TWI290430B - Scanning electron beam device - Google Patents

Scanning electron beam device Download PDF

Info

Publication number
TWI290430B
TWI290430B TW094146676A TW94146676A TWI290430B TW I290430 B TWI290430 B TW I290430B TW 094146676 A TW094146676 A TW 094146676A TW 94146676 A TW94146676 A TW 94146676A TW I290430 B TWI290430 B TW I290430B
Authority
TW
Taiwan
Prior art keywords
electron beam
offset
symbol
axis direction
scanning
Prior art date
Application number
TW094146676A
Other languages
Chinese (zh)
Other versions
TW200633496A (en
Inventor
Daisuke Imai
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of TW200633496A publication Critical patent/TW200633496A/en
Application granted granted Critical
Publication of TWI290430B publication Critical patent/TWI290430B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Abstract

The invention provides a scanning electron beam device. The scanning electron beam device can adjust the field shifts of scanning signal objectively, correct the corresponding relative positions of a plurality of light sources, and amend at least one of the position shifts among the rotational direction, the X axis direction, and the Y axis direction of the light sources. The scanning electron beam device scans the charged particles two-dimensionally and forms a scanning pattern on the specimen. A mark is disposed on a stage which supports the specimen, and the scanning electron beam device calculates the positional shifts of the coordinates of the stage or that of the scanning light in according to the mark. Hence according to the scanning pattern with marked label on the stage, the scanning electron beam device calculates the rotational direction shifts, and the Y axis direction shifts and the X axis direction shifts among a plurality of light sources. A symbol for scanning electron beam is disposed in each scanning domain of the scanning electron beam of each light source. In according to the positional shifts of the scanning pattern of the symbol, at least one positional shift amount of the rotational direction shifts, the Y axis direction shifts, and the X axis direction shifts of the light sources is obtained in the coordinates of the scanning electron beam.

Description

I29〇435〇ipif 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種使電子光束或離子光束等荷電粒子 光束於試料上進行二次元掃描且形成掃描圖像之掃描電子 束1置,特別是關於一種具有對掃描圖像之直線性進行校 正之功能的掃描電子束裝置。 【先前技術】 #使荷電粒子光束於試料上進行二次元掃描時,藉由使 荷私粒子光束與試料平臺於X軸方向以及γ軸方向相對移 ,、’通常,於X軸方向移動1列而取得檢測訊號之後,反 设進行於Υ軸方向移動丨列之操作,藉此取得i框汾⑴加 之掃描訊號。 當平臺之座標系與掃描電子束之座標系之間不一致之 二形時▲,於可取得檢測訊號之掃描®像位置、與配置於平 移)。<料位置之間’產生位置偏移(掃描訊號之視野偏 二立置偏移之校正,藉由於試料上設有用以, 立之標記’使平臺㈣且確認設於試料〔 」 :平臺之座標系與掃描電子束之座標系進二』^ [發明所欲解決之問題] 故而存有操作時間該操树 長之問74此外,因無客觀基準故, 7 lpif Ι29043β 亦存有因操作者不同而造成校正彳林同。 一:」二於試料侧設有用以獲得校正值之^己 -人父換試料均會發生位置偏移, 己,故而每 作與掃描電子束之關係的問題。 &難求出平臺動 源間之相對位置進行校正時,必 2正。對該電子束 間距或每個控制值之移動量等。拉1^子束源間的光束 情形時,存在以下問題,即產進行該等運算之 人為的錯誤。 外或偏和方向之錯誤等 【發明内容】 可客觀地對=明之目的在於解決上述之先前問題,使得 减地對“轉之視野偏移it行校正。喷使付 係進=發:==:r束源之相對位置關 方向之至少-個位置 本电3之使荷電粒子光束於 門的Γ室之座標系中’根據平臺上標記之掃#円德免屮 位置’並將該標記位置作為指標位置 又,於掃描電子束之座標系中,根據平臺上標記之掃I29〇435〇ipif IX. DESCRIPTION OF THE INVENTION: 1. Field of the Invention The present invention relates to a scanning electron beam 1 in which a charged particle beam such as an electron beam or an ion beam is subjected to secondary element scanning on a sample and a scanned image is formed. In particular, it relates to a scanning electron beam apparatus having a function of correcting the linearity of a scanned image. [Prior Art] # When the charged particle beam is subjected to the binary scanning on the sample, the sample beam is moved relative to the sample platform in the X-axis direction and the γ-axis direction, and 'normally, one column is moved in the X-axis direction. After obtaining the detection signal, the operation of moving the queue in the direction of the x-axis is reversed, thereby obtaining the i-frame (1) plus the scanning signal. When the coordinate system of the platform and the coordinate system of the scanning electron beam are inconsistent, ▲, the scanning image position and the position of the scanning signal can be obtained. <The positional offset between the material positions (the correction of the field of view of the scanning signal is offset by two vertical offsets, by means of the mark on the sample, the platform (4) is confirmed and set in the sample [": platform The coordinates of the coordinate system and the scanning electron beam are in the second dimension. ^ [The problem to be solved by the invention] Therefore, there is an operation time for the operation tree. 74 In addition, because there is no objective reference, 7 lpif Ι29043β also exists due to the operator. The difference is caused by the correction of the same forest. One: "Two on the side of the sample to obtain the correction value of the self-family test materials will be displaced, so, and therefore each issue with the scanning electron beam. & When it is difficult to find the relative position between the platform sources, it must be 2 positive. The beam spacing or the amount of movement of each control value, etc. When pulling the beam between the beam sources, the following problems exist. , that is, the artificial error of the operation of the operation. The error of the external or partial direction, etc. [invention] The purpose of objectively correcting the above-mentioned problem is to solve the above-mentioned previous problem, so that the offset of the field of view Correction In ==::r The relative position of the beam source is at least the position of the off direction - the position of the electric 3 causes the charged particle beam to be in the coordinate system of the diverticulum of the door 'According to the marking on the platform #円德免屮 position 'And the mark position as the index position, in the coordinate system of the scanned electron beam, according to the sweep of the mark on the platform

IpifIpif

129〇43Q =源=子束源座標系之旋轉方向偏移、以及多個 於、之γ軸方向偏移或X轴方向偏移。 上之:掃描電子束裝置中,設於平臺 内的掃描;;描電子束之㈣^ 圖傻的从東用付號,根據该掃描電子束用符泸之浐》 束源之旋ΐ::Γ描電子束之座標系中至鳩ΐ; 該校正係數控量而求出校正係數’使用 旋轉方向偏移進行校^:、* ’错此可對掃描電子束之 =各電子束源間之束源,藉此, 仃奴正。 及/或x軸方向之偏移進 掃描電子束用符號包括含 ,以及含有傾斜於該@向上之直線的水平 。 十付唬之方向上之直線的傾斜 t偏移量的符號部分长移以及Y軸方向偏移 移之偏移量的符號部分。、^疋用以求出X軸方向偏 偏f向偏移可利用水平符泸之 ,置而求得。γ袖方 :虎之兩端的γ轴方向位置 付之掃掏圖像之兩個水 ^艮據由兩個電子束源而獲 虎中同-部分的Y軸方向位置 符號 符號129〇43Q = Source = offset of the rotation direction of the sub-beam source coordinate system, and multiple γ-axis direction offset or X-axis direction offset. In the scanning electron beam device, the scanning is set in the platform; the scanning electron beam (4) ^ the silly from the east using the paying number, according to the scanning electron beam with the symbol of the symbol of the beam source: Scanning the coordinate system of the electron beam to 鸠ΐ; The correction coefficient is controlled to obtain the correction coefficient 'Using the rotation direction offset to correct the: ^, * 'This can be used to scan the electron beam = between the electron beam sources The source of the beam, by this, the slaves are positive. And/or the offset of the x-axis direction. The symbol for the scanning electron beam includes the inclusion and the level containing the line inclined to the @-up. The inclination of the line in the direction of the ten-turn t The symbol portion of the offset portion of the t-offset and the sign portion of the offset of the shift in the Y-axis direction. , ^ 疋 used to find the X-axis direction deviation f-direction offset can be obtained by using the horizontal symbol 置. Γ-sleeve: The position of the γ-axis of the two ends of the tiger. The two waters of the broom image are obtained from the two electron beam sources. The position of the Y-axis direction of the same part of the tiger Symbol Symbol

Pif 偏移量而求出。 又’ X袖方向偏移可枳械山 描圖像之兩個水平浐 X據由兩個電子束源而獲得之掃 而求出。 付^同一部分的X軸方向位置偏移量 平臺座標之平臺用田電子束用符號之外,可具有取得 位置的位置符號,以及1、二平s用符號包括決定平臺上之 位置符號作為用以評價號之方向的方向符號。 用’將掃描圖像中之位$座標系之位置的指標位置而使 系的位置偏移號作為指標可求出平 臺之座標 符號之方向的資訊,且掃描圖像中提供存有位置 探索方向。 土衣该方向符號可獲取位置符號之 [發明之效果] 根據本發明,可對多 校正。 u %子束源之相對位置關係進t 中之至小可,兒子束源之旋轉方向、X軸方向、γ缸 少—個位置偏移進顿正。、方向 【只苑方式】 訂示就本發明之實施形態 闉1是用以說明太^B0 t、、、田呪明。 掃描電子束裝置“,子束置的概略圖。 光束照射於試料上之電子;„子等荷電教子 子光束之㈣ 臺3;藉由檢測器4對^ 子先束之㈣而自試料產生之二次電子等進行檢=何電輪 迎藉 l29〇4^pif 日t =晃粒子光束之掃描或平臺之移動而對試料上之光束的 <射位置進行掃描。 掃标電子束裝置丨具有:掃描圖像形成機構5,复 獲得之檢測訊號形成掃描圖像;掃描圖像 數6 ’其記憶卿成之掃描®像;位置偏移校正俜 口:异機構j,其基於所獲得之婦描圖像而計算位:、 “::;Γ:ΐ憶機構8,其記憶由位置偏移校正係婁; 二:Γ/爾出之位置偏移校正係數等參數;以及 數,=子束=獲得之位置偏移校正係數或其他參 束源2或平堂3進行驅動控制。 位置偏移校正係數計算機7 向偏移校正係數計算機構7a ,:,理:旋轉方 源2之基準座標(光 求出相對於電子束 偏移的偏移量,並計算對^求之旋轉方向 係數;Y軸方向偏移校正係數叶出夕里進行校正之校正 有多個電子束源2之構成中:久“之計算,其於具 向偏移之偏移量,並計所出口电子束源間之Y軸方Find the Pif offset. Further, the X-sleeve direction shift can be obtained by sweeping two levels of X-ray images from two electron beam sources. The X-axis direction offset of the same part of the platform coordinates of the platform is used in addition to the symbol for the field electron beam, and may have a position symbol for obtaining the position, and the symbol for the second flat s includes the position symbol on the platform. The direction symbol in the direction of the evaluation number. The information of the direction of the coordinate symbol of the platform can be obtained by using the position of the position of the position of the position vector in the scanned image, and the position of the coordinate position of the system can be used as an index, and the position of the position is explored in the scanned image. . The direction symbol of the soil coat can obtain the position symbol. [Effect of the Invention] According to the present invention, multiple corrections can be made. u The relative positional relationship of the % beam source is as small as t, and the direction of rotation of the son beam source, the direction of the X axis, and the number of γ cylinders are small. Directions [Only in the form of a court] The embodiment of the present invention is 闉1 for explaining too ^B0 t, , and Tian Yuming. Scanning electron beam device ", a schematic diagram of the sub-beam arrangement. The electron beam is irradiated onto the sample; the sub-equivalent sub-beam (4) stage 3; by the detector 4, the (4) of the first beam is generated from the sample. Secondary electrons are detected. • The electric wheel scans the <shoot position of the beam on the sample by l29〇4^pif day t = scanning of the beam beam or the movement of the platform. The scanning electron beam device has: a scanning image forming mechanism 5, and the obtained detection signal forms a scanning image; the number of scanned images is 6 'the scanning image of the memory; the positional offset correction: the different mechanism j It calculates the bit based on the obtained gestation image:, "::; Γ: ΐ 机构 8 8, its memory is determined by the positional offset correction system; two: Γ / 尔 out position offset correction coefficient and other parameters ; and the number, = beamlet = obtained position offset correction coefficient or other reference source 2 or flat 3 for drive control. Position offset correction coefficient computer 7 offset correction coefficient calculation mechanism 7a, :, rational: rotation The reference coordinate of the square source 2 (the optical is obtained from the offset with respect to the electron beam offset, and the coefficient of rotation direction is calculated. The Y-axis direction offset correction coefficient is corrected in the correction of the leaves. In the composition of source 2: the calculation of the long time, its offset from the directional offset, and the Y-axis between the exported electron beam sources

正係數· rig 對所求出之偏移量谁耔妗X 算,其求出各電二:源方=:7正係數計算機構1 算對^出之偏移量進储之偏移量, -偏二:描:巧:置1於平〜— 座桿之;ί:;記的圖。圖2中,標記包:卜 用付號U、與用以計算掃描=用以取得平臺 兒于束之位置偏移 I29〇43fllpif 等而形成於平臺之 二及/或下端。_2中表示標記設於 但亦可為設於下端冓而’ 之紝椹^ 口 乂及汉方;上端以及下端的兩端 符號11是針對每個電子束源2而設置,而 田:子束用符號12設於電子束源之間。 路經由照射光束之掃細及平臺之移動而於 乾圍内進行掃描’從而取得掃描圖像。 ® 3_=〜圖3(b)是用以說明標記之形狀例圖3 ^括用;符號η之形狀的—例。平臺用符號11 用杰決疋平堂上之位置的位置符號u ί: ::掃描範圍之何方向的方向符號"b::所 參昭43Γ無法找到位置符號…之情形下,藉由 …。亥方向付號丨比可確認位置符號丨 再者,圖3(a)所干之位#符轳n 之存在方向。 之形狀僅為一例、,^ -付la以及方向符號lib I為例’亚非對該形狀加以限定。 12 的各掃狀各軒麵2之私電子束 子束2 ’砂娜1子权鱗彡、巾肖作求出帝 于束源之疑轉方向偏移、γ轴方向偏移 ^出兒 位置偏移之指標。 X軸方向偏移等 掃描电子束用符號12包括含有掃描 及含有例如心度方向傾斜^1_水 之直線的傾斜符號12b。 、1"千付號I2a 以下,主要對於利用掃描電子束用符號,而對旋轉方 I29043Qipif 2偏移、¥轴方向偏移以及x轴方向偏移之 說明。 仅正處理加以 根據水平符號12a兩端之γ軸方向 出旋轉方向偏移。圖4 (a)是用以說明根量而求 旋轉方向偏移的圖。於圖4 (a)巾,旋轉二+付唬檢測 I:广號12 a兩端之γ轴方“位置::2角: π根據丫軸方向之位置偏移量計算出旋轉方故 又,由兩個電子束源獲得之掃描圖二 12a中根據同—部分之γ軸方向的位置 彳口水千付唬 方向偏移。圖4(b)是用以說明由水平符=求出¥軸 偏移的圖。圖4 (b)中,兩個電子束源之軸方向 對應於由各電子束源掃描而獲得 方向之偏移 號仏之γ軸方向的位置偏移量水平符 位置偏移®而計算出電子束源間之γ㈣向方向之 又,在由兩個電子束源而獲得 夕里。 符號⑶巾,根據同一部分之^圖像之兩個傾斜 出X軸方向偏移。圖4(c)是用 σ的位置偏移量,求 X幸由方向偏移的圖。圖4(e)中,明=傾斜符號檢測出 向偏移,對應於由各電子束源 t個〃4子束源之X軸方 個傾斜符號12b之γ軸方向的位^ 彳于之掃描圖像的兩 12b之角度設為以45度傾斜於水”偏〃移量。將該傾斜符號 軸方向偏移之偏移量與γ軸/平符號12a之情形下,X 度,故而可求出Y軸方向偏移=向偏移之偏移量是相同角 向偏移之偏移量。 夕偏移量且將其作為X軸方 uy〇4^lpif 咅条可將傾斜符號12b之角度設為以45度以外之包 下’x抽方向= 特定之對應角=偏移量並非為相同角度而成為 具有特定對應ί卢關係1而基於與¥轴方向偏移之偏移量 移之偏移量係進行運算,藉此可求出χ軸方向偏 再者,圖4 (c)之产士主- 基準時,細線所示之示’以粗線所示之標記作為 右=示,線所之 ⑶(用實線表示)之軸方向偏移可根據傾斜符號 利用圖5⑻〜圖5(b) :向偏移而求出。 偏移以及x軸方向偏移加以者6(=Γ轴方向 源m與電子束源Μ之間的偏移再者方;此表示電子束 仏記進行比較’並根_ 40像的各 示)之Y軸方向的偏移a (用實線表 之x==r::=r移的圖。電子束源間 標記進行比較,並根據㈣,的各 不)之Y轴方向的偏移量而求出。 (用Μ線表 圖6⑻〜圖6(d)是用以說明x 向偏移的圖。電子束源間…向偏4::(γ:: lpif Ι2904δβ 示,對由各電子束源而獲得之掃描圖像的各標記進行匕 較,並根據該標記之水平符號12a之γ軸方向的偏移:比 求出,電子束源間之X軸方向偏移是如圖6 (d) 里而 由各電子束源而獲得之掃描圖像的各標記進行比較,、、,,、 據該標記之傾斜符號12b之γ轴方向的偏移量而^出亚根 通過對上述旋轉方向偏移、γ轴方向偏移以及X缸 向偏移之各位置偏移進行校正,可校正掃描圖方 圖7⑻=7(d)是用以說明由位置偏移校 ; 像偏移的圖。再者,於此表示三個電子束 路徑而取得掃描圖像之狀態。 引‘由4個 示含有旋轉方向偏移之掃描圖像例。若田 电子束源2之設置角度或光束之照射狀態而:右因 生偏移’則於所獲得之掃描圖像中 击4方向產 直線之掃描圖像是以因旋轉方:有,方向偏移。 水平方向的線來表示。 夕D以一疋角度傾斜於 獲得之掃描圖像之直===’由各電子束源所 圖7(c)表錢用切Λ 存在偏移。 。藉由Υ轴方向偏向偏移進行校正 向上=:。此時,於電子束源間存有 =子束源間之γ 之在偏移之情形τ,由久带子击有在輪方向偏移方 直、,表於μ方向存在偏移/子束綠所獲得之掃描圓像 15 I29〇430ipif 圖:(?表示使用傾斜符號對χ軸 後之狀悲。猎由X轴方向偏移校 =移造行校正 軸方向之偏移。 %子東源間之 勉而,利用圖8之a Y軸方向偏移以及X轴:移 參數的順序加以說明。 置偏和進行校正 向偏㈣參數内,將 設為7’ (s二 於平臺上之標記之掃描圖像。於取得之 電子束用符號之掃描圖像(S2)#夕進仃才父正,故而取得· 方6 S 3仔之掃描電子束用符號求出電子立 移校正係數設定控制參數使轉: 束嶋之掃描圖像(二〜束,從而取、 圖像::描移進行校-〜” 枚-係'數(校二=水儀,求 =求出偏子束用符: μ方向所求出,方向 東控制的參數(S8;'。、χ轴方向偏移校正係敖二 pif 12904亂 ^軸方向偏私校正加以說明,利 _6⑷θ〜®18(c)對χ軸方向偏移校正加以說明。 圖9是Μ朗電子束源之雜 ===流程圖。再者,於此= 說明。束原(將电子束源之個數設為Ν)之情形加以 掃描η之掃描圖像,對於 車由,偏移量計算旋轉方向偏移校正魏=:斤求出之Υ 权 n = n+1(S3e) ’ 對η||Ν進行比 ) 钹進行(S3b)〜(S3e)牛 1 乂(S3f) ’並反 出關於所有電子束源的藉此計算 於上述(S3b)步驟中 ^正疋數。 水平符號中之2點。圖1〇(a)’、’、/ ㈣專方向偏移而指定 點之—例的圖,指定兩個水平^f—不,定水平符號中之2 端部(檢查No.I),並指定他==平符號上側的 (檢查No.2)。又,圖! ^付號之下側的端部 其他指定例的圖,指定—個水;::水平符號中2點之 檢查N〇.2),於掃描圖像中^部(檢查 向的點數求出偏移量。再者, 9疋之點之Υ軸方 檢查No」之點減去檢查Ν〇2」後=移量是由以圖中之 圖"⑻〜目11(e)表亍矿‘.f後所得的點數表示。 不框與旋轉方向偏移之關係。圖 Ι29048βΐρίί L1,)、(b)表示—樞之範圍以及一框之點數白m 框之X方向的長度為 u数的—例。Positive coefficient · rig For the obtained offset, which is 耔妗X, and find the power 2: source side =: 7 positive coefficient calculation mechanism 1 Calculate the offset of the offset of the output, - Partial two: Description: Qiao: Set 1 in the flat ~ - seatpost; ί:; In Fig. 2, the mark package: is formed on the second and/or lower end of the platform by using the payout number U and the offset for calculating the position of the platform for obtaining the platform I29〇43fllpif. The mark _2 indicates that the mark is set at the lower end and is the same as the Chinese side; the upper end and the lower end of the symbol 11 are set for each electron beam source 2, and the field: beamlet The symbol 12 is provided between the electron beam sources. The road is scanned in the dry circumference by the sweeping of the illumination beam and the movement of the platform to obtain a scanned image. ® 3_= ~ Fig. 3(b) is an example for explaining the shape of the mark, and the shape of the symbol η. The platform uses the symbol 11 to use the position symbol u ί: :: in the direction of the scan direction, the direction symbol "b:: can not find the position symbol... in the case of .... In the direction of the sign of the direction of the sea, the position symbol can be confirmed. Furthermore, the direction of the bit #轳轳n in Fig. 3(a) exists. The shape is only an example, and the shape and the symbol lib I are taken as an example. 12 of each of the scanning electrons beam 2 of each Xuan face 2 'Sha Na 1 child weight scales, towel Xiao Zuo to find the emperor in the beam source suspected direction shift, γ axis direction shift ^ out of position shift index. The X-axis direction shift or the like The scanning electron beam symbol 12 includes a tilt symbol 12b including a scan and a line containing, for example, a centripetal direction tilt ^1_water. 1"Thousands of I2a The following is a description of the offset of the rotation side I29043Qipif 2, the offset of the axis of the axis, and the offset of the x-axis direction by using the symbol for the scanning electron beam. It is only processed and shifted in the direction of rotation according to the γ-axis direction of both ends of the horizontal symbol 12a. Fig. 4 (a) is a view for explaining the amount of rotation and shifting the direction of rotation. In Figure 4 (a), the rotation of the two + 唬 detection I: the γ axis of the two ends of the wide 12 a "position:: 2 angle: π according to the positional offset of the y-axis direction to calculate the rotation, and The scan obtained in the two electron beam sources is shown in Fig. 2a, which is offset according to the position of the same part in the γ-axis direction. Figure 4(b) is used to illustrate the horizontal axis = In Fig. 4(b), the axial direction of the two electron beam sources corresponds to the offset of the position in the γ-axis direction of the offset number obtained by scanning from each electron beam source. And the γ (four) direction between the electron beam sources is calculated again, and is obtained by the two electron beam sources. The symbol (3) towel is shifted according to the X-axis direction of the two images of the same portion. c) is to use the position offset of σ to find the X-fortunate direction offset. In Figure 4(e), the explicit = oblique sign detects the offset, corresponding to t 〃 4 sub-beams from each electron beam source. The position of the y-axis direction of the tilt symbol 12b of the X-axis of the source is the angle of the two 12b of the scanned image, which is set to be inclined at 45 degrees with respect to the water. When the offset amount of the tilt symbol axis direction is offset from the γ axis/flat symbol 12a, the X-degree is obtained, so that the Y-axis direction offset can be obtained. The offset to the offset is the same angular offset. Offset. The offset is used as the X-axis square uy〇4^lpif. The angle of the tilt symbol 12b can be set to be less than 45 degrees. The x-direction is specific to the corresponding angle=the offset is not the same. The angle is obtained by calculating the offset amount of the offset amount shift based on the offset from the ¥ axis direction, and the offset in the direction of the x-axis direction can be obtained, and the yield in FIG. 4(c) can be obtained. In the master-reference, the thin line shows the mark indicated by the thick line as the right = display, and the axis direction offset of the line (3) (indicated by the solid line) can be used according to the tilt symbol using Figure 5 (8) ~ Figure 5 ( b) : Determined from the offset. The offset and the x-axis direction offset are added 6 (= the offset between the x-axis direction source m and the electron beam source 再; this means that the electron beam is compared and compared with the 'root _ 40 image') The offset a in the Y-axis direction (the map shifted by x==r::=r in the solid line table. The difference between the electron beam source marks and the Y-axis direction according to (4)) And find it. (Using the Μ line table, Fig. 6(8) to Fig. 6(d) are diagrams for explaining the x-direction shift. The electron beam source is shown as a deviation of 4::(γ:: lpif Ι2904δβ, obtained by each electron beam source) The marks of the scanned image are compared, and according to the deviation of the horizontal symbol 12a of the mark in the γ-axis direction: the ratio is determined, and the X-axis direction offset between the electron beam sources is as shown in FIG. 6(d). The respective marks of the scanned image obtained by the respective electron beam sources are compared, and the sub-roots are shifted by the rotation direction according to the offset amount of the oblique sign 12b of the mark in the γ-axis direction. The γ-axis direction shift and the X-cylinder offset are corrected for each positional shift, and the scan map can be corrected. FIG. 7(8)=7(d) is a diagram for explaining the position shift correction and the image shift. Here, the three electron beam paths are used to obtain the state of the scanned image. The four examples show the scanning images with the rotation direction offset. The setting angle of the electron beam source 2 or the irradiation state of the light beam: right cause The original offset' is the scan image of the straight line that is struck in the direction of the scanned image obtained by the rotation: yes, direction shift The horizontal direction of the line is indicated. The evening D is inclined at an angle to the obtained scanned image. The direct ===' is offset by the cutoff of the electron beam source from Fig. 7(c). The axial direction offset is corrected upward =: At this time, there is a case where the γ of the sub-beam source is offset between the electron beam sources, and the long-belt is offset by the wheel direction. The scan circle image obtained by the offset/subbeam green in the μ direction is 15 I29〇430ipif. Fig.: (? indicates the use of the tilt symbol to the sinus of the χ axis. Hunting is offset by the X-axis direction. The offset of the axis direction is determined by the order of the Y-axis direction offset and the X-axis: shift parameter in Fig. 8. The offset and correction are set to the offset (four) parameter. 7' (S2) Scanned image of the mark on the platform. Scanned image of the symbol for the acquired electron beam (S2) #夕进仃才父正, and thus obtained the square 6 S 3 scanning electron beam The symbol is obtained by setting the electronic vertical correction coefficient setting control parameter to make the rotation: the scanned image of the beam (two to beam, thus taking, image:: tracing)行校-~" 枚-系'数(校二=水仪,求=determination of the sub-beam constraint: the μ direction is obtained, the direction of the east control parameter (S8; '., χ axis direction offset correction The system 敖2 pif 12904 chaotic ^ axis direction bias correction is explained, _6 (4) θ ~ ® 18 (c) to explain the yaw axis offset correction. Figure 9 is the Μ 电子 电子 电子 电子 === flowchart. In this case, the original image (the number of electron beam sources is set to Ν) is scanned to scan the image of η, and for the vehicle, the offset is calculated by the rotation direction offset correction. Υ weight n = n+1(S3e) 'for η||Ν ratio) 钹(S3b)~(S3e)Now 1 乂(S3f) 'and reverse the calculation of all electron beam sources by the above ( In the step S3b), the number is positive. 2 points in the horizontal symbol. Figure 1 〇 (a) ', ', / (4) The direction of the specified direction offset, the specified point, specify two levels ^f - no, the 2 end of the horizontal symbol (check No. I), and Specify him == on the upper side of the flat symbol (check No. 2). Again, the picture! ^The figure of the other specified example at the end of the lower side of the paying number specifies the water;:: Checks the two points in the horizontal symbol N〇.2), and finds the number of points in the scanned image. Offset. In addition, the point of the 9疋 point of the axis check No" minus the check Ν〇 2" = the amount of shift is determined by the figure in the figure "(8)~目11(e) The number of points obtained after '.f is not related to the direction of rotation. Figure Ι29048βΐρίί L1,), (b) indicates the range of the pivot and the number of points in a frame. The length of the frame in the X direction is u. Number of examples.

Ly (例如3_) x=fm)、y方向的長度為 之點數。 '、有Px之點數,y方向具有i)y - 因此,對水平箱:狀 冑應於框而計算框中軸方向之偏移量,藉由使點數 私式進行&轉方向偏移之偏移係數。可藉由下 ^ 旋轉方向偏移校正係數= 框Y方向之長度/框γ方向之 ^。例如,當—框之範圍為(47mmx3方、向之長度χ偏 數為(3520點Χ68點)日士 , mm)、一框之點 形下,偏移量為轴方向下偏移2點數之情 °·〇〇1855347-3 (mm) /68 (p〇im) f 圖Η (c)表示旋轉方向 ^^(Point)。 表錢轉方向偏移為右旋轉^^旋轉之情形,圖U ::方向偏移之旋轉方Μ麵例^。目11 (e)是旋 _ ~方向偏移為右旋轉,圖中 ®中之“right”表示旋 左旋轉。再者,上述數勤 I表示_方向偏移為 繼而,就Y軸方向偏移^二應於右旋轉方向。 圖12是用以說明電子束^糸數之計算加以說明。 之計算(圖8流程圖中之s Y軸方向偏移校正係數 固電子束源(電子束源之;者,於此表示, 求出以電子束源m為基準而 為N)之情形時,依 偏移進行校正之校正係數的顺序了他電子束源之丫轴方向 18 pif Ι2904δΘΐρί 對基準電子束源m進行設定。可將多個電子束源内中 之任二電子束源設定為基準電子束源。例如,電子束源個 數為“7”之情形時,可設m = 4且將位於中央之第4雨 束源作為基準(S6a)。 i 以下,求出鄰接於基準電子束源之電子束源的Y轴方 ::山並求出對該γ軸方向偏移進行校正之校正俜數, 進而求出鄰接之雷子击、、原夕v γ 1 丁Ί 對基準電子束源之兩側進砂/偏移以及校正係數。 中可求出對基準電子束η错此於所有電子束源 係數。 ,、γ軸方向偏移進行校正的校正 首先,對基準電子束源m求 源,m — 2,...,、出存在衣一方側的電子束 (S6b〜S6f),其次求 的Y軸方向偏移之校正係數 的電子束源(m+1,m + f準电子束源阳中存在於他方側 正係數(S6g〜S6k)。 N)的Y轴方向偏移之校 求出Y軸方向偏移 源m與電子束源m〜丨夕父正係數之情形時,根據電子束 水平符號之2¾ (S6b)=圖像指定·用光束符號之 偏移量(S6c)。並根所^出所指定2點於γ軸方向的 γ軸方向偏移校正係數(s如出之γ軸方向偏移量計算出 設 時(S6e)。“ ” 反覆進行(S6b)〜(S6 、m與0進行比較(S6f), 計算基準電子束源步驟直至m為“〇,,,藉此 正係數。 之笔子束源的Y軸方向偏移校 19 pif I290434 繼而,根據電子束源„1與電子束源m ,糊用光束符號之水平符號之2點(S6^ t曰點於Y軸方向的偏移量(S6h)。根據所求出之 車=向偏移量計算γ軸方向偏移校正係數(S6i)。 反‘:7r+1(S6j),對⑺與“N”進行比較(S6k), 計算基準電子束源m+1〜N之電子束㈣\二丄错此 校正係數。 ❺于束源的γ軸方向偏移 藉此,可求出對基準電子束源m中所有電子 軸方向偏移進行校正的校正係數。 6、 Θ 3⑻® l3(c)疋用以說明電子束源間之 ,移校正的圖。圖13 (a)表示電子束源= 掃描電子束用符號間之位置關係 子束用符號之掃描圖像。電子束源m與S3,描電 掃描電子束用符號的圖像因電子束源之 之 察為於Υ軸方向上偏移。於此,如圖13(c)戶:偏私, 掃描電子束用符號之水平符號(用實線表示)之^’,定 = Ν°·2,根據所指定之點在”㈣之點數二 再者,於此,偏移量是由以圖中檢查Ν〇 查Νο.2之點的後所得的點數而表示。 ^减去檢 14 (bS) HT)V-(c)r'I# ° ® 4 (b) (C)表不一框之範圍以及一框之租姐 並表示於Y方向上偏移py的狀態 a 卜例, 表不兩個掃 20 I29O4308iPif 描電子束用符號之掃描圖像(分別僅表示一側)’並可觀 察到於Y方向上偏移py。 框於X方向上的長度為Lx (例如47 mm )、y方向上 的長度為Ly (例如3 mm ),於X方向具有Px之點數,於 y方向具有Py之點數。 於與上述框之對應關係中,對水平符號之Y軸方向的 偏移量,藉由使點數對應於框而計算出Y軸方向偏移之偏 移係數。可藉由以下之式進行計算: Y轴方向偏移校正係數= 偏移量X框Y方向之長度/框Y方向之點/最小分解 能。例如,當一框之範圍為(47mm><3mm),直一框之Y 方向之採樣點數為68時,偏移量為在Y軸方向上偏移-4 點之情形下, -44 = -4 (point) x3000 (um) /68 (point) /4 (um)。 繼而,就X軸方向偏移校正係數之計算加以說明。 圖15是用以說明計算電子束源之X轴方向偏移校正 係數(圖8流程圖中之S7)的流程圖。再者,於此表示, 具有多個電子束源(電子束源之個數為N)之情形下,依 次求出將電子束源m作為基準而對其他電子束源之Y軸方 向偏移進行校正之校正係數的順序。 對基準電子束源m進行設定。可將多個電子束源内之 任一電子束源設為基準電子束源。例如,電子束源之個數 為“7”之情形下,可設m=4且將位於中央之第4電子束 源作為基準。(S7a)。 129043伽 pif 以下,求出鄰接於基準電子束源之 向偏移,並求出對該X軸方向偏移進源之X軸方 進而求出鄰接之電子束源之X轴方内=正之权正係數, 於基準電子束源之兩側進行該叶曾ϋ烏矛夕以及校正係數。 r基準電子束源之χ軸^ 首先,求出基準電子束源m中 源(m-卜m_2, .·····,1)之X軸方命土;—方側之電子東 〜S7f),其次求出基準電子束源二=校正係數(S7b 子束源(nrH,m+2,.....,,N)之γ存在於他方侧之電 數(S7g〜S7k)。 軸方向偏移的校正係 求出X軸方向偏移之校正係數之 源m與電子束源πΜ之掃描圖像 :田根據:子束 傾斜符號的2點(S7b),求出所於曰^ ^田用光束符號之 的偏移量㈣。根據所求出之2點於:軸方向 X軸方向偏移校正係數(S7d)。1方向偏移量計算出 設,m-1 (S7e),對阳鱼 反覆進行⑽)〜(S7e)之步二進饤,⑻η, 對於基準電子束源卜㈤之rA m—為〇,藉此 校正係數。 弘子束源汁异X軸方向偏移 、、挺而,根據電子束源m與電 指定掃描用光束符號之傾钭符;:束源m+1之掃描圖像’ 沪卞々1 针付破的2點(S7g),朿屮所 曰疋之2點於y軸方向的偏移 Y車由方向傯穸旦里(S7h)。根據所求出之 偏私里叶算x軸方向偏移校正係數(S7i)。 22 I29043sftipii 設m=m+l ( S71 ),對m與“N”進行比較(S7k ), 反覆進行(S7g)〜(S7j)之步驟直至m為“N” ,藉此 計算基準電子束源m+Ι〜N之電子束源之X軸方向偏移校 正係數。 藉此,可計算對基準電子束源m中所有電子束源之X 軸方向偏移進行校正之校正係數。 圖16(a)〜圖16(c)是用以說明電子束源間之X軸方向 偏移校正的圖。圖14 ( a)表示電子束源m與m-1以及掃 描電子束用符號間之位置關係,圖14 (b)表示掃描電子 束用符號之掃描圖像。電子束源m與電子束源m-1之掃描 電子束用符號之圖像的X轴方向偏移,於傾斜符號相對於 水平符號呈45度之角度的情形下進行觀察時,可作為Y 轴方向偏移。於此,如圖16 ( c)所示,對於掃描電子束 用符號之傾斜符號(用實線表示)指定檢查No.l與檢查 No.2,根據所指定之點的Y轴方向的點數求出偏移量。 再者,於此,偏移量是由以圖中檢查No.l之點減去檢 查No.2之點後所得的點數而表示。 圖17(a)〜圖17(c)表示框與X軸方向偏移之關係。圖 17 (b)、(c)表示一框之範圍以及一框之點數之一例, 並表示向X方向偏移px之狀態。圖17 ( a)表示兩個掃描 電子束用符號之掃描圖像(分別僅表示一側),觀察時, 於X方向只偏移px之狀態可作為於Y方向只偏移py (= px)。 框於X方向的長度為Lx (例如47mm )、於y方向的 23 129043^81^ 長度為Ly (例如3mm),於χ方向且丄… 方向具有~之點數。 、有ίχ之點數,於y 於與上述框對應之關係中,對於傾斜符號之 量,藉由使點數與框對應而計算x軸方向偏移之偏 移係數。可藉由以下之式進行計算·· 扁 X軸方向偏移校正係數= 偏移量X框γ方向之長度/框γ方Ly (for example, 3_) x=fm), and the length in the y direction is the number of points. ', there are Px points, y direction has i) y - Therefore, for the horizontal box: the shape should be calculated in the frame direction and the axis direction offset, by making the point privately & Offset factor. The correction coefficient = the length of the frame Y direction / the frame γ direction by the lower ^ rotation direction. For example, when the range of the frame is (47mmx3 square, the length of the length χ is (3520 Χ 68 points) Japanese, mm), the point of the frame is offset, the offset is 2 points under the axis direction情情··1855347-3 (mm) /68 (p〇im) f Figure Η (c) indicates the direction of rotation ^^(Point). The shift direction of the table money is the case of the right rotation ^^ rotation, and the rotation of the U: direction offset is shown in the figure ^. Item 11 (e) is the rotation _ ~ direction offset is the right rotation, and the "right" in the diagram in the figure indicates the rotation left rotation. Furthermore, the above-mentioned number I indicates that the _ direction shift is followed by the shift in the Y-axis direction and the right rotation direction. Fig. 12 is a view for explaining the calculation of the number of electron beams. The calculation (in the flow chart of FIG. 8 , the y-axis direction offset correction coefficient solid-electron beam source (the electron beam source; here, it is determined that the electron beam source m is N as a reference) The order of the correction coefficients corrected by the offset is the axis direction of the electron beam source. 18 pif Ι 2904δΘΐρί The reference electron beam source m is set. Any two of the plurality of electron beam sources can be set as the reference electron beam. For example, when the number of electron beam sources is "7", m = 4 can be set and the fourth rain beam source located at the center can be used as a reference (S6a). i Hereinafter, it is determined adjacent to the reference electron beam source. The Y-axis side of the electron beam source:: and obtain the corrected number of corrections for correcting the shift in the γ-axis direction, and then find the adjacent Thunder hit, the original eve v γ 1 Ί Ί to the reference electron beam source Side sanding/offset and correction factor. Correction for correcting the reference electron beam η to all electron beam source coefficients and γ-axis direction offset. First, source the reference electron beam source m. m — 2, . . . , an electron beam (S6b to S6f) on the side of the garment, which is The electron beam source of the correction coefficient of the Y-axis direction offset obtained by the second time (m+1, m + f quasi-electron beam source is present in the positive side coefficient (S6g to S6k) of the other side. N) is shifted in the Y-axis direction When the school obtains the Y-axis direction offset source m and the electron beam source m~丨夕父 positive coefficient, according to the electron beam horizontal symbol 23⁄4 (S6b) = image designation / use beam symbol offset (S6c) The γ-axis direction offset correction coefficient of the two points specified in the γ-axis direction is specified by the root point (s) (S6e) is calculated as the γ-axis direction offset amount. “ ” Repeats (S6b) to (S6) , m is compared with 0 (S6f), the reference electron beam source step is calculated until m is "〇,,, by this positive coefficient. The Y-axis direction offset of the pen beam source is corrected 19 pif I290434, and then, according to the electron beam source „1 with the electron beam source m, 2 points of the horizontal symbol of the beam symbol for the paste (S6^t曰 offset in the Y-axis direction (S6h). Calculate the γ-axis according to the obtained vehicle=offset amount Direction offset correction coefficient (S6i). Inverse ': 7r+1(S6j), compare (7) with "N" (S6k), calculate the electron beam (4) of the reference electron beam source m+1~N The correction coefficient 偏移 is offset from the γ-axis direction of the beam source, thereby obtaining a correction coefficient for correcting the deviation of all the electron axis directions in the reference electron beam source m. 6. Θ 3(8)® l3(c) A diagram illustrating the shift correction between the electron beam sources. Fig. 13 (a) shows the scanning image of the electron beam source = positional relationship between the symbols used for scanning electron beams, the electron beam sources m and S3, and the scanning electron scanning The image of the symbol for the electron beam is offset in the direction of the x-axis due to the observation of the electron beam source. Here, as shown in Fig. 13 (c): the private symbol of the electron beam, the horizontal symbol of the symbol for the scanning electron beam (indicated by the solid line) ^', 定 = Ν ° · 2, according to the specified point in the "(4) points two again, here, the offset is obtained by checking the point Νο.2 in the figure Expressed in points. ^minus check 14 (bS) HT)V-(c)r'I# ° ® 4 (b) (C) The range of the box and the frame of the renter and indicate the offset of py in the Y direction State a. For example, the two scanned images of the I29O4308iPif electron beam symbol (only one side are shown) are observed and the py is shifted in the Y direction. The length of the frame in the X direction is Lx (for example, 47 mm), the length in the y direction is Ly (for example, 3 mm), the number of points in the X direction is Px, and the number of points in the y direction is Py. In the correspondence with the above-described frame, the offset amount in the Y-axis direction of the horizontal symbol is calculated by the number of points corresponding to the frame, and the offset coefficient in the Y-axis direction is calculated. It can be calculated by the following formula: Y-axis direction offset correction coefficient = offset X frame Y direction length / frame Y direction point / minimum decomposition energy. For example, when the range of a frame is (47 mm >< 3 mm), the number of sampling points in the Y direction of the straight frame is 68, and the offset is -4 points in the Y-axis direction, -44 = -4 (point) x3000 (um) /68 (point) /4 (um). Next, the calculation of the X-axis direction offset correction coefficient will be described. Fig. 15 is a flowchart for explaining calculation of the X-axis direction offset correction coefficient of the electron beam source (S7 in the flowchart of Fig. 8). In addition, when a plurality of electron beam sources (the number of electron beam sources are N) are sequentially obtained, the Y-axis direction shift of the other electron beam sources is determined by using the electron beam source m as a reference. The order of the corrected correction factors. The reference electron beam source m is set. Any of the plurality of electron beam sources can be set as the reference electron beam source. For example, in the case where the number of electron beam sources is "7", m = 4 can be set and the fourth electron beam source located at the center can be used as a reference. (S7a). 129043 gamma pif or less, the offset to the reference electron beam source is obtained, and the X-axis of the source is shifted in the X-axis direction to obtain the X-axis of the adjacent electron beam source = positive The positive coefficient is used to perform the leaf and the correction coefficient on both sides of the reference electron beam source. r 基准 axis of the reference electron beam source ^ First, find the X-axis squared earth of the source (m-b m_2, . . . . . . , 1) in the reference electron beam source m; - the electron side of the square side ~ S7f Then, the reference electron beam source 2 = correction coefficient (the electric quantity (S7g to S7k) in which the γ of the S7b sub-beam source (nrH, m+2, . . . , N) exists on the other side is obtained. The correction of the direction offset is to obtain a scan image of the source m of the correction coefficient of the X-axis direction offset and the electron beam source πΜ: Field: According to the two points of the sub-beam tilt symbol (S7b), find the 曰^^ The offset amount of the field beam symbol (4). The correction coefficient (S7d) is offset from the X-axis direction in the axial direction according to the obtained two points. The 1-direction offset is calculated, m-1 (S7e), The yang fish repeatedly performs (10))~(S7e) step two 饤, (8) η, and the reference electron beam source (5) rA m- is 〇, thereby correcting the coefficient. The Hongzi beam source juice is shifted in the X-axis direction, and it is quite flat. According to the electron beam source m and the electric power, the scanning symbol of the scanning beam is used; the scanned image of the beam source m+1 is broken. At 2 o'clock (S7g), the offset of the 2 points in the y-axis direction is Y-direction (S7h). The x-axis direction offset correction coefficient (S7i) is calculated based on the obtained partial private leaves. 22 I29043sftipii Let m=m+l (S71), compare m with “N” (S7k), and repeat the steps of (S7g)~(S7j) until m is “N”, thereby calculating the reference electron beam source m +Ι~N electron beam source X-axis direction offset correction factor. Thereby, the correction coefficient for correcting the X-axis direction offset of all the electron beam sources in the reference electron beam source m can be calculated. 16(a) to 16(c) are diagrams for explaining the X-axis direction offset correction between electron beam sources. Fig. 14 (a) shows the positional relationship between the electron beam sources m and m-1 and the symbols for scanning electron beams, and Fig. 14 (b) shows the scanned image of the symbols for scanning electron beams. The scanning electron beam of the electron beam source m and the electron beam source m-1 is offset by the X-axis direction of the image of the symbol, and can be regarded as the Y-axis when the oblique symbol is observed at an angle of 45 degrees with respect to the horizontal symbol. Direction offset. Here, as shown in FIG. 16(c), the inspection No. 1 and the inspection No. 2 are designated for the oblique sign of the scanning electron beam symbol (indicated by a solid line), and the number of points in the Y-axis direction according to the designated point is set. Find the offset. Here, the offset is expressed by the number of points obtained by subtracting the point of the inspection No. 2 from the point of the inspection No. 1 in the figure. 17(a) to 17(c) show the relationship between the frame and the X-axis direction offset. 17(b) and 17(c) show an example of the range of a frame and the number of dots in a frame, and shows a state in which px is shifted in the X direction. Figure 17 (a) shows the scanned images of the two scanning electron beam symbols (only one side is shown). When observing, the state of only shifting px in the X direction can be used as the only py (= px) in the Y direction. . The length of the frame in the X direction is Lx (for example, 47 mm), the length in the y direction is 23 129043^81^, and the length is Ly (for example, 3 mm). In the χ direction and the 丄... direction has a dot of ~. In the relationship corresponding to the above-mentioned frame, the offset coefficient of the x-axis direction offset is calculated by the number of points corresponding to the frame. It can be calculated by the following formula: · Flat X-axis direction offset correction coefficient = Offset X frame γ direction length / frame γ square

能。例如,當-框之範圍為(47—3_),且:框= 方向之採樣點數為68時,在Y| L之Y 形下,偏移量為 在軸方向上偏移2點數之情 2二():= 軸方向偏移校正、以及χ軸;=偏移校正、Y 的圖。 仅正之校正運算順序 圖18 “)表示自左向右依 偏移校正進行運算處理之情形的—子束源之旋轉方向 與各電子束源之間無關,一光東例。旋轉方向偏移校正 他電子束源之旋轉方向偏移校正^方向偏移校正對其 子束源可以任意順序進行校正。㈢生影響,故而對電 圖18 (b)是Y軸方向偏移 電子束源中以中央之電子束源^ 之-例,於7個 方向偏移以。首先,於基準.騎準依次進行γ轴 側之No.3的電子束源之間進:,0.4與鄰接於其左 於Νο.3與Μ電子束源之轴方向偏移校正,繼而, 仃軸方向偏移校正,之 24 I29043#iPif 後方、、Ν〇·2與ν〇·〗電子束湄 從而完成左方電子束源γ、=仃¥軸方向偏移校正, 繼而,第时,於基準電 之No.5之電子束源之間進行二〇. #鄰接於其右側 於心與版6之電子束源之間校正,繼而, 之後,於No.6與N〇.7之電仃Y軸方向偏移校正’ 校正,從而完成右方電子束^源^間進行Υ轴方向偏移 藉此,可對财Λ 財向偏移校正。 圖方移進行校正。 方向偏移校正同樣,7個電順序7例,與Y軸 Ν〇·4為基準依次進行 =’以中央之電子束源 束源之X財向偏健_1向偏移校正’錢行所有電子 旬上ΐΐ ’於方向、χ轴方向之校正中,夢由將rt 標=====求= Μ ’就本發明之職f子束裝置在·相上 兄明:圖19是顯示晝面例,顯示用於 :: 使用掃描電子束用符號等標記進行校正處i 圖19之左方畫面中顯示有掃描圖像,可指定 像中所顯示之掃描電子束射持4標記的特定位置。^ 圖像上的點的座標值顯示於圖N左方晝面之下方部: 下“Plotl”按钮後,第i校正點之座標值則會顯示於盆右 部分’同樣地’按T “P1〇t2”按紐後,第2之校正點之座 25 I29043〇8iPif 標值會顯示於其右部分。 —圖19之右方畫面中顯不有掃描電子束用符號 疋^校正點,其下方顯示有用於選擇校正事項或^指 之按鈕、以及表示校正事項之列表。 —*乍内容 選擇校正事項之按崎有以τ ,即 ==校正之μ U()tate adjust,旋轉調整)can. For example, when the range of the - frame is (47 - 3_), and the number of sampling points in the frame = direction is 68, in the Y shape of Y | L, the offset is shifted by 2 points in the axial direction.情 2 2 (): = axis direction offset correction, and χ axis; = offset correction, Y map. Only the correct correction operation sequence Fig. 18 ") indicates the case where the operation processing is performed from left to right according to the offset correction - the rotation direction of the beam source is independent of each electron beam source, and a rotation example is corrected. The rotation direction offset correction of the electron beam source is corrected by the direction offset correction. The sub-beam source can be corrected in any order. (3) The influence is generated, so the electrogram 18 (b) is the center of the Y-axis direction offset electron beam source. For example, the electron beam source is shifted in seven directions. First, the electron beam source of No. 3 on the γ-axis side is sequentially performed on the basis of the reference, and 0.4 is adjacent to the left Ν. .3 offset correction with the axis direction of the Μ electron beam source, and then, the 仃 axis direction offset correction, 24 I29043#iPif rear, Ν〇·2 and ν〇·〗 electron beam 湄 to complete the left electron beam source γ, =仃 axis direction offset correction, and then, at the first time, between the electron beam sources of the reference electric No. 5, the correction is made between the right side of the electron beam source adjacent to the core and the plate 6. Then, after that, the correction of the Y-axis direction of the No. 6 and N〇.7 is corrected, and thus The right electron beam ^ source ^ is offset in the direction of the x-axis, which can correct the offset of the financial direction. The figure shift is corrected. The direction offset correction is the same, 7 cases are 7 cases, and the Y axis is 〇·4 is sequentially performed as the reference = 'X-finance of the electron beam source of the central source _1 to the offset correction 'money line all the electronic 旬上ΐΐ' in the direction, the direction of the axis correction, dream by Rt mark =====求= Μ 'On the position of the present invention, the sub-beam device is in the middle of the brother: Figure 19 is a display example, the display is used for:: using the scanning electron beam with a symbol or the like Correction i The scanned image is displayed on the left screen of Figure 19. You can specify the specific position of the scanned electron beam 4 marker displayed in the image. ^ The coordinate value of the point on the image is displayed on the left side of Figure N. Below the face: After the “Plotl” button, the coordinate value of the i-th correction point will be displayed in the right part of the basin. 'Samely' press the T “P1〇t2” button, the second calibration point seat 25 I29043 〇8iPif value will be displayed in the right part. - The picture on the right side of Figure 19 shows no scanning electron beam symbol 疋^ correction point, below it Considerations for selecting a correction means or the ^ button, and a list indicating the correction matters - * matters at first by selecting a correction content has to Kawasaki [tau], i.e. the correction == μ U () tate adjust, rotation adjustment)

軸方向偏移校正之按鈕(Yax k擇Y 選擇X軸方向偏移校正之 .釉捫I),以及’ 作為選擇操作内容之按二(有 、“pi〇t2” φ1δ_ α 步按鈕,其將 以及返回原處之“上=,,=正點追加記錄於列表中, ⑽偏移校正、 正係數(參數)。二:==根, 數已取得之狀能m =不同之$景色而顯示校正係 態等。再者,圖、ι9 之狀態、以及取得前之狀 [產業上之可利二列表之-部分。Axis direction offset correction button (Yax k selects Y to select X-axis direction offset correction. Glaze 扪 I), and 'as the selection operation, press 2 (with, "pi〇t2" φ1δ_ α step button, which will And return to the original "up =,, = positive point added record in the list, (10) offset correction, positive coefficient (parameter). Two: == root, the number has been obtained can m = different $ view and display correction System, etc. Again, the state of the graph, ι9, and the state before the acquisition [industry's list of profitable two - part.

^ TFT 等中。 析儀、知描電子顯微鏡、X線分析裝置 【圖式簡單說明】 3 2 ί = Ϊ明本發明之掃描電子束裝置之概略圖。 圖3(Π兄明本發明所具有之標記的圖。 ⑻是用以說明本發明之標記形狀之示例 26 的圖。 置讲圖'4軸、_本發 及丫,向偏用以說明本發明之χ轴方向偏移以 方向偏移==兒明求出對本發明之旋#W 數之^二二方崎之各位^ 移校】二:2:計算本發明之電子束源之旋轉方向偏 方向,之i平說明用以求出本發明之旋轉 之關ij的圖。圖il(e)疋表不本發明之框與旋轉方向偏移 Υ抽方向偏移校正的圖之電子束源間之 圖14(a)〜圖M(c)是表示本發明之框與 的圖。 7侷矛夕 偏移校正係本發明之好麵之Y轴方向 γ抽==)是用以說明本發明之電子知 之關係的圖^ TFT, etc. Analyzer, scanning electron microscope, and X-ray analysis apparatus [Simplified description of the drawings] 3 2 ί = A schematic diagram of the scanning electron beam apparatus of the present invention. Fig. 3 is a diagram showing the mark of the present invention. (8) is a diagram for explaining an example 26 of the mark shape of the present invention. The figure "4 axis, _this hair and 丫" is used to explain this In the invention, the direction of the yaw axis is offset by the direction shift == 儿明. The rotation of the electron beam source of the present invention is calculated by calculating the rotation of the #W number of the invention. The direction of the deviation, which is a diagram for determining the rotation ij of the present invention. Figure il(e) shows the electron beam source of the diagram in which the frame of the present invention is not offset by the direction of rotation. 14(a) to M(c) are diagrams showing the frame of the present invention. The 7-axis offset correction is the Y-axis direction of the good side of the present invention. Diagram of the relationship between the invention and the electronic

27 I29043#8iPif 圖b是用以說明計算本發明之電子束源 偏移校正係數的流程圖。 X輪方向 圖16(a)〜® 16(c)是用以說明本發明之 X軸方向偏移校正的圖。 十束源間之 圖Π⑻〜®M7(C)是表示本發 之關係的圖。 一 X軸方向偏移 圖18⑻〜圖18(C)是用以說明本 1 :掃描電子束裝置 電子束源 平臺 檢測器 掃描圖像形成機構 掃描圖像記憶機構 7a 置偏移校正她計算機構 7b ·$轉方向偏移校正絲計算機構 ^ 移校正餘計算機構 8 W向偏移校正餘計算 參數記憶機構 9·控制機構 11 :平臺用符號 2 4 627 I29043#8iPif Figure b is a flow chart for explaining the calculation of the electron beam source offset correction coefficient of the present invention. X-wheel direction Figs. 16(a) to 16(c) are views for explaining the X-axis direction offset correction of the present invention. Fig. 8 (8) to ® M7 (C) between the ten sources are diagrams showing the relationship between the present invention. An X-axis direction shifting FIG. 18(8) to FIG. 18(C) are for explaining the present invention: scanning electron beam apparatus electron beam source platform detector scanning image forming mechanism scanning image memory mechanism 7a offset correction her calculation mechanism 7b · $ directional offset correction wire calculation mechanism ^ shift correction calculation mechanism 8 W-direction offset correction calculation parameter memory mechanism 9 · control mechanism 11 : platform symbol 2 4 6

28 I29043fisipif 1 la :位置符號 lib :方向符號 12 :掃描電子束用符號 12a :水平符號 12b :傾斜符號 13 :路徑28 I29043fisipif 1 la : position symbol lib : direction symbol 12 : scanning electron beam symbol 12a : horizontal symbol 12b : oblique symbol 13 : path

2929

Claims (1)

I29043#pif 十、申請專利範圍: 1.一種掃描電子束裝置,其3 ^ 上進行二次元掃描後形成掃描圖$使1電粒子光束於 特徵在於: 的掃描電子束裝置,其 於支持試料之平臺上設有標兮己, 根據上述標記的掃描圖像求出平+ 掃描電子束之座標系的位置偏移”室之座標系以及/或 其 中2.如申請專利範圍第1項所述之掃描電子束裳置 具有多個電子束源,且 上述標記是設置於上述各電 掃描範圍内的掃描電子束用符號原之知描電子束的各 根據該掃描電子束用符號 ::描電子束之座標系中至少,於 私、γ軸方向偏移、w方向偏移中之任—個m方向偏 中上=請專利範圍第2項所述之掃描電子束量。 中上,描電子束用符號具有: n ’其 —含有上述掃描方向上之直、_水平符號m 私上述水平符號方向上之直線的傾斜符號。及含有傾 中I如申明專利範圍第3項所述之掃描電子束裝置,其 根據上述水平符號的兩端之Y軸方向 1,求出旋轉方向偏移,。上的位置偏移 在由兩個電子束源而獲得之掃描圖像的兩個水平符號 30 Ι2904δΘΐρίΓ 中,根據同一部分之Υ軸方向的位置偏移量,求出Υ軸方 向偏移, 在由兩個電子束源而獲得之掃描圖像的兩個傾斜符號 . 中,根據同一部分之Υ軸方向的位置偏移量,求出X軸方 向偏移。 5.如申請專利範圍第1項所述之掃描電子束裝置,其 中 上述標記是取得平臺座標之平臺用符號, φ 該平臺用符號具有,決定平臺上之位置的位置符號, 以及決定位置符號之方向的方向符號。I29043#pif X. Patent application scope: 1. A scanning electron beam device, which performs a two-dimensional scanning on a 3^ scan to form a scanning image. The electron beam is characterized by: a scanning electron beam device, which supports the sample. The platform is provided with a standard, and the coordinate position of the coordinate system of the flat + scanning electron beam is determined according to the scanned image of the above-mentioned mark and/or the coordinate system of the room is as described in claim 1. The scanning electron beam is provided with a plurality of electron beam sources, and the mark is a scanning electron beam symbol which is disposed in each of the electric scanning ranges, and each of the scanning electron beam symbols is used according to the scanning electron beam: At least in the coordinate system, in the private, γ-axis direction, w-direction offset, any one of the m-directions is offset by the middle of the scanning electron beam amount as described in the second item of the patent range. The symbol has: n 'the - the oblique sign containing the straight line in the above-mentioned scanning direction, the horizontal symbol m, the straight line in the direction of the horizontal symbol, and the scanning current as described in item 3 of the claimed patent scope. The beam device obtains a rotation direction offset based on the Y-axis direction 1 of both ends of the horizontal symbol, and the upper position is offset by two horizontal symbols 30 Ι 2904 δ Θΐ ρ Γ of the scanned image obtained by the two electron beam sources. In the middle, according to the positional offset of the same part of the x-axis direction, the x-axis direction offset is obtained, and in the two oblique symbols of the scanned image obtained by the two electron beam sources, according to the x-axis of the same part The positional shift amount of the direction is obtained by shifting the X-axis direction. The scanning electron beam apparatus of claim 1, wherein the mark is a platform symbol for obtaining a platform coordinate, φ the platform has a symbol , the position symbol that determines the position on the platform, and the direction symbol that determines the direction of the position symbol.
TW094146676A 2005-02-02 2005-12-27 Scanning electron beam device TWI290430B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026721 2005-02-02

Publications (2)

Publication Number Publication Date
TW200633496A TW200633496A (en) 2006-09-16
TWI290430B true TWI290430B (en) 2007-11-21

Family

ID=36777103

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094146676A TWI290430B (en) 2005-02-02 2005-12-27 Scanning electron beam device

Country Status (5)

Country Link
JP (1) JP4555909B2 (en)
KR (1) KR100893283B1 (en)
CN (1) CN101080801B (en)
TW (1) TWI290430B (en)
WO (1) WO2006082714A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855875B2 (en) * 2006-09-06 2012-01-18 富士フイルム株式会社 Electron beam drawing apparatus and electron beam deviation compensation method
JP5164355B2 (en) * 2006-09-27 2013-03-21 株式会社日立ハイテクノロジーズ Charged particle beam scanning method and charged particle beam apparatus
WO2009147707A1 (en) * 2008-06-02 2009-12-10 株式会社島津製作所 Liquid crystal array inspection apparatus and method for correcting imaging range
JP5120459B2 (en) * 2008-10-23 2013-01-16 株式会社島津製作所 Particle beam therapy system
JP5472690B2 (en) * 2009-06-23 2014-04-16 株式会社島津製作所 Scanning beam irradiation device
JP5788719B2 (en) * 2011-06-09 2015-10-07 株式会社日立ハイテクノロジーズ Stage device and control method of stage device
JP6643072B2 (en) * 2015-12-10 2020-02-12 キヤノン株式会社 Microscope system and control method thereof
CN109166781A (en) * 2018-09-11 2019-01-08 镇江乐华电子科技有限公司 scanning transmission electron microscopic imaging method and system
JP7238672B2 (en) * 2019-07-25 2023-03-14 株式会社ニューフレアテクノロジー Multi-beam writing method and multi-beam writing apparatus
CN111879494B (en) * 2020-08-10 2022-05-17 中国空气动力研究与发展中心超高速空气动力研究所 Low-density wind tunnel flow field space measuring point position calibration method based on electron beam fluorescence
CN112259469B (en) * 2020-10-21 2022-10-18 上海华力集成电路制造有限公司 Semiconductor device critical dimension measuring method and method for obtaining SEM image

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940452A (en) * 1982-08-30 1984-03-06 Fujitsu Ltd Electron beam device
JP3238487B2 (en) * 1991-11-14 2001-12-17 富士通株式会社 Electron beam equipment
JP4186464B2 (en) * 2000-03-13 2008-11-26 株式会社日立製作所 Charged particle beam scanning system
JP4690586B2 (en) * 2000-06-09 2011-06-01 株式会社アドバンテスト Mask, electron beam deflection calibration method, electron beam exposure apparatus
JP3765988B2 (en) * 2001-02-23 2006-04-12 株式会社日立製作所 Electron beam visual inspection device
JP3349504B1 (en) * 2001-08-03 2002-11-25 株式会社日立製作所 Electron beam drawing equipment and electron microscope
JP2004356276A (en) * 2003-05-28 2004-12-16 Riipuru:Kk Charged beam proximity lithography method and system
JP3689097B2 (en) * 2003-09-03 2005-08-31 株式会社東芝 Charged beam drawing apparatus and drawing method

Also Published As

Publication number Publication date
WO2006082714A1 (en) 2006-08-10
CN101080801A (en) 2007-11-28
JPWO2006082714A1 (en) 2008-08-07
TW200633496A (en) 2006-09-16
KR100893283B1 (en) 2009-04-17
KR20070056142A (en) 2007-05-31
CN101080801B (en) 2010-06-23
JP4555909B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
TWI290430B (en) Scanning electron beam device
Goldstein et al. Scanning electron microscopy and X-ray microanalysis
Schwarzer et al. Present state of electron backscatter diffraction and prospective developments
Schropp et al. Hard x-ray nanobeam characterization by coherent diffraction microscopy
ES2655667T3 (en) Dual image method and system for generating a multidimensional image of a sample
Cornils et al. The optical system of the HESS imaging atmospheric Cherenkov telescopes. Part II: mirror alignment and point spread function
CN104048979B (en) Multiple image measurement
CN101685754A (en) Method for correcting distortions in a particle-optical apparatus
Kennedy et al. Absorption microanalysis with a scanning soft X‐ray microscope: mapping the distribution of calcium in bone
US9754360B2 (en) Determination of spatial distribution of charged particle beams
TW202223965A (en) Apparatus and method for determining a position of an element on a photolithographic mask and computer program
Dai et al. Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages
Alpers et al. A discrete tomography algorithm for improving the quality of three-dimensional X-ray diffraction grain maps
US9396907B2 (en) Method of calibrating a scanning transmission charged-particle microscope
Zacharias et al. A novelty for cultural heritage material analysis: transmission electron microscope (TEM) 3D electron diffraction tomography applied to Roman glass tesserae
Drzazga et al. Three-dimensional characterization of microstructures in a SEM
JP7138066B2 (en) A Method for Automatically Aligning a Scanning Transmission Electron Microscope for Precession Electron Diffraction Data Mapping
Dreier et al. Virtual subpixel approach for single-mask phase-contrast imaging using Timepix3
Mittelberger et al. Automated image acquisition for low-dose STEM at atomic resolution
Sousa et al. Determination of quantitative distributions of heavy-metal stain in biological specimens by annular dark-field STEM
Mankos et al. A novel low energy electron microscope for DNA sequencing and surface analysis
Maune PHOTOGRAMMETRIC SELF-CALIBRATION OF A SCANNING ELECTRON-MICROSCOPE.
Krzyžánek et al. MASDET—a fast and user-friendly multiplatform software for mass determination by dark-field electron microscopy
JP2006125952A (en) Surface analyzer for conducting phase analysis using phase diagram
JP2006118941A (en) Electronic probe x-ray analyzer for displaying surface analyzing data

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees