JP5415380B2 - Curing accelerator for epoxy resin and epoxy resin composition containing the same - Google Patents

Curing accelerator for epoxy resin and epoxy resin composition containing the same Download PDF

Info

Publication number
JP5415380B2
JP5415380B2 JP2010183725A JP2010183725A JP5415380B2 JP 5415380 B2 JP5415380 B2 JP 5415380B2 JP 2010183725 A JP2010183725 A JP 2010183725A JP 2010183725 A JP2010183725 A JP 2010183725A JP 5415380 B2 JP5415380 B2 JP 5415380B2
Authority
JP
Japan
Prior art keywords
epoxy resin
clay mineral
layered clay
curing
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010183725A
Other languages
Japanese (ja)
Other versions
JP2012041440A (en
Inventor
恵司 齋藤
賢治 大橋
慎 皆瀬
充 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokko Chemical Industry Co Ltd
Original Assignee
Hokko Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokko Chemical Industry Co Ltd filed Critical Hokko Chemical Industry Co Ltd
Priority to JP2010183725A priority Critical patent/JP5415380B2/en
Publication of JP2012041440A publication Critical patent/JP2012041440A/en
Application granted granted Critical
Publication of JP5415380B2 publication Critical patent/JP5415380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有機ホスホニウムイオンにより有機変性した層状粘土鉱物を含有するエポキシ樹脂用硬化促進剤およびこれを含有するエポキシ樹脂組成物に関し、特に、電子機器や電子部品の絶縁材料あるいは構造材料として好適な耐熱性、低熱膨張性を発現し得るエポキシ樹脂組成物に関する。   The present invention relates to a curing accelerator for epoxy resins containing a layered clay mineral that has been organically modified with organic phosphonium ions, and an epoxy resin composition containing the same, and is particularly suitable as an insulating material or a structural material for electronic devices and electronic components. The present invention relates to an epoxy resin composition that can exhibit heat resistance and low thermal expansion.

エポキシ樹脂は熱的特性、機械的特性および電気的特性に優れた材料であり、接着剤・塗料・積層品・注型品・成形品として化学、電気、機械および土木工業等の分野で幅広く使用されているが、さらなる耐熱性や難燃性の向上や熱膨張率の低減が要求されている。例えば、電子材料分野では、電子機器の小型化・高性能化に伴い、電子部品やプリント配線板、ICパッケージ等の薄型化・高多層化・高密度化が進んでいる。こういった技術の進歩や市場の変化を受けて、近年、プリント配線板は小型化や表面実装プロセス拡大に合わせてプリント配線板とICパッケージの融合やビルドアップ基板への移行、さらに環境対応といった開発が進められている。   Epoxy resins are materials with excellent thermal, mechanical and electrical properties, and are widely used in the chemical, electrical, mechanical and civil engineering industries as adhesives, paints, laminates, cast products and molded products. However, further improvement in heat resistance and flame retardancy and reduction in thermal expansion coefficient are required. For example, in the field of electronic materials, electronic components, printed wiring boards, IC packages, etc. are becoming thinner, higher multilayered, and higher in density with the downsizing and higher performance of electronic devices. In response to these technological advances and changes in the market, in recent years, printed wiring boards have been miniaturized and the surface mounting process has been expanded. Development is underway.

通常、プリント配線板の高弾性率化および熱膨張率低減には、シリカ等を高充填する他、ガラスクロスを用いることで応力の低減を図っているが、強度や成型性(穴あけ加工性)の低下が指摘されている(非特許文献1)。この解決策の一つとして、高分子と有機化層状粘土鉱物をナノレベルでハイブリッドさせた高分子系ナノコンポジットが注目を集めており、学術と工業の両面で盛んに研究されている。高分子系ナノコンポジットの応用用途として、電子材料用アンダーフィル剤やシート材料等多量の充填剤を使用できない場面においてこの技術が有望視されている(非特許文献2)。   Usually, to increase the modulus of elasticity and reduce the coefficient of thermal expansion of printed wiring boards, in addition to high filling with silica etc., we are trying to reduce stress by using glass cloth, but strength and moldability (drilling workability) Has been pointed out (Non-patent Document 1). As one of the solutions, a polymer nanocomposite in which a polymer and an organically layered clay mineral are hybridized at the nano level is attracting attention, and has been actively studied in both academic and industrial aspects. This technique is considered promising as an application of polymer nanocomposites in a situation where a large amount of filler such as an underfill agent for electronic materials and sheet materials cannot be used (Non-patent Document 2).

一方、高分子系ナノコンポジットの中でもエポキシ樹脂系ナノコンポジットのような熱硬化性樹脂分野では、有機アンモニウムイオンで有機変性した無機フィラーや層状粘土鉱物等を添加、混合する方法が種々提案されているが、エポキシ樹脂中において層状粘土鉱物を均一かつ微分散させることは難しく、また、層状粘土鉱物の添加量を増やすと、エポキシ樹脂本来の特性が失われ、耐熱性等が損なわれてしまうという問題があった(非特許文献3)。   On the other hand, among polymer nanocomposites, in the thermosetting resin field such as epoxy resin nanocomposites, various methods of adding and mixing inorganic fillers or layered clay minerals organically modified with organic ammonium ions have been proposed. However, it is difficult to uniformly and finely disperse the layered clay mineral in the epoxy resin, and when the amount of layered clay mineral added is increased, the original properties of the epoxy resin are lost and the heat resistance and the like are impaired. (Non-Patent Document 3).

また、これまで知られている層状粘土鉱物の層間を有機変性させる有機修飾剤のほとんどが有機アンモニウムイオンであり、有機ホスホニウムイオンで有機修飾させる例は少なく、例としては、有機ホスホニウムイオンで粘土鉱物を有機変性した層状粘土鉱物の高潜在性エポキシ樹脂用硬化促進剤としての利用が挙げられる(特許文献1)。しかし、この場合は、180℃以上での高温硬化を必要とする。このため、硬化・架橋反応中に樹脂組成物中の成分である酸無水物が揮発してしまい、その加工性に難点があった。   In addition, most of the organic modifiers that have been organically modified between layers of layered clay minerals known so far are organic ammonium ions, and there are few examples of organic modification with organic phosphonium ions, for example, clay minerals with organic phosphonium ions Use of a layered clay mineral obtained by organically modifying as a curing accelerator for a high-latency epoxy resin can be mentioned (Patent Document 1). However, in this case, high temperature curing at 180 ° C. or higher is required. For this reason, the acid anhydride which is a component in the resin composition volatilizes during the curing / crosslinking reaction, and there is a difficulty in its workability.

その改善の目的、すなわち硬化温度を低下させる目的で、本発明者らは有機ホスホニウムイオンの構造を検討し、10−カルボキシデシルトリス(4−フェノキシフェニル)ホスホニウムブロマイドを採用することにより、その課題を解決するに至った(特許文献2)。しかし、上記化合物は、その合成が煩雑となる上、高価格であるなどの不利があった。
また、エポキシ樹脂組成物は、従来、その硬化促進剤としてトリフェニルホスフィンが汎用的に用いられてきたところ、貯蔵安定性に問題があった。上記化合物によって有機変性した層状粘土鉱物であれば、問題となっていた貯蔵安定性が向上するものの、市場の要求する性能を満足するものではなかった。
For the purpose of the improvement, that is, for the purpose of lowering the curing temperature, the present inventors studied the structure of the organic phosphonium ion and adopted 10-carboxydecyltris (4-phenoxyphenyl) phosphonium bromide to solve the problem. It came to solve (patent document 2). However, the above compounds have disadvantages such as complicated synthesis and high price.
In addition, epoxy resin compositions have conventionally had a problem in storage stability when triphenylphosphine has been widely used as a curing accelerator. If the layered clay mineral is organically modified with the above compound, the storage stability which has been a problem is improved, but the performance required by the market is not satisfied.

特開2005―048047号公報Japanese Patent Laid-Open No. 2005-048047 特開2010―83994号公報JP 2010-83994 A

尾瀬昌久,村井曜,成沢浩,高野希,回路実装学会誌,12,217(1997)Masahisa Oze, You Murai, Hiroshi Narusawa, Nozomi Takano, Journal of Circuit Packaging Society, 12, 217 (1997) 吉澤正和,エレクトロニクス実装学会誌,8,99(2005)Yoshizawa Masakazu, Journal of Japan Institute of Electronics Packaging, 8, 99 (2005) T. P.Mohan, M. R. Kumar and R. Velmurugan, J. Mater. Sci., 41, 5915 (2006)T. P. Mohan, M. R. Kumar and R. Velmuruguan, J. Mater. Sci., 41, 5915 (2006)

本発明は、耐熱性、低熱膨張性において優れたエポキシ樹脂組成物を提供すること、および当該エポキシ樹脂組成物の製造を可能とする有機化層状粘土鉱物を主成分とするエポキシ樹脂の硬化促進剤を提供することを目的とする。   The present invention provides an epoxy resin composition excellent in heat resistance and low thermal expansibility, and an epoxy resin curing accelerator mainly composed of an organized layered clay mineral capable of producing the epoxy resin composition. The purpose is to provide.

本発明者らは、鋭意検討をした結果、下記式(1)で表される有機ホスホニウムイオンで有機化された層状粘土鉱物は、有機ホスホニウム部位が持つ硬化促進機能を保持することによって、エポキシ樹脂中に有機化層状粘土鉱物を均一かつ微分散させることが可能となり、耐熱性、低熱膨張性に優れたエポキシ樹脂複合材料が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that a layered clay mineral organized with an organic phosphonium ion represented by the following formula (1) retains the curing accelerating function of the organic phosphonium moiety, thereby providing an epoxy resin. It became possible to uniformly and finely disperse the organically modified layered clay mineral therein, and it was found that an epoxy resin composite material excellent in heat resistance and low thermal expansion property was obtained, and the present invention was completed.

Figure 0005415380

(上式(1)中のR、RはH、CH、OH、またはOCH基であり、nは1〜22の整数を表す。)
Figure 0005415380

(R 1 and R 2 in the above formula (1) are H, CH 3 , OH, or OCH 3 groups, and n represents an integer of 1 to 22.)

すなわち、本発明は、上記式(1)で表される有機ホスホニウムイオンで層間および/または表面の無機陽イオンがイオン交換されてなる有機化層状粘土鉱物を少なくとも含むエポキシ樹脂用硬化促進剤である。
本発明は、エポキシ樹脂と、上記エポキシ樹脂用硬化促進剤とを少なくとも含有するエポキシ樹脂組成物である。
本発明は、上記エポキシ樹脂組成物を硬化することにより得られるエポキシ樹脂複合材料である。
That is, the present invention is a curing accelerator for epoxy resins containing at least an organically layered clay mineral obtained by ion-exchange of inorganic cations between layers and / or surfaces with organic phosphonium ions represented by the above formula (1). .
The present invention is an epoxy resin composition containing at least an epoxy resin and the curing accelerator for epoxy resin.
The present invention is an epoxy resin composite material obtained by curing the above epoxy resin composition.

本発明の硬化促進機能を有した有機化層状粘土鉱物の硬化促進能力を利用することでエポキシ樹脂組成物中での粘土鉱物の分散性が著しく向上し、エポキシ樹脂硬化物の耐熱性、低熱膨張性が改質される。そのため、耐熱性や低熱膨張性の特性が要求されるプリント配線板などの積層板の用途において有効である。また、上記の通り有機化層状粘土鉱物は、硬化促進機能を保持しており、エポキシ樹脂組成物中において比較的少量の添加量でその効果を発揮し、新たに別の硬化促進剤を添加する必要がない。   Dispersibility of the clay mineral in the epoxy resin composition is remarkably improved by utilizing the curing acceleration ability of the organically modified layered clay mineral having the curing acceleration function of the present invention, and the heat resistance and low thermal expansion of the cured epoxy resin Property is improved. Therefore, it is effective in the use of laminated boards such as printed wiring boards that require heat resistance and low thermal expansion characteristics. In addition, as described above, the organically modified layered clay mineral retains a curing accelerating function, exhibits its effect with a relatively small amount of addition in the epoxy resin composition, and newly adds another curing accelerator. There is no need.

以下、本発明の実施の形態について説明する。
本発明においてイオン交換対象となる層状粘土鉱物としては、SiO四面体が二次元状に配列したシート(シリケート層)から構成されており、このシートが互層した構造を有している結晶性のものを用いることができる。通常の層状粘土鉱物では、シリケート層間および/または表面にアルカリ金属イオン、アルカリ土類金属イオン等の無機物陽イオンが存在し、これらのイオンは有機ホスホニウムイオンや有機アンモニウムイオンとイオン交換可能である。本発明においては、イオン交換により、層状粘土鉱物と式(1)で表される有機ホスホニウムイオンが複合体をなしている。
Embodiments of the present invention will be described below.
The layered clay mineral to be subjected to ion exchange in the present invention is composed of a sheet (silicate layer) in which SiO 4 tetrahedrons are arranged two-dimensionally. Things can be used. In ordinary layered clay minerals, inorganic cations such as alkali metal ions and alkaline earth metal ions are present between and / or on the surface of the silicate, and these ions can be exchanged with organic phosphonium ions or organic ammonium ions. In the present invention, the layered clay mineral and the organic phosphonium ion represented by the formula (1) form a complex by ion exchange.

イオン交換対象となる層状粘土鉱物としては、特に限定されるものではないが、モンモリロナイト、サポナイト、ヘクトライト、ソーコナイト、バイデライト、ステブンサイト、ノントロナイトなどのスメクタイト系層状粘土鉱物、膨潤性マイカ、バーミキュライトなどが挙げられる。これらの層状粘土鉱物は、天然物または合成物のいずれであってもよく、単独で用いられてもよいし、2種類以上が併用されてもよい。上記層状粘土鉱物は膨潤性層状粘土鉱物であることが好ましい。膨潤性を有しない層状粘土鉱物の場合、イオン交換による有機化が困難である一方、膨潤性層状粘土鉱物であれば、膨潤により層間が広がるため、有機化が容易となるからである。   The layered clay mineral to be subjected to ion exchange is not particularly limited. Examples include vermiculite. These layered clay minerals may be either natural products or synthetic products, and may be used alone or in combination of two or more. The layered clay mineral is preferably a swellable layered clay mineral. This is because in the case of a layered clay mineral having no swellability, it is difficult to make it organic by ion exchange. On the other hand, in the case of a swellable layered clay mineral, the layers are expanded by swelling, so that the organicization becomes easy.

本発明のエポキシ樹脂用硬化促進剤に使用される有機化層状粘土鉱物は、下記式(1)で表される有機ホスホニウムイオンが層状粘土鉱物の層間および/または表面にイオン結合することにより、有機化された層状粘土鉱物である。ここで、式中のR、RはH、CH、OH、またはOCH基であり、nは1〜22の整数を表す。かかる有機ホスホニウムイオンは、エポキシ樹脂と親和性が高く、かつエポキシ樹脂の硬化反応を促進させる効果を有するものである。そのため、有機化された層状粘土鉱物は、層間および/または表面にイオン結合している式(1)で表される有機ホスホニウム部位が有する硬化促進機能を保持しており、エポキシ樹脂組成物中において比較的少量の添加量で硬化促進機能を発揮し、新たに硬化促進剤を添加する必要がないことを特徴としている。 The organically modified layered clay mineral used in the curing accelerator for epoxy resins of the present invention is organically bonded by the organic phosphonium ions represented by the following formula (1) being ionically bonded to the interlayer and / or surface of the layered clay mineral. It is a layered clay mineral. Wherein, R 1, R 2 in the formula is H, CH 3, OH, or OCH 3 group, n is an integer of 1 to 22. Such an organic phosphonium ion has a high affinity with the epoxy resin and has an effect of promoting the curing reaction of the epoxy resin. Therefore, the organized layered clay mineral retains the curing accelerating function of the organic phosphonium moiety represented by the formula (1) that is ionically bonded to the interlayer and / or the surface. In the epoxy resin composition, It is characterized in that it exhibits a curing accelerating function with a relatively small addition amount, and it is not necessary to newly add a curing accelerator.

Figure 0005415380
Figure 0005415380

本発明において有機化は、有機ホスホニウムイオンを粘土鉱物の層間および/または表面に物理的、化学的方法により吸着および/または結合させることを意味する。一方で、有機化層状粘土鉱物は、有機ホスホニウムイオンによって有機化されていれば、ホスホニウム変性層状粘土鉱物ともいう。   Organization in the present invention means that organic phosphonium ions are adsorbed and / or bonded to the interlayer and / or surface of the clay mineral by a physical or chemical method. On the other hand, the organically modified layered clay mineral is also referred to as a phosphonium-modified layered clay mineral if it is organicized by organic phosphonium ions.

上記式(1)で表される有機ホスホニウムイオンにおいては、有機修飾基が結合するリン原子が正電荷を有する。そのため、有機ホスホニウムイオンが、例えばそのリン原子の正電荷により、層状粘土鉱物の層間に入り込み、層状粘土鉱物の層間距離を拡げることができる。   In the organic phosphonium ion represented by the above formula (1), the phosphorus atom to which the organic modifying group is bonded has a positive charge. For this reason, the organic phosphonium ion can enter the layer of the layered clay mineral, for example, due to the positive charge of the phosphorus atom, and the interlayer distance of the layered clay mineral can be increased.

有機化により層間距離が拡がっている上記有機化層状粘土鉱物を少なくとも含むエポキシ樹脂用硬化促進剤を、エポキシ樹脂と酸無水物系硬化剤中に混合し、分散させることによって、上記有機ホスホニウム部位が持つ硬化促進機能により、有機化層状粘土鉱物の層間中、または、その近傍でエポキシ樹脂と酸無水物が硬化・架橋反応を起こす。さらに有機化層状粘土鉱物の有機ホスホニウム部位であるカルボキシアルキル基が層間拡張の役割を果たすため、その層間にエポキシ樹脂と酸無水物系硬化剤が浸入しやすく、かつ、硬化・架橋反応が起こりやすくなる。硬化・架橋反応が進行するにつれ、有機化層状粘土鉱物の層間の結合が切断され、有機化層状粘土鉱物を構成する層をエポキシ樹脂組成物中に分散させることができる。   By mixing and dispersing an epoxy resin curing accelerator containing at least the above-mentioned organically modified layered clay mineral whose interlaminar distance has been expanded by organicization in an epoxy resin and an acid anhydride-based curing agent, the organic phosphonium moiety is Due to the hardening-accelerating function, the epoxy resin and the acid anhydride undergo a hardening / crosslinking reaction in or near the interlayer of the organically modified layered clay mineral. Furthermore, since the carboxyalkyl group, which is the organic phosphonium moiety of the organically layered clay mineral, plays a role of interlayer expansion, epoxy resin and acid anhydride curing agents can easily enter between the layers, and curing and crosslinking reactions can easily occur. Become. As the curing / crosslinking reaction proceeds, the bonding between the layers of the organized layered clay mineral is broken, and the layers constituting the organized layered clay mineral can be dispersed in the epoxy resin composition.

ここで、本発明における上記一般式(1)で表される有機修飾剤において、R、RはH、CH、OH、またはOCH基である。これらの官能基を有するものであれば、比較的入手し易いために製造コストがかからず、また、有機修飾剤の製造も容易となるからである。また、これらの官能基は、立体障害といった観点からは、層状粘土鉱物の層間への侵入を阻害するものではないため、層状粘土鉱物を容易に有機修飾することが可能となる。 Here, in the organic modifier represented by the general formula (1) in the present invention, R 1 and R 2 are H, CH 3 , OH, or OCH 3 group. This is because those having these functional groups are relatively easy to obtain, so that the production cost is not required, and the production of the organic modifier becomes easy. In addition, these functional groups do not hinder the penetration of the layered clay mineral between layers from the viewpoint of steric hindrance, and therefore the layered clay mineral can be easily organically modified.

次に、上記一般式(1)中のnは1〜22の整数である。nが22を超えてしまうと、炭素鎖が長くなりすぎて層状粘土鉱物の層間へ侵入することが困難となり、イオン交換効率が低下して層状粘土鉱物が有機化されなくなってしまう。仮に層間でイオン交換されたとしても、炭素鎖が長すぎるために層間の結合が切断され易くなってしまい、熱膨張性の効果が低下してしまう。層状粘土鉱物の層間への侵入の容易性に伴うイオン交換効率や、有機化された層状粘土鉱物の層間の広がりと層間の結合力とのバランス等を考慮すれば、nは5〜10であることがより好ましい。   Next, n in the general formula (1) is an integer of 1 to 22. When n exceeds 22, the carbon chain becomes too long and it becomes difficult to penetrate between the layers of the layered clay mineral, the ion exchange efficiency is lowered, and the layered clay mineral is not organized. Even if ion exchange is performed between the layers, the carbon chain is too long, so the bonds between the layers are easily broken, and the thermal expansion effect is reduced. In consideration of the ion exchange efficiency associated with the ease of penetration of the layered clay mineral between layers, the balance between the spread of the layered organic clay clay and the bonding strength between layers, n is 5 to 10 It is more preferable.

上記問題点やより好適な範囲を考慮すると、本発明に用いる有機ホスホニウムイオンとしては下記式(2)の化合物であることがより好ましい。   In view of the above problems and a more preferable range, the organic phosphonium ion used in the present invention is more preferably a compound of the following formula (2).

Figure 0005415380

(上式(2)中のRはH、CH、OH、またはOCH基であり、mは5〜10の整数を表す。)
Figure 0005415380

(R in the above formula (2) is H, CH 3 , OH, or OCH 3 group, and m represents an integer of 5 to 10)

本発明のエポキシ樹脂用硬化促進剤に含まれる有機化層状粘土鉱物の具体的な形状は、エポキシ樹脂中への分散性を考慮して、粉末状または微粒子状のものが好ましい。その平均粒子径は、通常、0.1〜200μm程度であればエポキシ樹脂中への分散性に問題なく、0.1〜50μm程度であれば、エポキシ樹脂中へ速やかに分散されるため、より好ましい。平均粒子径が200μmを超えると、凝集により成形時の充填性が損なわれる場合があり、0.1μm未満だと、ハンドリングしにくくなると共に粒子同士の凝集力(ファンデルワールス力)が強くなり、再凝集してしまう場合があるからである。ここで、平均粒子径は、2種以上の粒子径をもつ粒子群の代表径である。平均粒子径の求め方は数多くあるが、ここで言う平均粒子径は光透過式遠心沈降法を用いて算出した値をいう。層状粘土鉱物の平均粒子径はストークスの法則に従い、光透過式遠心沈降法にて(株)セイシン社製ミクロン・フォト・サイザーSKA−5000IIを用い、水やトルエンなどの分散溶媒中での粒度分布を測定することで決定できる。   The specific shape of the organized layered clay mineral contained in the epoxy resin curing accelerator of the present invention is preferably in the form of powder or fine particles in consideration of dispersibility in the epoxy resin. If the average particle size is usually about 0.1 to 200 μm, there is no problem in dispersibility in the epoxy resin, and if it is about 0.1 to 50 μm, it is quickly dispersed in the epoxy resin. preferable. When the average particle diameter exceeds 200 μm, the filling property at the time of molding may be impaired due to aggregation, and when it is less than 0.1 μm, it becomes difficult to handle and the cohesive force between particles (van der Waals force) becomes strong, This is because reaggregation may occur. Here, the average particle diameter is a representative diameter of a particle group having two or more kinds of particle diameters. There are many ways to obtain the average particle diameter, but the average particle diameter here refers to a value calculated using a light transmission centrifugal sedimentation method. The average particle size of the layered clay mineral is in accordance with Stokes' law, using a light transmission centrifugal sedimentation method with Seicin Co., Ltd. Micron Photo Sizer SKA-5000II, and a particle size distribution in a dispersion solvent such as water or toluene. Can be determined by measuring.

有機化層状粘土鉱物は、例えば、次の方法により調製される。まず、層状粘土鉱物の水懸濁液を用意する。水懸濁物は、水100質量部に対し、層状粘土鉱物を1〜20質量部含有していることが好ましい。また、層状粘土鉱物は、水以外に、メタノール、エタノール、テトラヒドロフラン、またはこれらの混合物に懸濁されていてもよい。上記層状粘土鉱物の懸濁液を40〜60℃に加熱する。次いで有機ホスホニウムイオン源となる有機修飾剤をメタノールに十分に溶解させた溶液を添加し、目視で塊状物がなくなるまで十分に分散する。有機修飾剤は、メタノール100質量部に対し1〜20質量部溶解されていることが好ましい。有機修飾剤を溶解するための溶媒としては、メタノールの代わりに、エタノール、テトラヒドロフラン、またはこれらの混合物を用いてもよい。分散には、汎用攪拌機(ヘイドン・スリーワンモータ、新東科学社製)、ハイパワー汎用攪拌機(ヘイドン・スリーワンモータ、新東科学社製)等を用いることができる。得られた沈殿物をろ過し、メタノールおよび水で洗浄する。その後、加熱乾燥、凍結乾燥、スプレードライ(噴霧乾燥)などにより沈殿物を乾燥させれば、有機化層状粘土鉱物を得ることができる。上記のようにして得られた有機化層状粘土鉱物は、層間が有機化され、エポキシ樹脂と反応性の高いカルボキシル基を有するため、硬化促進機能を有する。
なお、有機修飾剤としては、例えば式(1)のホスホニウムイオンの場合は、下記式(3)で表される化合物が用いられる。同様に、式(2)のホスホニウムイオンの場合は、下記式(4)で表される化合物が用いられる。
The organized layered clay mineral is prepared, for example, by the following method. First, an aqueous suspension of layered clay mineral is prepared. It is preferable that the water suspension contains 1 to 20 parts by mass of a layered clay mineral with respect to 100 parts by mass of water. Further, the layered clay mineral may be suspended in methanol, ethanol, tetrahydrofuran, or a mixture thereof in addition to water. The layered clay mineral suspension is heated to 40-60 ° C. Next, a solution in which an organic modifier as an organic phosphonium ion source is sufficiently dissolved in methanol is added, and the mixture is sufficiently dispersed until there is no lump by visual observation. It is preferable that 1-20 mass parts of organic modifiers are melt | dissolved with respect to 100 mass parts of methanol. As a solvent for dissolving the organic modifier, ethanol, tetrahydrofuran, or a mixture thereof may be used instead of methanol. For dispersion, a general-purpose stirrer (Haydon Three-One Motor, manufactured by Shinto Kagaku Co., Ltd.), a high-power general-purpose mixer (Haydon Three-One Motor, manufactured by Shinto Kagaku Co., Ltd.), or the like can be used. The resulting precipitate is filtered and washed with methanol and water. Thereafter, the organic layered clay mineral can be obtained by drying the precipitate by heat drying, freeze drying, spray drying (spray drying) or the like. The organically modified layered clay mineral obtained as described above has a function of accelerating the curing because the layers are organicized and have a carboxyl group highly reactive with the epoxy resin.
As the organic modifier, for example, in the case of a phosphonium ion of the formula (1), a compound represented by the following formula (3) is used. Similarly, in the case of the phosphonium ion of the formula (2), a compound represented by the following formula (4) is used.

Figure 0005415380

(上式(3)中のR、RはH、CH、OH、またはOCH基であり、nは1〜22の整数を表し、Xは、ハロゲンを示す。)
Figure 0005415380

(R 1 and R 2 in the above formula (3) are H, CH 3 , OH, or OCH 3 groups, n represents an integer of 1 to 22, and X represents halogen.)

Figure 0005415380
(上式(4)中のRはH、CH、OH、またはOCH基であり、mは5〜10の整数を表す。)
Figure 0005415380
(R in the above formula (4) is H, CH 3 , OH, or OCH 3 group, and m represents an integer of 5 to 10)

有機化層状粘土鉱物を製造するにあたり、出発物となる層状粘土鉱物は、分散に用いる溶媒、例えば水やメタノールとの接触面積が大きい方がより好ましい。溶媒との接触面積が大きい層状粘土鉱物を用いることにより、層状粘土鉱物の層間を大きく膨潤させることができるからである。具体的には、層状粘土鉱物の陽イオン交換容量が50〜200ミリ当量/100gとすることが好ましい。ここで、陽イオン交換容量は、層状粘土鉱物が吸着できる交換性陽イオンの最大量である。層状粘土鉱物の陽イオン交換容量が50ミリ当量/100g未満の場合には有機ホスホニウムイオンの交換が十分に行われず、層状粘土鉱物の層間を膨潤させることが困難な場合がある。一方、層状粘土鉱物の陽イオン交換容量が200ミリ当量/100gを超える場合には、層状粘土鉱物と有機ホスホニウムイオンの結合力が強固となり、層状粘土鉱物の層間を膨潤させることが困難な場合がある。   In producing the organically modified layered clay mineral, it is more preferable that the layered clay mineral as a starting material has a larger contact area with a solvent used for dispersion, for example, water or methanol. This is because by using a layered clay mineral having a large contact area with the solvent, the layers of the layered clay mineral can be greatly swollen. Specifically, the cation exchange capacity of the layered clay mineral is preferably 50 to 200 meq / 100 g. Here, the cation exchange capacity is the maximum amount of exchangeable cations that can be adsorbed by the layered clay mineral. When the cation exchange capacity of the layered clay mineral is less than 50 meq / 100 g, the organic phosphonium ions are not sufficiently exchanged, and it may be difficult to swell the layers of the layered clay mineral. On the other hand, when the cation exchange capacity of the layered clay mineral exceeds 200 meq / 100 g, the bonding force between the layered clay mineral and the organic phosphonium ion becomes strong, and it may be difficult to swell the layers of the layered clay mineral. is there.

本発明のエポキシ樹脂用硬化促進剤は、必須となる上記有機化層状粘土鉱物のみからなるものでもよいが、これに加えてさらに、上記有機化層状粘土鉱物の効果を阻害しないことを前提として、希釈剤や添加剤を配合することができる。これら配合剤、添加剤の配合量はその用途に適した一般的な量とすることができる。   The curing accelerator for epoxy resin of the present invention may be composed only of the above-mentioned organically modified layered clay mineral, but in addition to this, on the premise that it does not inhibit the effect of the above organically modified layered clay mineral, Diluents and additives can be blended. The compounding amount of these compounding agents and additives can be set to a general amount suitable for the application.

本発明に係るエポキシ樹脂組成物は、エポキシ樹脂と、上記エポキシ樹脂用硬化促進剤とを少なくとも含有するものである。かかる硬化促進剤が含有する有機化層状粘土鉱物により、エポキシ樹脂硬化物の耐熱性、低熱膨張性が改質されることとなる。   The epoxy resin composition which concerns on this invention contains an epoxy resin and the said hardening accelerator for epoxy resins at least. The organically modified lamellar clay mineral contained in the curing accelerator modifies the heat resistance and low thermal expansion property of the cured epoxy resin.

本発明のエポキシ樹脂組成物に使用されるエポキシ樹脂としては、エポキシ基を1分子中に2個以上有し、酸無水物などの硬化剤により硬化してエポキシ樹脂硬化物を形成し得るものを使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、スチルベン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、単独で用いられてもよいし、2種類以上が併用されてもよい。2種類以上のエポキシ樹脂を用いる場合、例えば、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂を、質量比50:50で混合したものを用いることができる。   The epoxy resin used in the epoxy resin composition of the present invention has two or more epoxy groups in one molecule and can be cured with a curing agent such as acid anhydride to form a cured epoxy resin. Can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, stilbene Type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, dihydroxybenzene type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol type epoxy resin, alicyclic epoxy resin and the like. These epoxy resins may be used alone or in combination of two or more. When using 2 or more types of epoxy resins, what mixed bisphenol A type epoxy resin and bisphenol F type epoxy resin by mass ratio 50:50 can be used, for example.

本発明のエポキシ樹脂組成物では、上記エポキシ樹脂100質量部に対して、上記有機化層状粘土鉱物が0.5〜60質量部となるように上記エポキシ樹脂用硬化促進剤を配合することが望ましい。上記有機化層状粘土鉱物が0.5質量部よりも少ないと、エポキシ樹脂硬化物の耐熱性、低熱膨張性が改質されず物性向上の効果が低いおそれがあり、60質量部よりも多いと流動性が低下し、加工性が悪くなるおそれがある。
なお、上記有機化層状粘土鉱物の含有量が多くなるほど、有機化層状粘土鉱物が凝集してしまい、エポキシ樹脂硬化物が優れた物性を発揮することができなくなる傾向がみとめられる。このようなエポキシ樹脂の改質や流動性をより厳密に考慮すれば、上記有機化層状粘土鉱物が3〜30質量部となるように上記エポキシ樹脂用硬化促進剤を配合することがより望ましい。
In the epoxy resin composition of the present invention, it is desirable to blend the epoxy resin curing accelerator so that the organically layered clay mineral is 0.5 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin. . If the amount of the organically modified layered clay mineral is less than 0.5 parts by mass, the heat resistance and low thermal expansion property of the cured epoxy resin may not be modified, and the effect of improving physical properties may be low. There is a possibility that fluidity is lowered and workability is deteriorated.
As the content of the organically modified layered clay mineral increases, the organicated layered clay mineral tends to aggregate, and the cured epoxy resin cannot exhibit excellent physical properties. In consideration of such modification and fluidity of the epoxy resin more strictly, it is more desirable to blend the epoxy resin curing accelerator so that the organically modified layered clay mineral is 3 to 30 parts by mass.

エポキシ樹脂用硬化促進剤に含まれる有機化層状粘土鉱物は、エポキシ樹脂中に均一に分散されているのが好ましく、エポキシ樹脂中に微細な状態で分散されているのがより好ましい。有機化層状粘土鉱物がエポキシ樹脂中に均一に分散され、またはエポキシ樹脂中で微細な状態で分散されていることによって、エポキシ樹脂と有機化層状粘土鉱物との界面面積を大きくすることができる。エポキシ樹脂と有機化層状粘土鉱物との界面面積を大きくすることにより、層状粘土鉱物の層間またはその近傍で硬化・架橋反応が開始しやすくなり、さらに層状粘土鉱物の分散性が向上するという有利な効果がある。   The organized layered clay mineral contained in the epoxy resin curing accelerator is preferably uniformly dispersed in the epoxy resin, and more preferably finely dispersed in the epoxy resin. When the organized layered clay mineral is uniformly dispersed in the epoxy resin or finely dispersed in the epoxy resin, the interface area between the epoxy resin and the organized layered clay mineral can be increased. By increasing the interfacial area between the epoxy resin and the organic layered clay mineral, it becomes easier to initiate a curing / crosslinking reaction between or in the vicinity of the layered clay mineral, and further improves the dispersibility of the layered clay mineral. effective.

さらに、エポキシ樹脂中に有機化層状粘土鉱物を均一かつ微分散させることにより、架橋密度が上昇するため、エポキシ樹脂硬化物の耐熱性が向上し、エポキシ樹脂硬化物の熱膨張率がより一層低くなる。また、燃焼時に層状粘土鉱物による燃結体が形成されるので、燃焼残渣の形状が保持され、燃焼後も形状崩壊が起こり難く、延焼を防止することができ、優れた難燃性が発現される。   Furthermore, by uniformly and finely dispersing the organized layered clay mineral in the epoxy resin, the crosslink density is increased, so the heat resistance of the cured epoxy resin is improved, and the thermal expansion coefficient of the cured epoxy resin is even lower. Become. In addition, a fired body formed of layered clay minerals is formed during combustion, so that the shape of the combustion residue is maintained, the shape does not easily collapse even after combustion, and it is possible to prevent the spread of fire and to exhibit excellent flame retardancy. The

本発明に係るエポキシ樹脂組成物の調製方法は特に限定されず、本発明に係るエポキシ樹脂用硬化促進剤を、エポキシ樹脂に混合し、撹拌すればよい。混合・撹拌には、一般的に用いられる混合攪拌機やホモジナイザー、超音波ホモジナイザー、2本ロール、3本ロール、ニーダー、バンバリーミキサー、インターミックス、1軸押出機、2軸押出機の混練機等を用いてもよい。混合・撹拌は、目視で塊状物がなくなるまで行う。その後、混合物を、超音波ホモジナイザー、ホモジナイザー、2本ロール、2軸押出機などにより分散させる。   The method for preparing the epoxy resin composition according to the present invention is not particularly limited, and the epoxy resin curing accelerator according to the present invention may be mixed with the epoxy resin and stirred. For mixing / stirring, generally used mixing stirrers, homogenizers, ultrasonic homogenizers, 2-roll, 3-roll, kneader, Banbury mixer, intermix, single-screw extruder, twin-screw extruder kneader, etc. It may be used. Mixing and stirring are carried out until there are no clumps visually. Thereafter, the mixture is dispersed by an ultrasonic homogenizer, a homogenizer, a two-roll extruder, a twin screw extruder or the like.

なお、本発明のエポキシ樹脂用硬化促進剤とは別に、他の硬化促進剤を用いると、硬化促進機能を有する有機化層状粘土鉱物との硬化・架橋反応が競合してしまい、有機化層状粘土鉱物の層を十分に分散できないおそれがあるため、使用しないことが好ましい。
なお、エポキシ樹脂の硬化・架橋反応の速度は、本発明のエポキシ樹脂用硬化促進剤の添加量を調整することで制御可能であるため、別途硬化促進剤を添加する必要はない。
In addition to the curing accelerator for epoxy resin of the present invention, when another curing accelerator is used, the curing / crosslinking reaction with the organized layered clay mineral having a curing promoting function competes, and the organized layered clay is used. It is preferable not to use the mineral layer because it may not be sufficiently dispersed.
The rate of curing / crosslinking reaction of the epoxy resin can be controlled by adjusting the addition amount of the curing accelerator for epoxy resin of the present invention, so that it is not necessary to add a curing accelerator separately.

また、本発明にかかるエポキシ樹脂組成物は、任意にエポキシ樹脂用硬化剤を含有することができる。本発明のエポキシ樹脂組成物を硬化させるエポキシ樹脂用硬化剤としては、酸無水物系硬化剤を用いることができる。例えば、ヘキサヒドロフタル酸無水物、3−メチルヘキサヒドロフタル酸無水物、4−メチルヘキサヒドロフタル酸無水物、フタル酸無水物、1−メチルナジック酸無水物、5−メチルナジック酸無水物、ナジック酸無水物、3−メチルテトラヒドロフタル酸無水物、4−メチルテトラヒドロフタル酸無水物、テトラヒドロフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ドデセニルコハク酸無水物、無水マレイン酸等が挙げられるが、これらには限定されない。さらに、これらのエポキシ樹脂用硬化剤は、単独で用いられてもよいし、2種類以上が併用されてもよい。
エポキシ樹脂用硬化剤としては、他にフェノール系硬化剤やアミン系硬化剤などがあるが、特に酸無水物系硬化剤は、ポットライフが長く、成形性に優れるため、本発明のエポキシ樹脂組成物の硬化剤として望ましい。
Moreover, the epoxy resin composition concerning this invention can contain the hardening | curing agent for epoxy resins arbitrarily. As the curing agent for epoxy resin for curing the epoxy resin composition of the present invention, an acid anhydride curing agent can be used. For example, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, phthalic anhydride, 1-methylnadic acid anhydride, 5-methylnadic acid anhydride, Nadic acid anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, dodecenyl succinic anhydride, maleic anhydride, etc. However, it is not limited to these. Furthermore, these hardening | curing agents for epoxy resins may be used independently, and 2 or more types may be used together.
Other epoxy resin curing agents include phenolic curing agents and amine curing agents, but the acid anhydride curing agent has a long pot life and excellent moldability, and therefore the epoxy resin composition of the present invention. Desirable as a curing agent for products.

酸無水物系硬化剤のエポキシ樹脂組成物における含有量は、エポキシ樹脂中のエポキシ基に対する酸無水物系硬化剤の酸無水物基の当量比が0.5〜3.0程度となる量が好ましく、0.5〜1.2となる量がより好ましい。上記範囲であれば、硬化反応が十分に進行し、耐熱性・低熱膨張性に優れたエポキシ樹脂複合材料を得ることができる。   The content of the acid anhydride curing agent in the epoxy resin composition is such that the equivalent ratio of the acid anhydride group of the acid anhydride curing agent to the epoxy group in the epoxy resin is about 0.5 to 3.0. An amount of 0.5 to 1.2 is more preferable. If it is the said range, hardening reaction will fully advance and the epoxy resin composite material excellent in heat resistance and low thermal expansion property can be obtained.

本発明のエポキシ樹脂組成物は使用に際し、本発明の硬化・架橋反応を損なわない範囲であれば、上記必須成分に加えてさらに、充填剤可塑剤、着色剤、酸化防止剤、希釈剤、接着付与剤、帯電防止剤、難燃剤等の汎用エポキシ樹脂に一般的に配合される各種配合剤および添加剤を配合することができ、これら配合剤、添加剤の配合量もその用途に適した一般的な量とすることができる。   In addition to the above essential components, the epoxy resin composition of the present invention is within the range that does not impair the curing / crosslinking reaction of the present invention. In addition, the plasticizer, colorant, antioxidant, diluent, adhesive Various compounding agents and additives generally blended into general-purpose epoxy resins such as imparting agents, antistatic agents, flame retardants, etc. can be blended, and the blending amounts of these compounding agents and additives are also suitable for their use. Amount.

本発明におけるエポキシ樹脂複合材料は、上記にて説明したエポキシ樹脂組成物を硬化することにより得られるものである。硬化の方法は特に限定されないが、例えば硬化剤として酸無水物系硬化剤を添加する場合、硬化剤の配合量は上記した範囲とすることが好ましい。そして硬化剤を配合したエポキシ樹脂組成物を、予め50〜120℃に加熱された型に入れ、真空オーブンを用いて脱泡する。その後、50〜120℃に加熱し、2〜24時間、一次硬化を行い、次いで120〜180℃で2〜24時間、二次硬化を行う。   The epoxy resin composite material in the present invention is obtained by curing the epoxy resin composition described above. Although the method of hardening is not specifically limited, For example, when adding an acid anhydride type hardening | curing agent as a hardening | curing agent, it is preferable that the compounding quantity of a hardening | curing agent shall be the above-mentioned range. And the epoxy resin composition which mix | blended the hardening | curing agent is put into the type | mold previously heated at 50-120 degreeC, and it defoams using a vacuum oven. Then, it heats to 50-120 degreeC, performs primary hardening for 2 to 24 hours, and then performs secondary hardening for 2 to 24 hours at 120-180 degreeC.

このようにして反応を進行させると、層間距離が拡がっている有機化層状粘土鉱物が、エポキシ樹脂と酸無水物系硬化剤中に分散されているため、有機化層状粘土鉱物の層間でエポキシ樹脂と酸無水物が硬化・架橋反応を起こす。さらに有機化層状粘土鉱物の有機変性部位である末端カルボキシル基(COOH基)とエポキシ樹脂が反応することにより架橋密度が増大し、有機化層状粘土鉱物の層間の結合が切断され、有機化層状粘土鉱物を構成する層をエポキシ樹脂中に分散させることができる。   When the reaction proceeds in this manner, the organic layered clay mineral with the increased interlayer distance is dispersed in the epoxy resin and the acid anhydride curing agent. And acid anhydrides cause curing and crosslinking reactions. Furthermore, the terminal carboxyl group (COOH group), which is the organic modification site of the organic layered clay mineral, reacts with the epoxy resin to increase the crosslink density, and the bond between the layers of the organic layered clay mineral is broken. The layer constituting the mineral can be dispersed in the epoxy resin.

本実施形態のエポキシ樹脂複合材料によれば、有機化層状粘土鉱物が均一かつ微分散されていることにより熱膨張係数が低下するという効果を有する。さらに、エポキシ樹脂複合材料は、燃焼時に層状粘土鉱物による燃結体が形成されるため優れた難燃性を有すると共に、耐熱性にも優れているという効果も奏する。   According to the epoxy resin composite material of the present embodiment, the organic layered clay mineral is uniformly and finely dispersed, so that the thermal expansion coefficient is reduced. Furthermore, since the epoxy resin composite material has excellent flame retardancy due to the formation of a sintered body of layered clay mineral during combustion, it also has the effect of being excellent in heat resistance.

以下に本発明を実施例、比較例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

〈製造例1〉(有機化層状粘土鉱物Aの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)270gを60℃まで加熱した後、メタノール60mlにカルボキシデシルトリフェニルホスホニウムブロマイド3.2g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Aを作製した。
<Production Example 1> (Preparation of Organized Layered Clay Mineral A)
After 270 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., 3.2 g of carboxydecyltriphenylphosphonium bromide (cation exchange of montmorillonite) was added to 60 ml of methanol. A solution in which 1.2 times the volume) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, manufactured by Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and lyophilized to produce an organically layered clay mineral A.

〈製造例2〉(有機化層状粘土鉱物Bの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)270gを60℃まで加熱した後、メタノール60mlにカルボキシデシルトリス(4−メトキシフェニル)ホスホニウムブロマイド3.7g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Bを作製した。
<Production Example 2> (Preparation of Organized Layered Clay Mineral B)
After 270 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., 3.7 g of carboxydecyltris (4-methoxyphenyl) phosphonium bromide was added to 60 ml of methanol. A solution in which (1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and lyophilized to produce an organically layered clay mineral B.

〈製造例3〉(有機化層状粘土鉱物Cの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)270gを60℃まで加熱した後、メタノール60mlにカルボキシデシルトリス(4−トリル)ホスホニウムブロマイド3.4g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Cを作製した。
<Production Example 3> (Preparation of Organized Layered Clay Mineral C)
After 270 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., 3.4 g of carboxydecyltris (4-tolyl) phosphonium bromide was added to 60 ml of methanol ( A solution in which 1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and lyophilized to produce an organically layered clay mineral C.

〈製造例4〉(有機化層状粘土鉱物Dの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)270gを60℃まで加熱した後、メタノール60mlにカルボキシデシルトリス(3−トリル)ホスホニウムブロマイド3.4g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Dを作製した。
<Production Example 4> (Preparation of Organized Layered Clay Mineral D)
After 270 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., 3.4 g of carboxydecyltris (3-tolyl) phosphonium bromide was added to 60 ml of methanol ( A solution in which 1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and lyophilized to produce an organically layered clay mineral D.

〈製造例5〉(有機化層状粘土鉱物Eの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)270gを60℃まで加熱した後、メタノール60mlにカルボキシデシルトリス(3,5−キシリル)ホスホニウムブロマイド3.7g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Eを作製した。
<Production Example 5> (Preparation of Organized Layered Clay Mineral E)
After 270 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., carboxydecyltris (3,5-xylyl) phosphonium bromide was added to 60 ml of methanol. A solution in which 7 g (1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, manufactured by Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and lyophilized to produce an organically layered clay mineral E.

〈製造例6〉(有機化層状粘土鉱物Fの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)270gを60℃まで加熱した後、メタノール60mlにカルボキシデシルトリス(4−ヒドロキシフェニル)ホスホニウムブロマイド3.5g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Fを作製した。
<Production Example 6> (Preparation of Organized Layered Clay Mineral F)
After 270 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., 3.5 g of carboxydecyltris (4-hydroxyphenyl) phosphonium bromide was added to 60 ml of methanol. A solution in which (1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and lyophilized to produce an organically layered clay mineral F.

〈製造例7〉(有機化層状粘土鉱物Gの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)270gを60℃まで加熱した後、メタノール60mlにカルボキシヘキシルトリフェニルホスホニウムブロマイド2.7g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Gを作製した。
<Production Example 7> (Preparation of Organized Layered Clay Mineral G)
After 270 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., 2.7 g of carboxyhexyltriphenylphosphonium bromide (cation exchange of montmorillonite) was added to 60 ml of methanol. A solution in which 1.2 times the volume) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, manufactured by Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and lyophilized to produce an organically layered clay mineral G.

〈製造例8〉(有機化層状粘土鉱物Hの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)270gを60℃まで加熱した後、メタノール60mlにカルボキシヘキシルトリス(4−トリル)ホスホニウムブロマイド3.0g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Hを作製した。
<Production Example 8> (Preparation of Organized Layered Clay Mineral H)
After 270 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., 3.0 g of carboxyhexyltris (4-tolyl) phosphonium bromide was added to 60 ml of methanol ( A solution in which 1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and lyophilized to prepare an organically modified layered clay mineral H.

〈製造例9〉(有機化層状粘土鉱物Iの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)1620gを60℃まで加熱した後、メタノール360mlにカルボキシデシルトリス(4−メトキシフェニル)ホスホニウムブロマイド22.2g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄した後、大川原加工機(株)製SPRAY DRYER L−8型を用いて噴霧乾燥し、有機化層状粘土鉱物Iを作製した。
<Production Example 9> (Preparation of Organized Layered Clay Mineral I)
After 1620 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C, 22.2 g of carboxydecyltris (4-methoxyphenyl) phosphonium bromide was added to 360 ml of methanol. A solution in which (1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, Shinto Kagaku Co., Ltd.). The obtained precipitate was filtered, washed with methanol and water, and then spray-dried using SPRAY DRYER L-8 manufactured by Okawara Processing Machine Co., Ltd., to prepare an organically modified layered clay mineral I.

〈製造例10〉(有機化層状粘土鉱物Jの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)1620gを60℃まで加熱した後、メタノール360mlにカルボキシデシルトリス(4−トリル)ホスホニウムブロマイド20.5g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄した後、大川原加工機(株)製SPRAY DRYER L−8型を用いて噴霧乾燥し、有機化層状粘土鉱物Jを作製した。
<Production Example 10> (Preparation of Organized Layered Clay Mineral J)
After 1620 g of montmorillonite aqueous suspension (containing 2% Bengel A manufactured by Hojun Co., Ltd.) as a swellable layered silicate was heated to 60 ° C., 20.5 g of carboxydecyltris (4-tolyl) phosphonium bromide was added to 360 ml of methanol ( A solution in which 1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved was added and mixed using a general-purpose stirrer (Haydon Three-One Motor, Shinto Kagaku Co., Ltd.). The resulting precipitate was filtered, washed with methanol and water, and then spray-dried using SPRAY DRYER L-8 manufactured by Okawara Processing Machine Co., Ltd., to prepare an organically modified layered clay mineral J.

上記方法により作成した有機化層状粘土鉱物A〜Jについて、有機化したことを確認するべく、熱重量分析(TG−DTA)を行った。測定装置には、TG−DTA 2000S(ブルカー製)を使用し、測定条件は、空気雰囲気下、室温から800℃まで10℃/min昇温する条件とした。結果を表1に示す。   Thermogravimetric analysis (TG-DTA) was performed to confirm that the organically modified layered clay minerals A to J produced by the above method were organically formed. TG-DTA 2000S (manufactured by Bruker) was used for the measuring device, and the measurement conditions were such that the temperature was raised from room temperature to 800 ° C. by 10 ° C./min in an air atmosphere. The results are shown in Table 1.

Figure 0005415380
Figure 0005415380

結果より、有機化層状粘土鉱物A〜Jは、有機化処理前の層状粘土鉱物と比較して、いずれも25%程重量減少率が増加した。この結果から、層状粘土鉱物A〜Jは、有機化されたことを確認した。   From the results, the weight loss rate of the organic layered clay minerals A to J increased by about 25% compared to the layered clay mineral before the organic treatment. From this result, it was confirmed that the layered clay minerals A to J were organized.

〈実施例1〜10〉(エポキシ樹脂組成物の調製と硬化)
ビスフェノールF型液状エポキシ樹脂(商品名:エピコート807、ジャパンエポキシレジン社製)100質量部に、エポキシ樹脂用硬化促進剤として有機化層状粘土鉱物A〜J14.0質量部(最終的に得られるエポキシ樹脂組成物に対して7質量%)をそれぞれ添加し、混合・攪拌した。その後、得られた混合物に酸無水物系硬化剤(商品名:リカシッドMH−700、新日本理化社製)85.3質量部を添加し、混合・攪拌した。攪拌終了後、超音波ホモジナイザー(Sonifier CELL DISRUPTOR,Branson社製)を用いて分散させた。この混合物を予め120℃に加熱した金型に注型し、真空オーブン(ETAC−VT210,楠本化成社製)を用いて真空状態で脱泡し、各エポキシ樹脂組成物を調製した。その後、120℃で3時間一次硬化させ、160℃で6時間二次硬化させて各エポキシ樹脂硬化物を作製した。
<Examples 1 to 10> (Preparation and curing of epoxy resin composition)
Bisphenol F type liquid epoxy resin (trade name: Epicoat 807, manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by mass, and organic layered clay mineral A to J 14.0 parts by mass (epoxy finally obtained) as a curing accelerator for epoxy resin 7 mass%) was added to the resin composition, and the mixture was mixed and stirred. Thereafter, 85.3 parts by mass of an acid anhydride curing agent (trade name: Ricacid MH-700, manufactured by Shin Nippon Rika Co., Ltd.) was added to the obtained mixture, and the mixture was mixed and stirred. After the stirring, the mixture was dispersed using an ultrasonic homogenizer (Sonifier CELL DISTORPTOR, manufactured by Branson). This mixture was poured into a mold heated in advance to 120 ° C., and defoamed in a vacuum state using a vacuum oven (ETAC-VT210, manufactured by Enomoto Kasei Co., Ltd.) to prepare each epoxy resin composition. Thereafter, primary curing was performed at 120 ° C. for 3 hours, and secondary curing was performed at 160 ° C. for 6 hours to prepare cured epoxy resins.

〈比較例1〉(エポキシ樹脂組成物の調製と硬化)
有機化層状粘土鉱物を用いないでリン系硬化促進剤を用いた場合について比較例1とした。
ビスフェノールF型液状エポキシ樹脂(商品名:エピコート807、ジャパンエポキシレジン社製)100質量部にトリフェニルホスフィン0.94質量部(硬化促進剤A、商品名「TPP」、北興化学工業社製、最終的に得られるエポキシ樹脂組成物に対して0.5質量%)を添加し、混合・攪拌した。その後、得られた混合物に酸無水物系硬化剤(商品名:リカシッドMH−700、新日本理化社製)85.3質量部を添加し、混合・攪拌した。攪拌終了後、超音波ホモジナイザーを用いて分散させた。この混合物を予め120℃に加熱した金型に注型し、真空オーブンを用いて真空状態で脱泡した後、120℃で3時間一次硬化させ、160℃で6時間二次硬化させてコントロール用としてエポキシ樹脂硬化物を作製した。
<Comparative Example 1> (Preparation and curing of epoxy resin composition)
It was set as the comparative example 1 about the case where a phosphorus hardening accelerator is used without using an organic layered clay mineral.
Bisphenol F type liquid epoxy resin (trade name: Epicoat 807, manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight, triphenylphosphine 0.94 parts by weight (curing accelerator A, trade name “TPP”, manufactured by Hokuko Chemical Industries, Ltd., final 0.5 mass%) was added to the resulting epoxy resin composition and mixed and stirred. Thereafter, 85.3 parts by mass of an acid anhydride curing agent (trade name: Ricacid MH-700, manufactured by Shin Nippon Rika Co., Ltd.) was added to the obtained mixture, and the mixture was mixed and stirred. After stirring, the mixture was dispersed using an ultrasonic homogenizer. This mixture is poured into a mold preheated to 120 ° C., defoamed in a vacuum state using a vacuum oven, then primary cured at 120 ° C. for 3 hours, and secondarily cured at 160 ° C. for 6 hours for control. As a result, a cured epoxy resin was prepared.

〈比較例2〉(エポキシ樹脂組成物の調製と硬化)
さらに、有機化層状粘土鉱物の替わりにシリカフィラーとリン系硬化促進剤を用いた場合について比較例3、4とした。
ビスフェノールF型液状エポキシ樹脂(商品名:エピコート807、ジャパンエポキシレジン社製)100質量部に、トリフェニルホスフィン0.94質量部(硬化促進剤A、商品名「TPP」、北興化学工業社製、最終的に得られるエポキシ樹脂組成物に対して0.5質量%)を添加し、さらに、球状シリカ(商品名:PLV−6、龍森社製)14.0質量部(最終的に得られるエポキシ樹脂組成物に対して7質量%)を添加して混合・攪拌した。その後、得られた混合物に酸無水物系硬化剤(商品名:リカシッドMH−700、新日本理化社製)85.3質量部を添加し、混合・攪拌した。攪拌終了後、超音波ホモジナイザーを用いて分散させた。この混合物を予め120℃に加熱した金型に注型し、真空オーブンを用いて真空状態で脱泡した。その後、120℃で3時間一次硬化させ、160℃で6時間二次硬化させて各エポキシ樹脂硬化物を作製した。
<Comparative Example 2> (Preparation and curing of epoxy resin composition)
Furthermore, it was set as the comparative examples 3 and 4 about the case where a silica filler and a phosphorus hardening accelerator are used instead of the organic layered clay mineral.
Bisphenol F type liquid epoxy resin (trade name: Epicoat 807, manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight, triphenylphosphine 0.94 parts by weight (curing accelerator A, trade name “TPP”, manufactured by Hokuko Chemical Industries, 0.5 mass%) of the finally obtained epoxy resin composition is added, and further spherical silica (trade name: PLV-6, manufactured by Tatsumori) 14.0 parts by mass (finally obtained) 7 mass%) of the epoxy resin composition was added and mixed and stirred. Thereafter, 85.3 parts by mass of an acid anhydride curing agent (trade name: Ricacid MH-700, manufactured by Shin Nippon Rika Co., Ltd.) was added to the obtained mixture, and the mixture was mixed and stirred. After stirring, the mixture was dispersed using an ultrasonic homogenizer. This mixture was poured into a mold heated in advance to 120 ° C., and defoamed in a vacuum state using a vacuum oven. Thereafter, primary curing was performed at 120 ° C. for 3 hours, and secondary curing was performed at 160 ° C. for 6 hours to prepare cured epoxy resins.

〈比較例3〉(エポキシ樹脂組成物の調製と硬化)
ビスフェノールF型液状エポキシ樹脂(商品名:エピコート807、ジャパンエポキシレジン社製)100質量部に、トリフェニルホスフィン0.94質量部(硬化促進剤A、商品名「TPP」、北興化学工業社製、最終的に得られるエポキシ樹脂組成物に対して0.5質量%)を添加し、さらに、球状シリカ(商品名:PLV−6、龍森社製)20.6質量部(最終的に得られるエポキシ樹脂組成物に対して10質量%)を添加して混合・攪拌した。その後、得られた混合物に酸無水物系硬化剤(商品名:リカシッドMH−700、新日本理化社製)85.3質量部を添加し、混合・攪拌した。攪拌終了後、超音波ホモジナイザーを用いて分散させた。この混合物を予め120℃に加熱した金型に注型し、真空オーブンを用いて真空状態で脱泡した。その後、120℃で3時間一次硬化させ、160℃で6時間二次硬化させて各エポキシ樹脂硬化物を作製した。
<Comparative Example 3> (Preparation and curing of epoxy resin composition)
Bisphenol F type liquid epoxy resin (trade name: Epicoat 807, manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by weight, triphenylphosphine 0.94 parts by weight (curing accelerator A, trade name “TPP”, manufactured by Hokuko Chemical Industries, 0.5 mass%) based on the finally obtained epoxy resin composition is added, and further 20.6 parts by mass of spherical silica (trade name: PLV-6, manufactured by Tatsumori Co., Ltd.) (finally obtained) 10 mass%) of the epoxy resin composition was added and mixed and stirred. Thereafter, 85.3 parts by mass of an acid anhydride curing agent (trade name: Ricacid MH-700, manufactured by Shin Nippon Rika Co., Ltd.) was added to the obtained mixture, and the mixture was mixed and stirred. After stirring, the mixture was dispersed using an ultrasonic homogenizer. This mixture was poured into a mold heated in advance to 120 ° C., and defoamed in a vacuum state using a vacuum oven. Thereafter, primary curing was performed at 120 ° C. for 3 hours, and secondary curing was performed at 160 ° C. for 6 hours to prepare cured epoxy resins.

実施例1〜10および比較例1〜3で調製したエポキシ樹脂組成物の組成を2に示す。各実施例および比較例のエポキシ樹脂硬化物について、有機化層状粘土鉱物の分散性を確認するべくTEM観察を行ったところ、有機化層状粘土鉱物はいずれも樹脂中にて均一に分散されていた。 Table 2 shows the compositions of the epoxy resin compositions prepared in Examples 1 to 10 and Comparative Examples 1 to 3. When the epoxy resin hardened | cured material of each Example and the comparative example was observed by TEM in order to confirm the dispersibility of the organic layered clay mineral, all the organic layered clay mineral was uniformly dispersed in the resin. .

Figure 0005415380
Figure 0005415380

〈実施例および比較例にて使用した原材料〉
エポキシ樹脂:ビスフェノールF型液状エポキシ樹脂(ジャパンエポキシレジン社製)
エポキシ樹脂:リカシッドMH−700(新日本理化社製)
有機化層状粘土鉱物A:カルボキシデシルトリフェニルホスホニウム変性モンモリロナイト
有機化層状粘土鉱物BおよびI:カルボキシデシルトリス(4−メトキシフェニル)ホスホニウム変性モンモリロナイト
有機化層状粘土鉱物CおよびJ:カルボキシデシルトリス(4−トリル)ホスホニウム変性モンモリロナイト
有機化層状粘土鉱物D:カルボキシデシルトリス(3−トリル)ホスホニウム変性モンモリロナイト
有機化層状粘土鉱物E:カルボキシデシルトリス(3,5−キシリル)ホスホニウム変性モンモリロナイト
有機化層状粘土鉱物F:カルボキシデシルトリス(4−ヒドロキシフェニル)ホスホニウム変性モンモリロナイト
有機化層状粘土鉱物G:カルボキシヘキシルトリフェニルホスホニウム変性モンモリロナイト
有機化層状粘土鉱物H:カルボキシヘキシルトリス(4−トリル)ホスホニウム変性モンモリロナイト
有機化層状粘土鉱物K:オレイルビス(2−ヒドロキシジエチル)メチルアンモニウム変性モンモリロナイト
硬化促進剤A:トリフェニルホスフィン(北興化学工業社製)
シリカ:球状シリカPLV−6(龍森社製)
<Raw materials used in Examples and Comparative Examples>
Epoxy resin: Bisphenol F liquid epoxy resin (Japan Epoxy Resin Co., Ltd.)
Epoxy resin: Ricacid MH-700 (manufactured by Shin Nippon Chemical Co., Ltd.)
Organized layered clay mineral A: Carboxydecyltriphenylphosphonium modified montmorillonite Organized layered clay mineral B and I: Carboxydecyltris (4-methoxyphenyl) phosphonium modified montmorillonite organized layered clay mineral C and J: Carboxydecyltris (4- Tolyl) phosphonium modified montmorillonite organized layered clay mineral D: carboxydecyltris (3-tolyl) phosphonium modified montmorillonite organized layered clay mineral E: carboxydecyltris (3,5-xylyl) phosphonium modified montmorillonite organized layered clay mineral F: Carboxydecyltris (4-hydroxyphenyl) phosphonium-modified montmorillonite organic layered clay mineral G: Carboxyhexyltriphenylphosphonium-modified montmorillonite organic Jo clay mineral H: carboxymethyl hexyl tris (4-tolyl) phosphonium modified montmorillonite organized lamellar clay mineral K: Oreirubisu (2-hydroxy-diethyl) ammonium modified montmorillonite curing accelerator A: Triphenylphosphine (Hokko Chemical Industry Co., Ltd.)
Silica: Spherical silica PLV-6 (manufactured by Tatsumori)

〈硬化促進作用試験〉
実施例1〜10および比較例1〜3について、熱を加えて硬化させる前のエポキシ樹脂組成物を用いて、その硬化促進作用試験を行った。硬化促進作用試験は、昇温速度10℃/分の示差熱分析(DSC)で硬化発熱の開始温度と最大発熱温度とを測定し、示差熱分析(DSC)は、ブルカー社製DSC−3100を使用した。結果を表3に示す。
<Curing acceleration test>
About Examples 1-10 and Comparative Examples 1-3, the hardening acceleration | stimulation effect | action test was done using the epoxy resin composition before making it harden | cure by applying heat. In the curing acceleration test, the starting temperature and the maximum exothermic temperature of the curing exotherm were measured by differential thermal analysis (DSC) at a rate of temperature increase of 10 ° C./min, and differential thermal analysis (DSC) was performed using Bruker DSC-3100. used. The results are shown in Table 3.

Figure 0005415380
Figure 0005415380

表3から実施例1〜10で用いた有機化層状粘土鉱物は硬化促進能力を有しており、リン系硬化促進剤を添加しなくても十分に硬化できることが示された。   It was shown from Table 3 that the organically modified layered clay mineral used in Examples 1 to 10 has a curing accelerating ability and can be sufficiently cured without adding a phosphorus curing accelerator.

次に、実施例1〜10および比較例1〜3で作製したエポキシ樹脂硬化物について以下に示した方法で動的粘弾性試験、熱機械分析を行った。   Next, the dynamic viscoelasticity test and the thermomechanical analysis were performed by the method shown below about the epoxy resin hardened material produced in Examples 1-10 and Comparative Examples 1-3.

〈動的粘弾性試験〉
エポキシ樹脂硬化物の耐熱性を評価するため、各試験片(幅10mm×厚さ2mm×長さ40mmの短冊型試験片)を作製し、動的粘弾性試験を行った。試験は、SIIナノテクノロジー(株)製DMS‐6100型を用いて、昇温5℃/分、周波数1Hz、曲げモードにて行った。貯蔵弾性率(E´)と損失正接(tanδ)の温度依存性を調べた。tanδのピーク温度をガラス転移温度(Tg)とした。
<Dynamic viscoelasticity test>
In order to evaluate the heat resistance of the cured epoxy resin, each test piece (a strip-shaped test piece having a width of 10 mm, a thickness of 2 mm, and a length of 40 mm) was prepared and subjected to a dynamic viscoelasticity test. The test was performed using a DMS-6100 model manufactured by SII Nanotechnology Co., Ltd., at a temperature increase of 5 ° C./min, a frequency of 1 Hz, and a bending mode. The temperature dependence of storage elastic modulus (E ′) and loss tangent (tan δ) was examined. The peak temperature of tan δ was defined as the glass transition temperature (Tg).

〈熱機械分析〉
エポキシ樹脂硬化物の熱膨張率を評価するため、各試験片(縦4mm×横4mm×高さ10mmの直方体試験片)を作製し、熱機械分析装置(ブルカー社製TMA−4000S)により測定した。測定はNガス流量100ml/分で昇温速度は2℃/分、圧縮法により、5g荷重でガラス領域における熱膨張係数を測定した。ガラス転移温度以下の熱膨張係数(α)は50〜100℃での平均熱膨張率から算出し、ガラス転移温度以上の熱膨張係数(α)は175〜225℃での平均熱膨張率から算出した。
<Thermomechanical analysis>
In order to evaluate the thermal expansion coefficient of the cured epoxy resin, each test piece (cubic test piece of 4 mm length × 4 mm width × 10 mm height) was prepared and measured by a thermomechanical analyzer (TMA-4000S manufactured by Bruker). . Measurements N 2 gas flow rate 100ml / heating rate in min 2 ° C. / min, by a compression method, to measure the thermal expansion coefficient of the glass area 5g load. The thermal expansion coefficient (α 1 ) below the glass transition temperature is calculated from the average thermal expansion coefficient at 50 to 100 ° C., and the thermal expansion coefficient (α 2 ) above the glass transition temperature is the average thermal expansion coefficient at 175 to 225 ° C. Calculated from

これらの結果を表4に示す。   These results are shown in Table 4.

Figure 0005415380
Figure 0005415380

一般的に、熱により発生する半導体実装基板のそりや応力を低減するためには、エポキシ樹脂硬化物の低熱膨張率化が要求されるところ、エポキシ樹脂硬化物は、熱膨張係数が小さいほど、熱膨張性が小さくなり、低熱膨張率化する。そして、熱膨張係数は、ガラス転移温度(Tg)に至る前においては低く(α)、ガラス転移温度を超えた温度領域においては大きな値となる(α)。従って、上記基板のそりや応力を低減させる観点からは、ガラス転移温度が高い方が、低熱膨張率化するため好ましいこととなる。
これを踏まえて表4をみると、実施例1〜10と比較例1との比較結果より、本発明のエポキシ樹脂硬化物は、有機化層状粘土鉱物A〜Jを含むことによりガラス転移温度が上昇していることから、耐熱性に優れると共に、低熱膨張率化したことは明らかである。
一方で、シリカを添加(比較例2、3)することによっても、比較例1と比較すると、ガラス転移温度が上昇する傾向が認められた。但し、シリカを添加した場合、その影響により粘性が変化してしまい、硬化前のエポキシ樹脂組成物のハンドリング性が悪くなってしまった。
その上、シリカは硬化前のエポキシ樹脂組成物において、経時にて沈降分離してしまう。そうすると、シリカが沈降した上澄み部分のエポキシ樹脂組成物は、その組成が実施例1のエポキシ樹脂組成物と変わらないため、ガラス転移温度の上昇効果は期待できない。また、使用時にはシリカを均一に再分散させるために、改めて撹拌する必要が出てしまう。
このように、本発明によらなくても、シリカを用いることにより、ガラス転移温度を上昇させ、耐熱性や熱膨張率を改善することができるものの(比較例2、3)、ガラス転移温度の上昇と引き換えに、上記のようにハンドリング性や貯蔵安定性の性能低下といった問題が新たに生じてしまうこととなる。しかしながら、本発明にかかる有機化層状粘土鉱物を含むエポキシ樹脂用硬化促進剤を用いれば(実施例1〜10)、他に新たな問題が生じることなく、ガラス転移温度を上昇させることが出来るため、弊害を伴わずに耐熱性や熱膨張率を改善させることが可能となる。
Generally, in order to reduce the warp and stress of the semiconductor mounting substrate generated by heat, it is required to lower the thermal expansion coefficient of the cured epoxy resin, but the cured epoxy resin has a smaller thermal expansion coefficient. The thermal expansibility becomes small and the coefficient of thermal expansion becomes low. The thermal expansion coefficient is low (α 1 ) before reaching the glass transition temperature (Tg), and becomes a large value (α 2 ) in the temperature range exceeding the glass transition temperature. Therefore, from the viewpoint of reducing the warpage and stress of the substrate, a higher glass transition temperature is preferable because the coefficient of thermal expansion is reduced.
When Table 4 is seen based on this, from the comparison result of Examples 1-10 and Comparative Example 1, the epoxy resin hardened | cured material of this invention has a glass transition temperature by including the organic layered clay mineral AJ. From the rise, it is clear that the heat resistance is excellent and the coefficient of thermal expansion is reduced.
On the other hand, by adding silica (Comparative Examples 2 and 3), the glass transition temperature tended to increase as compared with Comparative Example 1. However, when silica was added, the viscosity was changed due to the influence, and the handling property of the epoxy resin composition before curing was deteriorated.
In addition, silica settles and separates over time in the epoxy resin composition before curing. If it does so, since the composition of the epoxy resin composition of the supernatant part in which the silica settled does not change with the epoxy resin composition of Example 1, the raise effect of a glass transition temperature cannot be expected. Moreover, in order to redisperse the silica uniformly, it becomes necessary to agitate again.
Thus, although it is not based on this invention, although glass transition temperature can be raised and heat resistance and a thermal expansion coefficient can be improved by using a silica (comparative examples 2 and 3), glass transition temperature of In exchange for the increase, problems such as a decrease in handling performance and storage stability performance will arise as described above. However, if the curing accelerator for epoxy resin containing the organically modified layered clay mineral according to the present invention is used (Examples 1 to 10), the glass transition temperature can be increased without any other new problems. Thus, it is possible to improve the heat resistance and the coefficient of thermal expansion without causing any harmful effects.

次に、実施例3と比較例1の組成からなるエポキシ樹脂組成物と、10−カルボキシデシルトリス(4−フェノキシフェニル)ホスホニウムブロマイドを用いて有機変性した層状粘土鉱物(特許文献2)を含んだエポキシ樹脂組成物(参考例1)について、以下に示した方法で貯蔵安定性試験を行った。   Next, the epoxy resin composition which consists of a composition of Example 3 and the comparative example 1 and the layered clay mineral (patent document 2) which carried out organic modification using 10-carboxydecyl tris (4-phenoxyphenyl) phosphonium bromide were included. The epoxy resin composition (Reference Example 1) was subjected to a storage stability test by the method shown below.

〈製造例11〉(有機化層状粘土鉱物Lの調製)
膨潤性層状ケイ酸塩としてモンモリロナイト水懸濁液((株)ホージュン社製ベンゲルA2%含有)1080gにメタノール800mlを加えて十分に分散させ、50℃まで加熱した。その後、メタノール280mlに10−カルボキシデシルトリス(4−フェノキシフェニル)ホスホニウムブロマイド19.3g(モンモリロナイトのカチオン交換容量の1.2倍量)を十分に溶解させた溶液を加え、汎用撹拌機(ヘイドン・スリーワンモータ,新東科学社製)を用いて混合した。得られた沈殿物をろ過し、メタノールおよび水で洗浄し、凍結乾燥して有機化層状粘土鉱物Lを作製した。
<Production Example 11> (Preparation of Organized Layered Clay Mineral L)
As a swellable layered silicate, 800 ml of methanol was added to 1080 g of an aqueous suspension of montmorillonite (containing 2% Bengel A manufactured by Hojun Co., Ltd.) and sufficiently heated, and heated to 50 ° C. Thereafter, a solution in which 19.3 g of 10-carboxydecyltris (4-phenoxyphenyl) phosphonium bromide (1.2 times the cation exchange capacity of montmorillonite) was sufficiently dissolved in 280 ml of methanol was added, and a general-purpose stirrer (Haydon Three-one motor (manufactured by Shinto Kagaku Co., Ltd.) was used for mixing. The resulting precipitate was filtered, washed with methanol and water, and lyophilized to prepare an organically modified layered clay mineral L.

〈比較例4〉(エポキシ樹脂組成物の調製)
ビスフェノールF型液状エポキシ樹脂(商品名:エピコート807、ジャパンエポキシレジン社製)100質量部に、エポキシ樹脂用硬化促進剤として有機化層状粘土鉱物L14.0質量部(最終的に得られるエポキシ樹脂組成物に対して7質量%)を添加し、混合・攪拌した。その後、得られた混合物に酸無水物系硬化剤(商品名:リカシッドMH−700、新日本理化社製)85.3質量部を添加し、混合・攪拌した。攪拌終了後、超音波ホモジナイザー(Sonifier CELL DISRUPTOR,Branson社製)を用いて分散させた。
<Comparative Example 4> (Preparation of epoxy resin composition)
Bisphenol F-type liquid epoxy resin (trade name: Epicoat 807, manufactured by Japan Epoxy Resin Co., Ltd.) 100 parts by mass, as a curing accelerator for epoxy resin, 14.0 parts by mass of an organized layered clay mineral L (finally obtained epoxy resin composition) 7 mass%) was added and mixed and stirred. Thereafter, 85.3 parts by mass of an acid anhydride curing agent (trade name: Ricacid MH-700, manufactured by Shin Nippon Rika Co., Ltd.) was added to the obtained mixture, and the mixture was mixed and stirred. After the stirring, the mixture was dispersed using an ultrasonic homogenizer (Sonifier CELL DISTORPTOR, manufactured by Branson).

〈貯蔵安定性試験〉
実施例3、比較例1、5の組成からなるエポキシ樹脂組成物を密閉容器中に入れ、25℃にて貯蔵した。そして、エポキシ樹脂組成物作成時、および貯蔵24時間ごと48時間後のエポキシ樹脂組成物について、ゲルタイムを測定することにより、貯蔵安定性評価を行った。
<Storage stability test>
The epoxy resin composition which consists of a composition of Example 3 and Comparative Examples 1 and 5 was put into the airtight container, and was stored at 25 degreeC. And storage stability evaluation was performed by measuring a gel time about the epoxy resin composition 48 hours after an epoxy resin composition preparation and every 24 hours of storage.

ゲルタイム測定:JIS K 6910記載のゲル化時間測定方法に準じ、鋼板温度を150℃として、エポキシ樹脂系組成物のゲルタイムを測定した。本測定において、ゲル化試験器としては日新科学社製GT―Dを使用した。ゲルタイム測定結果を表5に示す。   Gel time measurement: According to the gel time measurement method described in JIS K 6910, the gel time of the epoxy resin composition was measured at a steel plate temperature of 150 ° C. In this measurement, GT-D manufactured by Nisshin Kagaku Co., Ltd. was used as the gelation tester. The gel time measurement results are shown in Table 5.

Figure 0005415380
Figure 0005415380

上記結果から、いずれの例においても、エポキシ樹脂組成物作成時にはほぼ同一のゲルタイムであった。ところが、トリフェニルホスフィンを硬化促進剤としたものは、貯蔵によりゲルタイムが短くなっており、貯蔵安定性に劣る結果となった(比較例1)。そして、10−カルボキシデシルトリス(4−フェノキシフェニル)ホスホニウムブロマイドを用いて有機変性した層状粘土鉱物を含んだエポキシ樹脂組成物の場合(比較例4)、比較例1と比べて貯蔵48時間後のゲルタイムが長くなっていることから、貯蔵安定性がやや向上した結果となったものの、貯蔵安定性を満足するに至るものではなかった。
一方で、本発明により有機変性した層状粘土鉱物を含んだエポキシ樹脂組成物の場合(実施例3)は、上記例とは異なり、ゲルタイムは貯蔵後も安定した結果を示したことから、貯蔵安定性に優れることは明らかであった(表5)。
From the above results, in any of the examples, the gel time was almost the same when the epoxy resin composition was prepared. However, in the case of using triphenylphosphine as a curing accelerator, the gel time was shortened by storage, resulting in poor storage stability (Comparative Example 1). In the case of an epoxy resin composition containing a layered clay mineral that has been organically modified with 10-carboxydecyltris (4-phenoxyphenyl) phosphonium bromide (Comparative Example 4), 48 hours after storage compared to Comparative Example 1 Since the gel time was long, the storage stability was slightly improved, but the storage stability was not satisfied.
On the other hand, in the case of the epoxy resin composition containing the layered clay mineral organically modified according to the present invention (Example 3), unlike the above example, the gel time showed a stable result after storage. It was clear that it was excellent in property (Table 5).

本発明の硬化促進機能を有した有機化層状粘土鉱物を主成分とするエポキシ樹脂の硬化促進剤を含有するエポキシ樹脂組成物は、その硬化物において優れた耐熱性、低熱膨張性を有するため、電気電子部品用アンダーフィル剤やプリント配線板などの積層板を始めとする各種複合材料等に使用する場合において極めて有用である。   The epoxy resin composition containing an epoxy resin curing accelerator mainly composed of an organized layered clay mineral having a curing accelerating function of the present invention has excellent heat resistance and low thermal expansion in the cured product. It is extremely useful when used for various composite materials such as laminates such as underfill agents for electric and electronic parts and printed wiring boards.

Claims (4)

エポキシ樹脂と、
下記式(1)
Figure 0005415380

(上式(1)中のR、RはH、CH、OH、またはOCH基であり、nは1〜22の整数を表す。)
で表される有機ホスホニウムイオンで層間および/または表面の無機陽イオンがイオン交換されてなる有機化層状粘土鉱物を少なくとも含むエポキシ樹脂用硬化促進剤とを少なくとも含有するエポキシ樹脂組成物。
Epoxy resin,
Following formula (1)
Figure 0005415380

(R 1 and R 2 in the above formula (1) are H, CH 3 , OH, or OCH 3 groups, and n represents an integer of 1 to 22.)
An epoxy resin composition comprising at least a curing accelerator for an epoxy resin containing at least an organic layered clay mineral obtained by ion-exchange of inorganic cations between layers and / or surfaces with an organic phosphonium ion represented by the formula:
前記式(1)で表される有機ホスホニウムイオンが、下記式(2)
Figure 0005415380

(上式(2)中のRはH、CH、OH、またはOCH基であり、mは5〜10の整数を表す。)
で表される請求項1記載のエポキシ樹脂組成物
The organic phosphonium ion represented by the formula (1) is represented by the following formula (2).
Figure 0005415380

(R in the above formula (2) is H, CH 3 , OH, or OCH 3 group, and m represents an integer of 5 to 10)
The epoxy resin composition of Claim 1 represented by these .
前記エポキシ樹脂100質量部に対して、前記有機化層状粘土鉱物が0.5〜60質量部となるように前記エポキシ樹脂用硬化促進剤を含有する請求項1または請求項2に記載のエポキシ樹脂組成物。 The epoxy resin according to claim 1 or 2 , comprising the curing accelerator for epoxy resin so that the organically layered clay mineral is 0.5 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin. Composition. 請求項1〜請求項3のいずれかに記載のエポキシ樹脂組成物を硬化することにより得られるエポキシ樹脂複合材料。 The epoxy resin composite material obtained by hardening | curing the epoxy resin composition in any one of Claims 1-3 .
JP2010183725A 2010-08-19 2010-08-19 Curing accelerator for epoxy resin and epoxy resin composition containing the same Expired - Fee Related JP5415380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010183725A JP5415380B2 (en) 2010-08-19 2010-08-19 Curing accelerator for epoxy resin and epoxy resin composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010183725A JP5415380B2 (en) 2010-08-19 2010-08-19 Curing accelerator for epoxy resin and epoxy resin composition containing the same

Publications (2)

Publication Number Publication Date
JP2012041440A JP2012041440A (en) 2012-03-01
JP5415380B2 true JP5415380B2 (en) 2014-02-12

Family

ID=45898117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010183725A Expired - Fee Related JP5415380B2 (en) 2010-08-19 2010-08-19 Curing accelerator for epoxy resin and epoxy resin composition containing the same

Country Status (1)

Country Link
JP (1) JP5415380B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929439B2 (en) * 2012-04-06 2016-06-08 横浜ゴム株式会社 Electrolyte for photoelectric conversion element and photoelectric conversion element and dye-sensitized solar cell using the electrolyte

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251110A (en) * 1997-03-10 1998-09-22 Nippon Chem Ind Co Ltd Antimicrobial agent
JP2002338587A (en) * 2001-05-21 2002-11-27 Hokko Chem Ind Co Ltd Method for producing phosphonium salt containing carboxy group
JP2003238819A (en) * 2002-02-15 2003-08-27 Co-Op Chem Co Ltd Heat-resistant filler
JP4337976B2 (en) * 2004-02-20 2009-09-30 積水化成品工業株式会社 Method for producing thermoplastic aromatic polyester resin foam
JP5486814B2 (en) * 2008-01-14 2014-05-07 Ntn株式会社 Polymer organogel, polymer composition, and production method thereof

Also Published As

Publication number Publication date
JP2012041440A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication of bio-based epoxy–clay nanocomposites
US20120296012A1 (en) Room temperature ionic liquid-epoxy systems as dispersants and matrix materials for nanocomposites
Sudhakara et al. Organophosphorus and DGEBA resins containing clay nanocomposites: flame retardant, thermal, and mechanical properties
JP2009073933A (en) Epoxy resin composition having thermal degradation resistance
JP5652307B2 (en) Prepress and laminate for heat and pressure molding
CN105073883A (en) Composition for interlayer filler of layered semiconductor device, layered semiconductor device, and method for manufacturing layered semiconductor device
CN106700132A (en) Silicon dioxide slurry composition as well as preparation method and application thereof
Shepelev et al. Nanotechnology based thermosets
KR910006036B1 (en) Rubber-modified phenolicresin composition and method of manufacturing the same
Fröhlich et al. High‐performance epoxy hybrid nanocomposites containing organophilic layered silicates and compatibilized liquid rubber
Mustafa et al. Improving the tensile, toughness, and flexural properties of epoxy resin based nanocomposites filled with ZrO2 and Y2O3 nanoparticles
JP2010070582A (en) Heat conductive paste composition for filling substrate hole, and printed wiring board
JP5415380B2 (en) Curing accelerator for epoxy resin and epoxy resin composition containing the same
JP2007067164A (en) Semiconductor sealing epoxy resin composite and its manufacturing method
WO2015174023A1 (en) Insulating thermally conductive resin composition
KR102477271B1 (en) Thermosetting resin composition with high toughness and flame retardant
TW539706B (en) Modified layered clay material and epoxy/clay nanocomposite containing the same
JP3181424B2 (en) Liquid epoxy resin composition for casting
JP4053849B2 (en) Epoxy curing agent composition
Asif et al. Thermoplastic toughened layered silicate epoxy ternary nanocomposites—Preparation, morphology, and thermomechanical properties
JP4848925B2 (en) Epoxy resin composition and adhesive
JP2010285485A (en) Epoxy resin composition containing phosphonium modified laminar clay mineral
JP2010083994A (en) Epoxy resin composition containing phosphonium-modified layered clay mineral
JPWO2016181591A1 (en) Epoxy resin composition
JP3102022B2 (en) Epoxy resin composition and cured product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5415380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees