hardener and accelerator shape Clay-containing thermosetting composites, known as X-rayed by XRD analysis (Fig. 1 of Figure 1), is a composite material showing CV clay with double-stranded modification (including double-bonded ammonium) The salt-modified nano-soil) participates in the hardening reaction to form a thermosetting resin into a nano-composite composite, but has a Flexrual strength of only 561 kg/cm and a Barcol hardness of 35. Example 1 First, an epoxy resin and MAA (Meth-Acrylic Acid) were added to the same reaction procedure and conditions as in Comparative Example 1, and 1 wt% and 2 wt were added simultaneously with the reaction. %, 3wt% and 4wt% ADA (Amin ododecanoic Acid modified nano-soil) organic clay (containing H2N(CH2)iiC00 Η) was subjected to ethylene esterification reaction, and the obtained resin was diluted with styrene to a ratio of 55/45 containing clay/ The vinyl ester resin, the thermosetting composite obtained by the hardening reaction of the same Comparative Example 1 was analyzed by XRD (numbers 2, 3, and 5 in Figure 1 represent 1%, 2%, and 4%, respectively). Thermosetting nano-composites, different amounts of ADA (Aminododecanoic Acid modified nano-soil), the tensile strength and Barco hardness are shown in Table 1. The relationship between the addition reaction time and the flexural strength and Barcol hardness in 2 wt% ADA (Aminododecanoic Acid modified nano soil) is shown in Table 2. It is resistant to 5 in the constant temperature water tank (TC benzene test and Comparative Example 1 and the weight increase change and hardness reduction ratio are shown in Table 3. 16 1292413 Synthesis of nano-clay vinyl ester composite material and comparative examples 丨 and 2 impact resistance characteristics For comparison, see Table 4. From the above Comparative Examples 1 and 2 and Example 1, the nanosolidified clay resin thermosetting composite material of the present invention is obtained by thermosetting, mechanical strength and toughness in mechanical properties. The composite materials can be simultaneously increased, and the barrier property and chemical resistance of the chemical solvent are improved. It shows that the nano-silicate dispersion of the citrate layer can make the advantages of the organic phase and the inorganic phase simultaneously. In the composite material, the multiplication effect is seen. As for the hardness and the (4) special performance, the former shows that the former is added by the inorganic phase, and the latter is the distribution and size of the organic clay added to change the molecular chain of the organic polymer, so that the toughness is improved. The analysis of the differential thermal analyzer (DSC) and the thermal deformation moisture tester (HDT) showed that the glass transition temperature and the heat distortion temperature showed a decreasing trend. Epoxy resin (epoxyresin) and MAA (methacrylic acid monomer Meth rylic Acid) and TPP (triphenyl sulfonate 邮 邮 〇 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The (7) clay containing double-stranded modified (nano-soil modified with double-bonded ammonium salt) is subjected to a synthesis reaction. After the synthesis, the same method of Comparative Example 1 and the composition of the composition are hardened to form a thermosetting nano-clayed vinyl ethylene. Composite material, its tensile strength (f lexural strength), glass transition temperature (Tg) value and Barco (Barc0:l) value and comparison example 3, see Table 5 0. The above results show the characteristics of the sandwich agent, the deep process of the synthesis process Affects the properties of this thermoset nanocomposite composite. However, the nano-dispersed bismuth citrate in the vinyl ester tree 17 1292413 is the smooth completion & 'physical properties, then the system table shows better conditions. To re-adjust the combination formula can The present invention has been specifically described by the above-mentioned households, and the present invention is described by specific terms, and the scope of the invention cannot be limited thereto; those skilled in the art can understand this Spirit of invention After changing the principle of its modifications and equivalents of the purpose, and this and other changes and modifications are intended to be included in the range of chatter as the scope of the patent application of the predetermined boundary.
18 1292413 【圖式簡單說明】 第1圖:不同組合物複合材料X光繞射圖形。 表1 :不同ADA(Aminododecanoic Acid改質之奈米土)有機層 狀黏土含量之奈米化分散黏土在乙稀酯複合材料之 物性。 表2 :奈米化分散乙烯酯樹脂在合成時不同時間點添加2 wt % ADA(Aminododecanoic Acid 改質之奈米土)有機層 狀黏土含量在乙烯酯不同合成時間所得複合材料之 物性。 表3 :比較例1及例2與實施例1之耐化性測試結果。 表4 :比較例1及例2與實施例2之物性分析。 表5 ··比較例3及實施例2之物性分析。 【主要元件符號說明】 註:本發明無元件符號說明。18 1292413 [Simple description of the diagram] Figure 1: X-ray diffraction pattern of composites of different compositions. Table 1: Properties of different layers of ADA (Aminododecanoic Acid modified nano-soil) organic layered clay content of nano-dispersed clay in ethylene ester composites. Table 2: Nano-dispersed vinyl ester resin Adding 2 wt% ADA (Aminododecanoic Acid modified nano-soil) at different time points during synthesis, the physical properties of the composite material obtained at different synthesis time of vinyl ester. Table 3: Test results of the chemical resistance test of Comparative Example 1 and Example 2 and Example 1. Table 4: Physical property analysis of Comparative Example 1 and Example 2 and Example 2. Table 5 · Physical property analysis of Comparative Example 3 and Example 2. [Description of main component symbols] Note: The present invention has no component symbol description.
1919
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89112686A TWI292413B (en) | 2000-06-28 | 2000-06-28 | The composition and synthetic method of nano-dispersed clay vinylester resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW89112686A TWI292413B (en) | 2000-06-28 | 2000-06-28 | The composition and synthetic method of nano-dispersed clay vinylester resin |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI292413B true TWI292413B (en) | 2008-01-11 |
Family
ID=45067519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW89112686A TWI292413B (en) | 2000-06-28 | 2000-06-28 | The composition and synthetic method of nano-dispersed clay vinylester resin |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI292413B (en) |
-
2000
- 2000-06-28 TW TW89112686A patent/TWI292413B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6287992B1 (en) | Polymer composite and a method for its preparation | |
Guida-Pietrasanta et al. | Epoxy layered silicate nanocomposites | |
Ratna et al. | Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate | |
US6251980B1 (en) | Nanocomposites formed by onium ion-intercalated clay and rigid anhydride-cured epoxy resins | |
JP2006511687A (en) | Thermosetting composite composition, method and article | |
JP6683485B2 (en) | Boron nitride nanotube material and thermosetting material | |
KR101793303B1 (en) | Nanocalcite and Vinyl Ester Composites | |
Langat et al. | Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocomposites | |
Liu et al. | Hydrophobically modified phosphogypsum and its application in polypropylene composites | |
CN108483980A (en) | The preparation method of nano-carbon material-polymer-silicate composite micro-nano particle nucleation agent | |
CN104945802B (en) | A kind of buried high voltage power cable high temperature resistant PVC C sleeve pipes | |
KR20090116752A (en) | Silica sol having reactive monomer dispersed therein method for producing the silica sol, curing composition, and cured article produced from the curing composition | |
Seo et al. | Curing behavior and structure of an epoxy/clay nanocomposite system | |
TWI292413B (en) | The composition and synthetic method of nano-dispersed clay vinylester resin | |
Li | High performance epoxy resin nanocomposites containing both organic montmorillonite and castor oil-polyurethane | |
TW539706B (en) | Modified layered clay material and epoxy/clay nanocomposite containing the same | |
JP4114048B2 (en) | Epoxy resin composition and process for producing the same | |
Park et al. | Effect of Organically Modified Layered Silicate on Thermal, Mechanical, and Electrical Properties of Epoxy-Based Nanocomposites | |
CN100441637C (en) | Thermoset composite composition, method, and article | |
KR101045235B1 (en) | Modification of platelet-shaped silica clay | |
CN1958676A (en) | Modification type clay, composite material of novolac epoxy resin of containing the clay, and predation method | |
Daud et al. | Epoxy Nanocomposites Containing Hybrid Montmorillonite/Geopolymer Filler for Piping Application | |
JP5415380B2 (en) | Curing accelerator for epoxy resin and epoxy resin composition containing the same | |
JP3585640B2 (en) | Composition for resin concrete and resin concrete | |
JP2808623B2 (en) | Hydraulic silicate resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Expiration of patent term of an invention patent |