TWI289150B - Styrene elastomer composition - Google Patents

Styrene elastomer composition Download PDF

Info

Publication number
TWI289150B
TWI289150B TW092113803A TW92113803A TWI289150B TW I289150 B TWI289150 B TW I289150B TW 092113803 A TW092113803 A TW 092113803A TW 92113803 A TW92113803 A TW 92113803A TW I289150 B TWI289150 B TW I289150B
Authority
TW
Taiwan
Prior art keywords
styrene
based elastomer
composition
group
inorganic compound
Prior art date
Application number
TW092113803A
Other languages
Chinese (zh)
Other versions
TW200400227A (en
Inventor
Hiroyuki Ohgi
Syousei So
Tatsuya Oshita
Yukiatsu Komiya
Original Assignee
Kuraray Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co filed Critical Kuraray Co
Publication of TW200400227A publication Critical patent/TW200400227A/en
Application granted granted Critical
Publication of TWI289150B publication Critical patent/TWI289150B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The object of the invention is to provide a styrene-based elastomer composition comprising a layer-like inorganic compound fully fine-dispersed on a styrene-based elastomer and not only having excellent gas barrier property of a styrene-based elastomer but also having modified mechanic properties. The styrene-based elastomer composition is a substance comprising (a) a styrene-based elastomer, (b) a layer-like inorganic compound and (c) a polar polymer having compatibility with (a) a styrene-based elastomer and having a polar functional group in a molecule, in which the distance between the layers of said organized layer-like inorganic compound is more than 15 angstrom.

Description

1289150 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種由含有苯乙烯系彈性體及層狀無機 化合物所構成之苯乙烯系彈性體組成物。 【先前技術】 近年來,隨著彈性體之利用範圍更爲寬廣,因而持續 著要求更高性能的物質。其中,對於機械特性及氣體阻障 性等之高性能化要求更是高。 例如,以改善機械特性爲目的而在彈性體中摻混無機 塡料的技術,也已在許多的報告當中被提出。 1) 在特開平8-33114號上揭示一種以改良有機高分子材料 之機械特性爲目的之黏土複合材料,其係一種將藉由有 機鏺離子之離子鍵而將有機化之黏土礦物分散在具有極 性基的客體分子中之黏土複合材料。 2) 在特開平11-92677號上揭不一種以改良有機高分子材料 之機械特性爲目的之製造樹脂複合材料之方法,其特徵 在於:包括首創使用聚合物改性之官能基以得到改性聚 合物之步驟、和將該改性聚合物與有機化黏土予以混練 使兩者複合化之步驟。 3) 在特開平2000 - 86822號上係以提供優良耐熱性、且即使 在常溫中也具有優異彈性的樹脂複合材料爲目的,亦即 揭示一種樹脂複合材料,其特徵在於:將有機化黏土予 以分散在由複數種類之片段所形成的嵌段共聚物型之熱 可塑性彈性體中之至少1種類之片段中所形成。 一5- 1289150 4 )在特開平1 1 - 9 2 5 9 4號係以提供一種能夠容易地複合化、 而且適用範圍寬廣的樹脂複合材料爲目的,即揭示一種 樹脂複合材料,其特徵在於:由2種以上之聚合物和有 機黏土所形成,且上述2種以上之聚合物中,至少有丄 種具有官能基。 5 )在特開2002 - 3 7940號上揭示一種聚丙烯樹脂組成物,其 係包括含有預定量的23 °C、鏈烯烴可溶成分之彈性體的 結晶性聚丙烯、含有乙烯系不飽和鍵之羧酸、其酸酐或 衍生物而分枝改性之結晶聚丙烯、及有機化黏土。 在此等彈性體之中,苯乙烯系彈性體因柔軟性、耐寒 性、耐吸溼性等均優良,而且也容易地形成具有橡膠彈性 之成形體’所以不僅可做爲替代現有的加硫橡膠等用途上, 而且在汽車、電氣製品、建築、土木等之工業製品、及醫 療、運動用具、各種容器用零件(例如,蓋帽襯裡等)等之 各種領域上也已達到實用化了。 1) 在特開200 1 - 1 3 7 3 3 8號上揭示一種苯乙烯系彈性體之熱 可塑性彈性體,其係可用在注射筒用之活塞的滑動零件 之彈性滑動上的。 2) 在實開平5 - 5 3609號上揭示一種採血管用密封栓之成形 法,其係使用聚苯乙烯-聚異丁烯-聚苯乙烯等之熱可塑 性彈性體樹脂的三嵌段共聚物中摻混預定比例之萘油而 形成的樹脂。 3) 在特開平1 0 - 20 1 742號上揭示一種苯乙烯系彈性體的軟 質合成樹脂之用途,即在真空採血管之針刺部及密封部 -6 ~ 1289150 上使用苯乙烯系彈性體等之軟質合成樹脂。 4)在特開5-212104號上揭示一種用來替代製造醫療品用橡 膠栓、注射筒用之密合墊、減壓採血用橡膠栓、藥液充 塡容器用注射筒兩用密合墊等醫藥•醫療用熱可塑性密 封性物品用的加硫橡膠之替代材料,意即使用芳香族乙 •烯化合物和異丁烯等之嵌段共聚物(例如,苯乙烯-異丁 烯-苯乙烯三嵌段共聚物等)。 又且,關於苯乙烯系彈性體做爲容器用零件之用途, 例如,業已知道有如以下所示者: 1)在特開平11-349753號上揭示一種由乙烯-α-烯烴聚合 物、分枝狀低密度聚乙烯、及熱可塑性彈性體所形成的 蓋帽襯裡材料用組成物,並例示以苯乙烯-丁二烯共聚物 橡膠、苯乙烯-異丁烯聚合物橡膠、加氫苯乙烯乙烯-丙 烯共聚物橡膠等之苯乙烯聚合物彈性體來做爲熱可塑性 彈性體。 2 )在特開平Π - 1 3 0 9 1 0號上揭示一種由聚丙烯系樹脂、加 氫苯乙烯-異丙烯嵌段共聚物橡膠及流動鏈烷烴所形成的 蓋帽襯裡材料用組成物;而在特開平1 1 - 1 5 7 5 6 8號上揭 示一種聚丙烯系樹脂、直鏈狀低密度聚乙烯樹脂、加氫 苯乙烯-共軛二烯嵌段共聚物橡膠及流動鏈烷烴所形成的 組成物。 3)在特開2000 -3 5 1 880號及特開2000 _ 3 5 5 3 5 2號上分別揭 示一種由熱可塑性彈性體和皂化乙烯-乙酸乙烯酯共聚物 及/或聚醯胺系樹脂之組成物所構成的蓋帽襯裡材料之成 -7- 1289150 型用組成物,兩文獻並例示以苯乙烯-丁二烯嵌段共聚 物、苯乙烯-乙烯-丁烯嵌段共聚物、苯乙烯-乙烯丙烯嵌 段共聚物、苯乙烯-異丙烯共聚物等之苯乙烯系彈性體做 爲熱可塑性彈性體。 4 )在特開2000 - 28 1 1 1 7號上揭示一種由苯乙烯-共軛二烯嵌 段共聚物之加氫物、橡膠用軟化劑及/或流動鏈烷烯烴和 聚乙烯樹脂所形成的蓋帽襯裡用材料,並例示以加氫苯 乙烯-異丁烯-苯乙烯共聚物、加氫苯乙烯-(異丁烯/ 丁二 烯)-苯乙烯嵌段共聚物做爲苯乙烯-共軛二烯嵌段共聚 物。 以最近來說,爲達使苯乙烯系彈性體之機械特性、耐 藥品性、橡膠彈性均爲良好之目的,乃提案一種含有將膨 潤性矽酸鹽在分散媒中分散開來,並藉與胺基化合物或聚 矽氧化合物混合而調製成層狀無機化合物的苯乙烯系彈性 體。 例如,在特開2000 - 1 29058號公報、特開20000 - 1 5 9 9 60 號公報上記載著一種製造苯乙烯系彈性體之方法,即將構 成苯乙烯系彈性體之單體與層狀無機化合物予以混,並藉 由聚合而製造出含有層狀無機化合物之苯乙烯系彈性體。 又且,也記載著其他製造含有無機層狀化合物之苯乙烯系 彈性體的方法,即將無機層狀化合物與苯乙烯系彈性體在 有機溶媒中予以混合之方法。 然而,層狀無機化合物與單體混合之後,將該單體予 以聚合之方法繁雜。又且’製造苯乙烯系彈性體之方法, -8- 1289150 係爲一般所使用的活性陰離子聚合及配位聚合,已知於具 有極性官能基之化合物及水之存在下會顯著地阻害聚合作 用,因而以極性高且容易含有水分的層狀無機化合物之存 在下聚合單體之方法,就難以充分地’進行聚合反應。 再者,在有機溶媒中將層狀無機化合物和苯乙烯系彈 性體予以混合之方法,由於層狀無機化合物本質上是親水 性的,因而當將苯乙烯系彈性體溶解之有機溶媒中,層狀 無機化合物就容易形成2次凝集。此一結果,層狀無機化 合物就難以被充分地分散在苯乙烯系彈性體中。 如以上所述,即使持有在上述公報中所揭示的技術也 難以將層狀無機化合物充分地分散在苯乙烯系彈性體中, 所以對於機械特性之改善而言,自然也就有所受限了。 又且,關於苯乙烯系彈性體之氣體阻障性而言,雖然 藉由摻混無機塡料可見到改善之程度,然而,未必能得到 令人滿意而充分的氣體阻障性。 【發明內容】 【發明欲解決之課題】 但是,本發明之目的係在於提供一種具有經改良的氣 體阻障性、及良好的機械特性之苯乙烯系彈性體組成物, 即藉由使層狀無機化合物充分地微分散在苯乙烯系彈性體 中,以改良苯乙烯系彈性體之氣體阻障性,並使之具有良 好的機械特性。 【發明要旨】 依照本發明的話,就可解決上述之課題,並提供一種 - 9- 1289150 苯乙烯系彈性體組成物,其特徵在於:該苯乙烯系彈性體 組成物係由(a )苯乙烯系彈性體、(b )由有機陽離子有機化 之層狀無機化合物、以及(c )具有與該(a )苯乙烯系彈性體 相容性、且在分子內具有極性官能基之極性聚合物(以下’ 簡稱爲「樹脂系相溶化劑」)所形成,而且在該組成物中之 (b )有機化之層狀無機化合物的層間距離係爲1 5埃以上。 也就是說,本發明提供一種由(a )苯乙烯系彈性體、(b ) 由有機陽離子有機化之層狀無機化合物、以及(c )具有與該 (a)苯乙烯系彈性體相容性、且在分子內具有極性官能基之 極性聚合物所形成之苯乙烯系彈性體組成物,而且在該組 成物中之(b )有機化之層狀無機化合物的層間距離係爲1 5 埃以上的。 【發明揭示】 以下,茲就本發明之苯乙烯系彈性體組成物的各個成 分予以詳細地說明。 (_a)苯乙烯系彈件體「成分(a) | (a )苯乙烯系彈性體係可以使用習用的公知物並沒有 特別地限定,其具體實施例,舉例來說,例如其可以是芳 香族乙烯化合物、和烯烴系化合物或共軛二烯化合物所形 成的嵌段共聚物等。 所需要的嵌段共聚物,舉例來說,例如其可以是具有 當將由芳香族乙烯化合物所形成的聚合物記爲A,由烯烴系 化合物或共軛二烯化合物所形成的聚合物記爲B時,式A一 B、(A — B)m —a「式中,m爲代表1至1〇之整數」、(a — β)η 1289150 一X「式中,X爲代表耦合劑所衍生之η價殘基,而η爲代 表2至15之整數」等之構造的嵌段共聚物。又且,由芳香 族乙烯基化合物所形成的聚合物嵌段和烯烴系化合物或共 軛二烯化合物所形成的聚合物嵌段構成錐形鍵結的聚合 物,也可以使用來做爲苯乙烯系彈性體。 在彼等之中,理想上爲2個以上之由芳香族乙烯基化 合物所形成的聚合物嵌段A、和1個以上之聚合物嵌段Β以 直鏈狀鍵結的嵌段共聚物,特別是以式:Α — Β — Α所代表之 三嵌段共聚物較佳。 可做爲構成上述的嵌段共聚物之芳香族乙烯基化合 物,舉例來說,例如其可以是苯乙烯、α -甲基苯乙烯、〇 -、 m-或ρ-甲基苯乙烯、2,3-二甲基苯乙烯、2,4-二甲基苯乙 烯、單氯化苯乙烯、二氯化苯乙烯、p_溴化苯乙烯、,2,4, 5-三溴化苯乙烯、2,4,6-三溴化苯乙烯、〇-、m-、或ρ -第三 丁基苯乙烯、乙基苯乙烯、乙烯基萘、乙烯基蒽等。在彼 等之中,理想上使用苯乙烯及/或α -甲基苯乙烯。可以使 用1種類之芳香族乙烯基化合物,2種以上一起倂用也可 以。 嵌段共聚物中之芳香族乙烯基化合物單位之含有量並 沒有特別地限定,然而依照所得到的苯乙烯系彈性體組成 物之成形性及機械特性之特點來看,較宜是5至7 5重量%, 更宜是10至65重量%。 另一方面,構成上述嵌段共聚物之苯乙烯系化合物, 舉例來說,例如其可以是乙烯、丙烯、1 - 丁烯、2 - 丁烯、 一 1 1 - 1289150 異丁烯、1 -戊烯、2 -戊烯、環戊烯、丨_己烯、2 _己烯、環 己烯、1-庚烯、2-庚烯、環庚烯、1-辛烯、2 -辛烯、環辛 條、乙烯基環戊烯、乙烯基環己烯、乙烯基環庚烯、乙烯 基環辛烯等。又且,可以做爲共軛二烯化合物者,舉例來 說,例如其可以是丁二烯、異丁烯、2,3 -二甲基-丨,八丁二 燒、1,3 -戊二烯、1,3 -己二烯等。聚合物嵌段B可以是由 此等化合物中之1種所構成;又且,也可以由2種以上構 成;但是較宜是由丁二烯、異戊烯或彼等之混合物所構成; 但依照所得到的苯乙烯系彈性體組成物之氣體阻障性觀點 來看’較宜是由丁二烯和異戊烯之混合物或由異戊烯所構 成的。 聚合物嵌段B可以是含有脂肪族碳-碳雙鍵之側鏈。 例如,在使用丁二烯或異戊烯之混合物或異戊烯做爲共軛 二烯化合物之情況下,聚合物嵌段B係在從1,2 -鍵及3,4 -鍵而來的側鏈上含有脂肪族碳-碳雙鍵。在此種情況下, 聚合物嵌段B中之1,2 -鍵及3,4 -鍵的總和宜是佔相對於構 成嵌段共聚物之構造單位之總量的.30莫耳%以上之比例, 更宜是佔40莫耳%以上之比例。 聚合物嵌段B也可以是對從共軛二烯化合物而來的脂 肪族碳-碳雙鍵進行加氫作用。脂肪族碳一碳雙鍵之加氫 率宜是按照苯乙烯系彈性體組成物之組成、用途等而適當 地選擇,然而在需求耐熱性、耐候性等之情況下、宜是在 3〇莫耳%以上,較宜是在50莫耳%以上,更宜是在80莫耳% 1289150 上述脂肪族碳-碳雙鍵之加氫率,可使用一般所用的 方法而求得,例如,可以利用碘價測定法、1H-NMR測定而 算出。 上述嵌段共聚物之較佳的例子,舉例來說,例如其可 以是聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共聚物或其加氫 物、聚苯乙烯-聚異戊烯-聚苯乙烯三嵌段共聚物或其加氫 物、聚苯乙烯-聚(異戊烯/ 丁二烯)_聚苯乙烯三嵌段共聚物 或其加氫物、聚(α -甲基苯乙嫌)-聚丁二錄-聚(α -甲基苯 乙烯)三嵌段共聚物或其加氫物、聚(α -甲基苯乙烯)-聚異 戊烯-聚(α -甲基苯乙烯)三嵌段共聚物或其加氫物、聚(α-甲基苯乙烯)-聚(異戊烯/ 丁二烯)·聚(α -甲基苯乙烯)三嵌 段共聚物或其加氫物。又且,舉例來說,例如,聚苯乙烯-聚異丁烯-聚苯乙烯三嵌段共聚物、聚(α -甲基苯乙烯)-聚 異丁烯-聚(α ·甲基苯乙烯)三嵌段共聚物也是理想的例 子。 再者,此等嵌段共聚物在不損及本發明之意旨的範圍 內,在主鏈、側鏈、分子鏈之單末端或兩末端上也可以含 有羧基或其鹽、氫氧基、酸酐基、胺基、環氧基、酯基、 烷基、芳氧基、硫酸基或其衍生物、醯胺基、氫硫基、鹵 素原子等之極性官能基。極性官能基之含有量並沒有特別 地限定,然而相對於構成嵌段共聚物之重複單位的總莫耳 量計,較宜是小於0 . 05莫耳%,更宜是在0.04莫耳%以下。 具有極性官能基之嵌段共聚物’係可以藉由在製造步 驟中i )以含有極性官能基之化合物做爲聚合物終止劑之反 1289150 應方法、i i )附加含有極性官能基之烯烴系化合物及/或含 有極性化合物之共軛二烯、或予以共聚合之方法製造而得。 可做爲上述含有極性官能基之烯烴系化合物及/或含有 極性化合物之共軛二烯者,舉例來說,例如其可以是丙烯 酸、甲基丙烯酸等之α,^ -不飽和羧酸,甲基丙烯酸酯、乙 基丙烯酸酯、丙基丙烯酸酯、丁基丙烯酸酯、胺基丙嫌酸 酯、己基丙烯酸酯、辛基丙烯酸酯、2 -乙基己基丙烯酸醋、 2-乙基己基甲基丙烯酸酯、環己基甲基丙烯酸酯等之 不飽和羧酸之烷酯,馬來醯胺、Ν -甲基馬來醯胺、Ν -乙基 馬來醯胺、Ν -苯基馬來醯胺、Ν -環己基馬來醯胺等之α,/3 -不飽和羧酸之醯胺化合物,縮水甘油基甲基丙烯酸酯、烯 丙基縮水甘油醚等之含環氧基不飽和化合物,衣康酸、馬 來酸等之α,/3 -不飽和二羧酸,衣康酸酐、馬來酸酐、檸檬 酸酐等之α,0 -不飽和二羧酸酐,丙烯醯胺、甲基丙烯酸胺 基乙酯、甲基丙烯酸胺基丙酯、胺基苯乙烯等之含胺基不 飽和化合物,3-羥基-1-丙烯、4-羥基-1-丁烯、順式-4-羥 基-2-丁烯、反式-4-羥基-2-丁烯、3 -羥基-2-甲基-1-丙烯、 2 -羥基乙基丙烯酸酯、2 -羥基乙基甲基丙烯酸酯等之含氫 氧基不飽和化合物,丙烯醯胺、乙烯基噚唑啉等。該含有 極性官能基之烯烴系化合物及/或含有極性官能基的共軛二 烯化合物,可以使用1種類之物,倂用2種以上者也可以。 又且,嵌段共聚物也可以視情況需要地在有機過氧化 物等之存在下使用動交聯劑。 嵌段共聚物之數平均分子量並沒有特別地限定,然而 ,000 1289150 通常是在10, 〇〇〇至1,000,000之範圍內,較宜是在30 至500,000之範圍內。 在本發明中所使用的苯乙烯系彈性體,設若是在 下能顯示橡膠彈性體的舉動者,而且隨著溫度上昇而 塑性變形之聚合物的話,則除了上述之嵌段共聚物以 尙有芳香族乙烯化合物和烯烴系化合物或共軛二烯化 間之無規共聚物(以下,簡稱爲「芳香族乙烯基化合物 聚物」),亦非常適合使用。所需要的共聚物可以是含 述之極性官能基,其含有量並沒有特別地限定,然而 於構成共聚物之重複單位的總莫耳量計,較宜是不足 莫耳%,更宜是在0 · 04莫耳%以下。 芳香族乙烯基化合物系共聚物之數平均分子量並 特別地限定,然而通常是在10,000至1,000,000之範圍 較宜是在30,000至5 00,000之範圍內。 在本發明中所使用的苯乙烯系彈性體,係非常適 用上述的嵌段共聚物或芳香族乙烯基化合物系共聚物 聚烯烴系樹脂等之其他的樹脂間之組成物,更且進一 照期望摻混可塑劑等之添加劑所形成的組成物等。 此處,聚烯烴系樹脂,舉例來說,例如其可以是 烯、聚乙烯、乙烯/乙酸乙烯酯共聚物、4 -甲基戊二烯 聚丁烯-1、乙烯/丙烯酸酯共聚物等,然而其中較宜是 烯。聚烯烴之使用量,相對於1 00重量份之上述嵌段 物或芳香族乙烯基化合物系聚合物計,宜是不足100 份,更宜是在80重量份以下。聚烯烴系樹脂之使用量 - 1 5 - 常溫 進行 外, 合物 系共 有則 相對 0 .05 沒有 內, 合使 ,及 步依 聚丙 -1 λ 聚丙 共聚 重量 超出 1289150 上述之範圍時,就會有損傷做爲苯乙烯系彈性體之機械特 性的情況。 又’非芳香族系橡膠用之軟化劑係非常適合使用來做 爲可塑劑。其具體的例子,舉例來說,例如其可以是鏈烯 烴系或萘系之操作油、白油、礦物油、乙烯和α —烯烴之寡 聚物、鏈烯烴漆、及流動鏈烯烴等,然而,在彼等之中以 鏈烯烴系操作油較理想。可塑劑之使用量,相對於1 〇 〇重 量份的上述之嵌段共聚物或芳香族乙烯基化合物系共聚物 計,較宜是在400重量份以下。可塑劑之使用量超出上述 之範圍時,不僅會使機械特性下降,而且同樣地會有可塑 劑滲出的情形。 另外,在本發明中所使用的乙烯系彈性體中,在不損 及本發明之意旨的範圍內,也可添加聚烯烴系樹脂以外的 乙細-丙細共聚物共聚合橡膠、聚乙嫌、苯乙嫌-丙儲腈共 聚物、ABS等之苯乙烯系樹脂,聚伸苯醚系樹脂、聚酯系聚 烏拉坦系莖、聚醯胺系樹脂、聚乙縮醛樹脂 '丙烯酸系樹 脂等。更且,視情況需要地可進一步添加補強材料(例如, 碳黑、碳纖維、玻璃纖維、硼纖維、芳醯胺纖維、液晶聚 纖維等),塡料、氧化防止劑、光安定劑、阻燃劑、著色劑、 抗菌劑、防黴劑、紫外線吸收劑、耐熱安定劑、發泡劑、 結晶核劑、滑劑、帶靜電防止劑、著色劑、交聯劑、低收 縮劑、增黏劑、剝離劑、防霧劑、發藍劑、矽烷耦合劑等。 苯乙燃系彈性體係可以使用市售可得之物,舉例來說, 例如其可以是「世普通」或「亥卜樂」【商品名;可樂麗(股) 一 1 6- 1289150 公司製】、「庫因通」【商品名;殼(股)公司製 夫卜蘭」【商品名;旭化成(股)公司製】、「大納 品名;J SR (股)公司製】等之苯乙烯-共軛二烯嵌段 「因第庫斯」【商品名;道爾化學(股)公司製】 烯/乙烯共聚物;另外,例如,「阿龍AR」【商品 化成(股)公司製】、「拉巴龍」【商品名;三菱 公司製】等之組成物。 (b )層狀無機化合物「成分(b ) i 其次,說明本發明之苯乙烯系彈性體組成物 分之(b )層狀無機化合物。 在本發明中所使用的層狀無機化合物係以黏 主。舉例來說,例如其可以是膨潤性矽酸鹽、磷 然而依照工業上廣用性、處理容易性、所得到的 成物之物性等觀點來看,砠想上係使用膨潤性矽画 此處所稱之膨潤性矽酸鹽,主要係指氧化矽 片及金屬氫氧化物之八面體片所形成,並具有在 以任意比例混合之極性溶媒或水和該枉性溶媒之 中使其膨潤性質之矽酸鹽。彼等之例子,舉例來 是蒙脫石族黏土、膨潤性雲母、雲母等。 蒙脫石族黏土可以使用天然成品或合成製品 石族黏土的具體例子,舉例來說,例如是蒙脫石、 皂石、鐵皂石、水輝石、爍輝石、銻輝石、膨潤 換體、衍生物、或彼等之混合物等。 膨潤性雲母可以使用天然成品或合成製品。 】、「大 龍」【商 共聚物, 等之苯乙 名;阿龍 化學(股) 的構成成 土礦物爲 酸鉻等, 聚合物組 } ® 〇 、,ΠΤΙ. 之四面體 水、水與 混合溶媒 說,例如 。該蒙脫 貝德石、 土或其置 彼等係具 1289150 有在水、水與以任意比例混合之極性溶媒或水和該枉性溶 媒之混合溶媒中使其膨潤之性質。該膨潤性雲母的具體例 子,舉例來說,例如是鋰型帶雲母、鈉型帶雲母、鋰型四 矽雲母、鈉型型四矽雲母等、或其置換體、衍生物、或彼 等之混合物等。 上述膨潤性雲母中具有與姪石類相類似構造之物也可 以使用彼等類似於姪石類之同等品。與姪石類似之物中, 舉例來說,例如是三八面頭巾型姪石、二八面頭巾型姪石 等。 另外,雲母,舉例來說,例如其可以是白雲母、雲母、 黑雲母、鱗雲母、貝雲母、四矽型雲母等。 又,例如,對雲母進行氟處理之膨潤性雲母的物質, 或水熱合成所得到的物質等。 層狀無機化合物較宜是由上述物質中的蒙脫石、膨潤 土、水輝石及在層間具有鈉離子的膨潤性雲母,因爲彼等 取得容易,日上對於做成苯乙烯系彈性體組成物之分散性 優異,以及具有所得到的組成物之物性改良效果等特點。 上述有機陽離子較宜是具有銨離子類、鱗離子類、毓 離子類或胺基酸類等之正電荷的有機化合物等之有機鎰離 子。其中,依照工業廣用性等之觀點來看,較宜是銨離子 類或鳞離子類。 銨離子類或鐵離子類較宜是以下述之化學式π)所示之 1289150 + ⑴ (式中,1^代表氮原子或磷原子,1^、1^、1^、及1^分 別表示氫原子、在苯環上也可以具有極性官能基之苄基、 或以極性官能基取代也可以之碳數爲1至30的烷基。但是, R1至R4不同時代表氫原子。又,在R1至r4中,具有極性 吕能基也可以的;基之數量較宜是在2個以下。) 上述之中,碳數爲1至30之烷基,舉例來說,例如其 可以是甲基、乙基、丙基、異丙基、丁基、戊基、己基、 庚基、辛基、壬基、癸基、十一基、十二基(月桂基)、十 三基、十四基、十五基、十八基等。 又,上述之苄基及具有碳數爲1至30之烷基也可以的 極性官能基,舉例來說,例如其可以是氫氧基、烷氧基、 芳氧基、矽烷氧基、氫硫基、烷硫基、芳硫基、醯基、羧 基、醯氧基、烷氧羰基、酸酐基、硝基、鹵素原子、環氧 基等。在此等之中,較宜是氫氧基、院氧基、芳氧基、竣 基、醯氧基、烷氧羰基、酸酐基。 相對於上述之銨離子類或鳞離子類的陰離子’舉例來 說,例如其可以是 Cl·、Br·、I’、ν〇3·、0ΙΓ、CH3C0Cr、HS〇4_、 HC03·等,其中,較宜是Cl_、Br、Γ、N〇3-、或0『° 銨離子的例子,舉例來說,例如其BT以是己基銨離子、 1289150 辛基錢離子、2-乙基己基錢離子、十二基錢離子、十八基 銨離子、月桂基銨離子、硬脂酸基銨離子、一辛基二甲基 銨離子、三辛基銨離子、二硬脂酸基銨離子、二硬脂酸基 甲基銨離子、丁基銨離子、二甲基丁基銨離子、1,2 -二甲 基丙基銨離子、甲基己基銨離子、3 -戊基銨離子、二甲基 乙基銨離子、二甲基雙十八銨離子、2 -辛基銨離子、二乙 基銨離子、四甲基乙基銨離子、二甲基丙基銨離子、二乙 基丙基銨離子、二丁基丙基銨離子、四甲基丙基銨離子、 異戊基銨離子、乙基異戊基銨離子、2-己醯基銨離子、二 異丙基乙基銨離子、乙基二甲基丙基銨離子、二異丁基銨 離子、單- C6_2Q-烷基三甲基銨離子、二椰子基烷基二甲基 銨離子、椰子基烷基二甲基銨離子、三辛基甲基銨離子、 三月桂基甲基銨離子、二硬化三脂烷基二甲基銨離子、苯 甲醯基三甲基銨離子、苄基三丁基銨離子等。 鐵離子之具體例子,舉例來說,例如其可以是三甲基 十二基鱗離子、三甲基十六基鱗離子、三甲基十八基鳞離 子、三丁基十二基鱗離子、三丁基十六基鱗離子等。 又,毓離子的具體例子,舉例來說,例如其可以是三 甲基毓離子、二甲基十二基毓離子、二甲基十六基毓離子、 二甲基十八基毓離子、三乙基毓離子、二乙基十二基毓離 子、二乙基十六基毓離子、二乙基十八基鍊離子、三丁基 毓離子、二丁基十二基毓離子、二丁基十六基銃離子、三 苯基毓離子等。 銨離子類、鱗離子類、或毓離子較宜是使用具有極性 - 20- 1289150 官能基之物。 例如’具有氫氧基之銨離子、具有氫氧基之鱗離子、 或具有氫氧基之鍊離子的具體的例子,舉例來說,例如其 可以疋在上述所例不的纟女離子類、鐵離子類、或鏡離子中 之1至4個院基或韦基係爲經甲基、經乙基(例如,2 -經規 基)、羥丙基(例如’ 3-羥丙基)所取代的離子。具有烷氧基 或芳氧基之銨離子類、具有烷氧基或芳氧基之鱗離子類、 或具有烷氧基或芳氧基之毓離子的具體的例子,舉例來說, 例如其可以是在上述所例示的銨離子類、鱗離子類、或毓 離子中之1至4個烷基或苄基係爲(CH2CH20)PR基、 (CH2CH(CH3) 0)PR 基、或(CH2CH2CH20)PR 基(在此 P 係代表 1至5之整數)所代表的聚氧烯基取代之離子。又,具有醯 氧基之銨離子類、具有醯氧基之鳞離子類、或具有醯氧基 之毓離子的具體的例子,舉例來說,例如是在上述所例示 的具有氫氧基之銨離子類、具有氫氧基之鱗離子類、或具 有氫氧基之毓離子中,該氫氧基係爲乙醯基、苯甲醯基等 之醯基所保護之物。 又,具有羧基、酸酐或烷氧碳基之銨離子的具體例子, 舉例來說,例如其可以是由胺基酸類所衍生物的陽離子。 在此所謂的胺基酸類較宜是碳數爲4至3 0之物;具體 而言,舉例來說,例如其可以是離胺酸、精胺酸、r -胺基 環己基羧酸、p -胺基羥基桂皮酸、白胺酸、苯基丙胺酸、 組胺酸、色胺酸等。 另外,上述之胺基酸類中,也可以具有由羧基、甲基 - 2 1 - 1289150 酯、乙基酯、苄基酯等所保護的形態。 藉由將上述的有機陽離子添加在層狀無機化合物中, 就能夠得到經有機化的層狀無機化合物。 在添加有機陽離子之前,最好是先將層狀無機化合物 予以膨潤化。膨潤化處理,具體而言,係可以藉由將層狀 無機化合物浸漬在(i )水、(i i )水和以任意比例混合之極性 有機溶媒、或(i i i )水和該極性有機溶媒之混合溶媒中來實 施。此時,充分地攪拌較爲理想。極或有機溶媒舉例來說, 例如其可以是甲醇、乙醇、2 -丙醇等之醇類,乙二醇、丙 二醇、1,4 - 丁二醇等之二醇類,丙酮等之酮類,四氫呋喃、 1,4 -二噚烷等之醚類,二甲基甲醯胺、二甲基乙醯胺、二 甲基硫醯胺、二甲基乙酮等之非氣子性極性溶媒等。 經有機化之層狀無機化合物,可藉由過濾器、離心分 離器等一般方法而取得。經取得的層狀無機化合物,理想 上係充分地洗淨並除去過剩的陽離子之後,再將之予以乾 燥而得。 有機陽離子之添加量,例如,可以藉由管柱滲透法(參 照「黏土手冊」第5 76至5 7 7頁、技法堂出版)、及亞甲基 藍吸附量測定法(參照日本膨潤土工業會標準試驗法, J BAS - 1 0 7 - 9 1 )等之方法測定層狀無機化合物的陽離子交換 容量(CEC ),並基於該測定値而決定之。有機陽離子的添加 量,相對於CEC計較宜是在1當量以上,較宜是在從1當 量至10當量之範圍內。 )樹脂系相溶化劑「成分(c ), -22- 1289150 其次,說明本發明之苯乙烯系彈性體組成 分中之(C )樹脂系相溶化劑。 在本發明中所使用的(C )樹脂系相溶化劑係 成分(a )苯乙烯系彈性體相溶之相溶性,並在分 性官能基的極性聚合物。 例如,在使用不具有與上述成分(a)苯乙儲 溶之相溶性之物做爲成分(c )的情況,因爲就不 (b )層狀無機化合物充分地分散在苯乙烯系彈 中,因而就無法得到經改良的氣體阻障性之苯 體組成物,所以不宜。 具有與苯乙烯系彈性體相溶之相溶性的聚 來說,例如可以使用聚苯乙烯等之苯乙烯系聚 烯-共軛二烯嵌段共聚物或其加氫物、聚酯系聚 烯、聚丙烯等之聚烯烴系聚合物、聚丁二烯、; 段共聚物等。(c )樹脂系相溶化劑係可以使用以 做爲基本構造’且分子內具有極性官能基的極β 上述聚烯烴系聚合物,舉例來說,例如其可 丙烯、1-丁烯、2-丁烯、異丁烯、1-戊烯、2-烯、1 -己烯、2 -己烯、環己烯、1 -庚烯、2 -庚烯 卜辛烯、2-辛烯、環辛烯、乙烯基環戊烯、乙烯 乙烯基環庚烯、乙烯基環辛烯等之烯烴系化合 二烯、異戊二烯、2 ,3-二甲基-1,3-丁二烯、i, κ 3 -己二烯、等之二烯系化合物類之單獨聚合 等。又且,也可以使用對在聚烯烴系聚合物中 物之構成成 具有與上述 子內具有極 系彈性體相 能使上述之 性體組成物 乙烯系彈性 合物,舉例 合物、苯乙 合物、聚乙 二烯-丙烯嵌 此種聚合物 i聚合物。 以是乙烯、 戊烯、環戊 、環庚烯、 基環己烯、 物;1,3 - 丁 3 -戊二烯、 物或共聚物 所含的脂肪 - 23 - 1289150 族碳-碳雙鍵進行加氫之物。 又,苯乙烯系聚合物,舉例來說,例如其可以是苯乙 烯、α—甲基苯乙烯、o-、m-、或p -甲基苯乙烯、2, 3 -二 甲基苯乙烯、2 ,3 -二甲基苯乙烯、單氯化苯乙烯、二氯化 苯乙烯、P -溴化苯乙烯、2,4,5-三溴化苯乙烯、2, 4, 6 -三 溴化苯乙烯、〇 -、m-、或p -第三-丁基苯乙烯、乙基苯乙 烯、乙烯基萘、乙烯基蒽等之芳香族乙烯基化合物之單獨 聚合物或共聚物等。 又,苯乙烯-共軛二烯嵌段共聚物或其加氫物,舉例來 說,例如其可以是聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共 聚物或其加氫物、聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共 聚物或其加氫物、聚苯乙烯-聚(異戊二烯/ 丁二烯卜聚苯乙 烯三嵌段共聚物或其加氫物、聚(α -甲基苯乙烯)_聚丁二 燃-聚(α -甲基苯乙烯)三嵌段共聚物或其加氫物、聚-甲 基苯乙烯厂聚異戊二烯-聚(α -甲基苯乙烯)三嵌段共聚物 或其加氫物、聚(α -甲基苯乙烯卜聚(異戊二烯/ 丁二烯卜 聚(α -甲基苯乙烯)三嵌段共聚物或其加氫物。 又’聚酯系聚合物,舉例來說,例如其可以是將乙二 醇、丙二醇、丁二醇、二(羥甲基)苯等之二醇醇成分、與 駄酸、異馱酸、對酞酸等二羧酸成分間之縮聚合所得到的 聚口物。更且,使用內酯等之環狀化合物之開環聚合物也 并常適合。 (C )樹脂系相溶化劑中之極性官能基,爲了抑制在所得 到的本2綠系彈性體組成物中層狀無機化合物之凝集、不 - 24 - 1289150 均勻分散,並使層狀無機化合物充分地微分散’則較且是 與層狀無機化合物間具有親和性或反應性。在(C )樹脂系相 溶化劑中之極性官能基,舉例來說,例如其可以是氨氧基、 院氧基、芳氧基、砂院氧基、氫硫基、院硫基、方硫基' 醯基、殘基或其鹽、醯氧基、院氧鑛基、芳氧.基、酸酐 基、醛基、縮醛基、醯胺基、醯亞胺基、硝基、鹵素原子、 磺酸基或其衍生物、環氧基等;此等之中,較宜是氫氧基、 羧基或其鹽、烷氧羰基、醯氧基、酸酐基、環氧基。 (C )樹脂系相溶化劑可以是僅具有1種類的極性官能 基,具有2種類以上之極性官能基也可以。 (c )樹脂系相溶化劑中之極性官能基的含有量,相對於 構成做爲樹脂系相溶劑使用的極性聚合物之重複單位的總 莫耳數計,較宜是在0.05莫耳%以上,更宜是在0·05莫耳 %以上而在50莫耳%以下。當使用的(a)苯乙烯系彈性體、(b) 層狀無機化合物之種類及其使用量,以及(c )樹脂系相溶化 劑中之之極性官能基的含有量,相對於構成做爲樹脂系相 溶劑使用的極性聚合物之重複單位的總莫耳數計不足〇 . 〇 5 莫耳%的情況下,則就會成爲無法得到(b )層狀無機化合物 均勻地分散在(a )苯乙烯系彈性體中之效果的情形。又且, 相反地,(c )樹脂系相溶化劑中之極性官能基的含有量,相 對於構成做爲樹脂系相溶劑使用的極性聚合物之重複單位 的總莫耳數計超出50莫耳%時,則就會有在製造苯乙烯系 彈性體或加工時產生明膠等之情形。 極性官能基係可以被包括在做爲(c )樹脂系相溶化劑使 - 25- 1289150 用的極性聚合物之分子鏈的單末端或兩末端、分子鏈之中 段或側鏈中之任一項。 極性官能基在極性聚合物中之分布並沒有特別地限 定,例如其可以是規則性分布、塊(嵌段)狀分布、無規分 布、錐狀分布,彼等之全部或一部分混合之分布也可以。 做爲(C )樹脂系相溶化劑使用的極性聚合物係能夠藉由 利用在製造工程中(i )將含有極性官能基之化合物做爲聚合 終止劑並使之反應的方法,(i i )將含有極性官能基的化合 物予以共聚合或加成之方法等製造而得。 含有極性官能基的化合物,舉例來說,例如其可以是 丙烯酸、甲基丙烯酸等之α、/3 -不飽和羧酸,甲基丙烯酸 酯、乙基丙烯酸酯、丙基丙烯酸酯、丁基丙烯酸酯、戊基 丙烯酸酯、己基丙烯酸酯、辛基丙烯酸酯、2 -乙基己基丙 烯酸酯、環己基丙烯酸酯、甲基甲基丙烯酸酯、乙基甲基 丙烯酸酯、2_乙基己基甲基丙烯酸酯、環己基甲基丙烯酸 酯等之α、冷-不飽和羧酸之烷基酯,順丁烯二醯亞胺、Ν _ 甲基順丁烯二醯亞胺、Ν-乙基順丁烯二醯亞胺、Ν-苯基順 丁烯二醯亞胺、Ν-環己基順丁烯二醯亞胺等之α、石-不飽 和羧酸之醯亞胺化合物類,縮水甘油基甲基丙烯酸酯、烯 丙基縮水甘油醚等之含環氧基不飽和化合物,衣康酸、順 丁烯二酸等之α、/3 -不飽和羧酸,衣康酸酐、順丁烯二酸 酐、檸康酸酐等之α、Θ -不飽和羧酸之酸酐,丙烯基胺、 甲基丙烯酸胺基醚、甲基丙烯酸胺基丙酯、胺基苯等乙烯 之含胺基不飽和化合物,3 -羥基-1 -丙烯、4 -羥基-1 -丙烯、 -26- 1289150 雙-4-羥基-2-丁烯、三-4-羥基-2-丁烯、3 -羥基-2-甲基-1-丙烯、2 -羥基乙基丙烯酸酯、2 -羥基乙基丙烯酸酯等之含 氫氧基不飽和化合物,聚乙二醇等之聚伸烷二醇,甲醛、 四氫呋喃、1,4 -二噚烷等之環狀醚,丙烯醯胺、乙烯基噚 唑啉、乙酸乙酯等;可以單獨使用此等中之1種,或使用2 種以上也可以。 做爲(c )樹脂系相溶化劑使用的極性聚合物,可以視情 況需要而予以皂化,也可以使形成鹼金屬或鹼土金屬之鹽。 更且,做爲(c )樹脂系相溶化劑使用的極性聚合物也可以具 有利用多價的金屬而交聯的離子型聚合物之構造。 做爲(c )樹脂系相溶化劑使用的極性聚合物之數平均分 子量通常是在500至500,000之範圍內,較宜是在1,000 至3 00,000之範圍內。 以下所示爲上述極性聚合物之具體例子。 (1 )具有羧基或其鹽的極件聚合物 乙烯/丙烯酸共聚物、丙烯/丙烯酸共聚物、乙烯/丙烯 /丙烯酸共聚物、乙烯/甲基丙烯酸共聚物、丙烯/甲基丙烯 酸共聚物、乙烯/丙烯/甲基丙烯酸共聚物、乙烯/ 丁烯/丙 烯酸共聚物、乙烯/ 丁烯/甲基丙烯酸共聚物、乙烯/己烯/ 丙烯酸共聚物、乙烯/己烯/甲基丙烯酸共聚物、乙烯/辛烯 /丙烯酸共聚物、乙烯/辛烯/甲基丙烯酸共聚物、或其金屬 〇 门J县有氣氯基的極件聚合物 乙烯/烯丙基醇共聚物、丙烯/烯丙基醇共聚物、乙烯/ 1289150 丙烯/烯丙基醇共聚物、乙烯/甲基烯丙基醇# 甲基烯丙基醇共聚物、乙烯/丙烯/甲基烯丙 乙烯/ 丁烯/烯丙基醇共聚物、乙烯/ 丁烯/甲 聚物、乙烯/己烯/烯丙基醇共聚物、乙烯/ E 基醇共聚物、乙烯/辛烯/烯丙基醇共聚物、 基烯丙基醇共聚物。 乙烯/ 2-羥基乙基丙烯酸酯共聚物、丙舞 丙烯酸酯共聚物、乙烯/丙烯/ 2 -羥基乙基丙烯 乙烯/ 2-羥基乙基甲基丙烯酸酯共聚物、丙舞 甲基丙烯酸酯共聚物、乙烯/丙烯/ 2-羥基乙 酯共聚物、乙烯/ 丁烯/ 2-羥基乙基丙烯酸酯多 丁烯/ 2 -羥基乙基甲基丙烯酸酯共聚物、乙烯 乙基丙烯酸酯共聚物、乙烯/己烯/ 2 -羥基乙 酯共聚物、乙烯/辛烯/2-羥基乙基丙烯酸酯多 辛烯/ 2 -羥基乙基甲基丙烯酸酯共聚物。 單末端或兩末端羥基聚乙烯、單末端或 丙烯、單末端或兩末端羥基聚乙烯/丙烯共聚 兩末端羥基聚乙烯/丙烯/ 丁二烯共聚物、單 羥基聚苯乙烯。 單末端或兩末端羥基聚丁二稀、單末端 聚異戊二烯、單末端或兩末端羥基聚(異戊二 其加氫物。 單末端或兩末端羥基(聚苯乙烯-聚丁二舞 嵌段共聚物)、單末端或兩末端羥基(聚苯乙舞 一 2 8 - 专聚物、丙烯/ 基醇共聚物、 基烯丙基醇共 i烯/甲基烯丙 乙烯/辛烯/甲 I / 2 -羥基乙基 酸酯共聚物' f / 2 -羥基乙基 基甲基丙烯酸 矣聚物、乙烯/ /己烯/ 2 -羥基 基甲基丙烯酸 I聚物、乙烯’ 兩末端羥基聚 物、單末端或 末端或兩末端 或兩末端羥基 烯/ 丁二烯)或 t ·聚苯乙細一 t ·聚異戊二嫌 1289150 -聚本乙細二嵌段共聚物)、單末端或兩末端經基〔聚苯乙 烯-聚(丁二烯/異戊二烯)_聚苯乙烯三嵌段共聚物〕〕或質 加氫物。單末端或兩末端羥基(聚苯乙烯-聚異丁烯_聚苯 乙烯三嵌段共聚物)。 JL3 )具有酸酐某的緬件聚合物 乙烯/順丁烯二酸酐共聚物、丙烯/順丁烯二酸酐共聚 物、異丁烯/順丁烯二酸酐共聚物、乙烯/順丁烯二酸酐共 聚物、乙烯/順丁烯二酸酐共聚物、甲基乙烯基醚/順丁烯 二酸酐共聚物、乙基乙烯基醚/順丁烯二酸酐共聚物、乙烯 /丙烯/順丁烯二酸酐共聚物、乙烯/ 丁烯/順丁烯二酸酐共 聚物、乙烯/己烯/順丁烯二酸酐共聚物、乙烯/辛烯/順丁 烯二酸酐共聚物、苯乙烯/順丁烯二酸酐共聚物。 順丁烯二酸酐改性聚乙烯、順丁烯二酸酐改性聚丙烯、 順丁烯二酸酐改性聚乙烯/丙烯共聚物、順丁烯二酸酐改性 聚乙烯/丙烯/ 丁二烯共聚物、順丁烯二酸酐改性聚苯乙烯。 順丁烯二酸酐改性(聚苯乙烯-聚丁二烯-聚苯乙烯三嵌 段共聚物)、順丁烯二酸酐改性〔聚苯乙烯-聚(丁二烯/異 戊二烯)-聚苯乙烯三嵌段共聚物〕〕、順丁烯二酸酐改性(聚 苯乙烯-聚異丁烯-聚苯乙烯三嵌段共聚物)。 (4 )具有環氬某的極性聚合物 乙烯/縮水甘油基丙烯酸酯共聚物、丙烯/縮水甘油基 丙烯酸酯共聚物、乙烯/丙烯/縮水甘油基丙烯酸酯共聚物、 乙烯/縮水甘油基甲基丙烯酸酯共聚物、丙烯/縮水甘油基 甲基丙烯酸酯共聚物、乙烯/丙烯/縮水甘油基甲基丙烯酸 1289150 酯共聚物、乙烯/ 丁烯/縮水甘油基丙烯酸酯共聚物、乙烯/ 丁烯/縮水甘油基甲基丙烯酸酯共聚物、乙烯/己烯/縮水甘 油基丙烯酸酯共聚物、乙烯/己烯/縮水甘油基甲基丙烯酸 酯共聚物、乙烯/辛烯Λ縮水甘油基丙烯酸酯共聚物、乙烯/ 辛烯/縮水甘油基甲基丙烯酸酯共聚物。 (5 )具有烷氣羰某的極性聚合_物 乙烯/乙基丙烯酸酯共聚物、丙烯/乙基丙烯酸酯共聚 物、乙烯/丙烯/乙基丙烯酸酯共聚物、乙烯/乙基甲基丙烯 酸酯共聚物、丙烯/乙基甲基丙烯酸酯共聚物、乙烯/丙烯/ 乙基甲基丙烯酸酯共聚物、乙烯/ 丁烯/乙基丙烯酸酯共聚 物、乙烯/丁烯/乙基甲基丙烯酸酯共聚物、乙烯/己烯/乙 基丙烯酸酯共聚物、乙烯/己烯/乙基甲基丙烯酸酯共聚物、 乙烯/辛烯/乙基丙烯酸酯共聚物、乙烯/辛烯/乙基甲基丙 烯酸酯共聚物。 另外,藉由利用鹼等將上述(3 )具有酸酐基的極性聚合 物予以中和,可以得到具有羧基或其鹽的聚合物。又且, 藉由利用氨或胺類等將上述(3 )具有酸酐基的極性聚合物予 以中和’並視情況需要地予以脫水,凸以得到具有醯胺基 之聚合物、或具有醯亞胺基的聚合物。 可以使用上述之極性化合物中之丨種、或2種以上的 混合物來做爲(c )樹脂系相溶化劑。 構成本發明之苯乙烯系彈性體組成物的(a )苯乙烯系彈 性體(以下’稱爲成分(a ) )、( b )層狀無機化合物(以下,稱 爲成分(b ))、及(c )樹脂系相溶化劑(以下,稱爲成分(c )) -30- 1289150 之重量比,雖然是依照所使用的各種成分之種類、所得到 的苯乙烯系彈性體組成物所要求的物性而適當地決定,然 而,通常是在以下之範圍。 成分(b)/成分(a)=0.01/100 〜200/1 00;而且 成分(c)/成分(a) = 0.01/100 〜5000/100 當(b )層狀無機化合物之使用量超出上述之範圍的時 候,所得到的苯乙烯系彈性體組成物之柔軟性、橡膠彈性、 成形性等之物性就有降低的情況。相反地,在(b )層狀無機 化合物之使用量比上述之範圍少的時候,就有不能發揮由 於添加層狀無機化合物而改良機械特性及氣體阻障性之效 果的情形。 又且,當(c )樹脂系相溶化劑之使用量超出上述之範圍 的時候,所得到的苯乙烯系彈性體組成物之柔軟性、橡膠 彈性、成形性等之物性就有降低的情況。相反地,在(C )樹 脂系相溶化劑之使甩量比上述之範圍少的時候,因爲難以 將層狀無機化合物充分微分散在苯乙烯系彈性體組成物 中,因而就會有不能發揮由於添加層狀無機化合物而改良 機械特性及氣體阻障性之效果的情形。(C )樹脂系相溶化劑 之使用量較宜是在以下之範圍。 成分(C) /成分(a) = 0.03/100 〜3000/100 (重量比) 在本發明之苯乙烯系彈性體組成物中,於不損及本發 明之旨趣的限度內,即使添加通常在之苯乙烯系彈性體組 成物中所摻混的各種加物也沒有問題。此處所說的各種添 加物,舉例來說,例如其可以是紫外線吸收劑、耐光安定 1289150 劑、耐熱安定劑、可塑劑、各種油、各種礦物油、發泡劑、 結晶核劑、滑劑、帶電防止劑、著色劑、交聯劑、防燃劑、 房銹劑、低收縮劑、增黏劑、剝離劑、防霧劑、提監劑、 矽烷耦合劑、補強材料(例如,碳黑、碳纖維、玻璃纖維、 硼纖維、醯胺纖維、液晶聚酯纖維等)、塡料、氧化防止劑、 抗菌劑等。 又且’在本發明之苯乙烯系彈性體組成物中,於不損 及本發明之旨趣的限度內,即使添加在通常之苯乙烯系彈 性體組成物中所摻混的以外之聚合物也沒有問題。此處所 說的聚合物,舉例來說,例如其可以是乙烯-丙烯共聚物橡 膠、聚苯乙烯、苯乙烯-丙烯腈聚合物、ABS等之苯乙烯系 樹脂、聚伸苯基醚系樹脂、聚酯系樹脂、聚胺基甲酸酯系 樹脂、聚醯胺系樹脂、聚縮醛樹脂、丙烯酸系樹脂等。 本發明之苯乙燒系彈性體組成物係能夠藉由依照一般 方法而將成分(a )苯乙烯系彈性體、成分(b )層狀無機化合 物、及成分(c )樹脂系相溶化劑、以及視情況需要的各種添 加物及其他的聚合物予以熔融混練調製而得。熔融混練, 例如,係可以使用班柏里混合機、嗔砂硏磨機、單軸濟壓 機、雙軸擠壓機等來實施。 混練時,各種成分之添加順序並沒有特別地限定,然 而可以使用如下之方法來調製本發明之苯乙烯系彈性體組 成物。 ①將(a )苯乙烯系彈性體、(b )層狀無機化合物、及(c )樹脂 系相溶化劑全部一起混合之熔融混練的方法;或 1289150 ② 將(a )苯乙烯系彈性體、及(c )樹脂系相溶化劑熔融混練 使形成組成物之後,再添加(b )層狀無機化合物之熔融混 練的方法; ③ 將(b )層狀無機化合物、及(c )樹脂系相溶化劑予以熔融 混練使形成組成物之後,再添加(a )苯乙烯系彈性體之熔 融混練的方法等; 以③所示之方法較爲理想。 另外,在③之方法中,即使是在由(b )層狀無機化合物、 及(c )樹脂系相溶化劑所形成的組成物一旦成爲糊狀之後, 再添加(a )本乙燦系彡早性體’也可以良好地溶融混練;也可 以在熔融混練所調制的(b )層狀無機化合物、及(c )樹脂系 相溶化劑所形成之熔融狀態的組成物中,利用側邊進料機 添加(a )苯乙烯系彈性體再予以混練。 又且,也可以使用熔融混練以外的方法來調製本發明 之苯乙烯系彈性體組成物,例如, ④ 將(a )苯乙烯系彈性體、(b )層狀無機化合物、及(c )樹脂 系相溶化劑在有機溶媒中予以混合之方法; ⑤ 將分散在有機溶媒狀態下之(b )層狀無機化合物,添加在 (a )苯乙烯系彈性體、及(c )樹脂系相溶化劑中之方法。 如以上所述,視情況需要所使用的各種添加及其他的 聚合物,可以預先地摻混在(a )苯乙烯系彈性體、(b )層狀 無機化合物、及(c )樹脂系相溶化劑中,也可以將個別成分 與(a )苯乙烯系彈性體、及(c )樹脂系相溶化劑一起摻混。 以如以上所述調制的本發明之苯乙烯系彈性體組成物 1289150 中,有機化之層狀無機化合物的層間距離有必要是在1 5埃 以上。 在本發明中,使用藉有機陽離子而有機化的物質做爲 前述(b )層狀無機化合物,並使用前述(c )樹脂系相溶化劑, 除此之外,開始時在苯乙烯系彈性體組成物中之該(b )層狀 無機化合物具有如以上所述的層間距離時,就可能得到具 有經改良的氣體阻障性之苯乙烯系彈性體組成物。 又且,隨著(b )層狀無機化合物的層間距離變大時,可 發現本發明之苯乙烯系彈性體組成物的氣體阻障性具有向 上增加的傾向。 在本發明之苯乙烯系彈性體組成物中,層狀無機化合 物的層間距離較宜是在20埃以上,更宜是在25埃以上, 又更宜是在3 0埃以上,而非常理想的是在4 4埃以上。 此處,(b )層狀無機化合物的層間距離係利用廣角X射 線繞射檢測,以相對應於在層狀無機化合物之(00 1 )面的波 峰爲基準而求得。 在本發明中,層狀無機化合物中的層間距離,具體而 言,係可以利用以下之方法而求得。 層狀無機化合物的層間距離之測定: 使用由苯乙烯系彈性體組成物所製做而成的薄膜(直 徑:4 · 5毫米、厚度:0 · 1毫米),利用廣角X射線繞射(X r d ) 測定裝置「RINT 2400 X射線差分儀(日本理學製)」,於測 定角度(20):2至12度,掃描速度:〇.2度/分鐘之條件 下測定X射線繞射圖案。 - 3 4 - 1289150 以相對應於在層狀無機化合物之(0 〇 1 )面的波峰爲基 準,利用下述之式子,而算出從層狀無機化合物具而來的 層間距離d (埃)。 D= λ /2s in Θ λ二1 ·54(埃) 在本發明之苯乙烯系彈性體組成物中,有機化的(b )層 狀無機化合物之各層,較宜是在完全地剝離之狀態。從而, 在本發明中,(b )層狀無機化合物的層間距離並無上限。 在本發明中,以廣角X射線繞射測定苯乙烯系彈性體 組成物時,當從(b )層狀無機化合物而來的波峰完全地消 時,即可判斷(b )層狀無機化合物之各層係爲完全地剝離的 狀態。在此種狀態下的本發明之苯乙烯系彈性體組成物, 由於苯系彈性體之氣體阻障性非常地良好,因而示常的理 想。又且,在此種狀態的本發明之苯乙烯系彈性體組成物, 因爲所含有的(b )層狀無機化合物之含量少、且良好地分散 在該組成物中的原故,因而將多量的層狀無機化合物添加 在組成物中的情況下,不會有損害所生成苯乙烯系彈性體 組成物之柔軟性、成形等之各種特性的問題,而且成本也 低,並可以改良氣體阻障性。 本發明之苯乙烯系彈性體組成物係可利用射出成形、 擠壓成形、壓縮成形、膨脹成形、熔吹成形、軋出成形、 旋轉成形等之成形法,以及熱可塑性彈性體之成形中一般 所用的成形法,予以加工形成薄膜、薄片、成形容器、吹 塑容器等之成形品。 1289150 在此種情況下,藉由熔融混練所調製的苯乙烯系彈性 體組成物也可以利用其照原樣成形,也可以在某日使九粒 化之後再予以成形。 又且,本發明之苯乙烯系彈性體組成物,也可以與的 材料複合加工製成各種積層構造物。其他的材料,舉例來 說,例如其可以是熱硬化性樹脂、紙、布帛、金屬、木材、 陶瓷等。 從本發明之苯乙烯系彈性體組成物所得到的積層構造 物’並沒有特別地限定爲何種物體,舉例來說,例如其可 以是將1層的從本發明之苯乙烯系彈性體組成物所形成的 層、和1層之從其他的材料所形成的層予以積層之2層構 造物;在從其他的材料所形成的2枚表面層(內表面層)之 間’存在有從本發明之苯乙烯系彈性體組成物所形成的層 做爲中間層之3層構造物,以及在從其他的材料所形成的i 層之內表面上積層由本發明之苯乙烯系彈性體組成物所形 成的層之3層構造物。 積層構造物係可以藉由利用公知的方法製造而得,例 如,(i )以本發明之苯乙烯系彈性體組成物熔融被覆前述其 他的材料而製造積層構造物之方法,(丨丨)將本發明之苯乙 燃系彈性體組成物熔融導入2種以上之其他材料之間,並 使之黏著而一體化之方法,(i i i )在將其他材料配置在模具 內的狀態下’將熔融的本發明之苯乙烯系彈性體組成物充 塡於模具內’並使之黏著而一體化之方法,(丨v )於其他材 料具有熱可塑性的情況下,將本發明之苯乙烯系彈性體組 1289150 成物與其他材料一同擠壓成形,並使之黏著而一體化之方 法等。 此外’本發明之苯乙烯系彈性體組成物,於製造各種 製品及上述之積層構造物中,也可以視情況需要地當做熱 熔融型黏著劑來使用。 在使用由本發明之苯乙烯系彈性體組成物所形成的熱 熔融型黏著劑時,其形態並沒有特別地限定,例如,可以 是如九粒等之粒狀物、棒狀物、薄膜、薄片、板狀物等之 任意形狀。 在本發明之苯乙烯系彈性體組成物之中,因爲(b)層狀 無機化合物係充分地微分散的原故,所以氣體阻障性乃顯 著地向上增加。又且,機械特性也良好。 氣體阻障性,例如,係可以氧穿透係數來表現。一方 面,本發明之苯乙烯系彈性體組成物的氧穿透係數p,已知 與(b )層狀無機化合物的分散狀態具有相關性,並可以顯示 分散狀態之指標而推知。從而,如果所使用的各種成分種 類、物性及使用量均相同的話,則當在苯乙烯系彈性體組 成物中之(b )層狀無機化合物的分散狀態愈良好時,意即(b ) 層狀無機化合物之層間距離愈大(較佳爲(b )層狀無機化合 物之各層是完全剝離的,而且(b )層狀無機化合物在組成物 中微分散)時,P値就變得愈小,則可想而知氣體阻障性就 會愈良好。 其中,理想的態樣爲本發明之苯乙烯系彈性體組成物 的氧穿透係數p、與(a )苯乙烯系彈性體之氧穿透係數ρτΡΕ ' - 37 - 1289150 以及在苯乙烯系彈性體組成物中的層狀無機化合物之重量 分率Φ F之間,係成立下述之關係式。此處所稱的「苯乙烯 系彈性體組成物的氧穿透係數P」、及「 ( a )苯乙烯系彈 性體之氧穿透係數PTPE」係如下述的「氧穿透係數P和PTPE 之測定方法」中所說明的那樣,其意義係指於苯乙烯系彈 性體組成物、與(a )苯乙烯系彈性體分別成形爲薄膜狀時所 測定之氧穿透係數。 P < 0 . 5x PTPEx (l-OF)/(l + OF/2) (1) (式中,Φ F係僅爲層狀無機化合物之無機成分的重量 分率)。 在此種關係式(1 )成立的情況下,本發明之苯乙烯系彈 性體組成物的氣體阻障性增加並達到充分的程度。尤其, 像本發明這樣的苯乙烯系彈性體組成物,已可實用地提供 要求氣體阻障性之物品,意即在實用上可以提洪做爲氣體 阻障性物品用之材料。 氧穿透係數P和PTPE之測定方法 使用由本發明之苯乙烯系彈性體組成物製做而成之厚 度爲0 · 1毫米的薄膜,利用氣體穿透性試驗裝置(柳本氣相 層析儀G2800T(柳本製造廠製)),於35°c、50%RH之條件下, 依照JIS K7126(等壓法)所記載的方法爲基準而測定氧穿透 量,並從該値計算出氧穿透係數Ρ。另外,使用由(a )苯乙 烯系彈性體所製做的厚度爲〇 · 1毫米之薄膜,以同樣的方 法計算出氧穿透係數PTPE。 苯乙烯系彈性體組成物之氧穿透係數P、及(a )苯乙烯 - 38 - 1289150 系彈性體之氧穿透係數pTPE間不成立上述關係式(丨)的組成 物,因爲爲了求得氣體阻障性而發現需要添加多量的(b)層 狀無機化合物,結杲造成苯乙烯系彈性體組成物之柔軟性 降低、以及產生成形性不良等之問題。 依照本發明所得到的苯乙烯系彈性體組成物,係可以 使用在氣體阻障性物品(例如,各種食品包裝容器、農業用 包裝材料、醫療用包裝材料、柴油儲槽、化粧品容器、藥 劑容器、醫療品包裝材料、輪胎用內襯管、積層品、各種 容器之薄膜及薄片、密封材料(例如,0 -環、墊圏、密合墊、 盍材、蓋帽、帽襯等)等)、蛇管、管、汽車零件、鞋用氣 墊等之用途上。 其中’依照本發明所得到的苯乙烯系彈性體組成物係 同時產生氣體阻障性及柔軟性,因而特別地適合適用於做 爲密封材料(例如,0-環、墊圈、密合墊(例如,注射筒用 密合墊等)、蓋材(例如’藥栓等)、蓋帽(例如,真空採血 管之蓋帽等)、帽襯等)用之材料。 【實施方式】 【實施例】 以下,雖然藉由實施例而具體地說明本發明,但本發 明並不因此而僅限定於此等實施例之事物而已。 又,在實施例及比較例中,氧穿透係數之測定、以及 苯乙烯系彈性體組成物中層狀無機化合物之層間距離的測 定係依照上述之方法來進行。 實施例1 使用1 0克之經以二甲基雙十八基錢離子處理的合成雲 -39- 1289150 母(層狀無機化合物,生協化學(股)公司製,商品名·· MAE, 無機物含量:68重量%)、與23克之乙烯/丙烯酸共聚合樹 脂(樹脂系相溶化劑,日本聚煙(股)公司製,EAA A2 1 0K ), 使用拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以 熔融混練之後,加入6 7克之聚苯乙烯-聚異戊二烯-聚苯乙 烯三嵌段共聚物之加氫加成物(苯乙烯系彈性體,可樂麗(股) 公司製,商品名:歇普通2002 ),更進一步予以熔融混練, 接著冷卻到室溫而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 lSJOOcc^O/zm/n^.day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 3 . 2埃。 對照例1 使用拉伯普拉斯特混合機(東洋精機製造(股)公司 製),將聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加 氫加成物(苯乙烯系彈性體,可樂麗(股)公司製,商品名: 歇普通2002 )予以熔融,冷卻到室溫之後,進行壓縮成形而 製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿透 係數 PTPE,係爲 72,400cc · 20/zm/m2 · day · atm。 比較例1 ( 1 ) 使用1 0克之未經處理的合成雲母(層狀無機化合物, 生協化學(股)公司製,商品名:ME 100)、與67克之聚苯乙 烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫加成物(苯乙 一 4 0 - 1289150 烯系彈性體,可樂麗(股)公司製,商品名:歇普通2002 ), 使用拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以 熔融混練’接著冷卻到室溫而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 55,700cc.20/zm/m2.day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲1 2 . 1埃。 比較例1 ( 2 ) 使用10克之經以二甲基雙十八基銨離子處理的合成雲 母(層狀無機化合物,生協化學(股)公司製,商品名:MAE)、 與67克之聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之 加氫加成物(苯乙烯系彈性體,可樂麗(股)公司製,商品名: 歇普通2002 ),使用拉伯普拉斯特混合機(東洋精機製造(股) 公司製)予以熔融混練,接著冷卻到室溫而得到苯乙烯系彈 性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 31,600cc*20//m/m2*day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 2 · 4埃。 比較例1 ( 3 ) 除了使用1 〇克之未經處理的合成雲母(層狀無機化合 物,生協化學(股)公司製,商品名:ME1 00)來代替10克之 1289150 經以二甲基雙十八基銨離子處理的合成雲母(層狀無機化合 物’生協化學(股)公司製,商品名:MAE,無機物含量:68 重量% )以外’均以和實施例1同樣的做法而得到苯乙烯系 彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P(cc*20/zm/m2*day*atm),係爲 41,700 cc· 2 0 // m/m2 · day · a tm。又,藉由前述之方法測定苯乙烯系彈 性體組成物中之層狀無機化合物之層間距離,係爲1 2 · 1埃。 實施例2 除了使用23克之乙烯-縮水甘油基甲基丙烯酸酯共聚 物(EGMA)(住友化學工業(股)公司製,商品名:邦朵法斯特 E )做爲樹脂系相溶化劑以外,均以和實施例1同樣的做法 而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物’進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 28,400 cc.20//m/m2.day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲32.5埃。 實施例3 除了使用2 3克之乙燃/乙基丙烯酸酯共聚物(日臺聯合 (股)公司製,商品名:共聚物做爲樹脂系相 溶化劑以外,均以和實施例1同樣的做法而得到苯乙燒系 彈性體組成物。 -42 - 1289150 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 Μ _做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 运係數 P’ 係爲 25,600 cc.SO/zm/m^clay.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 2 . 6埃。 實施例4 除了使用23克之乙烯/甲基丙烯酸鋅鹽共聚合離子聚 合物(三并•杜邦化學(股)公司製,商品名:高密朗1 70 6Zn) 做爲樹脂系相溶化劑以外,均以和實施例1同樣的做法而 得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 22,200 cc*20//m/m2*day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲32.8埃。 實施例5 除了使用23克之順丁烯二酸酐改性聚丙烯(三洋化成 工業(股)公司製,商品名:優美克斯1 0 0 1 )做爲樹脂系相溶 化劑以外,均以和實施例1同樣的做法而得到苯乙'馬系彈 性體組成物。 使用所得:到的苯乙烧系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前@之方丨去測1 $所1彳辱致】@ _肖莫t $ 透係數 P,係爲 1 9,400 cc*20#m/m2*day*atm。又,藉由 前述之方法測定苯乙烯系彈性胃'組1^彳勿Φ之®彳犬#機{ 七合 -43- 1289150 物之層間距離,係爲3 3 . 4埃。 實施例6 除了使用2 3克之依照特開平1 〇 - 3 0 6 1 9 6號公報之參考 例7中所記載的法爲準而合成之聚丙烯-聚(丙烯酸/乙基丙 烯酸酯)型二嵌段共聚物(聚丙烯嵌段之數平均分子量: 1 0,0 0 0、聚(丙烯酸/乙基丙烯酸酯)嵌段的數平均分子量: 40,0 00、相對於嵌段共聚物全部之重複單位計之從丙烯酸 而來的構造單位之含量:8 . 1莫耳%)做爲樹脂系相溶化劑以 外,均以和實施例1同樣的做法而得到苯乙烯系彈性體組 成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 29,40 0 cc.20//m/m2.day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 2 . 6埃。 實施例7 除了使用23克之依照特開平1 0 - 3 06 1 96號公報之參考 例7中所記載的法爲準而合成之聚丙烯-聚(丙烯酸/乙基丙 烯酸酯)型二嵌段共聚物(聚丙烯嵌段之數平均分子量: 10,000、聚(丙烯酸/乙基丙烯酸酯)嵌段的數平均分子量: 1 0,00 0、相對於嵌段共聚物全部之重複單位計之從丙烯酸 而來的構造單位之含量:7莫耳%)做爲樹脂系相溶化劑以 外’均以和實施例丨同樣的做法而得到苯乙烯系彈性體組 成物。 -44- 1289150 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 16,000 cc.20/zm/m2.day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 7 . 1埃。 實施例8 除了使用23克之依照特開平1 0 - 306 1 96號公報之參考 例7中所記載的法爲準而合成之聚丙烯-聚(丙烯酸/乙基丙 烯酸酯)型二嵌段共聚物(聚丙烯嵌段之數平均分子量: 4,000、聚(丙烯酸/乙基丙烯酸酯)嵌段的數平均分子量: 4,000、相對於嵌段共聚物全部之重複單位計之從丙烯酸而 來的構造單位之含量:1 i莫耳%)做爲樹脂系相溶化劑以外, 均以和實施例1同樣的做法而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P’ 係爲 12,000 cc*2 0/zm/m2.day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲37.8埃。 實施例9 除了使用10克之經以雙(2 -羥基乙基)甲基十二基銨離 子處理的合成雲母(生協化學(股)公司製,商品名:MEE, 無機物含量:70重量%)當做層狀無機化合物、以及使用聚 苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫加成物 (可樂麗(股)公司製,商品名:歇普通2007)做爲苯乙烯系 1289150 彈性體以外,均以和實施例1同樣的做法而得到苯乙烯系 彈性體組成物。 使用所得到的苯乙烯系彈性體組成物’進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數P,係爲9,600cc.20#m/m2*day’atm°與後述之比 較例2相互比較時’可確認氣體阻障性明顯地大幅向上增 加。又,藉由前述之方法測定苯乙烯系彈性體組成物中之 層狀無機化合物之層間距離時,在X射線圖案中由合成雲 母來的波峰係完全地消失,可確認層狀無機化合物之各層 係完全地剝離,層間距離係在44埃以上。 對照例2 使用拉伯普拉斯特混合機(東洋精機製造(股)公司 製),將聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加 氫加成物(苯乙烯系彈性體,可樂麗(股)公司製,商品名: 歇普通2007 )予以熔融,冷卻到室溫之後,進行壓縮成形而 製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿透 係數 PTPE,係爲 76,400cc · 20/zm/m2 · day · atm。 比較例2 ( 1 ) 使用1 0克之未經處理的合成雲母(層狀無機化合物, 生協化學(股)公司製,商品名:ME100)、與67克之聚苯乙 嫌-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫加成物(苯乙 嫌系彈性體,可樂麗(股)公司製,商品名:歇普通2 〇 〇 7 ), 使用拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以 熔融混練,接著冷卻到室溫而得到苯乙烯系彈性體組成物。 1289150 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 58,700cc.20/zm/m2.day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲1 2 . 1埃。 比較例2 ( 2 ) 使用10克之經以雙(2 -羥基乙基)甲基十二基銨離子處 理的合成雲母(生協化學(股)公司製,商品名:MEE)、與67 克之聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫 加成物(可樂麗(股)公司製,商品名:歇普通2007 ),使用 拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以溶融 混練,接著冷卻到室溫而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 48,000cc*20//m/m2*day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲2 6 . 1埃。 比較例2 ( 3 ) 除了使用1 0克之經以雙(2 -羥基乙基)甲基十二基銨離 子處理的合成雲母(生協化學(股)公司製,商品名:MEE )來 代替1 〇克之未經處理的合成雲母(層狀無機化合物,生協 化學(股)公司製,商品名·· ME 1 0 0 )以外,均以和實施例9 同樣的做法而得到苯乙烯系彈性體組成物。 使用所得到的本乙烧系彈性體組成物,進行壓縮成形 - 47- 1289150 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P(cc.20/zm/m2.day*atm),係爲 35,500 cc*20#m/m2· day · a t m。又,藉由前述之方法測定苯乙烯系彈性體組成物 中之層狀無機化合物之層間距離,係爲1 2 . 1埃。 另外,爲了比較、對照之用,乃將從在實施例9和比 較例2 ( 2 )中所得到的苯乙烯系彈性體組成物製得之薄膜(厚 度:0 · 1毫米)的X射線繞射圖案,示於第1圖中。 實施例1 0 除了使用聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚 物之加氫加成物(可樂麗(股)公司製,商品名:亥普拉7 1 2 5 ) 做爲苯乙烯系彈性體以外,均以和實施例9同樣的做法而 得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數P,係爲5,300cc*20//m/m2*day*atm。與後述之對 照例3相互比較時,可確認氣體阻障性明顯地大幅向上增 加。又,藉由前述之方法測定苯乙烯系彈性體組成物中之 層狀無機化合物之層間距離時,在X射線圖案中由合成雲 母來的波峰係完全地消失,可確認層狀無機化合物之各層 係完全地剝離,層間距離係在44埃以上。 對照例2 使用拉伯普拉斯特混合機(東洋精機製造(股)公司 製)’將聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加 氫加成物(苯乙烯系彈性體,可樂麗(股)公司製,商品名·· 1289150 亥普拉71 25)予以熔融,冷卻到室溫之後,進行壓縮成形而 製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿透 係數 PTPE,係爲 54,600cc · 20/zm/m2 · day · atm。 比較例3 ( 1 ) 使用1 0克之未經處理的合成雲母(層狀無機化合物, 生協化學(股)公司製,商品名:ME 100)、與67克之聚苯乙 烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫加成物(苯乙 烯系彈性體,可樂麗(股)公司製,商品名:亥普拉7 1 2 5 ), 使用拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以 熔融混練,接著冷卻到室溫而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 32,700cc*20/z、m/m2.day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲1 2 . 0埃。 比較例3 ( 2 ) 使用10克之經以雙(2 -羥基乙基)甲基十二基銨離子處 理的合成雲母(生協化學(股)公司製,商品名·· MEE無機物 含量:70重量%)、與67克之聚苯乙烯-聚異戊二烯-聚苯乙 烯三嵌段共聚物之加氫加成物(可樂麗(股)公司製,商品 名:亥普拉7 1 25 ),使用拉伯普拉斯特混合機(東洋精機製 造(股)公司製)予以熔融混練,接著冷卻到室溫而得到苯乙 烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 1289150 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P(cc*20//m/m2*day*atm),係爲 26,000cc*20/zm/m2 · day · atm。又,藉由前述之方法測定苯乙烯系彈性體組成 物中之層狀無機化合物之層間距離,係爲24 . 9埃。 比較例3 ( 3 ) 除了使用10克之經以雙(2 -羥基乙基)甲基十二基銨離 子處理的合成雲母(生協化學(股)公司製,商品名·· MEE)來 代替1 0克之未經處理的合成雲母(層狀無機化合物,生協 化學(股)公司製,商品名:ME 1 00 )以外,均以和實施例1 〇 同樣的做法而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P’ 係爲 28,100 cc.2〇em/m2*day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲1 2 . 1埃。 另外’爲了比較、對照之用,乃將從在實施例1 〇和比 較例3 ( 2 )中所得到的苯乙烯系彈性體組成物製得之薄膜(厚 度:0 · 1毫米)的X射線繞射圖案,示於第2圖中。 更且,爲了確認在本發明及比較例的苯乙烯系彈性體 組成物中之分散狀態,乃進行以下之觀察。 將從在實施例1 0和比較例3 ( 2 )中所得到的苯乙烯系 彈性體組成物製得之薄膜(厚度:〇 · 1毫米),使用超微機(商 品名’萊卡公司製)予以陳結超薄切譬之後,以四氧化餓染 色,並利用穿透式電子顯微鏡(TEM,H- 800NA型,日立製造 -50- 1289150 公司製,測定條件:加速電壓100kV)進行觀察。彼等之斷 面照片,係示於第3圖及第4圖中。 在第3圖中,實施例1 0之苯乙烯系彈性體組成物中層 狀無機化合物係完全地層間剝離,因而可理解實施例1 〇係 充分地分散。另一方面,在第4圖中,比較例3 ( 2 )之苯乙 烯系彈性體組成物中層狀無機化合物明顯地不是層間剝 離。 【發明效果】 【產業利用性】 若依照本發明的話,就可以提供一種氣體阻障性向上 增加、機械特性也良好的苯乙烯系彈性體組成物。 本案係以在日本申請之特願2002 - 1 47 5 35爲優先權主 張的基礎,其內容乃全部包括在本說明書之中。又且,本 說明書中所引用的專利及專利文獻,係依照與被引用所揭 示的全部內容相同程度地被組合倂入本說明書之中。 【圖式之簡單說明】 第1圖爲在前述實施例9及比較例2 ( 2 )中所得到的苯 乙烯系彈性體組成物所形成的薄膜之廣角X射線繞射圖 案。在第1圖中以虛線表示之比較例2 ( 2 )的2個波峰中, 左邊的波峰是對應於層狀無機化合物之(0 〇 1 )面之波峰,而 右側的波峰是對應於層狀無機化合物之(002 )面之波峰。 第2圖爲在前述實施例1 0及比較例3 ( 2 )中所得到的 苯乙烯系彈性體組成物所形成的薄膜之廣角X射線繞射圖 案。在第2圖中以虛線表示之比較例2 ( 2 )的2個波峰中, -51- 1289150 左邊的波峰是對應於層狀無機化合物之(001)面之波峰,而 右側的波峰是對應於層狀無機化合物之( 002 )面之波峰。 第3圖爲在前述實施例1 〇中所得到的苯乙烯系彈性體 組成物所形成的片材之超薄切片斷面於穿透型電子顯微鏡 中觀察的照片(上),以及顯示在該組成物中層狀無機化合 物(合成雲母)之分散狀態的模示圖(下)。 第4圖爲在前述比較例3 ( 2 )中所得到的苯乙烯系彈性 體組成物所形成的片材之超薄切片斷面於穿透型電子顯微 鏡中觀察的照片(上)’以及顯示在該組成物中層狀無機化 合物(合成雲母)之分散狀態的模示圖(下)。 第5圖爲在第3圖中所記載的在前述實施例1 〇中所得 到的苯乙烯系彈性體組成物所形成的片材之超薄切片斷面 於穿透型電子顯微鏡中觀察到的照片。 第6圖爲在第4圖中所記載的在前述比較例3 ( 2 )中所得到 的苯乙烯系彈性體組成物所形成的片材之超薄切片斷面於 穿透型電子顯微鏡中觀察到的照片。1289150 TECHNICAL FIELD OF THE INVENTION The present invention relates to a styrene-based elastomer composition comprising a styrene-based elastomer and a layered inorganic compound. [Prior Art] In recent years, with the wider use of elastomers, substances requiring higher performance have continued. Among them, the high performance requirements for mechanical properties and gas barrier properties are even higher. For example, a technique of blending an inorganic tantalum in an elastomer for the purpose of improving mechanical properties has also been proposed in many reports. 1) A clay composite material for improving the mechanical properties of an organic polymer material, which is a type of organic clay mineral dispersed by an ionic bond of an organic cerium ion, is disclosed in Japanese Laid-Open Patent Publication No. Hei 8-33114. A clay composite of a polar group of guest molecules. 2) A method for producing a resin composite material for improving the mechanical properties of an organic polymer material is disclosed in Japanese Laid-Open Patent Publication No. Hei 11-92677, which is characterized in that it includes a functional group modified by a polymer to be modified. The step of polymer and the step of compounding the modified polymer with the organicized clay to combine the two. 3) In the case of a resin composite material which provides excellent heat resistance and excellent elasticity even at normal temperature, it is disclosed in Japanese Patent Laid-Open No. 2000-86822, which discloses a resin composite material characterized in that an organic clay is used. It is formed by dispersing at least one type of the block copolymer type thermoplastic elastomer formed of a plurality of types of segments. No. 5 - 1289150 4 ) In order to provide a resin composite material which can be easily composited and has a wide application range, a resin composite material is disclosed in the Japanese Patent Laid-Open No. 1 1 - 9 2 5 9 4, which is characterized in that: It is formed of two or more kinds of polymers and organic clay, and at least one of the above two or more kinds of polymers has a functional group. 5) A polypropylene resin composition comprising a crystalline polypropylene containing a predetermined amount of an elastomer having an alkene-soluble component at 23 ° C, containing an ethylenically unsaturated bond, is disclosed in JP-A-2002-37940. a crystalline polypropylene modified by a carboxylic acid, an acid anhydride or a derivative thereof, and an organicized clay. Among these elastomers, the styrene-based elastomer is excellent in flexibility, cold resistance, moisture absorption resistance, and the like, and is also easy to form a molded body having rubber elasticity. Therefore, it can be used as an alternative to the existing vulcanized rubber. In addition, it has been put into practical use in various fields such as industrial products such as automobiles, electrical products, buildings, and civil engineering, and medical, sports equipment, and various container parts (for example, cap linings, etc.). 1) A thermoplastic elastomer of a styrene elastomer is disclosed in JP-A No. 200 1 - 1 3 7 3 3 8 which can be used for elastic sliding of a sliding member of a piston for a syringe. 2) A method for forming a sealing plug for a blood collection tube, which is blended with a triblock copolymer of a thermoplastic elastomer resin such as polystyrene-polyisobutylene-polystyrene, is disclosed in Japanese Laid-Open Patent Publication No. Hei. A resin formed by a predetermined ratio of naphthalene oil. 3) The use of a soft synthetic resin of a styrene-based elastomer, that is, the use of a styrene-based elastomer on the needle-punched portion of the vacuum blood collection tube and the sealing portion -6 to 1289150, is disclosed in Japanese Laid-Open Patent Publication No. Hei. Soft synthetic resin. 4) No. 5-212104 discloses a rubber pad for medical products, a sealing pad for a syringe, a rubber plug for decompression blood collection, and a syringe for a drug filling container. A substitute material for a vulcanized rubber for medical and medical thermoplastic sealing articles, that is, a block copolymer of an aromatic vinyl compound and isobutylene (for example, a styrene-isobutylene-styrene triblock copolymer) Things, etc.). Further, as for the use of the styrene-based elastomer as a component for a container, for example, it is known as follows: 1) An ethylene-α-olefin polymer and a branch are disclosed in Japanese Laid-Open Patent Publication No. Hei 11-349753 a composition for a cap liner material formed of a low-density polyethylene and a thermoplastic elastomer, and exemplified by a styrene-butadiene copolymer rubber, a styrene-isobutylene polymer rubber, a hydrogenated styrene ethylene-propylene copolymer A styrene polymer elastomer such as rubber is used as the thermoplastic elastomer. 2) a composition for a cap lining material formed of a polypropylene resin, a hydrogenated styrene-isopropene block copolymer rubber, and a flowing paraffin is disclosed in JP-A-1330-1100; A polypropylene resin, a linear low-density polyethylene resin, a hydrogenated styrene-conjugated diene block copolymer rubber, and a flowing paraffin are disclosed in Japanese Laid-Open Patent Publication No. 1 1 - 1 5 7 5 6 8 Composition. 3) A thermoplastic elastomer and a saponified ethylene-vinyl acetate copolymer and/or a polyamide resin are disclosed in JP-A No. 2000-35 1 880 and JP-A-2000 _ 3 5 5 3 5 2, respectively. The composition of the cap lining material composed of the composition is a composition of the type -7- 1289150, and the two documents are exemplified by a styrene-butadiene block copolymer, a styrene-ethylene-butylene block copolymer, and styrene. A styrene-based elastomer such as an ethylene propylene block copolymer or a styrene-isopropylene copolymer is used as the thermoplastic elastomer. 4) A method for forming a hydrogenated product of a styrene-conjugated diene block copolymer, a softener for rubber, and/or a flow alkane olefin and a polyethylene resin is disclosed in JP-A-2000-281 1 1 7 Cap lining material, and exemplified by hydrogenated styrene-isobutylene-styrene copolymer, hydrogenated styrene-(isobutylene/butadiene)-styrene block copolymer as styrene-conjugated diene Segment copolymer. In recent years, in order to achieve good mechanical properties, chemical resistance, and rubber elasticity of the styrene-based elastomer, it is proposed to disperse the swellable citrate in a dispersion medium and to A styrene-based elastomer in which an amine compound or a polysiloxane is mixed to prepare a layered inorganic compound. For example, a method for producing a styrene-based elastomer, that is, a monomer constituting a styrene-based elastomer and a layered inorganic substance, is described in JP-A-2000-19058 The compound is mixed and a styrene-based elastomer containing a layered inorganic compound is produced by polymerization. Further, a method of producing a styrene-based elastomer containing an inorganic layered compound, that is, a method of mixing an inorganic layered compound and a styrene-based elastomer in an organic solvent, is also described. However, after the layered inorganic compound is mixed with the monomer, the monomer is complicated by polymerization. Further, 'the method for producing a styrene-based elastomer, -8- 1289150 is a living anionic polymerization and coordination polymerization generally used, and is known to significantly inhibit polymerization in the presence of a compound having a polar functional group and water. Therefore, it is difficult to sufficiently carry out the polymerization reaction by a method of polymerizing a monomer in the presence of a layered inorganic compound having high polarity and easily containing moisture. Further, in the method of mixing a layered inorganic compound and a styrene-based elastomer in an organic solvent, since the layered inorganic compound is hydrophilic in nature, when the styrene-based elastomer is dissolved in an organic solvent, the layer The inorganic compound easily forms two agglomerations. As a result, the layered inorganic compound is difficult to be sufficiently dispersed in the styrene-based elastomer. As described above, even if the technique disclosed in the above publication is held, it is difficult to sufficiently disperse the layered inorganic compound in the styrene-based elastomer, so that the mechanical properties are naturally limited. It is. Further, regarding the gas barrier properties of the styrene-based elastomer, although the degree of improvement can be seen by blending the inorganic cerium, it is not always possible to obtain a satisfactory and sufficient gas barrier property. SUMMARY OF THE INVENTION [Problem to be Solved by the Invention] However, an object of the present invention is to provide a styrene-based elastomer composition having improved gas barrier properties and good mechanical properties, that is, by layering The inorganic compound is sufficiently finely dispersed in the styrene elastomer to improve the gas barrier properties of the styrene elastomer and to have good mechanical properties. [Proposal of the Invention] According to the present invention, the above problems can be solved, and a -9- styrene elastomer composition is characterized in that the styrene-based elastomer composition is composed of (a) styrene. An elastomer, (b) a layered inorganic compound organicized by an organic cation, and (c) a polar polymer having compatibility with the (a) styrene elastomer and having a polar functional group in the molecule ( In the following, the interlayer distance of the layered inorganic compound (b) which is organically formed in the composition is 15 Å or more. That is, the present invention provides a layered inorganic compound which is (a) a styrene-based elastomer, (b) organically organicated with an organic cation, and (c) has compatibility with the (a) styrene-based elastomer. And a styrene-based elastomer composition formed of a polar polymer having a polar functional group in the molecule, and the interlayer distance of the (a) organic layered inorganic compound in the composition is 15 Å or more. of. [Disclosure of the Invention] Hereinafter, each component of the styrene-based elastomer composition of the present invention will be described in detail. (_a) styrene-based elastic body "Component (a) | (a) The styrene-based elastic system may be used without any particular limitation, and specific examples thereof, for example, may be aromatic a vinyl compound, a block copolymer formed of an olefin compound or a conjugated diene compound, etc. A desired block copolymer, for example, may have a polymer which will be formed from an aromatic vinyl compound In the case of A, the polymer formed of the olefin compound or the conjugated diene compound is represented by B, and the formula A is B, (A - B) m - a "wherein, m is an integer representing 1 to 1 〇 "(a - β) η 1289150 - X "In the formula, X is a block copolymer having a η-valent residue derived from a coupling agent, and η is an integer representing 2 to 15". Further, the polymer block formed of the aromatic vinyl compound and the polymer block formed of the olefin compound or the conjugated diene compound constitute a tapered bonding polymer, and can also be used as styrene. Elastomers. Among them, it is desirable that two or more polymer blocks A formed of an aromatic vinyl compound and one or more polymer block Β are linearly bonded block copolymers, In particular, the triblock copolymer represented by the formula: Α - Β - Α is preferred. The aromatic vinyl compound constituting the above block copolymer may be, for example, styrene, α-methylstyrene, fluorene-, m- or ρ-methylstyrene, 2, for example. 3-dimethylstyrene, 2,4-dimethylstyrene, monochlorostyrene, dichlorostyrene, p-brominated styrene, 2,4,5-tribrominated styrene, 2,4,6-tribrominated styrene, fluorene-, m-, or ρ-t-butyl styrene, ethyl styrene, vinyl naphthalene, vinyl anthracene, and the like. Among them, styrene and/or α-methylstyrene are desirably used. One type of aromatic vinyl compound may be used, and two or more types may be used together. The content of the aromatic vinyl compound unit in the block copolymer is not particularly limited, but it is preferably 5 to 7 in terms of the formability and mechanical properties of the obtained styrene-based elastomer composition. 5% by weight, more preferably 10 to 65% by weight. On the other hand, the styrene-based compound constituting the above block copolymer may be, for example, ethylene, propylene, 1-butene, 2-butene, a 1 1 - 1289150 isobutylene, 1-pentene, 2-pentene, cyclopentene, 丨-hexene, 2-hexene, cyclohexene, 1-heptene, 2-heptene, cycloheptene, 1-octene, 2-octene, cyclooctane , vinyl cyclopentene, vinyl cyclohexene, vinyl cycloheptene, vinyl cyclooctene, and the like. Further, it may be used as a conjugated diene compound, for example, it may be butadiene, isobutylene, 2,3-dimethyl-anthracene, octabutane, 1,3-pentadiene, 1 , 3-hexadiene, etc. The polymer block B may be composed of one of such compounds, or may be composed of two or more kinds; however, it is preferably composed of butadiene, isoamylene or a mixture thereof; From the viewpoint of gas barrier properties of the obtained styrene-based elastomer composition, it is preferably composed of a mixture of butadiene and isoamylene or isopentene. The polymer block B may be a side chain containing an aliphatic carbon-carbon double bond. For example, in the case of using a mixture of butadiene or isoamylene or isopentenylene as a conjugated diene compound, the polymer block B is derived from a 1,2-bond and a 3,4-bond. The side chain contains an aliphatic carbon-carbon double bond. In this case, the sum of the 1,2-bond and the 3,4-bond in the polymer block B is preferably in the total amount relative to the structural unit constituting the block copolymer. The ratio of 30% or more is more preferably 40% by mole or more. The polymer block B may also be a hydrogenation reaction of an aliphatic carbon-carbon double bond derived from a conjugated diene compound. The hydrogenation rate of the aliphatic carbon-carbon double bond is appropriately selected in accordance with the composition, use, and the like of the styrene-based elastomer composition. However, in the case where heat resistance and weather resistance are required, it is preferably 3 〇. More than or equal to the ear, more preferably 50% by mole or more, more preferably 80% by mole. 1289150 The hydrogenation rate of the above aliphatic carbon-carbon double bond can be obtained by a method generally used, for example, It was calculated by iodine value measurement method and 1H-NMR measurement. Preferred examples of the above block copolymer are, for example, polystyrene-polybutadiene-polystyrene triblock copolymer or hydrogenated product thereof, polystyrene-polyisoprene. - polystyrene triblock copolymer or hydrogenated product thereof, polystyrene-poly(isopentene/butadiene)-polystyrene triblock copolymer or hydrogenated product thereof, poly(α-methyl group Benzene bis]-polybutylene-poly(α-methylstyrene) triblock copolymer or its hydrogenated product, poly(α-methylstyrene)-polyisoprene-poly(α-甲Styrene) triblock copolymer or hydrogenated product thereof, poly(α-methylstyrene)-poly(isopentene/butadiene)·poly(α-methylstyrene) triblock copolymer Or its hydrogenated product. Also, for example, a polystyrene-polyisobutylene-polystyrene triblock copolymer, a poly(α-methylstyrene)-polyisobutylene-poly(α·methylstyrene) triblock Copolymers are also a desirable example. Further, these block copolymers may contain a carboxyl group or a salt thereof, a hydroxyl group, or an acid anhydride at a single terminal or both ends of a main chain, a side chain, or a molecular chain, within the range not impairing the intention of the present invention. a polar functional group such as a group, an amine group, an epoxy group, an ester group, an alkyl group, an aryloxy group, a sulfate group or a derivative thereof, a guanamine group, a thiol group, a halogen atom or the like. The content of the polar functional group is not particularly limited, but is preferably less than 0 with respect to the total molar amount of the repeating unit constituting the block copolymer.  05% of the mole, more preferably at 0. 04% of the following. The block copolymer having a polar functional group can be obtained by the method of i) using a compound having a polar functional group as a polymer terminator, and the method of ii) adding an olefin compound containing a polar functional group. And/or a conjugated diene containing a polar compound or a method of copolymerization. The olefin-based compound containing a polar functional group and/or the conjugated diene containing a polar compound may be, for example, an α,^-unsaturated carboxylic acid such as acrylic acid or methacrylic acid. Acrylate, ethacrylate, propyl acrylate, butyl acrylate, aminopropyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate vinegar, 2-ethylhexylmethyl An alkyl ester of an unsaturated carboxylic acid such as acrylate or cyclohexyl methacrylate, maleic acid, hydrazine-methyl maleamide, hydrazine-ethyl maleamide, hydrazine-phenyl maleamide , anthracene-containing compound of α,/3-unsaturated carboxylic acid such as cyclohexylmaleamide, epoxy group-containing unsaturated compound such as glycidyl methacrylate or allyl glycidyl ether, α,/3-unsaturated dicarboxylic acid such as citric acid, maleic acid, etc., α,0-unsaturated dicarboxylic anhydride such as itaconic anhydride, maleic anhydride, citric acid anhydride, acrylamide, methacrylic acid amine group Amine-containing unsaturated group of ethyl ester, aminopropyl methacrylate, amino styrene, etc. Compound, 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-2- A hydroxyl group-containing unsaturated compound such as methyl-1-propene, 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate, acrylamide or vinyloxazoline. The olefin-based compound containing a polar functional group and/or the conjugated diene compound containing a polar functional group may be used alone or in combination of two or more. Further, the block copolymer may optionally employ a mobile crosslinking agent in the presence of an organic peroxide or the like as occasion demands. The number average molecular weight of the block copolymer is not particularly limited, however, 000 1289150 is usually in the range of 10, 〇〇〇 to 1,000,000, and more preferably in the range of 30 to 500,000. The styrene-based elastomer used in the present invention is a polymer which is capable of exhibiting a rubber elastic body under the action of a plastic elastomer, and which is plastically deformed as the temperature rises, in addition to the above-mentioned block copolymer A random copolymer of a group of a vinyl compound and an olefin compound or a conjugated diene (hereinafter, simply referred to as "aromatic vinyl compound") is also very suitable for use. The copolymer to be used may be a polar functional group as described above, and the content thereof is not particularly limited, but it is preferably less than mol%, more preferably in terms of the total molar amount of the repeating unit constituting the copolymer. 0 · 04 moles below %. The number average molecular weight of the aromatic vinyl compound-based copolymer is specifically defined, but is usually in the range of 10,000 to 1,000,000, preferably in the range of 30,000 to 50,000,000. The styrene-based elastomer used in the present invention is preferably a composition of the other resin such as the block copolymer or the aromatic vinyl compound-based copolymer polyolefin resin described above, and further desired A composition formed by blending an additive such as a plasticizer or the like. Here, the polyolefin-based resin may, for example, be an olefin, a polyethylene, an ethylene/vinyl acetate copolymer, a 4-methylpentadiene polybutene-1, an ethylene/acrylate copolymer, or the like. However, it is preferred to be an alkene. The amount of the polyolefin used is preferably less than 100 parts, more preferably 80 parts by weight or less based on 100 parts by weight of the above block or aromatic vinyl compound-based polymer. The amount of polyolefin resin used - 1 5 - at room temperature, the total is relative to 0. 05 If there is no internal, combined, and step-dependent polypropylene -1 λ polypropylene copolymer weight exceeds the above range of 1289150, there will be damage as a mechanical property of the styrene elastomer. Further, the softener for non-aromatic rubber is very suitable for use as a plasticizer. Specific examples thereof may be, for example, an alkene or naphthalene process oil, a white oil, a mineral oil, an oligomer of ethylene and an α-olefin, an olefin paint, and a flow chain olefin. Among them, an olefin-based process oil is preferred. The amount of the plasticizer to be used is preferably 400 parts by weight or less based on 1 part by weight of the above-mentioned block copolymer or aromatic vinyl compound-based copolymer. When the amount of the plasticizer used exceeds the above range, not only the mechanical properties are lowered, but also the plasticizer bleeds out. Further, in the ethylene-based elastomer used in the present invention, an ethylene-propylene copolymer copolymerized rubber other than the polyolefin-based resin may be added to the ethylene-based elastomer, and the polyethylene-based elastomer may be added. Styrene-based resin, styrene resin such as ABS, polyphenylene ether resin, polyester urethane stem, polyamine resin, polyacetal resin 'acrylic resin' Wait. Furthermore, reinforcing materials (for example, carbon black, carbon fiber, glass fiber, boron fiber, linaloamide fiber, liquid crystal poly fiber, etc.), tanning materials, oxidation inhibitors, light stabilizers, and flame retardants may be further added as occasion demands. Agent, coloring agent, antibacterial agent, antifungal agent, ultraviolet absorber, heat stabilizer, foaming agent, crystal nucleating agent, slip agent, antistatic agent, colorant, crosslinking agent, low shrinkage agent, tackifier , release agent, anti-fogging agent, bluing agent, decane coupling agent, and the like. As the phenylethylene combustion system, commercially available materials can be used. For example, for example, it can be "common" or "Heibul" [trade name; Kuraray (share) 1-16- 1289150 company] , "Cointong" [commodity name; shell (share) company system" [trade name; Asahi Kasei (stock) company system], "Dana brand name; J SR (share) company system] styrene - The conjugated diene block "Indices of Dicos" (trade name; manufactured by Dow Chemical Co., Ltd.) is an olefin/ethylene copolymer; for example, "Aaron AR" (commercialized by the company) "Laba Long" [trade name; made by Mitsubishi Corporation] and other components. (b) Layered inorganic compound "Component (b) i Next, the (b) layered inorganic compound of the styrene-based elastomer composition of the present invention will be described. The layered inorganic compound used in the present invention is viscous. For example, it may be a swellable citrate or a phosphorus. However, in view of industrial versatility, ease of handling, physical properties of the obtained product, etc. The sulphonate citrate referred to herein is mainly formed by an octahedral sheet of cerium oxide sheet and metal hydroxide, and has a polar solvent or water mixed in an arbitrary ratio and the inert solvent. Swelling properties of citrate. Examples of these are smectite clay, swellable mica, mica, etc. Specific examples of natural or synthetic products of smectite clay can be used, for example, For example, montmorillonite, saponite, saponite, hectorite, sparkling stone, smectite, swelling compound, derivative, or a mixture thereof, etc. The swellable mica can be used as a natural finished product or a synthetic product. Large Dragon "[commercially copolymer, etc. were phenylethyl; Aaron Chemistry (shares) constituting the mineral acid to chromium, a polymer group} ® square ,, ΠΤΙ.  The tetrahedron water, water and mixed solvent are said, for example. The montmorillonite, earth or its tie 1289150 has the property of swelling the water, water and a polar solvent mixed in any ratio or water and a mixed solvent of the inert solvent. Specific examples of the swellable mica include, for example, lithium type mica, sodium type mica, lithium type four mica, sodium type four mica, or the like, a substitute, a derivative thereof, or the like. Mixture, etc. The above-mentioned swellable mica having a structure similar to vermiculite may also be used in the same manner as the vermiculite. Similar to the meteorite, for example, a three-faceted headscarf type vermiculite, a two-faceted headscarf type meteorite, and the like. Further, the mica, for example, may be muscovite, mica, biotite, scale mica, beech mica, tetraterpene mica or the like. Further, for example, a substance of swellable mica which is subjected to fluorine treatment on mica, or a substance obtained by hydrothermal synthesis. The layered inorganic compound is preferably smectite, bentonite, hectorite and swellable mica having sodium ions between the layers, because they are easy to obtain, and it is made into a styrene-based elastomer composition. It is excellent in dispersibility and has the characteristics of improving the physical properties of the obtained composition. The organic cation is preferably an organic ruthenium having an organic compound such as an ammonium ion, a scaly ion, a ruthenium ion or an amino acid. Among them, ammonium ion or scale ion is preferred from the viewpoint of industrial applicability and the like. The ammonium ion or the iron ion is preferably 1289150 + (1) represented by the following chemical formula π) (wherein 1^ represents a nitrogen atom or a phosphorus atom, and 1^, 1^, 1^, and 1^ respectively represent hydrogen. An atom, a benzyl group which may have a polar functional group on a benzene ring, or an alkyl group having a carbon number of 1 to 30 may be substituted with a polar functional group. However, R1 to R4 do not simultaneously represent a hydrogen atom. Further, in R1 In the case of r4, it is also possible to have a polar lanthanyl group; the number of the groups is preferably 2 or less.) Among the above, an alkyl group having 1 to 30 carbon atoms, for example, it may be a methyl group or an ethyl group. , propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, eleven, decyl (lauryl), thirteen, fourteen, fifteen Base, eighteen base, etc. Further, the above benzyl group and a polar functional group having an alkyl group having 1 to 30 carbon atoms may, for example, be a hydroxyl group, an alkoxy group, an aryloxy group, a decyloxy group or a hydrogen sulfide. A group, an alkylthio group, an arylthio group, a decyl group, a carboxyl group, a decyloxy group, an alkoxycarbonyl group, an acid anhydride group, a nitro group, a halogen atom, an epoxy group or the like. Among these, a hydroxyl group, an alkoxy group, an aryloxy group, a decyl group, a decyloxy group, an alkoxycarbonyl group, or an acid anhydride group is preferred. With respect to the anion of the above-mentioned ammonium ion or squamous ion, for example, it may be Cl·, Br·, I′, ν〇3·, 0ΙΓ, CH3C0Cr, HS〇4_, HC03·, etc., among them, More preferably, it is an example of Cl_, Br, Γ, N〇3-, or 0 ° ammonium ion, for example, BT is hexyl ammonium ion, 1289150 octyl ion, 2-ethylhexyl ion, Twelve-base ion, octadecyl ammonium ion, lauryl ammonium ion, ammonium stearate ion, monooctyldimethylammonium ion, trioctyl ammonium ion, distearate ammonium ion, distearyl Acid methylammonium ion, butylammonium ion, dimethylbutylammonium ion, 1,2-dimethylpropylammonium ion, methylhexylammonium ion, 3-pentylammonium ion, dimethylethyl Ammonium ion, dimethylbisoctadecyl ammonium ion, 2-octyl ammonium ion, diethyl ammonium ion, tetramethyl ethyl ammonium ion, dimethylpropyl ammonium ion, diethyl propyl ammonium ion, two Butylpropylammonium ion, tetramethylpropylammonium ion, isoamyl ammonium ion, ethyl isoamyl ammonium ion, 2-hexyl ammonium ion, diisopropylethyl Ionic, ethyl dimethylpropylammonium ion, diisobutylammonium ion, mono-C6_2Q-alkyltrimethylammonium ion, dicocoylalkyldimethylammonium ion, coconut alkyl dimethyl ammonium Ionic, trioctylmethylammonium ion, trilaurylmethylammonium ion, di-hardened trialkylalkyldimethylammonium ion, benzhydryltrimethylammonium ion, benzyltributylammonium ion, and the like. Specific examples of the iron ion, for example, may be trimethyldodecylate, trimethylhexadecyl ion, trimethyloctadecyl ion, tributyldodecylate, Tributylhexadecyl squamium and the like. Further, as a specific example of the cerium ion, for example, it may be trimethylphosphonium ion, dimethyldodecylphosphonium ion, dimethylhexadecylphosphonium ion, dimethyloctadecylphosphonium ion, or the like. Ethyl hydrazine ion, diethyl dodecyl hydrazine ion, diethylhexadecyl hydrazine ion, diethyl octadecyl chain ion, tributyl phosphonium ion, dibutyl dodecyl hydrazine ion, dibutyl Hexadecyl iridium ion, triphenyl sulfonium ion, and the like. Preferably, the ammonium ion, the scaly ion, or the cerium ion is one having a functional group having a polarity of - 20 to 1289150. For example, a specific example of 'ammonium ion having a hydroxyl group, a scale ion having a hydroxyl group, or a chain ion having a hydroxyl group, for example, it may be entangled in the above-mentioned virgin ion, One to four of the iron ion or mirror ions are via a methyl group, an ethyl group (for example, a 2-regular group), or a hydroxypropyl group (for example, a 3-hydroxypropyl group). Substituted ions. Specific examples of an ammonium ion having an alkoxy group or an aryloxy group, a scale ion having an alkoxy group or an aryloxy group, or a phosphonium ion having an alkoxy group or an aryloxy group, for example, One to four alkyl or benzyl groups in the above-exemplified ammonium ion, scaly ion, or cerium ion are (CH2CH20)PR group, (CH2CH(CH3)0)PR group, or (CH2CH2CH20) The polyoxyalkylene-substituted ion represented by the PR group (wherein the P system represents an integer from 1 to 5). Further, specific examples of the ammonium ion having a methoxy group, the scaly ion having a decyloxy group, or the cerium ion having a decyloxy group are, for example, the ammonium having a hydroxyl group exemplified above. In the case of an ion, a sulfonium ion having a hydroxyl group, or a phosphonium ion having a hydroxyl group, the hydroxyl group is protected by a mercapto group such as an ethenyl group or a benzamidine group. Further, as a specific example of the ammonium ion having a carboxyl group, an acid anhydride or an alkoxycarbon group, for example, it may be a cation derived from a derivative of an amino acid. The amino acid referred to herein is preferably a carbon number of 4 to 30; specifically, for example, it may be an amino acid, arginine, r-aminocyclohexylcarboxylic acid, p - Amino hydroxy cinnamic acid, leucine, phenylalanine, histidine, tryptophan, and the like. Further, the above-mentioned amino acid may have a form protected by a carboxyl group, a methyl-2 1 -1289150 ester, an ethyl ester, a benzyl ester or the like. By adding the above organic cation to the layered inorganic compound, an organic layered inorganic compound can be obtained. It is preferred to swell the layered inorganic compound prior to the addition of the organic cation. The swell treatment, in particular, may be carried out by immersing the layered inorganic compound in (i) water, (ii) water and a polar organic solvent mixed in an arbitrary ratio, or (iii) a mixture of water and the polar organic solvent. It is carried out in a solvent. At this time, it is preferable to sufficiently stir. The polar or organic solvent may, for example, be an alcohol such as methanol, ethanol or 2-propanol, a glycol such as ethylene glycol, propylene glycol or 1,4-butanediol, or a ketone such as acetone. An ether such as tetrahydrofuran or 1,4-dioxane, or a non-cochatic polar solvent such as dimethylformamide, dimethylacetamide, dimethylthioguanamine or dimethylacetone. The organic layered inorganic compound can be obtained by a general method such as a filter or a centrifugal separator. The obtained layered inorganic compound is desirably sufficiently washed and removed to remove excess cations, and then dried. The amount of organic cation added can be determined, for example, by the column infiltration method (refer to "Clay Handbook" on pages 5 76 to 517, published by Techno Dolly), and methylene blue adsorption amount measurement (refer to the Japanese Bentonite Industry Association Standard Test Method). , J BAS - 1 0 7 - 9 1 ), etc. The cation exchange capacity (CEC) of the layered inorganic compound is measured and determined based on the measurement. The amount of the organic cation added is preferably 1 equivalent or more, more preferably from 1 equivalent to 10 equivalents, based on the CEC. Resin-based compatibilizer "Component (c), -22- 1289150 Next, (C) resin-based compatibilizing agent in the styrene-based elastomer composition of the present invention will be described. (C) used in the present invention The resin-based phase-solving agent-based component (a) is compatible with a styrene-based elastomer and is a polar polymer having a functional group. For example, it does not have a phase of storage with the above-mentioned component (a) benzene. When the soluble substance is used as the component (c), since the (b) layered inorganic compound is sufficiently dispersed in the styrene-based bomb, the improved gas barrier benzene composition cannot be obtained, so When it is compatible with the styrene-based elastomer, for example, a styrene-based polyene-conjugated diene block copolymer such as polystyrene or a hydrogenated product thereof, or a polyester system can be used. a polyolefin-based polymer such as a polyolefin or a polypropylene, a polybutadiene, a segment copolymer, etc. (c) a resin-based compatibilizing agent can be used as a basic structure and having a polar functional group in the molecule β the above polyolefin-based polymer, for example, for example Propylene, 1-butene, 2-butene, isobutylene, 1-pentene, 2-ene, 1-hexene, 2-hexene, cyclohexene, 1-heptene, 2-heptene octene, Olefin-based diene, isoprene, 2,3-dimethyl-1, 2-octene, cyclooctene, vinylcyclopentene, ethylene vinylcycloheptene, vinylcyclooctene, etc. a single polymerization of a diene-based compound such as 3-butadiene, i, κ 3 -hexadiene or the like, and a composition of the polyolefin-based polymer may be used as described above. The polar elastomer phase can be used to make the above-mentioned physical composition ethylene-based elastomer, an example compound, phenethyl ethane, and polyvinylidene-propylene embedded in such a polymer i polymer. , cyclopentane, cycloheptene, cyclohexene, 1,3 - butyl 3-pentadiene, a fat contained in a compound or a copolymer - 23 - 1289150 group carbon-carbon double bond for hydrogenation. Further, the styrene-based polymer may, for example, be styrene, α-methylstyrene, o-, m-, or p-methylstyrene, 2,3-dimethylstyrene, 2,3-dimethylbenzene Alkene, monochlorostyrene, styrene dichloride, P-brominated styrene, 2,4,5-tribrominated styrene, 2,4,6-tribrominated styrene, 〇-, m- Or a separate polymer or copolymer of an aromatic vinyl compound such as p-tert-butyl styrene, ethyl styrene, vinyl naphthalene or vinyl anthracene, etc. Further, a styrene-conjugated diene is embedded a segment copolymer or a hydrogenated product thereof, for example, which may be a polystyrene-polybutadiene-polystyrene triblock copolymer or a hydrogenated product thereof, polystyrene-polybutadiene-poly Styrene triblock copolymer or hydrogenated product thereof, polystyrene-poly(isoprene/butadiene polystyrene triblock copolymer or hydrogenated product thereof, poly(α-methylstyrene) )_ polybutanedione-poly(α-methylstyrene) triblock copolymer or its hydrogenated product, poly-methylstyrene plant polyisoprene-poly(α-methylstyrene) three A block copolymer or a hydrogenated product thereof, a poly(α-methylstyrene poly(isoprene/butadiene poly(α-methylstyrene) triblock copolymer or a hydrogenated product thereof. Further, the 'polyester-based polymer' may, for example, be a glycol alcohol component such as ethylene glycol, propylene glycol, butanediol or bis(hydroxymethyl)benzene, and citric acid, isodecanoic acid, or the like. a smear obtained by condensation polymerization between dicarboxylic acid components such as citric acid. Further, a ring-opening polymer using a cyclic compound such as a lactone is also often suitable. (C) The polar functional group in the resin-based compatibilizing agent, in order to suppress aggregation of the layered inorganic compound in the obtained two green-based elastomer composition, and to uniformly disperse -24 - 1289150, and to form a layered inorganic compound Sufficiently finely dispersed 'is more affinity or reactivity with the layered inorganic compound. The polar functional group in the (C) resin-based compatibilizing agent may be, for example, an aminooxy group, an alkoxy group, an aryloxy group, a sand-oxyl group, a thiol group, a thiol group, a sulphur-containing sulphur group. Base ' thiol, residue or its salt, decyloxy, oxynitride, aryl oxygen. a base, an acid anhydride group, an aldehyde group, an acetal group, a decylamino group, a quinone imine group, a nitro group, a halogen atom, a sulfonic acid group or a derivative thereof, an epoxy group, etc.; among these, it is preferably a hydrogen atom a group, a carboxyl group or a salt thereof, an alkoxycarbonyl group, a decyloxy group, an acid anhydride group, or an epoxy group. (C) The resin-based compatibilizing agent may have only one type of polar functional group, and may have two or more kinds of polar functional groups. (c) The content of the polar functional group in the resin-based compatibilizing agent is preferably 0 in terms of the total number of moles of the repeating unit constituting the polar polymer used as the resin-based solvent. More than 50% of the moles, more preferably 0. 05 moles or more and 50 mole% or less. The amount of the (a) styrene-based elastomer, (b) the type of the layered inorganic compound and the amount thereof used, and (c) the content of the polar functional group in the resin-based compatibilizing agent are relative to the composition. The total number of moles of the repeating unit of the polar polymer used in the resin phase solvent is insufficient.  In the case of 〇5 mol%, the effect of (b) the layered inorganic compound being uniformly dispersed in the (a) styrene-based elastomer may not be obtained. Further, conversely, the content of the polar functional group in the (c) resin-based compatibilizing agent exceeds 50 mol based on the total number of moles constituting the repeating unit of the polar polymer used as the resin-based solvent. When it is %, there is a case where gelatin or the like is produced during the production of a styrene-based elastomer or during processing. The polar functional group may be included in any one or both of the molecular chain of the polar polymer used as the (c) resin-based compatibilizing agent for the polar polymer, and the middle chain or the side chain of the molecular chain. . The distribution of the polar functional groups in the polar polymer is not particularly limited, and for example, it may be a regular distribution, a block (block) distribution, a random distribution, a tapered distribution, and a distribution of all or a part of them. can. The polar polymer used as the (C) resin-based compatibilizing agent can be obtained by using (i) a compound having a polar functional group as a polymerization terminator in a manufacturing process and reacting (ii) A compound containing a polar functional group is produced by a method of copolymerization or addition. The compound having a polar functional group may be, for example, an α, a 3-1,3-unsaturated carboxylic acid such as acrylic acid or methacrylic acid, a methacrylate, an ethacrylate, a propyl acrylate or a butyl acrylate. Ester, pentyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexylmethyl Alpha, cold-unsaturated carboxylic acid alkyl ester of acrylate, cyclohexyl methacrylate, etc., maleimide, _-methyl maleimide, Ν-ethyl cis a ruthenium imine compound of α, a rock-unsaturated carboxylic acid, such as enediamine, fluorene-phenyl-m-butyleneimide, fluorene-cyclohexylmethyleneimine, etc., glycidyl group Epoxy-containing unsaturated compound such as acrylate or allyl glycidyl ether, α,/3-unsaturated carboxylic acid such as itaconic acid or maleic acid, itaconic anhydride, maleic anhydride , an anhydride of α, Θ-unsaturated carboxylic acid such as citraconic anhydride, acrylamide, methacrylic acid amine Amine-containing unsaturated compounds of ethylene such as ethyl ether, aminopropyl methacrylate, and aminobenzene, 3-hydroxy-1-propene, 4-hydroxy-1-propene, -26-1289150 bis-4-hydroxy- Hydroxyl-containing groups such as 2-butene, tri-4-hydroxy-2-butene, 3-hydroxy-2-methyl-1-propene, 2-hydroxyethyl acrylate, 2-hydroxyethyl acrylate Unsaturated compound, polyalkylene glycol such as polyethylene glycol, cyclic ether such as formaldehyde, tetrahydrofuran or 1,4-dioxane, acrylamide, vinyl oxazoline, ethyl acetate, etc.; One of these may be used, or two or more types may be used. The polar polymer used as the (c) resin-based compatibilizing agent may be saponified as occasion demands, or may be formed into an alkali metal or alkaline earth metal salt. Further, the polar polymer used as the (c) resin-based compatibilizing agent may have a structure of an ionic polymer crosslinked by a polyvalent metal. The number average molecular weight of the polar polymer used as the (c) resin-based compatibilizing agent is usually in the range of 500 to 500,000, preferably in the range of 1,000 to 30,000,000. Specific examples of the above polar polymer are shown below. (1) Pole polymer ethylene/acrylic acid copolymer having a carboxyl group or a salt thereof, propylene/acrylic acid copolymer, ethylene/propylene/acrylic acid copolymer, ethylene/methacrylic acid copolymer, propylene/methacrylic acid copolymer, ethylene /propylene/methacrylic acid copolymer, ethylene/butylene/acrylic acid copolymer, ethylene/butylene/methacrylic acid copolymer, ethylene/hexene/acrylic acid copolymer, ethylene/hexene/methacrylic acid copolymer, ethylene /octene/acrylic acid copolymer, ethylene/octene/methacrylic acid copolymer, or its metal, the gas phase chlorine-containing polar polymer ethylene/allyl alcohol copolymer, propylene/allyl alcohol Copolymer, ethylene / 1289150 propylene / allyl alcohol copolymer, ethylene / methyl allyl alcohol # methyl allyl alcohol copolymer, ethylene / propylene / methyl allypropylene / butene / allyl alcohol Copolymer, ethylene/butylene/polymer, ethylene/hexene/allyl alcohol copolymer, ethylene/E-based alcohol copolymer, ethylene/octene/allyl alcohol copolymer, allyl alcohol copolymer Things. Ethylene/2-hydroxyethyl acrylate copolymer, propylene copolymer acrylate copolymer, ethylene/propylene/2-hydroxyethyl propylene ethylene/2-hydroxyethyl methacrylate copolymer, propylene dance methacrylate copolymer , ethylene/propylene/2-hydroxyethyl ester copolymer, ethylene/butylene/2-hydroxyethyl acrylate polybutene/2-hydroxyethyl methacrylate copolymer, ethylene ethyl acrylate copolymer, Ethylene/hexene/2-hydroxyethyl ester copolymer, ethylene/octene/2-hydroxyethyl acrylate polyoctene/2-hydroxyethyl methacrylate copolymer. Single-end or two-terminal hydroxy polyethylene, single-end or propylene, single-end or two-terminal hydroxy polyethylene/propylene copolymerized two-terminal hydroxy polyethylene/propylene/butadiene copolymer, monohydroxy polystyrene. Single-end or two-terminal hydroxy polybutylene, single-end polyisoprene, single-end or two-terminal hydroxyl group (isoamyl hydrogenated product. Single-end or two-terminal hydroxyl group (polystyrene-polybutanol) Block copolymer), single-end or two-terminal hydroxyl groups (polyphenylene oxalate- 28-polymer, propylene/alcohol copolymer, allylic alcohol co-iene/methylallyl vinylene/octene/ A/2-hydroxyethyl acrylate copolymer 'f / 2-hydroxyethyl methacrylate ruthenium polymer, ethylene / / hexene / 2-hydroxy methacrylic acid I polymer, ethylene 'terminal hydroxyl group Polymer, single or terminal or both terminal or both terminal hydroxy olefin / butadiene) or t · polystyrene - t · polyisoprene 1289150 - polyethylidene diblock copolymer), single end Or both ends of the base [polystyrene-poly(butadiene / isoprene) - polystyrene triblock copolymer] or a hydrogenated product. Single or both terminal hydroxyl groups (polystyrene-polyisobutylene-polystyrene triblock copolymer). JL3) a bulky polymer ethylene/maleic anhydride copolymer having an acid anhydride, a propylene/maleic anhydride copolymer, an isobutylene/maleic anhydride copolymer, an ethylene/maleic anhydride copolymer, Ethylene/maleic anhydride copolymer, methyl vinyl ether/maleic anhydride copolymer, ethyl vinyl ether/maleic anhydride copolymer, ethylene/propylene/maleic anhydride copolymer, Ethylene/butene/maleic anhydride copolymer, ethylene/hexene/maleic anhydride copolymer, ethylene/octene/maleic anhydride copolymer, styrene/maleic anhydride copolymer. Maleic anhydride modified polyethylene, maleic anhydride modified polypropylene, maleic anhydride modified polyethylene/propylene copolymer, maleic anhydride modified polyethylene/propylene/butadiene copolymerization , maleic anhydride modified polystyrene. Maleic anhydride modification (polystyrene-polybutadiene-polystyrene triblock copolymer), maleic anhydride modification [polystyrene-poly(butadiene/isoprene) - polystyrene triblock copolymer]], maleic anhydride modification (polystyrene-polyisobutylene-polystyrene triblock copolymer). (4) A polar polymer ethylene/glycidyl acrylate copolymer having a ring argon, a propylene/glycidyl acrylate copolymer, an ethylene/propylene/glycidyl acrylate copolymer, an ethylene/glycidylmethyl group Acrylate copolymer, propylene/glycidyl methacrylate copolymer, ethylene/propylene/glycidyl methacrylate 1289150 ester copolymer, ethylene/butylene/glycidyl acrylate copolymer, ethylene/butene/ Glycidyl methacrylate copolymer, ethylene/hexene/glycidyl acrylate copolymer, ethylene/hexene/glycidyl methacrylate copolymer, ethylene/octene glycidyl acrylate copolymer , ethylene / octene / glycidyl methacrylate copolymer. (5) Polar polymerization with alkane carbonyl, ethylene/ethyl acrylate copolymer, propylene/ethyl acrylate copolymer, ethylene/propylene/ethyl acrylate copolymer, ethylene/ethyl methacrylate Copolymer, propylene/ethyl methacrylate copolymer, ethylene/propylene/ethyl methacrylate copolymer, ethylene/butylene/ethyl acrylate copolymer, ethylene/butylene/ethyl methacrylate Copolymer, ethylene/hexene/ethyl acrylate copolymer, ethylene/hexene/ethyl methacrylate copolymer, ethylene/octene/ethyl acrylate copolymer, ethylene/octene/ethyl methyl Acrylate copolymer. Further, by neutralizing the polar polymer having the acid anhydride group (3) with a base or the like, a polymer having a carboxyl group or a salt thereof can be obtained. Further, the above (3) polar polymer having an acid anhydride group is neutralized by using ammonia or an amine or the like and dehydrated as necessary, and convex to obtain a polymer having a mercapto group or having a ruthenium Amine based polymer. The above-mentioned polar compound or a mixture of two or more kinds thereof may be used as the (c) resin-based compatibilizing agent. (a) a styrene-based elastomer constituting the styrene-based elastomer composition of the present invention (hereinafter referred to as component (a)), (b) a layered inorganic compound (hereinafter referred to as component (b)), and (c) The weight ratio of the resin-based compatibilizing agent (hereinafter referred to as component (c)) -30 to 1289150 is required in accordance with the type of various components used and the obtained styrene-based elastomer composition. Physical properties are appropriately determined, however, usually in the following ranges. Ingredient (b) / component (a) = 0. 01/100 ~200/1 00; and component (c) / component (a) = 0. 01/100 ~5000/100 When the amount of the (b) layered inorganic compound used exceeds the above range, the properties of the obtained styrene-based elastomer composition such as flexibility, rubber elasticity, and formability are lowered. Case. On the other hand, when the amount of the (b) layered inorganic compound used is less than the above range, the effect of improving the mechanical properties and the gas barrier property due to the addition of the layered inorganic compound cannot be exhibited. In addition, when the amount of the (C) resin-based compatibilizing agent used is outside the above range, the physical properties such as flexibility, rubber elasticity, and moldability of the obtained styrene-based elastomer composition may be lowered. On the other hand, when the amount of the (C) resin-based compatibilizing agent is less than the above range, since it is difficult to sufficiently finely disperse the layered inorganic compound in the styrene-based elastomer composition, it may not be exhibited. The effect of improving the mechanical properties and gas barrier properties by adding a layered inorganic compound. The amount of the (C) resin-based compatibilizing agent is preferably in the range of the following. Ingredient (C) / Ingredient (a) = 0. 03/100 to 3000/100 (weight ratio) In the styrene-based elastomer composition of the present invention, even if it is added to the styrene-based elastomer composition, it is not limited to the object of the present invention. There is no problem with the blended additives. The various additives mentioned herein, for example, may be ultraviolet absorbers, light stabilizers 1289150, heat stabilizers, plasticizers, various oils, various mineral oils, foaming agents, crystal nucleating agents, slip agents, Charge inhibitor, colorant, crosslinker, flame retardant, house rust agent, low shrinkage agent, tackifier, release agent, antifogging agent, proppant, decane coupling agent, reinforcing material (for example, carbon black, Carbon fiber, glass fiber, boron fiber, guanamine fiber, liquid crystal polyester fiber, etc.), antimony, oxidation inhibitor, antibacterial agent, and the like. Further, in the styrene-based elastomer composition of the present invention, even if it is added to a polymer blended in a usual styrene-based elastomer composition, the polymer is added to the extent that the object of the present invention is not impaired. no problem. The polymer referred to herein may be, for example, an ethylene-propylene copolymer rubber, a polystyrene, a styrene-acrylonitrile polymer, a styrene resin such as ABS, or a polyphenylene ether resin. A polyester resin, a polyurethane resin, a polyamine resin, a polyacetal resin, an acrylic resin, or the like. The styrene-ethylene-based elastomer composition of the present invention can be obtained by subjecting the component (a) a styrene-based elastomer, a component (b) a layered inorganic compound, and a component (c) a resin-based phase melting agent to a general method. And various additives and other polymers as needed, prepared by melt-kneading. The melt kneading can be carried out, for example, using a Banbury mixer, a honing honing machine, a uniaxial rivet press, a twin screw extruder, or the like. In the kneading, the order of addition of the various components is not particularly limited, but the styrene-based elastomer composition of the present invention can be prepared by the following method. (1) a method of melt-kneading (a) a styrene-based elastomer, (b) a layered inorganic compound, and (c) a resin-based phase melting agent; or 1289150 2 (a) a styrene-based elastomer, And (c) a method in which the resin-based compatibilizing agent is melt-kneaded to form a composition, and then (b) a layered inorganic compound is melt-kneaded; 3 (b) the layered inorganic compound and (c) the resin are dissolved. After the agent is melt-kneaded to form a composition, (a) a method of melt-kneading the styrene-based elastomer or the like is added; and the method shown by 3 is preferred. Further, in the method of 3, even after the composition formed of the (b) layered inorganic compound and the (c) resin-based compatibilizing agent becomes a paste, (a) the ethyl lanthanum is added. The early body ' can also be well melted and kneaded; or in the molten state composition formed by the melt-kneading (b) layered inorganic compound and (c) the resin-based phase melting agent, the side edge can be used. The styrene elastomer was added to the feeder and mixed. Further, the styrene-based elastomer composition of the present invention may be prepared by a method other than melt-kneading, for example, 4 (a) a styrene-based elastomer, (b) a layered inorganic compound, and (c) a resin. a method in which a phase melting agent is mixed in an organic solvent; 5 (b) a layered inorganic compound dispersed in an organic solvent state, (a) a styrene-based elastomer, and (c) a resin-based phase melting agent The method in the middle. As described above, various additions and other polymers to be used as needed may be previously blended in (a) a styrene-based elastomer, (b) a layered inorganic compound, and (c) a resin-based phase melting agent. In this case, the individual components may be blended together with (a) a styrene-based elastomer and (c) a resin-based phase melting agent. In the styrene-based elastomer composition 1289150 of the present invention prepared as described above, the interlayer distance of the organic layered inorganic compound is preferably 15 Å or more. In the present invention, a substance organicized by an organic cation is used as the layered inorganic compound (b), and the above-mentioned (c) resin-based phase melting agent is used, and in addition, a styrene-based elastomer is initially used. When the (b) layered inorganic compound in the composition has the interlayer distance as described above, it is possible to obtain a styrene-based elastomer composition having an improved gas barrier property. In addition, when the interlayer distance of the (b) layered inorganic compound is increased, it is found that the gas barrier property of the styrene-based elastomer composition of the present invention tends to increase upward. In the styrene-based elastomer composition of the present invention, the interlayer distance of the layered inorganic compound is preferably 20 Å or more, more preferably 25 Å or more, and still more preferably 30 Å or more, and is highly desirable. It is above 4 4 angstroms. Here, (b) the interlayer distance of the layered inorganic compound is detected by wide-angle X-ray diffraction, and is determined based on the peak of the (00 1 ) plane of the layered inorganic compound. In the present invention, the interlayer distance in the layered inorganic compound can be specifically determined by the following method. Measurement of interlayer distance of layered inorganic compound: A film made of a styrene-based elastomer composition (diameter: 4 · 5 mm, thickness: 0 · 1 mm) was used, and wide-angle X-ray diffraction (X) was used. Rd) Measuring device "RINT 2400 X-ray difference meter (Nippon Science)", measuring angle (20): 2 to 12 degrees, scanning speed: 〇. The X-ray diffraction pattern was measured at 2 degrees/min. - 3 4 - 1289150 Calculate the interlayer distance d (Å) from the layered inorganic compound based on the peak corresponding to the (0 〇 1 ) plane of the layered inorganic compound based on the following formula . D = λ /2 s in Θ λ 2 · 54 (Angstrom) In the styrene-based elastomer composition of the present invention, the layers of the organic (b) layered inorganic compound are preferably completely peeled off. . Therefore, in the present invention, there is no upper limit to the interlayer distance of the (b) layered inorganic compound. In the present invention, when the styrene-based elastomer composition is measured by wide-angle X-ray diffraction, when the peak derived from the (b) layered inorganic compound is completely eliminated, (b) the layered inorganic compound can be judged. Each layer is in a state of being completely peeled off. In the styrene-based elastomer composition of the present invention in such a state, since the gas barrier property of the benzene-based elastomer is extremely good, it is often desired. In addition, the styrene-based elastomer composition of the present invention in such a state has a small content of (b) the layered inorganic compound and is well dispersed in the composition. When the layered inorganic compound is added to the composition, there is no problem of impairing various properties such as flexibility and molding of the resulting styrene-based elastomer composition, and the cost is also low, and the gas barrier property can be improved. . The styrene-based elastomer composition of the present invention can be formed by injection molding, extrusion molding, compression molding, expansion molding, melt-blowing molding, roll-out molding, and rotational molding, and in the formation of a thermoplastic elastomer. The molding method used is processed to form a molded article such as a film, a sheet, a molded container, or a blow molded container. 1289150 In this case, the styrene-based elastomer composition prepared by melt-kneading may be formed as it is, or may be formed after nine granulation on a certain day. Further, the styrene-based elastomer composition of the present invention may be processed into a laminate structure to form various laminated structures. Other materials, for example, may be thermosetting resins, paper, cloth, metal, wood, ceramics, and the like. The laminated structure obtained from the styrene-based elastomer composition of the present invention is not particularly limited to what kind of object, and for example, it may be one layer of the styrene-based elastomer composition of the present invention. The formed layer and the two-layer structure in which one layer is formed of a layer formed of another material; between the two surface layers (inner surface layer) formed from other materials The layer formed of the styrene-based elastomer composition is a three-layer structure of the intermediate layer, and the inner surface of the i-layer formed from the other material is laminated with the styrene-based elastomer composition of the present invention. A three-layer structure of the layer. The laminated structure can be produced by a known method, for example, (i) a method of producing a laminated structure by melting and coating the other material with the styrene-based elastomer composition of the present invention. The styrene-ethylene-based elastomer composition of the present invention is melt-introduced between two or more other materials, and is adhered and integrated, and (iii) is melted in a state in which other materials are placed in a mold. The styrene-based elastomer composition of the present invention is filled in a mold and adhered and integrated, (丨v), in the case where other materials have thermoplasticity, the styrene-based elastomer group of the present invention 1289150 A method in which an object is extruded together with other materials, and is adhered and integrated. Further, the styrene-based elastomer composition of the present invention can be used as a hot-melt type adhesive as needed in the production of various products and the above-mentioned laminated structure. When the hot-melt type adhesive formed of the styrene-based elastomer composition of the present invention is used, the form thereof is not particularly limited, and for example, it may be a granule such as nine or the like, a rod, a film, or a sheet. Any shape such as a plate. Among the styrene-based elastomer compositions of the present invention, since (b) the layered inorganic compound is sufficiently finely dispersed, the gas barrier property is remarkably increased upward. Moreover, the mechanical properties are also good. Gas barrier properties, for example, can be expressed by oxygen permeability coefficients. On the other hand, the oxygen permeability coefficient p of the styrene-based elastomer composition of the present invention is known to have a correlation with the dispersion state of the layered inorganic compound (b), and can be inferred by showing an index of the dispersion state. Therefore, if the various component types, physical properties, and amounts of use are the same, when the dispersion state of the (b) layered inorganic compound in the styrene-based elastomer composition is good, that is, the (b) layer The larger the interlayer distance of the inorganic compound (preferably, (b) the layers of the layered inorganic compound are completely peeled off, and (b) the layered inorganic compound is finely dispersed in the composition), the smaller the P値 becomes. It is conceivable that the gas barrier will be better. Among them, the ideal aspect is the oxygen permeability coefficient p of the styrene-based elastomer composition of the present invention, and (a) the oxygen permeability coefficient ρτΡΕ ' - 37 - 1289150 of the styrene-based elastomer, and the styrene-based elasticity. The relationship between the weight fractions Φ F of the layered inorganic compound in the bulk composition is as follows. The "oxygen permeability coefficient P" of the styrene-based elastomer composition and "(a) the oxygen permeability coefficient PTPE of the styrene-based elastomer" are referred to as "oxygen permeability coefficient P and PTPE" described below. The meaning of the measurement method means the oxygen permeability coefficient measured when the styrene-based elastomer composition and the (a) styrene-based elastomer are each formed into a film shape. P < 0 . 5 x PTPEx (l-OF) / (l + OF/2) (1) (wherein Φ F is only the weight fraction of the inorganic component of the layered inorganic compound). In the case where the relationship (1) is established, the gas barrier property of the styrene-based elastomer composition of the present invention is increased to a sufficient extent. In particular, the styrene-based elastomer composition such as the present invention can practically provide an article requiring gas barrier properties, that is, it can be practically used as a material for a gas barrier article. Method for Measuring Oxygen Permeability Coefficient P and PTPE A film having a thickness of 0·1 mm made of the styrene-based elastomer composition of the present invention was used, and a gas permeability tester (Liumoto Gas Chromatograph G2800T) was used. (manufactured by Miyamoto Manufacturing Co., Ltd.), under the conditions of 35 ° C and 50% RH, the oxygen permeation amount is measured in accordance with the method described in JIS K7126 (equal pressure method), and oxygen permeation is calculated from the crucible. The coefficient is Ρ. Further, the oxygen permeability coefficient PTPE was calculated in the same manner using a film made of (a) a styrene-based elastomer having a thickness of 〇 · 1 mm. The oxygen permeability coefficient P of the styrene elastomer composition and the composition of the above relationship (丨) are not satisfied between the oxygen permeability coefficients pTPE of the styrene-38 - 1289150 elastomer, because the gas is obtained. It has been found that a large amount of the (b) layered inorganic compound needs to be added to the barrier property, and the crucible causes a problem that the flexibility of the styrene-based elastomer composition is lowered and the formability is poor. The styrene-based elastomer composition obtained according to the present invention can be used for gas barrier articles (for example, various food packaging containers, agricultural packaging materials, medical packaging materials, diesel storage tanks, cosmetic containers, and pharmaceutical containers). , medical packaging materials, inner liners for tires, laminated products, films and sheets of various containers, sealing materials (for example, 0-rings, mats, mats, coffins, caps, cap liners, etc.), The use of coils, tubes, auto parts, air cushions for shoes, etc. Among them, the styrene-based elastomer composition obtained according to the present invention simultaneously produces gas barrier properties and flexibility, and thus is particularly suitable for use as a sealing material (for example, a 0-ring, a gasket, a close pad (for example) A material for a cover material (for example, a medicine plug or the like), a cap (for example, a cap of a vacuum blood collection tube), a cap liner, or the like. [Embodiment] [Embodiment] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the embodiments. Further, in the examples and the comparative examples, the measurement of the oxygen permeability coefficient and the measurement of the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition were carried out in accordance with the above method. Example 1 Using 10 g of a synthetic cloud treated with dimethyl octadecyl ion, -39- 1289150 mother (layered inorganic compound, manufactured by Shogo Chemical Co., Ltd., trade name · MAE, inorganic content: 68% by weight), and 23 g of ethylene/acrylic acid copolymerized resin (resin-based phase melting agent, manufactured by JEOL Ltd., EAA A2 10K), manufactured using a Bob-Plast mixer (Toyo Seiki Co., Ltd.) After the melt-kneading, a hydrogenated adduct of 6 g of polystyrene-polyisoprene-polystyrene triblock copolymer (styrene elastomer, Kuraray) The company's system, trade name: K. Ordinary 2002), further melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P of the obtained film was measured by the above method and was lSJOOcc^O/zm/n^.day.atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method, and was 3 3 Å. Comparative Example 1 Hydrogenation of a polystyrene-polyisoprene-polystyrene triblock copolymer (Benzene) using a Laberpillar mixer (manufactured by Toyo Seiki Seisakusho Co., Ltd.) A vinyl-based elastomer, manufactured by Kuraray Co., Ltd., trade name: K.K., 2002) was melted, cooled to room temperature, and then compression-molded to obtain a film. The oxygen permeability coefficient PTPE of the obtained film was measured by the above method, and was 72,400 cc · 20 / zm / m 2 · day · atm. Comparative Example 1 (1) Using 10 g of untreated synthetic mica (layered inorganic compound, manufactured by Societe Chemical Co., Ltd., trade name: ME 100), and 67 g of polystyrene-polyisoprene- Hydrogenated adduct of polystyrene triblock copolymer (Phenyl-4-40 - 1289150 olefinic elastomer, manufactured by Kuraray Co., Ltd., trade name: Xie Ordinary 2002), using Laber Plaster Mix The machine (manufactured by Toyo Seiki Co., Ltd.) was melt-kneaded and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P of the obtained film was measured by the above method to be 55,700 cc.20/zm/m2.day.atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 12.2 angstroms. Comparative Example 1 (2) 10 g of synthetic mica (layered inorganic compound, manufactured by Sengoku Chemical Co., Ltd., trade name: MAE) treated with dimethyl bis-octadecyl ammonium ion, and 67 g of polystyrene were used. a hydrogenated adduct of a polyisoprene-polystyrene triblock copolymer (styrene-based elastomer, manufactured by Kuraray Co., Ltd., trade name: K. Ordinary 2002), using Laber Plas A special mixer (manufactured by Toyo Seiki Co., Ltd.) was melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P of the obtained film was measured by the above method to be 31,600 cc * 20 / / m / m 2 * day * atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 3 2 · 4 Å. Comparative Example 1 (3) In place of 1 gram of untreated synthetic mica (layered inorganic compound, manufactured by Soochow Chemical Co., Ltd., trade name: ME1 00), instead of 10 g of 1289150, dimethyl bis 18 Synthetic mica treated with a basal ammonium ion (manufactured by Biochemical Co., Ltd., trade name: MAE, inorganic content: 68% by weight) was obtained in the same manner as in Example 1 to obtain styrene-based elasticity. Body composition. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P (cc*20/zm/m2*day*atm) of the obtained film was measured by the above method, and was 41,700 cc·20 // m/m2 · day · a tm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 1 2 · 1 angstrom. Example 2 In addition to using 23 g of an ethylene-glycidyl methacrylate copolymer (EGMA) (manufactured by Sumitomo Chemical Co., Ltd., trade name: Bondo Fast E) as a resin-based compatibilizing agent, A styrene-based elastomer composition was obtained in the same manner as in Example 1. The film was formed by compression molding using the obtained styrene-based elastomer composition '. The oxygen permeation coefficient P of the obtained film was measured by the above method to be 28,400 cc.20 / /m / m2.day.atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 32.5 Å. Example 3 The same procedure as in Example 1 was carried out except that 23 g of an ethylene/ethyl acrylate copolymer (manufactured by Nissin United Co., Ltd., trade name: copolymer) was used as a resin-based compatibilizer. The styrene-based elastomer composition was obtained. -42 - 1289150 The obtained styrene-based elastomer composition was subjected to compression molding to form a film. The oxygen permeation coefficient of the obtained film was measured by the aforementioned method. P' is 25,600 cc.SO/zm/m^clay.atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition is determined by the method described above, and is 32.6%. Example 4 Except that 23 g of ethylene/methyl methacrylate salt was used to copolymerize an ionic polymer (manufactured by Sankyo DuPont Chemical Co., Ltd., trade name: Komang 1 70 6Zn) as a resin-based compatibilizing agent, A styrene-based elastomer composition was obtained in the same manner as in Example 1. The obtained styrene-based elastomer composition was subjected to compression molding to prepare a film, and the obtained film was measured for oxygen by the above method. penetrate The number P is 22,200 cc*20//m/m2*day*atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition is measured by the above method, and is 32.8 angstroms. Example 5 In addition to the use of 23 g of maleic anhydride-modified polypropylene (manufactured by Sanyo Chemical Industries Co., Ltd., trade name: Gracex 1 0 0 1 ) as a resin-based compatibilizing agent, 1 In the same manner, a styrene-ethylene elastomer composition was obtained. The obtained styrene-acetone elastomer composition was subjected to compression molding to form a film, and the former was used to measure 1 $ 1 humiliation] @ _肖莫t $ permeability coefficient P, is 1,9,400 cc*20#m/m2*day*atm. Also, by the method described above, the styrene-based elastic stomach group 1 Φ的® 彳犬#机{七合-43- 1289150 The interlayer distance of the object is 3 3 . 4 angstroms. Example 6 In addition to the use of 23 grams according to the special opening 1 〇 - 3 0 6 1 9 6 The polypropylene-poly(acrylic acid/ethyl acrylate) type diblock copolymer synthesized according to the method described in Reference Example 7 (the average number of polypropylene blocks) Sub-amount: 1 0,0 0 0, number average molecular weight of poly(acrylic acid/ethyl acrylate) block: 40,0 00, structural unit derived from acrylic acid relative to all repeating units of the block copolymer The styrene-based elastomer composition was obtained in the same manner as in Example 1 except that the resin-based compatibilizing agent was used as the resin-based compatibilizing agent. The obtained styrene-based elastomer composition was used. The film was formed into a film by compression molding, and the oxygen permeability coefficient P of the obtained film was measured by the above method to be 29,40 0 cc.20//m/m2.day.atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 32.6 angstroms. Example 7 A polypropylene-poly(acrylic acid/ethyl acrylate) type diblock copolymer synthesized in accordance with the method described in Reference Example 7 of JP-A-10-30-01 Number (average molecular weight of polypropylene block: 10,000, number average molecular weight of poly(acrylic acid/ethyl acrylate) block: 10,00 0, from acrylic acid to all repeating units of the block copolymer In the same manner as in Example ', the styrene-based elastomer composition was obtained in the same manner as in Example 以外 except that the content of the structural unit was 7 mol%. -44- 1289150 The obtained styrene-based elastomer composition was subjected to compression molding to prepare a film. The oxygen permeation coefficient P of the obtained film was measured by the above method to be 16,000 cc.20/zm/m2.day*atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 37. [Example 8] A polypropylene-poly(acrylic acid/ethyl acrylate) type diblock copolymer synthesized in accordance with the method described in Reference Example 7 of JP-A-10-30-196 (Number average molecular weight of polypropylene block: 4,000, number average molecular weight of poly(acrylic acid/ethyl acrylate) block: 4,000, structure derived from acrylic acid with respect to all repeating units of the block copolymer The content of the unit: 1 i mol%) A styrene-based elastomer composition was obtained in the same manner as in Example 1 except that the resin-based compatibilizing agent was used. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P' of the obtained film was measured by the above method to be 12,000 cc * 2 0 / zm / m2.day * atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 37.8 angstroms. Example 9 In addition to the use of 10 g of synthetic mica treated with bis(2-hydroxyethyl)methyldodecyl ammonium ion (manufactured by Shozo Chemical Co., Ltd., trade name: MEE, inorganic content: 70% by weight) was used as a layered inorganic compound, and a hydrogenated adduct using a polystyrene-polyisoprene-polystyrene triblock copolymer (manufactured by Kuraray Co., Ltd., trade name: Hike Normal 2007) as benzene A styrene-based elastomer composition was obtained in the same manner as in Example 1 except for the ethylene-based 1289150 elastomer. The film was formed by compression molding using the obtained styrene-based elastomer composition '. When the oxygen permeability coefficient P of the obtained film was measured by the above-mentioned method, when it was 9,600 cc.20 #m/m2*day'atm°, when compared with Comparative Example 2 described later, it was confirmed that the gas barrier property was remarkably large. Increase upwards. When the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition is measured by the above-described method, the peak system of the synthetic mica in the X-ray pattern completely disappears, and the layers of the layered inorganic compound can be confirmed. It is completely peeled off, and the interlayer distance is above 44 angstroms. Comparative Example 2 Hydrogenation of a polystyrene-polyisoprene-polystyrene triblock copolymer (Benzene) using a Laberpillar mixer (manufactured by Toyo Seiki Co., Ltd.) A vinyl-based elastomer, manufactured by Kuraray Co., Ltd., trade name: K.K., 2007) was melted, cooled to room temperature, and then compression-molded to obtain a film. The oxygen permeability coefficient PTPE of the obtained film was measured by the aforementioned method to be 76,400 cc · 20 / zm / m 2 · day · atm. Comparative Example 2 (1) Using 10 g of untreated synthetic mica (layered inorganic compound, manufactured by Shozo Chemical Co., Ltd., trade name: ME100), and 67 g of polystyrene-polyisoprene- Hydrogenated adduct of polystyrene triblock copolymer (Benzene-based elastomer, manufactured by Kuraray Co., Ltd., trade name: Break 2 〇〇7), using Laber Plaster mixer (manufactured by Toyo Seiki Co., Ltd.) was melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. 1289150 Using the obtained styrene-based elastomer composition, compression molding was carried out to prepare a film. The oxygen permeation coefficient P of the obtained film was measured by the above method and found to be 58,700 cc.20 / zm / m2.day * atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 12.2 angstroms. Comparative Example 2 (2) 10 g of synthetic mica treated with bis(2-hydroxyethyl)methyldodecyl ammonium ion (manufactured by Sengoku Chemical Co., Ltd., trade name: MEE), and 67 g of polyphenylene were used. Hydrogenation adduct of ethylene-polyisoprene-polystyrene triblock copolymer (manufactured by Kuraray Co., Ltd., trade name: Breaking General 2007), using a Laber Plaster mixer (Toyo The Seiki Co., Ltd. was kneaded and kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P of the obtained film was measured by the above method to be 48,000 cc * 20 / / m / m 2 * day * atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 26.1 angstrom. Comparative Example 2 (3) In place of 10 gram of synthetic mica treated by bis(2-hydroxyethyl)methyldodecyl ammonium ion (product name: MEE) was used instead of 1 〇 A styrene-based elastomer composition was obtained in the same manner as in Example 9 except that the untreated synthetic mica (layered inorganic compound, manufactured by Seiko Chemical Co., Ltd., trade name: ME 1 0 0) was used. . Using the obtained composition of the present elastomeric elastomer, compression molding - 47-1289150 was carried out to prepare a film. The oxygen permeation coefficient P (cc.20/zm/m2.day*atm) of the obtained film was measured by the above method, and was 35,500 cc*20#m/m2·day·a t m . Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 12.2 angstroms. Further, for comparison and comparison, X-ray winding of a film (thickness: 0 · 1 mm) obtained from the styrene-based elastomer composition obtained in Example 9 and Comparative Example 2 (2) was used. The shot pattern is shown in Figure 1. Example 1 0 A hydrogenated adduct of a polystyrene-polyisoprene-polystyrene triblock copolymer (manufactured by Kuraray Co., Ltd., trade name: Heipur 7 1 2 5) was used. A styrene-based elastomer composition was obtained in the same manner as in Example 9 except that the styrene-based elastomer was used. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P of the obtained film was measured by the above method to be 5,300 cc * 20 / / m / m 2 * day * atm. When compared with the case 3 described later, it was confirmed that the gas barrier property was remarkably increased significantly. When the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition is measured by the above-described method, the peak system of the synthetic mica in the X-ray pattern completely disappears, and the layers of the layered inorganic compound can be confirmed. It is completely peeled off, and the interlayer distance is above 44 angstroms. Comparative Example 2 Using a Laberpillar mixer (manufactured by Toyo Seiki Co., Ltd.), a hydrogenated adduct of a polystyrene-polyisoprene-polystyrene triblock copolymer (benzene) A vinyl elastomer, manufactured by Kuraray Co., Ltd., trade name: 1289150 Hipura 71 25) was melted, cooled to room temperature, and then compression-molded to obtain a film. The oxygen permeability coefficient PTPE of the obtained film was measured by the above method to be 54,600 cc · 20 / zm / m 2 · day · atm. Comparative Example 3 (1) Using 10 g of untreated synthetic mica (layered inorganic compound, manufactured by Societe Chemical Co., Ltd., trade name: ME 100), and 67 g of polystyrene-polyisoprene- A hydrogenated adduct of a polystyrene triblock copolymer (styrene-based elastomer, manufactured by Kuraray Co., Ltd., trade name: Heipur 7 1 2 5), using a Laber Plaster mixer (manufactured by Toyo Seiki Co., Ltd.) was melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P of the obtained film was measured by the above method to be 32,700 cc * 20 / z, m / m 2 · day. atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 12.2 angstroms. Comparative Example 3 (2) 10 g of synthetic mica treated with bis(2-hydroxyethyl)methyldodecyl ammonium ion (manufactured by Shozo Chemical Co., Ltd., trade name··MEE inorganic content: 70% by weight And a hydrogenated adduct of 67 g of polystyrene-polyisoprene-polystyrene triblock copolymer (manufactured by Kuraray Co., Ltd., trade name: Heipur 7 1 25), used A Labrador mixer (manufactured by Toyo Seiki Co., Ltd.) was melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding 1289150 was carried out to prepare a film. The oxygen permeation coefficient P (cc*20//m/m2*day*atm) of the obtained film was measured by the above method, and was 26,000 cc * 20 / zm / m 2 · day · atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 24.9 angstroms. Comparative Example 3 (3) In place of 10 g of synthetic mica treated by bis(2-hydroxyethyl)methyldodecyl ammonium ion (manufactured by Societe Chemical Co., Ltd., trade name · MEE), 10 0 was used instead of 1 0 A styrene-based elastomer composition was obtained in the same manner as in Example 1 except that the untreated synthetic mica (layered inorganic compound, manufactured by Sotheme Chemical Co., Ltd., trade name: ME 1 00) was used. Using the obtained styrene-based elastomer composition, compression molding was carried out to obtain a film. The oxygen permeation coefficient P' of the obtained film was measured by the above method to be 28,100 cc.2〇em/m2*day*atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the above method to be 12.2 angstroms. Further, 'for the purpose of comparison and comparison, X-rays of a film (thickness: 0 · 1 mm) obtained from the styrene-based elastomer composition obtained in Example 1 and Comparative Example 3 (2) The diffraction pattern is shown in Figure 2. Further, in order to confirm the dispersion state in the styrene-based elastomer composition of the present invention and the comparative example, the following observations were made. A film (thickness: 〇·1 mm) obtained from the styrene-based elastomer composition obtained in Example 10 and Comparative Example 3 (2), using an ultramicro machine (trade name: manufactured by Leica) After the ultra-thin cleavage was carried out, it was stained with tetrazoic acid and observed by a transmission electron microscope (TEM, H-800NA type, manufactured by Hitachi, Ltd.,-50-1289150, measuring conditions: acceleration voltage: 100 kV). Their cross-sectional photographs are shown in Figures 3 and 4. In Fig. 3, the layered inorganic compound in the styrene-based elastomer composition of Example 10 was completely peeled off from the layer, and it was understood that the lanthanide of Example 1 was sufficiently dispersed. On the other hand, in Fig. 4, the layered inorganic compound in the styrene-based elastomer composition of Comparative Example 3 (2) was remarkably not interlaminar. [Effect of the Invention] According to the present invention, it is possible to provide a styrene-based elastomer composition having an increased gas barrier property and good mechanical properties. This application is based on the priority of the Japanese Patent Application No. 2002 - 1 47 5 35, the contents of which are all included in this specification. Further, the patents and patent documents cited in the present specification are incorporated in the specification in the same extent as the entire disclosure of the disclosure. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a wide-angle X-ray diffraction pattern of a film formed of the styrene-based elastomer composition obtained in the above-mentioned Example 9 and Comparative Example 2 (2). In the two peaks of Comparative Example 2 ( 2 ) indicated by a broken line in Fig. 1, the peak on the left side corresponds to the peak of the (0 〇 1 ) plane of the layered inorganic compound, and the peak on the right side corresponds to the layered layer. The peak of the (002) plane of the inorganic compound. Fig. 2 is a wide-angle X-ray diffraction pattern of a film formed of the styrene-based elastomer composition obtained in the above Example 10 and Comparative Example 3 (2). In the two peaks of Comparative Example 2 (2) indicated by a broken line in Fig. 2, the peak on the left side of -51-1289150 is the peak corresponding to the (001) plane of the layered inorganic compound, and the peak on the right side corresponds to The peak of the (002) plane of the layered inorganic compound. Fig. 3 is a photograph (top) of an ultrathin section of a sheet formed of the styrene-based elastomer composition obtained in the above Example 1 in a transmission electron microscope, and is shown in A schematic diagram of the dispersed state of the layered inorganic compound (synthetic mica) in the composition (bottom). Fig. 4 is a photograph (upper view) of the ultrathin section of the sheet formed of the styrene-based elastomer composition obtained in the above Comparative Example 3 (2) observed in a transmission electron microscope; A schematic diagram of the dispersed state of the layered inorganic compound (synthetic mica) in the composition (bottom). Fig. 5 is a view showing an ultrathin section of a sheet formed of the styrene-based elastomer composition obtained in the above Example 1 described in Fig. 3, observed in a transmission electron microscope. photo. Fig. 6 is a view showing an ultrathin section of a sheet formed of the styrene elastomer composition obtained in the above Comparative Example 3 (2) shown in Fig. 4, observed in a transmission electron microscope. Photo to.

Claims (1)

1289150 ^~ι -------, 第9 2 1 1 3 8 0 3號「苯乙烯系彈性體組成物」專利, (2007 年 2 月 8 __:E) 痛充 拾、申請專利範圍: •晒N,咖 1 . 一種苯乙烯系彈性體組成物,其特徵在於:係由(a )苯乙 烯系彈性體、(b )由有機陽離子有機化之層狀無機化合 物、以及(c )具有與該(a )苯乙烯系彈性體相容性、且在 分子內具有極性官能基之極性聚合物所構成之苯乙烯系 彈性體組成物,其中成分(a )、成分(b )、及成分(c )之重 量比例爲成分(b)/成分(a)=0.01/100〜200/100、而且 成分(c)/成分(a) = 0.01/100〜5000/100,該組成物中之 (b )有機化之層狀無機化合物的層間距離係爲30埃以 上。 2 .如申請專利範圍第1項之組成物,其在廣角X射線繞射 測定圖案中,從(b )層狀無機化合物而來之波峰係完全地 消失。 3 .如申請專利範圍第1項之組成物,其中 (a )苯乙烯系彈 性體係具有相對於構成該彈性體之重複單位總量計不足 0 . 0 5莫耳%之比例的極性官能基。 4 .如申請專利範圍第1項之組成物,其中(b )層狀無機化合 物係由在分子內含有極性官能基之有機陽離子有機化所 構成。 5 .如申請專利範圍第4項之組成物,其中有機陽離子係爲 在分子內含有自氫氧基、烷氧基、芳氧基、羧基、醯氧 1289150 基、烷氧羰基及酸酐基中所選出的至少1種之極性官能 基的有機陽離子。 6 .如申請專利範圍第1項之組成物,其中(c )極性聚合物 爲含有相對於構成該極性聚合物之重複單位總量計 0 . 0 5莫耳%以上之極性官能基的聚合物。 7 ·如申請專利範圍第1至6項中任一項之組成物,其中前 述苯乙烯系彈性體組成物之氧穿透係數P、與前述(a)苯乙 烯系彈性體之氧穿透係數Ρτρε、及前述(b )層狀無機化合物 在聚合物組成物中所佔的重量分率Φ F之間,係滿足下列關 係式(1 ): Ρ< 0 . 5xPtpex( 1 - Φ F)/(l + 0 F/2) (1) 8 . —種製造申請專利範圍第1項之組成物之方法,其係將(a ) 苯乙烯系彈性體、(b )由有機陽離子有機化之層狀無機化 合物、以及(c )具有與該(a )苯乙烯系彈性體相容性、且 在分子內具有極性官能基之極性聚合物所構成之苯乙烯 系彈性體組成物予以熔融混練、摻混而成。 9 . 一種製造申請專利範圍第1項之組成物之方法,其係將 (b )由有機陽離子有機化之層狀無機化合物、和(c )極性 聚合物予以熔融混練、調製,以及將該組成物與(a )苯乙 烯系彈性體予以熔融混練而成。 1 0 . —種氣體阻障性物品,其係由在申請專利範圍第1至7 項中任一項所記載之苯乙烯系彈性體組成物所形成。 1 1 .如申請專利範圍第1 0項之氣體阻障性物品,其係具有 1289150 從ο -環、墊圈、密合墊、蓋材、蓋帽、帽襯中所選出之 任何一種片材。 1 2 .如申請專利範圍第1 1項之氣體阻障性物品,其中片材 係選自於帽襯、真空採血管之蓋帽、藥栓、注射筒用密 合墊。1289150 ^~ι -------, No. 9 2 1 1 3 8 0 3 "Styrene elastomer composition" patent, (February 8, 2007 __: E) painful, patent application scope : 晒 N, 咖 1. A styrene-based elastomer composition characterized by (a) a styrene-based elastomer, (b) a layered inorganic compound organicized by an organic cation, and (c) a styrene-based elastomer composition comprising a polar polymer having compatibility with the (a) styrene-based elastomer and having a polar functional group in a molecule, wherein the component (a), the component (b), and The weight ratio of the component (c) is the component (b) / component (a) = 0.01 / 100 to 200 / 100, and the component (c) / component (a) = 0.01 / 100 to 5000 / 100, in the composition (b) The interlayer distance of the organic layered inorganic compound is 30 angstroms or more. 2. The composition of claim 1, wherein in the wide-angle X-ray diffraction measurement pattern, the peak system from the (b) layered inorganic compound completely disappears. 3. The composition of claim 1, wherein (a) the styrenic elastomeric system has a polar functional group in a proportion of less than 0.05% by mole based on the total of the repeating units constituting the elastomer. 4. The composition of claim 1, wherein (b) the layered inorganic compound is composed of an organic cation having a polar functional group in the molecule. 5. The composition of claim 4, wherein the organic cation is contained in the molecule from a hydroxyl group, an alkoxy group, an aryloxy group, a carboxyl group, an anthracene 1289150 group, an alkoxycarbonyl group, and an acid anhydride group. An organic cation of at least one polar functional group selected. 6. The composition of claim 1, wherein (c) the polar polymer is a polymer having a polar functional group of more than 0.05% by mole based on the total of the repeating units constituting the polar polymer. . The composition according to any one of claims 1 to 6, wherein the oxygen permeability coefficient P of the styrene-based elastomer composition and the oxygen permeability coefficient of the (a) styrene-based elastomer are as described above. Ρτρε, and the weight fraction Φ F of the above-mentioned (b) layered inorganic compound in the polymer composition satisfy the following relationship (1): Ρ < 0 . 5xPtpex( 1 - Φ F)/( l + 0 F/2) (1) 8. A method for producing a composition of claim 1 which is a layered product of (a) a styrene-based elastomer and (b) an organic cation. An inorganic compound and (c) a styrene-based elastomer composition having a polar polymer having compatibility with the (a) styrene-based elastomer and having a polar functional group in the molecule, melt-kneaded and blended Made. 9. A method of producing a composition of claim 1 which comprises (b) layered inorganic compound organicized by an organic cation, and (c) a polar polymer melt-kneaded, prepared, and composed of the composition The material and (a) a styrene-based elastomer are melt-kneaded. A gas barrier article formed of the styrene elastomer composition as described in any one of claims 1 to 7. 1 1. A gas barrier article according to claim 10, which has any one of 1289150 selected from the group consisting of an ο-ring, a gasket, a gasket, a cover material, a cap, and a cap liner. 1 2 . The gas barrier article according to claim 1 , wherein the sheet is selected from the group consisting of a cap liner, a cap of a vacuum blood collection tube, a drug plug, and a sealing pad for a syringe.
TW092113803A 2002-05-22 2003-05-22 Styrene elastomer composition TWI289150B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147535 2002-05-22

Publications (2)

Publication Number Publication Date
TW200400227A TW200400227A (en) 2004-01-01
TWI289150B true TWI289150B (en) 2007-11-01

Family

ID=29545187

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092113803A TWI289150B (en) 2002-05-22 2003-05-22 Styrene elastomer composition

Country Status (3)

Country Link
JP (1) JP3959421B2 (en)
TW (1) TWI289150B (en)
WO (1) WO2003097741A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1711558E (en) * 2004-01-30 2008-08-21 Renolit Ag Syndiotatic polypropylene composition comprising a thermoplastic elastomer
JP2007039498A (en) * 2005-08-01 2007-02-15 Kuraray Co Ltd Thermoplastic elastomer composition, molding, and multilayer molding
JP2007070410A (en) * 2005-09-05 2007-03-22 Kuraray Co Ltd Thermoplastic elastomer composition, molded article, and multi-layered molded article
JP2007091856A (en) * 2005-09-28 2007-04-12 Kuraray Co Ltd Thermoplastic elastomer composition, molded product and multilayer molded product
FR2918669A1 (en) * 2007-07-11 2009-01-16 Michelin Soc Tech PNEUMATIC OBJECT COMPRISING A GAS SEALED LAYER BASED ON A THERMOPLASTIC ELASTOMER AND A LAMELLAR LOAD.
KR100985904B1 (en) * 2008-10-22 2010-10-08 금호타이어 주식회사 Tire tread rubber composition comprising organo kenyaite
JP5273560B2 (en) * 2009-10-01 2013-08-28 住友ゴム工業株式会社 Polymer composition for inner liner and pneumatic tire using the same
JP5758618B2 (en) * 2010-12-14 2015-08-05 住友ゴム工業株式会社 Pneumatic tire and manufacturing method thereof
JP6364814B2 (en) * 2014-02-28 2018-08-01 日本ゼオン株式会社 Method for producing medical molded body
KR102425416B1 (en) * 2018-12-21 2022-07-25 코오롱인더스트리 주식회사 Tire inner liner film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030039A (en) * 1996-05-14 1998-02-03 Showa Denko Kk Polyolefin composite material and its production
NL1006743C2 (en) * 1997-08-08 1999-02-09 Tno Nanocomposite material.
JP4549447B2 (en) * 1997-08-25 2010-09-22 クニミネ工業株式会社 COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND COMPOSITE MATERIAL-CONTAINING RESIN COMPOSITION
JP3356026B2 (en) * 1997-09-24 2002-12-09 株式会社豊田中央研究所 Resin composite
US6117932A (en) * 1997-09-18 2000-09-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite
JPH11181309A (en) * 1997-12-19 1999-07-06 Toyota Central Res & Dev Lab Inc Resin composite material
JP2000159960A (en) * 1998-11-27 2000-06-13 Kanegafuchi Chem Ind Co Ltd Styrene-based thermoplastic elastomer composition and its production
JP3587709B2 (en) * 1998-12-08 2004-11-10 株式会社豊田中央研究所 Resin composite material
JP2000281847A (en) * 1999-01-26 2000-10-10 Nippon Polyolefin Kk Master batch composition for modifying polypropylene resin
JP3576055B2 (en) * 1999-11-15 2004-10-13 有限会社コーキ・エンジニアリング Manufacturing method of sliding member for piston for syringe
JP4463435B2 (en) * 2000-01-21 2010-05-19 三井化学株式会社 Filler dispersibility improving material, filler-containing resin composition and production method thereof
JP2002080686A (en) * 2000-06-29 2002-03-19 Kuraray Co Ltd Aqueous dispersion
JP2003221473A (en) * 2002-02-01 2003-08-05 Yokohama Rubber Co Ltd:The Rubber composition
JP2004099830A (en) * 2002-09-12 2004-04-02 Kuraray Co Ltd Inorganic and organic composite material and its preparing method

Also Published As

Publication number Publication date
WO2003097741A1 (en) 2003-11-27
JPWO2003097741A1 (en) 2005-09-15
JP3959421B2 (en) 2007-08-15
TW200400227A (en) 2004-01-01

Similar Documents

Publication Publication Date Title
JP5296532B2 (en) Oxygen-absorbing resin composition
KR101007533B1 (en) Thermoplastic polymer composition, molded product, and multilayer structure
KR100615843B1 (en) Polyvinyl alcohol resin composition and multilayer packages
JP5457030B2 (en) Oxygen-absorbing resin composition
TWI289150B (en) Styrene elastomer composition
WO2010018743A1 (en) Hydrogenated block copolymer composition and molded body using the same
CA2899573C (en) Thermoplastic polymer composition, shoes and outer soles
KR20020047313A (en) Resin composition and multilayered container
JP5133094B2 (en) Oxygen-absorbing resin composition
US9567459B2 (en) Thermoplastic polymer composition, sheet or film, and multi-layered film
TW201841720A (en) Thermoplastic resin composition and molded product a thermoplastic resin composition which is excellent in impact resistance, rigidity, and formability and has less cracking or chipping during cutting
US20190211200A1 (en) Resin composition, and support material for layered modeling
JP2002060500A (en) Gas barrier thermoplastic polymer composition
JP4064316B2 (en) Thermoplastic polymer composition, molded article and multilayer structure
JP4653812B2 (en) Multilayer structure and manufacturing method thereof
JP4062080B2 (en) Thermoplastic polymer composition having gas barrier properties
JP6927922B2 (en) Crosslinkable resin compositions and crosslinked products, their production methods, and multilayer structures.
JP2004091775A (en) Olefin polymer composition
JP6837013B2 (en) Composition for soft film and its use
JP2014237775A (en) Heat storage material composition and heat storage material

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees