TW200400227A - Styrene elastomer composition - Google Patents

Styrene elastomer composition Download PDF

Info

Publication number
TW200400227A
TW200400227A TW092113803A TW92113803A TW200400227A TW 200400227 A TW200400227 A TW 200400227A TW 092113803 A TW092113803 A TW 092113803A TW 92113803 A TW92113803 A TW 92113803A TW 200400227 A TW200400227 A TW 200400227A
Authority
TW
Taiwan
Prior art keywords
styrene
based elastomer
inorganic compound
layered inorganic
group
Prior art date
Application number
TW092113803A
Other languages
Chinese (zh)
Other versions
TWI289150B (en
Inventor
Hiroyuki Ohgi
Syousei So
Tatsuya Oshita
Yukiatsu Komiya
Original Assignee
Kuraray Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co filed Critical Kuraray Co
Publication of TW200400227A publication Critical patent/TW200400227A/en
Application granted granted Critical
Publication of TWI289150B publication Critical patent/TWI289150B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The object of the invention is to provide a styrene-based elastomer composition comprising a layer-like inorganic compound fully fine-dispersed on a styrene-based elastomer and not only having excellent gas barrier property of a styrene-based elastomer but also having modified mechanic properties. The styrene-based elastomer composition is a substance comprising (a) a styrene-based elastomer, (b) a layer-like inorganic compound and (c) a polar polymer having compatibility with (a) a styrene-based elastomer and having a polar functional group in a molecule, in which the distance between the layers of said organized layer-like inorganic compound is more than 15 angstrom.

Description

200400227 玖、發明說明: 【發明所屬之技術領域】 本發明係關於一種由含有苯乙烯系彈性體及層狀無機 化合物所構成之苯乙烯系彈性體組成物。 【先前技術】 近年來,隨著彈性體之利用範圍更爲寬廣,因而持續 著要求更高性能的物質。其中,對於機械特性及氣體阻障 性等之高性能化要求更是高。 例如,以改善機械特性爲目的而在彈性體中摻混無機 塡料的技術,也已在許多的報告當中被提出。 1 )在特開平8 - 3 3 1 1 4號上揭示一種以改良有機高分子材料 之機械特性爲目的之黏土複合材料,其係一種將藉由有 機鑰離子之離子鍵而將有機化之黏土礦物分散在具有極 性基的客體分子中之黏土複合材料。 2)在特開平1 1 - 92677號上揭示一種以改良有機高分子材料 之機械特性爲目的之製造樹脂複合材料之方法,其特徵 在於:包括首創使用聚合物改性之官能基以得到改性聚 合物之步驟、和將該改性聚合物與有機化黏土予以混練 使兩者複合化之步驟。 3 )在特開平2 0 0 0 - 8 6 8 2 2號上係以提供優良耐熱性、且即使 在常溫中也具有優異彈性的樹脂複合材料爲目的,亦即 揭示一種樹脂複合材料,其特徵在於:將有機化黏土予 以分散在由複數種類之片段所形成的嵌段共聚物型之熱 可塑性彈性體中之至少1種類之片段中所形成。 -5 - 200400227 4) 在特開平1 1 - 9 2 5 94號係以提供一種能夠容易地複合化、 而且適用範圍寬廣的樹脂複合材料爲目的,即揭示一種 樹脂複合材料,其特徵在於:由2種以上之聚合物和有 機黏土所形成,且上述2種以上之聚合物中,至少有1 種具有官能基。 5) 在特開2002 - 3 7 9 40號上揭示一種聚丙烯樹脂組成物,其 係包括含有預定量的2 3 °C、鏈烯烴可溶成分之彈性體的 結晶性聚丙烯、含有乙烯系不飽和鍵之羧酸、其酸酐或 衍生物而分枝改性之結晶聚丙烯、及有機化黏土。 在此等彈性體之中,苯乙烯系彈性體因柔軟性、耐寒 性、耐吸溼性等均優良,而且也容易地形成具有橡膠彈性 之成形體’所以不僅可做爲替代現有的加硫橡膠等用途上, 而且在汽車、電氣製品、建築、土木等之工業製品、及醫 療、運動用具、各種容器用零件(例如,蓋帽襯裡等)等之 各種領域上也已達到實用化了。 1 )在特開2 0 0 1 - 1 3 7 3 3 8號上揭示一種苯乙烯系彈性體之熱 可塑性彈性體’其係可用在注射筒用之活塞的滑動零件 之彈性滑動上的。 2 )在實開平5 - 5 3 6 0 9號上揭示一種採血管用密封栓之成形 法,其係使用聚苯乙烯-聚異丁烯-聚苯乙烯等之熱可塑 性彈性體樹脂的三嵌段共聚物中摻混預定比例之萘油而 形成的樹脂。 3 )在特開平1 0 - 2 0 1 7 4 2號上揭示一種苯乙烯系彈性體的軟 質合成樹脂之用途,即在真空採血管之針刺部及密封部 一6- 200400227 上使用苯乙烯系彈性體等之軟質合成樹脂。 4 )在特開5 - 2 1 2 1 0 4號上揭示一種用來替代製造醫療品用橡 膠栓、注射筒用之密合墊、減壓採血用橡膠栓、藥液充 塡谷器用注射筒兩用密合墊等醫藥·醫療用熱可塑性密 封性物品用的加硫橡膠之替代材料,意即使用芳香族乙 烯化合物和異丁烯等之嵌段共聚物(例如,苯乙烯-異丁 烯-苯乙烯三嵌段共聚物等)。 又且,關於苯乙烯系彈性體做爲容器用零件之用途, 例如’業已知道有如以下所示者: 1 )在特開平1 1 - 3 4 9 7 5 3號上揭示一種由乙烯-α -烯烴聚合 物、分枝狀低密度聚乙烯、及熱可塑性彈性體所形成的 盍帽襯裡材料用組成物’並例示以苯乙烯-丁二烯共聚物 橡膠、苯乙烯-異丁烯聚合物橡膠、加氫苯乙烯-乙烯-丙 烯共聚物橡膠等之苯乙烯聚合物彈性體來做爲熱可塑性 彈性體。 2) 在特開平1 1 - 1 309 1 0號上揭示一種由聚丙烯系樹脂、加 氫苯乙烯-異丙烯嵌段共聚物橡膠及流動鏈烷烴所形成的 蓋帽襯裡材料用組成物;而在特開平1 1 - 1 5 7 5 6 8號上揭 示一種聚丙烯系樹脂、直鏈狀低密度聚乙烯樹脂、加氫 苯乙烯-共軛二烯嵌段共聚物橡膠及流動鏈烷烴所形成的 組成物。 3) 在特開20 00 - 3 5 1 880號及特開2000 - 3 5 5 3 5 2號上分別揭 示一種由熱可塑性彈性體和皂化乙烯-乙酸乙烯酯共聚物 及/或聚醯胺系樹脂之組成物所構成的蓋帽襯裡材料之成 -7 - 200400227 型用組成物,兩文獻並例示以苯乙烯-丁二烯嵌段共聚 物、苯乙烯-乙烯_丁烯嵌段共聚物、苯乙烯-乙烯丙烯嵌 段共聚物、本乙烯-異丙烯共聚物等之苯乙烯系彈性體做 爲熱可塑性彈性體。 4 )在特開2000 -281 1 17號上揭示一種由苯乙烯_共軛二烯嵌 段共聚物之加氫物、橡膠用軟化劑及/或流動鏈烷烯烴和 聚乙烯樹脂所形成的蓋帽襯裡用材料,並例示以加氫苯 乙烯-異丁烯_苯乙烯共聚物、加氫苯乙烯異丁烯/ 丁二 _)-苯乙烯嵌段共聚物做爲苯乙烯-共軛二烯嵌段共聚 物。 以最近來說’爲達使苯乙烯系彈性體之機械特性、耐 藥品性、橡膠彈性均爲良好之目的,乃提案一種含有將膨 潤性矽酸鹽在分散媒中分散開來,並藉與胺基化合物或聚 砂氧化合物混合而調製成層狀無機化合物的苯乙烯系彈性 體。 例如,在特開2000 - 1 29058號公報、特開20 000 - 1 5 9 9 60 號公報上記載著一種製造苯乙烯系彈性體之方法,即將構 成苯乙烯系彈性體之單體與層狀無機化合物予以混,並藉 由聚合而製造出含有層狀無機化合物之苯乙烯系彈性體。 又且’也記載著其他製造含有無機層狀化合物之苯乙烯系 彈性體的方法,即將無機層狀化合物與苯乙烯系彈性體在 有機溶媒中予以混合之方法。 然而,層狀無機化合物與單體混合之後,將該單體予 以聚合之方法繁雜。又且,製造苯乙烯系彈性體之方法, - 8- 200400227 係爲一般所使用的活性陰離子聚合及配位聚合,已知於具 有極性官能基之化合物及水之存在下會顯著地阻害聚合作 用,因而以極性高且容易含有水分的層狀無機化合物之存 在下聚合單體之方法,就難以充分地進行聚合反應。 再者,在有機溶媒中將層狀無機化合物和苯乙烯系彈 性體予以混合之方法,由於層狀無機化合物本質上是親水 性的,因而當將苯乙烯系彈性體溶解之有機溶媒中,層狀 無機化合物就容易形成2次凝集。此一結果,層狀無機化 合物就難以被充分地分散在苯乙烯系彈性體中。 如以上所述,即使持有在上述公報中所揭示的技術也 難以將層狀無機化合物充分地分散在苯乙烯系彈性體中, 所以對於機械特性之改善而言,自然也就有所受限了。 又且,關於苯乙烯系彈性體之氣體阻障性而言,雖然 藉由摻混無機塡料可見到改善之程度,然而,未必能得到 令人滿意而充分的氣體阻障性。 【發明內容】 【發明欲解決之課題】 但是,本發明之目的係在於提供一種具有經改良的氣 體阻障性、及良好的機械特性之苯乙烯系彈性體組成物, 即藉由使層狀無機化合物充分地微分散在苯乙烯系彈性體 中,以改良苯乙烯系彈性體之氣體阻障性,並使之具有良 好的機械特性。 【發明要旨】 依照本發明的話,就可解決上述之課題,並提供一種 -9 - 200400227 苯乙烯系彈性體組成物,其特徵在於:該苯乙烯系彈性體 組成物係由(a )苯乙烯系彈性體、(b )由有機陽離子有機化 之層狀無機化合物、以及(c )具有與該(a )苯乙烯系彈性體 相容性、且在分子內具有極性官能基之極性聚合物(以下, 簡稱爲「樹脂系相溶化劑」)所形成,而且在該組成物中之 (b )有機化之層狀無機化合物的層間距離係爲1 5埃以上。 也就是說,本發明提供一種由(a )苯乙烯系彈性體、(b ) 由有機陽離子有機化之層狀無機化合物、以及(c )具有與該 (a )苯乙烯系彈性體相容性、且在分子內具有極性官能基之 極性聚合物所形成之苯乙烯系彈性體組成物,而且在該組 成物中之(b )有機化之層狀無機化合物的層間距離係爲i 5 埃以上的。 【發明揭示】 以下’茲就本發明之苯乙烯系彈性體組成物的各個成 分予以詳細地說明。 (JO 苹乙烯系彈彳牛體「成分(, (a )苯乙烯系彈性體係可以使用習用的公知物並沒有 特別地限定,其具體實施例,舉例來說,例如其可以是芳 香族乙烯化合物、和烯烴系化合物或共軛二烯化合物所形 成的嵌段共聚物等。 所需要的嵌段共聚物,舉例來說,例如其可以是具有 當將由芳香族乙烯化合物所形成的聚合物記爲A,由烯烴系 化合物或共軛二烯化合物所形成的聚合物記爲B時,式A — B、( A —B)m — A「式中,m爲代表1至10之整數」、(A — B)n 200400227 一X「式中,X爲代表耦合劑所衍生之η價殘基,而η爲代 表2至15之整數」等之構造的嵌段共聚物。又且,由芳香 族乙烯基化合物所形成的聚合物嵌段和烯烴系化合物或共 軛二烯化合物所形成的聚合物嵌段構成錐形鍵結的聚合 物,也可以使用來做爲苯乙烯系彈性體。 在彼等之中,理想上爲2個以上之由芳香族乙烯基化 合物所形成的聚合物嵌段A、和1個以上之聚合物嵌段Β以 直鏈狀鍵結的嵌段共聚物,特別是以式:A — B — A所代表之 三嵌段共聚物較佳。 可做爲構成上述的嵌段共聚物之芳香族乙烯基化合 物,舉例來說,例如其可以是苯乙烯、α -甲基苯乙烯、〇 -、 m -或ρ -甲基苯乙烯、2, 3 -二甲基苯乙烯、2,4 -二甲基苯乙 烯、單氯化苯乙烯、二氯化苯乙烯、P -溴化苯乙烯、,2,4, 5-三溴化苯乙烯、2,4,6-三溴化苯乙烯、〇-、m-、或p -第三 丁基苯乙烯、乙基苯乙烯、乙烯基萘、乙烯基蒽等。在彼 等之中,理想上使用苯乙烯及/或α -甲基苯乙烯。可以使 用1種類之芳香族乙烯基化合物,2種以上一起倂用也可 以。 嵌段共聚物中之芳香族乙烯基化合物單位之含有量並 沒有特別地限定,然而依照所得到的苯乙烯系彈性體組成 物之成形性及機械特性之特點來看,較宜是5至7 5重量%, 更宜是10至65重量%。 另一方面,構成上述嵌段共聚物之苯乙烯系化合物, 舉例來說,例如其可以是乙烯、丙烯、1 - 丁烯、2 - 丁烯、 200400227 異丁燒、1 -戊烯、2 -戊嫌、環戊稀、1 _己稀、2 _己燦、環 己儲、1 -庚嫌、2 -庚婦、環庚熥、1 _辛烯、2 _辛燦、環辛 烯、乙烯基環戊烯、乙烯基環己烯、乙烯基環庚燦、乙燦 基環辛嫌等。又且’可以做爲共轭二嫌化合物者,舉例來 說,例如其可以是丁二烯、異丁烯、2,3 -二甲基_丨,3 - 丁二 烯、1,3 -戊二烯、1,3 -己二烯等。聚合物嵌段b可以是由 此寺化合物中之1種所構成,又且’也可以由2種以上構 成;但是較宜是由丁二烯、異戊烯或彼等之混合物所構成; 但依照所得到的苯乙烯系彈性體組成物之氣體阻障性觀點 來看’較宜是由丁二烯和異戊烯之混合物或由異戊嫌所構 成的。 聚合物嵌段B可以是含有脂肪族碳-碳雙鍵之側鏈。 例如,在使用丁二烯或異戊烯之混合物或異戊烯做爲共軛 二烯化合物之情況下,聚合物嵌段B係在從1,2 -鍵及3,4 -鍵而來的側鏈上含有脂肪族碳-碳雙鍵。在此種情況下, 聚合物嵌段B中之1,2 -鍵及3,4 -鍵的總和宜是佔相對於構 成嵌段共聚物之構造單位之總量的3 0莫耳%以上之比例, 更宜是佔40莫耳%以上之比例。 聚合物嵌段B也可以是對從共軛二烯化合物而來的脂 肪族碳-碳雙鍵進行加氫作用。脂肪族碳-碳雙鍵之加氫 率宜是按照苯乙烯系彈性體組成物之組成、用途等而適當 地選擇,然而在需求耐熱性、耐候性等之情況下、宜是在 30莫耳%以上,較宜是在50莫耳%以上,更宜是在80莫耳% 以上。 - 1 2- 200400227 上述脂肪族碳-碳雙鍵之加氫率,可使用一般所用的 方法而求得,例如,可以利用碘價測定法、1Η - NMR測定而 算出。 上述嵌段共聚物之較佳的例子,舉例來說,例如其可 以是聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共聚物或其加氫 物、聚苯乙烯-聚異戊烯-聚苯乙烯三嵌段共聚物或其加氫 物、聚苯乙烯-聚(異戊烯/ 丁二烯)-聚苯乙烯三嵌段共聚物 或其加氫物、聚(α -甲基苯乙烯卜聚丁二烯-聚(α -甲基苯 乙烯)三嵌段共聚物或其加氫物、聚(α -甲基苯乙烯)-聚異 戊烯-聚(α -甲基苯乙烯)三嵌段共聚物或其加氫物、聚(α-甲基苯乙烯卜聚(異戊烯/ 丁二烯聚(α -甲基苯乙烯)三嵌 段共聚物或其加氫物。又且,舉例來說,例如,聚苯乙烯-聚異丁烯-聚苯乙烯三嵌段共聚物、聚(α -甲基苯乙烯)-聚 異丁烯-聚(α -甲基苯乙烯)三嵌段共聚物也是理想的例 子。 再者,此等嵌段共聚物在不損及本發明之意旨的範圍 內,在主鏈、側鏈、分子鏈之單末端或兩末端上也可以含 有羧基或其鹽、氫氧基、酸酐基、胺基、環氧基、酯基、 院基、方氧基、硫酸基或其衍生物、釀胺基、氣硫基、鹵 素原子等之極性官能基。極性官能基之含有量並沒有特別 地限定,然而相對於構成嵌段共聚物之重複單位的總莫耳 量計,較宜是小於0.0 5莫耳%,更宜是在0.04莫耳%以下。 具有極性官能基之嵌段共聚物,係可以藉由在製造步 驟中i )以含有極性官能基之化合物做爲聚合物終止劑之反 200400227 應方法、i i)附加含有極性官能基之烯烴系化合物及/或含 有極性化合物之共軛二烯、或予以共聚合之方法製造而得。 可做爲上述含有極性官能基之烯烴系化合物及/或含有 極性化合物之共軛二烯者,舉例來說,例如其可以是丙烯 酸、甲基丙烯酸等之α,Θ -不飽和羧酸,甲基丙烯酸酯、乙 基丙嫌酸酯、丙基丙烯酸酯、丁基丙嫌酸酯、胺基丙烯酸 酯、己基丙烯酸酯、辛基丙烯酸酯、2 -乙基己基丙烯酸酯、 2 -乙基己基甲基丙烯酸酯、環己基甲基丙烯酸酯等之α,点_ 不飽和羧酸之烷酯,馬來醯胺、Ν -甲基馬來醯胺、Ν -乙基 馬來醯胺、Ν -苯基馬來醯胺、Ν -環己基馬來醯胺等之α 不飽和羧酸之醯胺化合物,縮水甘油基甲基丙烯酸酯、烯 丙基縮水甘油醚等之含環氧基不飽和化合物,衣康酸、馬 來酸等之α,/3 -不飽和二羧酸,衣康酸酐、馬來酸酐、檸檬 酸酐等之α , ^ -不飽和二殘酸酐,丙燃醯胺、甲基丙烯酸胺 基乙酯、甲基丙烯酸胺基丙酯、胺基苯乙烯等之含胺基不 飽和化合物,3 -羥基-1 -丙烯、4 -羥基-1 - 丁烯、順式-4 -羥 基-2-丁烯、反式-4-羥基-2-丁烯、3 -羥基-2-甲基-1-丙烯、 2 -羥基乙基丙烯酸酯、2 -羥基乙基甲基丙烯酸酯等之含氫 氧基不飽和化合物,丙烯醯胺、乙烯基曙唑啉等。該含有 極性官能基之烯烴系化合物及/或含有極性官能基的共軛二 烯化合物,可以使用1種類之物,倂用2種以上者也可以。 又且,嵌段共聚物也可以視情況需要地在有機過氧化 物等之存在下使用動交聯劑。 嵌段共聚物之數平均分子量並沒有特別地限定,然而 -14- 200400227 通常是在1〇,〇〇〇至1,000,000之範圍內,較宜是在3〇,〇〇〇 至500,〇〇〇之範圍內。 在本發明中所使用的苯乙烯系彈性體,設若是在常溫 下能顯示橡膠彈性體的舉動者,而且隨著溫度上昇而進行 · 塑丨生莫形之聚合物的g舌’則除了上述之嵌段共聚物以外, 尙有芳香族乙烯化合物和烯烴系化合物或共轭二烯化合物 間之無規共聚物(以下,簡稱爲「芳香族乙烯基化合物系共 聚物」),亦非常適合使用。所需要的共聚物可以是含有前 述之極性官能基,其含有量並沒有特別地限定,然而相對 鲁 於構成共聚物之重複單位的總莫耳量計,較宜是不足〇 . 〇 5 莫耳%,更宜是在〇 . 04莫耳%以下。 芳香族乙烯基化合物系共聚物之數平均分子量並沒有 特別地限定,然而通常是在10, 000至!,〇〇〇,〇〇〇之範圍內, 較宜是在30, 000至500, 〇〇〇之範圍內。 在本發明中所使用的苯乙烯系彈性體,係非常適合使 用上述的嵌段共聚物或芳香族乙烯基化合物系共聚物,及 | 聚烯烴系樹脂等之其他的樹脂間之組成物,更且進一步依 照期望摻混可塑劑等之添加劑所形成的組成物等。 此處’聚烯烴系樹脂,舉例來說,例如其可以是聚丙 烯、聚乙烯、乙烯/乙酸乙烯酯共聚物、4 -甲基戊二烯-1、 聚丁烯-1、乙烯/丙烯酸酯共聚物等,然而其中較宜是聚丙 細。聚煙之使用量,相對於1 0 0重量份之上述嵌段共聚 物或芳香族乙烯基化合物系聚合物計,宜是不足丨00重量 份’更宜是在80重量份以下。聚烯烴系樹脂之使用量超出 - 1 5- 200400227 上述之範圍時,就會有損傷做爲苯乙烯系彈性體之機械特 性的情況。 又,非芳香族系橡膠用之軟化劑係非常適合使用來做 爲可塑劑。其具體的例子,舉例來說,例如其可以是鏈烯 烴系或萘系之操作油、白油、礦物油、乙烯和α -烯烴之寡 聚物、鏈烯烴漆、及流動鏈烯烴等,然而,在彼等之中以 鏈烯烴系操作油較理想。可塑劑之使用量,相對於1 00重 量份的上述之嵌段共聚物或芳香族乙烯基化合物系共聚物 計,較宜是在400重量份以下。可塑劑之使用量超出上述 之範圍時,不僅會使機械特性下降,而且同樣地會有可塑 劑滲出的情形。 另外,在本發明中所使用的乙烯系彈性體中,在不損 及本發明之意旨的範圍內,也可添加聚烯烴系樹脂以外的 乙細-丙fe共聚物共聚合橡膠、聚乙嫌、苯乙儲-丙細膳共 聚物、ABS等之苯乙烯系樹脂,聚伸苯醚系樹脂、聚酯系聚 烏拉坦系莖、聚醯胺系樹脂、聚乙縮醛樹脂、丙烯酸系樹 脂等。更且,視情況需要地可進一步添加補強材料(例如, 碳黑、碳纖維、玻璃纖維、硼纖維、芳醯胺纖維、液晶聚 纖維等),塡料、氧化防止劑、光安定劑、阻燃劑、著色劑' 抗菌劑、防黴劑、紫外線吸收劑、耐熱安定劑、發泡劑、 結晶核劑、滑劑、帶靜電防止劑、著色劑、交聯劑、低收 縮劑、增黏劑、剝離劑、防霧劑、發藍劑、矽烷耦合劑等。 苯乙烯系彈性體係可以使用市售可得之物,舉例來說, 例如其可以是「世普通」或「亥卜樂」【商品名;可樂麗(股) -16- 200400227 公司製】、「庫因通」【商品名;殼(股)公司製】、「大 夫卜蘭」【商品名;旭化成(股)公司製】、「大納龍」【商 品名;J SR (股)公司製】等之苯乙烯-共軛二烯嵌段共聚物, 「因第庫斯」【商品名;道爾化學(股)公司製】等之苯乙 烯/乙烯共聚物;另外,例如,「阿龍AR」【商品名;阿龍 化成(股)公司製】、「拉巴龍」【商品名;三菱化學(股) 公司製】等之組成物。 (b )層狀無機化合物「成分(b ) i 其次,說明本發明之苯乙烯系彈性體組成物的構成成 分之(b )層狀無機化合物。 在本發明中所使用的層狀無機化合物係以黏土礦物爲 主。舉例來說,例如其可以是膨潤性矽酸鹽、磷酸鉻等, 然而依照工業上廣用性、處理容易性、所得到的聚合物組 成物之物性等觀點來看,砠想上係使用膨潤性矽酸鹽。 此處所稱之膨潤性矽酸鹽,主要係指氧化矽之四面體 片及金屬氫氧化物之八面體片所形成,並具有在水、水與 以任意比例混合之極性溶媒或水和該枉性溶媒之混合溶媒 中使其膨潤性質之砂酸鹽。彼等之例子,舉例來說,例如 是蒙脫石族黏土、膨潤性雲母、雲母等。 蒙脫石族黏土可以使用天然成品或合成製品。該蒙脫 石族黏土的具體例子,舉例來說,例如是蒙脫石、貝德石、 皂石、鐵皂石、水輝石、爍輝石、銻輝石、膨潤土或其置 換體、衍生物、或彼等之混合物等。 膨潤性雲母可以使用天然成品或合成製品。彼等係具 -17- 200400227 有在水 '水與以任意比例混合之極性溶媒或水和該枉性溶 媒之混合溶媒中使其膨潤之性質。該膨潤性雲母的具體例 子,舉例來說,例如是鋰型帶雲母、鈉型帶雲母、鋰型四 矽雲母、鈉型型四矽雲母等、或其置換體、衍生物、或彼 等之混合物等。 上述膨潤性雲母中具有與經石類相類似構造之物也可 以使用彼等類似於姪石類之同等品。與姪石類似之物中, 舉例來說,例如是三八面頭巾型姪石、二八面頭巾型姪石 另外’雲母,舉例來說,例如其可以是白雲母、雲母、 黑雲母、鱗雲母、貝雲母、四矽型雲母等。 又’例如,對雲母進行氟處理之膨潤性雲母的物質, 或水熱合成所得到的物質等。 層狀無機化合物較宜是由上述物質中的蒙脫石、膨潤 土、水輝石及在層間具有鈉離子的膨潤性雲母,因爲彼等 取得容易’日上對於做成苯乙烯系彈性體組成物之分散性 優異’以及具有所得到的組成物之物性改良效果等特點。 上述有機陽離子較宜是具有錢離子類、鐵離子類、統 離子類或胺基酸類等之正電荷的有機化合物等之有機鑲離 子。其中,依照工業廣用性等之觀點來看,較宜是銨離子 類或鳞離子類。 銨離子類或鐵離子類較宜是以下述之化學式(1)所示之 物。 200400227 R3200400227 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a styrene-based elastomer composition composed of a styrene-based elastomer and a layered inorganic compound. [Prior art] In recent years, as the range of use of elastomers has become wider, substances that require higher performance have continued. Among them, the requirements for high performance such as mechanical properties and gas barrier properties are even higher. For example, the technology of blending inorganic fillers in elastomers for the purpose of improving mechanical properties has also been proposed in many reports. 1) JP 8- 3 3 1 1 4 discloses a clay composite material for the purpose of improving the mechanical properties of organic polymer materials, which is a clay that will be organicized by ionic bonding of organic key ions. Clay composites in which minerals are dispersed in guest molecules with polar groups. 2) Japanese Patent Application Laid-Open No. 1 1-92677 discloses a method for manufacturing a resin composite material for the purpose of improving the mechanical properties of organic polymer materials, which is characterized by including the first use of polymer-modified functional groups to obtain modification A step of polymerizing, and a step of kneading the modified polymer and organicized clay to composite the two. 3) The purpose of JP 2 0 0 0-8 6 8 2 2 is to provide a resin composite material that has excellent heat resistance and excellent elasticity even at normal temperature, that is, to disclose a resin composite material with characteristics It is formed by dispersing an organicized clay in at least one kind of segment in a block copolymer type thermoplastic elastomer composed of a plurality of kinds of segments. -5-200400227 4) In Japanese Patent Application Laid-Open No. 1 1-9 2 5 94, the purpose is to provide a resin composite material that can be easily compounded and has a wide range of applications. That is, a resin composite material is disclosed, which is characterized by: It is formed by two or more polymers and organic clay, and at least one of the two or more polymers has a functional group. 5) Japanese Patent Application Laid-Open No. 2002-3 7 9 40 discloses a polypropylene resin composition, which is a crystalline polypropylene including a predetermined amount of 2 3 ° C, an olefin-soluble component elastomer, and a vinyl-based polypropylene. Unsaturated carboxylic acid, its anhydride or derivative branched modified crystalline polypropylene, and organic clay. Among these elastomers, styrene-based elastomers are excellent in flexibility, cold resistance, moisture resistance, etc., and also easily form a molded body having rubber elasticity, so they can be used not only as a substitute for the existing vulcanized rubber. It has also been put into practical use in various fields such as automobiles, electrical products, construction, civil engineering and other industrial products, as well as medical, sports equipment, and various container parts (such as cap liners). 1) Japanese Patent Application Laid-Open No. 2000-1-1 3 7 3 3 8 discloses a thermoplastic elastomer of a styrene-based elastomer which can be used for elastic sliding of a sliding part of a piston for a syringe. 2) Shikaihei 5-5 3 6 0 9 discloses a method for forming a sealing plug for a blood collection tube, which is a triblock copolymer using a thermoplastic elastomer resin such as polystyrene-polyisobutylene-polystyrene. A resin formed by blending naphthalene oil in a predetermined ratio. 3) The application of a soft synthetic resin of styrene-based elastomer is disclosed in Japanese Patent Application Laid-Open No. 10-2 0 1 7 4 2, that is, the use of styrene on the needle-punching part and sealing part of a vacuum blood collection tube 6-200400227 It is a soft synthetic resin such as elastomer. 4) Japanese Patent Application Laid-Open No. 5-2 1 2 1 0 4 discloses a rubber stopper for the manufacture of medical products, an adhesive pad for a syringe, a rubber stopper for decompression blood collection, and an injection barrel for a medicine-filled ore trough. Alternative materials for vulcanized rubber used in medical and medical thermoplastic sealing articles, such as dual-purpose adhesive pads, meaning block copolymers such as aromatic vinyl compounds and isobutylene (for example, styrene-isobutylene-styrene tri Block copolymers, etc.). Furthermore, regarding the use of a styrene-based elastomer as a component for a container, for example, 'the following is known: 1) Japanese Unexamined Patent Application Publication No. 1 1-3 4 9 7 5 3 discloses an ethylene-α- A composition for a cap lining material formed of an olefin polymer, a branched low density polyethylene, and a thermoplastic elastomer is exemplified by a styrene-butadiene copolymer rubber, a styrene-isobutylene polymer rubber, A styrene polymer elastomer such as a hydrogen styrene-ethylene-propylene copolymer rubber is used as a thermoplastic elastomer. 2) Japanese Unexamined Patent Publication No. 1 1-1 309 10 discloses a composition for a cap lining material formed of a polypropylene-based resin, a hydrogenated styrene-isopropylene block copolymer rubber, and a flowing paraffin; and Japanese Unexamined Patent Publication No. 1 1-1 5 7 5 6 8 discloses a polypropylene resin, a linear low-density polyethylene resin, a hydrogenated styrene-conjugated diene block copolymer rubber, and a flowing paraffin.组合 物。 Composition. 3) JP 20 00-3 5 1 880 and JP 2000-3 5 5 3 5 2 respectively disclose a thermoplastic elastomer and a saponified ethylene-vinyl acetate copolymer and / or a polyamide system Composition of cap lining material made of resin composition-7-200400227 type composition, two documents and exemplified styrene-butadiene block copolymer, styrene-ethylene-butene block copolymer, benzene A styrene-based elastomer such as an ethylene-ethylene propylene block copolymer and the present ethylene-isopropylene copolymer is used as a thermoplastic elastomer. 4) Japanese Patent Application Laid-Open No. 2000-281 1 No. 17 discloses a cap formed of a hydrogenated product of a styrene-conjugated diene block copolymer, a softener for rubber, and / or a flowing paraffin and a polyethylene resin. The lining material is exemplified by a hydrogenated styrene-isobutylene_styrene copolymer and a hydrogenated styrene isobutylene / butadiene) -styrene block copolymer as the styrene-conjugated diene block copolymer. In recent years, in order to achieve good mechanical properties, chemical resistance, and rubber elasticity of styrene-based elastomers, a proposal was made to disperse a swellable silicate in a dispersion medium and borrow A styrenic elastomer in which an amine compound or a polysandoxy compound is mixed to prepare a layered inorganic compound. For example, Japanese Patent Application Laid-Open No. 2000-1 29058 and Japanese Patent Application Laid-Open No. 20 000-1 5 9 9 60 describe a method for producing a styrene-based elastomer, that is, a monomer and a layered material constituting the styrene-based elastomer. The inorganic compounds are mixed, and a styrene-based elastomer containing a layered inorganic compound is produced by polymerization. In addition, another method for producing a styrene-based elastomer containing an inorganic layered compound, that is, a method of mixing an inorganic layered compound and a styrene-based elastomer in an organic solvent is also described. However, after the layered inorganic compound is mixed with the monomer, the method of polymerizing the monomer is complicated. In addition, the method for producing styrene-based elastomers is 8-200400227, which is a commonly used living anionic polymerization and coordination polymerization, and it is known that polymerization will be significantly inhibited in the presence of a compound having a polar functional group and water. Therefore, it is difficult to sufficiently perform the polymerization reaction by a method of polymerizing a monomer in the presence of a layered inorganic compound having high polarity and easily containing moisture. Furthermore, in the method of mixing a layered inorganic compound and a styrene-based elastomer in an organic solvent, since the layered inorganic compound is hydrophilic in nature, when the styrene-based elastomer is dissolved in the organic solvent, the layer It is easy for the inorganic compound to form secondary aggregation. As a result, it is difficult for the layered inorganic compound to be sufficiently dispersed in the styrene-based elastomer. As described above, it is difficult to sufficiently disperse the layered inorganic compound in the styrene-based elastomer even if the technology disclosed in the above-mentioned publication is held. Therefore, the improvement of mechanical characteristics is naturally limited. Already. Moreover, regarding the gas barrier properties of styrene-based elastomers, although an improvement degree can be seen by blending inorganic materials, it is not always possible to obtain satisfactory and sufficient gas barrier properties. [Summary of the Invention] [Problems to be Solved by the Invention] However, an object of the present invention is to provide a styrene-based elastomer composition having improved gas barrier properties and good mechanical properties, that is, by making a layer The inorganic compound is sufficiently finely dispersed in the styrene-based elastomer to improve the gas barrier properties of the styrene-based elastomer and to have good mechanical properties. [Summary of the invention] According to the present invention, the above-mentioned problem can be solved, and a -9-200400227 styrene-based elastomer composition is provided, characterized in that the styrene-based elastomer composition is composed of (a) styrene Based elastomer, (b) a layered inorganic compound that is organicized by an organic cation, and (c) a polar polymer having compatibility with the (a) styrenic elastomer and having a polar functional group in the molecule ( Hereinafter, it is referred to as "resin-based compatibilizing agent"), and the interlayer distance of (b) an organic layered inorganic compound in the composition is 15 angstroms or more. That is, the present invention provides (a) a styrenic elastomer, (b) a layered inorganic compound that is organicized by an organic cation, and (c) has compatibility with the (a) styrenic elastomer And a styrene-based elastomer composition formed by a polar polymer having a polar functional group in the molecule, and the interlayer distance of (b) the organic layered inorganic compound in the composition is i 5 angstroms or more of. [Disclosure of the invention] Hereinafter, each component of the styrene-based elastomer composition of the present invention will be described in detail. (JO Ping Ethylene-Based Bullet Bodies "The ((a) styrene-based elastic system can be used with conventionally known materials and is not particularly limited. Specific examples thereof, for example, it may be an aromatic vinyl compound , A block copolymer formed with an olefin-based compound or a conjugated diene compound, etc. The required block copolymer may be, for example, a polymer formed from an aromatic vinyl compound as A, when a polymer formed from an olefin-based compound or a conjugated diene compound is referred to as B, the formula A-B, (A -B) m-A "wherein, m is an integer representing 1 to 10", ( A — B) n 200400227-X "wherein, X is a η-valent residue derived from a coupling agent, and η is an integer ranging from 2 to 15" and other block copolymers. A polymer block formed by a vinyl compound and a polymer block formed by an olefin-based compound or a conjugated diene compound constitute a polymer having a tapered bond, and can also be used as a styrene-based elastomer. Etc., ideally for more than 2 reasons A block copolymer in which a polymer block A formed by an aromatic vinyl compound and one or more polymer blocks B are linearly bonded, especially with the formula: A — B — A represented by three A block copolymer is preferred. As the aromatic vinyl compound constituting the above block copolymer, for example, it may be styrene, α-methylstyrene, 0-, m-, or ρ- Methylstyrene, 2, 3-dimethylstyrene, 2, 4-dimethylstyrene, monochlorinated styrene, dichlorinated styrene, P-brominated styrene, 2, 4, 5 -Tribromostyrene, 2,4,6-tribromostyrene, 0-, m-, or p-third butylstyrene, ethylstyrene, vinylnaphthalene, vinylanthracene, etc. Among them, styrene and / or α-methylstyrene are preferably used. One kind of aromatic vinyl compound may be used, and two or more kinds may be used together. Aromatic vinyl in block copolymer The content of the compound unit is not particularly limited, but according to the characteristics of the moldability and mechanical characteristics of the obtained styrene-based elastomer composition It is more preferably 5 to 75% by weight, and more preferably 10 to 65% by weight. On the other hand, the styrenic compound constituting the block copolymer described above may be, for example, ethylene, propylene, 1 -Butene, 2-Butene, 200400227 Isobutene, 1 -Pentene, 2 -Pentamyl, Cyclopentene, 1 _Dilute, 2 _Hexcan, Cyclohexane, 1 -Heptan, 2 -Heptan Women, cycloheptane, 1_octene, 2_octane, cyclooctene, vinylcyclopentene, vinylcyclohexene, vinylcycloheptane, ethylcanylcyclooctyl, etc. and 'can As a conjugated diphosphatic compound, for example, it may be butadiene, isobutylene, 2,3-dimethyl-, 3-butadiene, 1,3-pentadiene, 1,3 -Hexadiene and the like. The polymer block b may be composed of one of these compounds, and may also be composed of two or more; but it is preferably composed of butadiene, isoprene, or a mixture thereof; but From the viewpoint of the gas barrier properties of the obtained styrene-based elastomer composition, it is more preferable to be composed of a mixture of butadiene and isoprene or isoprene. The polymer block B may be a side chain containing an aliphatic carbon-carbon double bond. For example, in the case of using butadiene or a mixture of isoprene or isoprene as a conjugated diene compound, the polymer block B is derived from a 1,2-bond and a 3,4-bond. The side chain contains an aliphatic carbon-carbon double bond. In this case, the sum of the 1,2-bonds and 3,4-bonds in the polymer block B should preferably be more than 30 mol% relative to the total amount of the structural units constituting the block copolymer. The ratio is more preferably 40 mol% or more. The polymer block B may be a hydrogenated aliphatic carbon-carbon double bond from a conjugated diene compound. The hydrogenation rate of the aliphatic carbon-carbon double bond should be appropriately selected according to the composition and application of the styrene-based elastomer composition. However, when heat resistance, weather resistance, etc. are required, it is preferably 30 mol. % Or more, more preferably 50 mol% or more, and more preferably 80 mol% or more. -1 2- 200400227 The hydrogenation rate of the aliphatic carbon-carbon double bond can be determined by a commonly used method. For example, the hydrogenation rate can be calculated by an iodine value measurement method and a 1Η-NMR measurement. Preferred examples of the above-mentioned block copolymers include, for example, a polystyrene-polybutadiene-polystyrene triblock copolymer or a hydrogenated product thereof, and a polystyrene-polyisoprene -Polystyrene triblock copolymer or hydrogenated product thereof, polystyrene-poly (isopentene / butadiene) -polystyrene triblock copolymer or hydrogenated product thereof, poly (α-methyl group) Styrene or polybutadiene-poly (α-methylstyrene) triblock copolymer or hydrogenated product thereof, poly (α-methylstyrene) -polyisopentene-poly (α-methylbenzene) Ethylene) triblock copolymer or hydrogenated product thereof, poly (α-methylstyrene) poly (isoprene / butadiene poly (α-methylstyrene) triblock copolymer or hydrogenated product thereof Also, for example, polystyrene-polyisobutylene-polystyrene triblock copolymer, poly (α-methylstyrene) -polyisobutylene-poly (α-methylstyrene) triple block Segment copolymers are also ideal examples. In addition, these block copolymers may be used at the single or both ends of the main chain, side chain, and molecular chain, as long as the meaning of the present invention is not impaired. Polarity of carboxyl group or its salt, hydroxyl group, acid anhydride group, amine group, epoxy group, ester group, courtyard group, square oxygen group, sulfuric acid group or derivative thereof, amino group, gas sulfur group, halogen atom, etc. Functional group. The content of the polar functional group is not particularly limited, but it is preferably less than 0.05 mole%, and more preferably 0.04 mole relative to the total mole of repeating units constituting the block copolymer. %. The block copolymer with a polar functional group can be obtained by i) using a compound containing a polar functional group as a polymer terminator in the manufacturing process i. An olefin-based compound and / or a conjugated diene containing a polar compound or a copolymerization method. The olefin-based compound and / or a conjugated diene containing a polar functional group and / or a conjugated diene containing a polar compound, For example, it can be α, Θ-unsaturated carboxylic acid such as acrylic acid, methacrylic acid, etc., methacrylate, ethylpropionate, propylacrylate, butylpropionate, amine Acrylate, Hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, etc. Alpha, point _ alkyl esters of unsaturated carboxylic acids, maleic acid Amines of α-unsaturated carboxylic acids, such as amines, N-methylmaleimide, N-ethylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, etc., shrink Glyceryl methacrylate, allyl glycidyl ether and other unsaturated compounds containing epoxy groups, α, / 3-unsaturated dicarboxylic acids such as itaconic acid and maleic acid, itaconic anhydride, maleic anhydride Α, ^ -unsaturated diresidic anhydride, citric anhydride, etc., amine-containing unsaturated compounds such as propanamide, aminoethyl methacrylate, aminopropyl methacrylate, aminostyrene, etc., 3 -Hydroxy-1 -propylene, 4-hydroxy-1 -butene, cis-4 -hydroxy-2-butene, trans-4-hydroxy-2-butene, 3-hydroxy-2-methyl-1 -Hydroxy-containing unsaturated compounds such as propylene, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, etc., acrylamide, vinyl oxazoline and the like. As the polar functional group-containing olefin-based compound and / or the polar functional group-containing conjugated diene compound, one kind may be used, or two or more kinds may be used. In addition, the block copolymer may optionally use a dynamic cross-linking agent in the presence of an organic peroxide or the like. The number average molecular weight of the block copolymer is not particularly limited, however, -14-200400227 is usually in the range of 10,000 to 1,000,000, and more preferably in the range of 30,000 to 500,000. Within range. The styrenic elastomer used in the present invention is not limited to the above, provided that it can exhibit the behavior of a rubber elastomer at normal temperature, and it will perform as the temperature rises. In addition to block copolymers, random copolymers between aromatic vinyl compounds and olefin-based compounds or conjugated diene compounds (hereinafter referred to as "aromatic vinyl compound-based copolymers") are also very suitable for use. . The required copolymer may contain the aforementioned polar functional group, and its content is not particularly limited, but it is preferably less than 0.05 mol relative to the total molar amount of the repeating units constituting the copolymer. %, More preferably below 0.04mol%. The number average molecular weight of the aromatic vinyl compound-based copolymer is not particularly limited, but it is usually 10,000 to 10,000! In the range of 100,000, more preferably in the range of 30,000 to 500,000. The styrene-based elastomer used in the present invention is very suitable for use of the above-mentioned block copolymers or aromatic vinyl compound-based copolymers, and other resin-based compositions such as polyolefin-based resins, and more Further, a composition formed by blending additives such as a plasticizer as desired. Here, the polyolefin resin can be, for example, polypropylene, polyethylene, ethylene / vinyl acetate copolymer, 4-methylpentadiene-1, polybutene-1, ethylene / acrylate Copolymers and the like, however, polypropylene is preferred among them. The amount of polyfume used is preferably less than 00 parts by weight, more preferably 80 parts by weight or less, based on 100 parts by weight of the above-mentioned block copolymer or aromatic vinyl compound-based polymer. When the amount of polyolefin resin used exceeds-1 5- 200400227, the mechanical properties of styrene-based elastomers may be damaged. In addition, softeners for non-aromatic rubbers are very suitable for use as plasticizers. Specific examples thereof include, for example, olefin-based or naphthalene-based process oils, white oils, mineral oils, oligomers of ethylene and α-olefins, olefin paints, and flowing olefins. However, Among them, alkene-based process oils are preferred. The amount of the plasticizer used is preferably 400 parts by weight or less based on 100 parts by weight of the above-mentioned block copolymer or aromatic vinyl compound-based copolymer. When the amount of the plasticizer used exceeds the above range, not only the mechanical properties are deteriorated, but also the plasticizer may leak out. In addition, in the ethylene-based elastomer used in the present invention, an ethylene-propylene-fe copolymer copolymer rubber other than a polyolefin resin may be added to the extent that the meaning of the present invention is not impaired. , Styrene resin, acrylic fine copolymer, ABS and other styrene resins, polyphenylene ether resins, polyester polyurethane stems, polyamide resins, polyacetal resins, acrylic resins Wait. Furthermore, if necessary, further reinforcing materials (for example, carbon black, carbon fiber, glass fiber, boron fiber, aramide fiber, liquid crystal polymer fiber, etc.), materials, oxidation inhibitors, light stabilizers, and flame retardants can be added. Agents, colorants' antibacterial agents, antifungal agents, ultraviolet absorbers, heat stabilizers, foaming agents, crystal nucleating agents, slip agents, antistatic agents, colorants, crosslinkers, low shrinkage agents, tackifiers , Peeling agent, anti-fog agent, bluing agent, silane coupling agent, etc. A commercially available styrene-based elastic system can be used, for example, it can be "world ordinary" or "Hibble" [trade name; Kuraray (shares) -16-200400227 company], " Kuintong "[commodity name; shell (stock) company system]," Doctor Bran "[commodity name; Asahi Kasei (stock) company system]," Da Na Long "[commodity name; J SR (stock) company system] And other styrene-conjugated diene block copolymers, "Indicus" [trade name; made by Dow Chemical Co., Ltd.] and the like; and, for example, "Aron AR "Commodity name; Aron Kasei Co., Ltd.", "Rabaron" [trade name; Mitsubishi Chemical Co., Ltd.] and other components. (b) Layered inorganic compound "Component (b) i" Next, the (b) layered inorganic compound which is a component of the styrene-based elastomer composition of the present invention will be described. The layered inorganic compound system used in the present invention Clay minerals are predominant. For example, they can be swellable silicate, chromium phosphate, etc. However, from the viewpoints of industrial wide applicability, ease of handling, and physical properties of the obtained polymer composition, I suppose the use of swellable silicate. The swellable silicate referred to here mainly refers to the formation of tetrahedron sheet of silicon oxide and octahedral sheet of metal hydroxide, and has water, water and A polar solvent or a oxalate salt that makes it swollen in a mixed solvent of polar solvent or water mixed with the alkaline solvent in any ratio. Examples of these are, for example, montmorillonite clay, swelling mica, mica The montmorillonite-type clay can use natural products or synthetic products. Specific examples of the montmorillonite-type clay include, for example, montmorillonite, beidite, soapstone, iron soapstone, hectorite, and pyroxene. Antimony , Bentonite or its substitutes, derivatives, or mixtures thereof, etc. The bentonite mica can use natural products or synthetic products. They have -17- 200400227 there is a polar solvent in water or water mixed with any proportion or The property of swelling in a mixed solvent of water and the alkaline solvent. Specific examples of the swelling mica include, for example, lithium-type mica, sodium-type mica, lithium-type tetrasilica, and sodium-type Silica mica, etc., or its substitutes, derivatives, or mixtures thereof, etc. Among the above-mentioned swelling mica, those having a structure similar to warp stones can also use their equivalents of vermiculite. Among the similar stones, for example, the turban-type vermiculite with thirty-eight faces and the turban-type vermiculite with two or eight faces can be mica. For example, it can be muscovite, mica, biotite, scale mica, Shell mica, tetra-silica type mica, etc. Also, for example, a substance of swellable mica subjected to a fluorine treatment of mica, or a substance obtained by hydrothermal synthesis, etc. The layered inorganic compound is more preferably a layer of the above-mentioned substance. Stone, bentonite, hectorite, and bentonite mica with sodium ions between the layers, because they are easy to obtain, "these days, they are excellent in dispersibility for making styrene-based elastomer compositions", and have physical properties of the resulting composition. Effects, etc. The above organic cations are preferably organic ions having positively charged organic compounds such as chalcogen ions, iron ions, system ions, or amino acids. Among them, from the viewpoint of industrial applicability, etc. Seen, it is more preferably ammonium ions or scale ions. Ammonium ions or iron ions are more preferably represented by the following chemical formula (1). 200400227 R3

( (式中,M代表氮原子或磷原子’R1、!^2、R3、及R4分 別表示氫原子、在苯環上也可以具有極性官能基之苄基、 或以極性官能基取代也可以之碳數爲丨至30的烷基。但是, R1至R4不同時代表氫原子。又,在ri至R4中,具有極性 官能基也可以的苄基之數量較宜是在2個以下。) 上述之中,碳數爲1至30之烷基,舉例來說,例如其 可以疋甲基、乙基、丙基、異丙基、丁基、戊基、己基、 庚基、辛基、壬基、癸基、十一基、十二基(月桂基)、十 三基、十四基、十五基、十八基等。 又’上述之苄基及具有碳數爲1至30之烷基也可以的 極性官能基,舉例來說,例如其可以是氫氧基、烷氧基、 芳氧基、矽烷氧基、氫硫基、烷硫基、芳硫基、醯基、羧 基、醯氧基、烷氧羰基、酸酐基、硝基、鹵素原子、環氧 基等。在此等之中,較宜是氫氧基、烷氧基、芳氧基、羧 基、醯氧基、烷氧羰基、酸酐基。 相對於上述之銨離子類或鳞離子類的陰離子,舉例來 說,例如其可以是 Cl·、Br·、Γ、n〇3.、OH·、CH3COO·、HS04·、 HC03·等,其中,較宜是 Cl'、Br·、1_、N〇3-、或 〇H-。 銨離子的例子,舉例來說,例如其可以是己基銨離子、 -19- 200400227 竿基錢離子、2 -乙基己基錢離子、十二基銨離子、十八基 錢離子、月桂基鏡離子、硬脂酸基錢離子、一辛基二甲基 銨離子、三辛基銨離子、二硬脂酸基銨離子、二硬脂酸基 甲基銨離子、丁基銨離子、二甲基丁基銨離子、1,2 -二甲 基丙基錢離子、甲基己基錢離子、3 -戊基錢離子、二甲基 乙基銨離子、二甲基雙十八銨離子、2 -辛基銨離子、二乙 基銨離子、四甲基乙基銨離子、二甲基丙基銨離子、二乙 基丙基銨離子、一 丁基丙基錢離子、四甲基丙基錢離子、 異戊基銨離子、乙基異戊基銨離子、2 -己醯基銨離子、二 異丙基乙基鏡離子、乙基一甲基丙基錢離子、二異丁基鏡 離子、單- C6_ 烷基三甲基銨離子、二椰子基烷基二甲基 銨離子、椰子基烷基二甲基銨離子、三辛基甲基銨離子、 三月桂基甲基銨離子、二硬化三脂烷基二甲基銨離子、苯 甲醯基三甲基銨離子、苄基三丁基銨離子等。 銹離子之具體例子,舉例來說,例如其可以是三甲基 十二基鳞離子、三甲基十六基鐵離子、三甲基十八基鐵離 子、三丁基十二基錢離子、三丁基十六基鐵離子等。 又,銃離子的具體例子,舉例來說,例如其可以是三 甲基毓離子、二甲基十二基毓離子、二甲基十六基毓離子、 一甲基十八基銳離子、二乙基Μ離子、二乙基十二基Μ離 子、二乙基十六基毓離子、二乙基十八基毓離子、三丁基 毓離子、二丁基十二基毓離子、二丁基十六基毓離子、三 苯基Μ離子等。 銨離子類、鱗離子類、或毓離子較宜是使用具有極性 - 20 - 200400227 官能基之物。 例如’具有氫氧基之錢離子、具有氫氧基之鐵離子、 或具有氫氧基之毓離子的具體的例子,舉例來說,例如其 可以是在上述所例示的錢離子類、鳞離子類、或毓離子中 · 之1至4個丨元基或卡基係爲經甲基、羥乙基(例如,2 _經規 基)、經丙基(例如’ 3 -經丙基)所取代的離子。具有烷氧基 或芳氧基之銨離子類、具有烷氧基或芳氧基之鐵離子類、 或具有院氧基或芳氧基之鍊離子的具體的例子,舉例來說, 例如其可以是在上述所例示的銨離子類、_離子類、或鋪 ® 離子中之1至4個烷基或苄基係爲(CH2CH2〇)pR基、 (CH2CH(CH3) 0)PR 基、或(CH2CH2CH2〇)pR 基(在此 p 係代表 1至5之整數)所代表的聚氧烯基取代之離子。又,具有醯 氧基之銨離子類、具有醯氧基之鳞離子類、或具有醯氧基 之毓離子的具體的例子,舉例來說,例如是在上述所例示 的具有氫氧基之銨離子類、具有氫氧基之鱗離子類、或具 有氫氧基之毓離子中,該氫氧基係爲乙醯基、苯甲醯基等 之醯基所保護之物。 1 又,具有羧基、酸酐或烷氧碳基之銨離子的具體例子, 舉例來說,例如其可以是由胺基酸類所衍生物的陽離子。 在此所謂的胺基酸類較宜是碳數爲4至3 0之物;具體 而言,舉例來說,例如其可以是離胺酸、精胺酸、r -胺基 環己基羧酸、p -胺基羥基桂皮酸、白胺酸、苯基丙胺酸、 組胺酸、色胺酸等。 另外,上述之胺基酸類中,也可以具有由羧基、甲基 -21- 200400227 酯、乙基酯、苄基酯等所保護的形態。 藉由將上述的有機陽離子添加在層狀無機化合物中, 就能夠得到經有機化的層狀無機化合物。 在添加有機陽離子之前,最好是先將層狀無機化合物 予以膨潤化。膨潤化處理,具體而言,係可以藉由將層狀 無機化合物浸漬在(i )水、(i i )水和以任意比例混合之極性 有機溶媒、或(i i i )水和該極性有機溶媒之混合溶媒中來實 施。此時,充分地攪拌較爲理想。極或有機溶媒舉例來說, 例如其可以是甲醇、乙醇、2 -丙醇等之醇類,乙二醇、丙 二醇、1,4 -丁二醇等之二醇類,丙酮等之酮類,四氫呋喃、 1,4 -二噚烷等之醚類,二甲基甲醯胺、二甲基乙醯胺、二 甲基硫醯胺、二甲基乙酮等之非氣子性極性溶媒等。 經有機化之層狀無機化合物,可藉由過濾器、離心分 離器等一般方法而取得。經取得的層狀無機化合物,理想 上係充分地洗淨並除去過剩的陽離子之後,再將之予以乾 燥而得。 有機陽離子之添加量,例如,可以藉由管柱滲透法(參 照「黏土手冊」第5 76至5 7 7頁、技法堂出版)、及亞甲基 藍吸附量測定法(參照日本膨潤土工業會標準試驗法, J BAS - 1 0 7 - 9 1 )等之方法測定層狀無機化合物的陽離子交換 容量(CEC ),並基於該測定値而決定之。有機陽離子的添加 量,相對於CEC計較宜是在1當量以上,較宜是在從1當 量至10當量之範圍內。 (c )樹脂系相溶化劑「成分(c ) i -22 - 200400227 其次’說明本發明之苯乙烯系彈性體組成物之構成成 分中之(C )樹脂系相溶化劑。 在本發明中所使用的(C )樹脂系相溶化劑係具有與上述 成分(a )苯乙烯系彈性體相溶之相溶性,並在分子內具有極 性官能基的極性聚合物。 例如,在使用不具有與上述成分(a )苯乙烯系彈性體相 溶之相溶性之物做爲成分(c )的情況,因爲就不能使上述之 (b )層狀無機化合物充分地分散在苯乙烯系彈性體組成物 中,因而就無法得到經改良的氣體阻障性之苯乙烯系彈性 體組成物,所以不宜。 具有與苯乙烯系彈性體相溶之相溶性的聚合物,舉例 來說,例如可以使用聚苯乙烯等之苯乙烯系聚合物、苯乙 烯-共軛二烯嵌段共聚物或其加氫物、聚酯系聚合物、聚乙 烯、聚丙烯等之聚烯烴系聚合物、聚丁二烯、乙烯-丙烯嵌 段共聚物等。(c )樹脂系相溶化劑係可以使用以此種聚合物 做爲基本構造,且分子內具有極性官能基的極性聚合物。 上述聚烯烴系聚合物,舉例來說,例如其可以是乙烯、 丙烯、1-丁烯、2-丁烯、異丁烯、1-戊烯、2-戊烯、環戊 少布、1 -己細、2 -己細、I哀己綺、1 -庚燒、2 -庚燏、環庚嫌、 1 -辛烯、2 -辛烯、環辛烯、乙烯基環戊烯、乙烯基環己烯、 乙烯基環庚烯、乙烯基環辛烯等之烯烴系化合物;丨,3 -丁 二烯、異戊二烯、2,3 -二甲基- i,3 -丁二烯、1,3 -戊二烯、 1,3 -己二烯、等之二烯系化合物類之單獨聚合物或共聚物 等。又且,也可以使用對在聚烯烴系聚合物中所含的脂肪 - 23- 200400227 族碳-碳雙鍵進行加氫之物。 又,苯乙烯系聚合物,舉例來說,例如其可以是苯乙 烯、α —甲基苯乙烯、o-、m-、或p -甲基苯乙烯、2, 3 -二 甲基苯乙烯、2,3 -二甲基苯乙烯、單氯化苯乙烯、二氯化 苯乙烯、P -溴化苯乙烯、2,4, 5-三溴化苯乙烯、2, 4 ,6-三 溴化苯乙烯、〇-、m-、或p -第三-丁基苯乙烯、乙基苯乙 烯、乙烯基萘、乙烯基蒽等之芳香族乙烯基化合物之單獨 聚合物或共聚物等。 又,苯乙烯-共軛二烯嵌段共聚物或其加氫物,舉例來 說,例如其可以是聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共 聚物或其加氫物、聚苯乙烯-聚丁二烯-聚苯乙烯三嵌段共 聚物或其加氫物、聚苯乙烯-聚(異戊二烯/ 丁二烯)-聚苯乙 烯三嵌段共聚物或其加氫物、聚(α -甲基苯乙烯)-聚丁二 烯-聚(α -甲基苯乙烯)三嵌段共聚物或其加氫物、聚(α -甲 基苯乙烯)-聚異戊二烯-聚(α -甲基苯乙烯)三嵌段共聚物 或其加氫物、聚(α -甲基苯乙烯)-聚(異戊二烯/ 丁二烯)-聚(α -甲基苯乙烯)三嵌段共聚物或其加氫物。 又,聚酯系聚合物,舉例來說,例如其可以是將乙二 醇、丙二醇、丁二醇、二(羥甲基)苯等之二醇醇成分、與 酞酸、異酞酸、對酞酸等二羧酸成分間之縮聚合所得到的 聚合物。更且,使用內酯等之環狀化合物之開環聚合物也 非常適合。 (c )樹脂系相溶化劑中之極性官能基,爲了抑制在所得 到的苯乙烯系彈性體組成物中層狀無機化合物之凝集、不 - 24- 200400227 均句分散’並使層狀無機化合物充分地微分散,則較宜是 與層狀無機化合物間具有親和性或反應性。在(c )樹脂系相 溶化劑中之極性官能基,舉例來說,例如其可以是氫氧基、 院氧基、芳氧基、矽烷氧基、氫硫基、烷硫基、芳硫基、 醯基、殘基或其鹽、醯氧基、烷氧羰基、芳氧羰基、酸酐 基、醒基、縮醛基、醯胺基、醯亞胺基、硝基、鹵素原子、 磺酸基或其衍生物、環氧基等;此等之中,較宜是氫氧基、 羧基或其鹽、烷氧羰基、醯氧基、酸酐基、環氧基。 (c )樹脂系相溶化劑可以是僅具有1種類的極性官能 基,具有2種類以上之極性官能基也可以。 (c )樹脂系相溶化劑中之極性官能基的含有量,相對於 構成做爲樹脂系相溶劑使用的極性聚合物之重複單位的總 莫耳數計’較宜是在〇·〇5莫耳%以上,更宜是在〇.〇5莫耳 %以上而在5 0莫耳%以下。當使用的(a )苯乙烯系彈性體、(b ) 層狀無機化合物之種類及其使用量,以及(c )樹脂系相溶化 劑中之之極性官能基的含有量,相對於構成做爲樹脂系相 溶劑使用的極性聚合物之重複單位的總莫耳數計不足〇 . 〇5 莫耳%的情況下,則就會成爲無法得到(b )層狀無機化合物 均勻地分散在(a )苯乙烯系彈性體中之效杲的情形。又且, 相反地,(c )樹脂系相溶化劑中之極性官能基的含有量,相 對於構成做爲樹脂系相溶劑使用的極性聚合物之重複單位 的總莫耳數計超出5 0莫耳%時,則就會有在製造苯乙烯系 彈性體或加工時產生明膠等之情形。 極性官能基係可以被包括在做爲(c )樹脂系相溶化劑使 - 25- 200400227 用的極性聚合物之分子鏈的單末端或兩末端、分子鏈之中 段或側鏈中之任一項。 極性官能基在極性聚合物中之分布並沒有特別地限 定’例如其可以是規則性分布、塊(嵌段)狀分布、無規分 布、錐狀分布,彼等之全部或一部分混合之分布也可以。 做爲(C )樹脂系相溶化劑使用的極性聚合物係能夠藉由 利用在製造工程中(i )將含有極性官能基之化合物做爲聚合 終止劑並使之反應的方法,(i i )將含有極性官能基的化合 物予以共聚合或加成之方法等製造而得。 含有極性官能基的化合物,舉例來說,例如其可以是 丙烯酸、甲基丙烯酸等之α、/3 -不飽和羧酸,甲基丙烯酸 酯、乙基丙烯酸酯、丙基丙烯酸酯、丁基丙烯酸酯、戊基 丙烯酸酯、己基丙烯酸酯、辛基丙烯酸酯、2 -乙基己基丙 烯酸酯、環己基丙烯酸酯、甲基甲基丙烯酸酯、乙基甲基 丙烯酸酯、2 -乙基己基甲基丙烯酸酯、環己基甲基丙烯酸 酯等之α、/3 -不飽和羧酸之烷基酯,順丁烯二醯亞胺、Ν -甲基順丁烯二醯亞胺、Ν -乙基順丁烯二醯亞胺、ν -苯基順 丁烯二醯亞胺、Ν -環己基順丁烯二醯亞胺等之α、/3 -不飽 和羧酸之醯亞胺化合物類,縮水甘油基甲基丙烯酸酯、烯 丙基縮水甘油醚等之含環氧基不飽和化合物,衣康酸、順 丁烯二酸等之α、/3 -不飽和羧酸,衣康酸酐、順丁烯二酸 酐、檸康酸酐等之^、/3 -不飽和羧酸之酸酐,丙烯基胺、 甲基丙烯酸胺基醚、甲基丙烯酸胺基丙酯、胺基苯等乙烯 之含胺基不飽和化合物’ 3 -羥基· 1 -丙烯、4 ·羥基-1 -丙烯、 200400227 雙-4-羥基-2-丁烯、三-4-羥基-2-丁烯、3 -羥基-2-甲基-1-丙烯、2 -羥基乙基丙烯酸酯、2,羥基乙基丙烯酸酯等之含 氫氧基不飽和化合物,聚乙二醇等之聚伸烷二醇,甲醛、 四氫咲喃、1,4 -二噚烷等之環狀醚,丙烯醯胺、乙烯基噚 _啉 '乙酸乙酯等;可以單獨使用此等中之1種,或使用2 種以上也可以。 做爲(c )樹脂系相溶化劑使用的極性聚合物,可以視情 況需要而予以皂化,也可以使形成鹼金屬或鹼土金屬之鹽。 更且’做爲(c )樹脂系相溶化劑使用的極性聚合物也可以具 有利用多價的金屬而交聯的離子型聚合物之構造。 做爲(c )樹脂系相溶化劑使用的極性聚合物之數平均分 子量通常是在5 00至500,000之範圍內,較宜是在1,〇〇〇 至300,000之範圍內。 以下所示爲上述極性聚合物之具體例子。 ίΙΙΆΜΜ.基或箕_的極件聚合物_ 乙烯/丙烯酸共聚物、丙烯/丙烯酸共聚物、乙烯/丙烯 /丙烯酸共聚物、乙烯/甲基丙烯酸共聚物、丙烯/甲基丙嫌 酸共聚物、乙烯/丙烯/甲基丙烯酸共聚物、乙烯/ 丁烯/丙 烯酸共聚物、乙烯/ 丁烯/甲基丙烯酸共聚物、乙烯/己烯/ 丙烯酸共聚物、乙烯/己烯/甲基丙烯酸共聚物、乙烯/辛烯 /丙烯酸共聚物、乙烯/辛烯/甲基丙烯酸共聚物、或其金屬 〇 umu;氧某的極件聚合1 乙烯/烯丙基醇共聚物、丙丨希/輝丙基醇共聚物、乙矯/ -27 - 200400227 丙烯/烯丙基醇共聚物、乙烯/甲基烯丙基醇共聚物、丙烯/ 甲基烯丙基醇共聚物、乙烯/丙烯/甲基烯丙基醇共聚物、 乙烯/ 丁烯/烯丙基醇共聚物、乙烯/ 丁烯/甲基烯丙基醇共 聚物、乙烯/己烯/烯丙基醇共聚物、乙烯/己烯/甲基烯丙 基醇共聚物、乙烯/辛烯/烯丙基醇共聚物、乙烯/辛烯/甲 基烯丙基醇共聚物。 乙烯/ 2-羥基乙基丙烯酸酯共聚物、丙烯/ 2-羥基乙基 丙烯酸酯共聚物、乙烯/丙烯/ 2 -羥基乙基丙烯酸酯共聚物、 乙烯/ 2 -羥基乙基甲基丙烯酸酯共聚物、丙烯/ 2 -羥基乙基 甲基丙烯酸酯共聚物、乙烯/丙烯/ 2 -羥基乙基甲基丙烯酸 酯共聚物、乙烯/ 丁烯/ 2 -羥基乙基丙烯酸酯共聚物、乙烯/ 丁烯/ 2-羥基乙基甲基丙烯酸酯共聚物、乙烯/己烯/ 2-羥基 乙基丙烯酸酯共聚物、乙烯/己烯/ 2 -羥基乙基甲基丙烯酸 酯共聚物、乙烯/辛烯/ 2 -羥基乙基丙烯酸酯共聚物、乙烯/ 辛烯/ 2 -羥基乙基甲基丙烯酸酯共聚物。 單末端或兩末端羥基聚乙烯、單末端或兩末端羥基聚 丙烯、單末端或兩末端羥基聚乙烯/丙烯共聚物、單末端或 兩末纟而經基聚乙烯/丙烯/ 丁二烯共聚物、單末端或兩末端 羥基聚苯乙烯。 單末端或雨末端羥基聚丁二烯、單末端或兩末端羥基 聚異戊二烯、單末端或兩末端羥基聚(異戊二烯/ 丁二烯)或 其加氫物。 單末端或兩末端羥基(聚苯乙烯-聚丁二烯-聚苯乙烯三 嵌段共聚物)、單末端或兩末端羥基(聚苯乙烯-聚異戊二烯 - 28 - 200400227 -聚苯乙烯三嵌段共聚物)、單末+ 早禾_或兩末端羥基〔聚苯乙 儀-聚(丁二烯/異戊二烯卜聚苯7慌〜a ;水本乙細二嵌段共聚物〕〕或質 加氫物。單末端或兩末端羥基(聚茏7 ^ _ 、 前少工土 (水本乙烯-聚異丁烯-聚苯 乙烯三嵌段共聚物)。 ϋ)具有酸旺基的極丨φ y(In the formula, M represents a nitrogen atom or a phosphorus atom 'R1,! ^ 2, R3, and R4 each represent a hydrogen atom, a benzyl group which may have a polar functional group on the benzene ring, or a polar functional group may be substituted. An alkyl group having a carbon number of from 1 to 30. However, R1 to R4 do not represent a hydrogen atom at the same time. In ri to R4, the number of benzyl groups having a polar functional group is preferably 2 or less.) Among the above, an alkyl group having a carbon number of 1 to 30, for example, it may be methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl Base, decyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl, pentadecyl, octadecyl, etc. Also, the above-mentioned benzyl and alkane having a carbon number of 1 to 30 The radical may also be a polar functional group. For example, it may be a hydroxyl group, an alkoxy group, an aryloxy group, a silyloxy group, a hydrogenthio group, an alkylthio group, an arylthio group, a fluorenyl group, a carboxyl group, a fluorene group, etc. An oxy group, an alkoxycarbonyl group, an acid anhydride group, a nitro group, a halogen atom, an epoxy group, etc. Among these, a hydroxyl group, an alkoxy group, an aryloxy group, and a carboxyl group are more preferable. For example, it may be Cl ·, Br ·, Γ, no. 3, OH ·, for example, with respect to the anions of ammonium ions or squamous ions. , CH3COO ·, HS04 ·, HC03 ·, etc. Among them, Cl ', Br ·, 1_, No3-, or OH- are preferred. Examples of ammonium ions, for example, they may be hexylammonium ions , -19- 200400227 rodyl ions, 2-ethylhexyl ions, dodecyl ammonium ions, octadecyl ions, lauryl mirror ions, stearic acid ions, mono-octyl dimethyl ammonium ions , Trioctyl ammonium ion, distearate ammonium ion, distearate methyl ammonium ion, butyl ammonium ion, dimethylbutyl ammonium ion, 1,2-dimethylpropyl ammonium ion, Methylhexyl ions, 3-pentyl ions, dimethyl ethyl ammonium ions, dimethyl bis octadecyl ammonium ions, 2-octyl ammonium ions, diethyl ammonium ions, tetramethyl ethyl ammonium ions , Dimethyl propyl ammonium ion, diethyl propyl ammonium ion, monobutyl propyl ammonium ion, tetramethyl propyl ammonium ion, isoamyl ammonium ion, ethyl isoamyl Ammonium ion, 2-hexylammonium ion, diisopropylethyl mirror ion, ethyl monomethylpropyl ion, diisobutyl mirror ion, mono-C6_ alkyltrimethylammonium ion, dicoconut Alkyl dimethyl ammonium ion, coconut alkyl dimethyl ammonium ion, trioctyl methyl ammonium ion, trilauryl methyl ammonium ion, di-hardened trialkyl dimethyl ammonium ion, benzamidine Trimethylammonium ion, benzyltributylammonium ion, etc. Specific examples of the rust ion, for example, it may be trimethyldodecyl ion, trimethylhexadecyl iron ion, trimethyl Octadecyl iron ion, tributyldodecyl ion, tributyl hexadecyl iron ion, etc. In addition, specific examples of the sulfonium ion may include, for example, trimethyl ether, dimethyl Dodecyl ions, dimethyl hexadecyl ions, monomethyl octadecyl ions, diethyl M ions, diethyl dodecyl ions, diethyl hexadecyl ions, Ethyl octadecyl ion, tributyl decyl ion, dibutyl dodecyl ion, dibutyl hexadecyl ion, triphenyl Μ ions. Ammonium ions, squamous ions, or ions are more suitable for polar-20-200400227 functional groups. For example, a specific example of a ionic ion having a hydroxyl group, an iron ion having a hydroxyl group, or a ionic group having a hydroxyl group. For example, for example, it may be a ionic ion, a scale ion, etc. as exemplified above. 1 or 4 of the quaternary or ionic groups are based on methyl, hydroxyethyl (for example, 2-Lauryl), or propyl (for example, 3- 3-Transpropyl) Substituted ions. Specific examples of ammonium ions having an alkoxy group or an aryloxy group, iron ions having an alkoxy group or an aryloxy group, or chain ions having a hydroxy group or an aryloxy group, for example, they may be 1 to 4 alkyl or benzyl groups among the ammonium ions, ions, or cations exemplified above are (CH2CH2〇) pR groups, (CH2CH (CH3) 0) PR groups, or ( A polyoxyalkenyl-substituted ion represented by a CH2CH2CH2) pR group (where p is an integer of 1 to 5). Further, specific examples of ammonium ions having a methoxy group, squamous ions having a methoxy group, or ammonium ions having a methoxy group are exemplified by ammonium having a hydroxyl group as exemplified above. Among ions, scaly ions having a hydroxyl group, or ions having a hydroxyl group, the hydroxyl group is a substance protected by a fluorenyl group such as an ethyl fluorenyl group, a benzyl fluorenyl group, or the like. 1 Also, specific examples of ammonium ions having a carboxyl group, an acid anhydride, or an alkoxycarbon group may be, for example, cations derived from amino acids. The so-called amino acids are preferably those having a carbon number of 4 to 30. Specifically, for example, they may be lysine, arginine, r-aminocyclohexylcarboxylic acid, p -Aminohydroxycinnamic acid, leucine, phenylalanine, histamine, tryptophan, and the like. In addition, the amino acids described above may have a form protected by a carboxyl group, a methyl -21-200400227 ester, an ethyl ester, a benzyl ester, and the like. By adding the organic cation to the layered inorganic compound, an organicized layered inorganic compound can be obtained. Prior to the addition of organic cations, it is preferred to swell the layered inorganic compound. The swelling treatment, specifically, can be carried out by immersing a layered inorganic compound in (i) water, (ii) water and a polar organic solvent mixed at any ratio, or (iii) water and the polar organic solvent. Carry out in the vehicle. In this case, it is desirable to sufficiently stir. For example, the polar or organic solvent may be, for example, alcohols such as methanol, ethanol, 2-propanol, glycols such as ethylene glycol, propylene glycol, 1,4-butanediol, and ketones such as acetone. Ethers such as tetrahydrofuran and 1,4-dioxane; non-aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethylthioamide, and dimethylacetone. The organic layered inorganic compound can be obtained by a general method such as a filter or a centrifugal separator. The obtained layered inorganic compound is ideally obtained after sufficient washing and removal of excess cations, followed by drying. The amount of organic cations added, for example, can be determined by the column penetration method (refer to “Clay Manual” pages 5 76 to 5 7 7 published by Jifatang), and the methylene blue adsorption amount measurement method (refer to the Japan Bentonite Industry Association Standard Test Method). , J BAS-107-9 1) and other methods to determine the cation exchange capacity (CEC) of the layered inorganic compound, and determine it based on the measurement. The amount of organic cations added is preferably 1 equivalent or more relative to the CEC, and more preferably within the range of 1 to 10 equivalents. (c) Resin-based compatibilizer "Component (c) i -22-200400227" Next, (C) the resin-based compatibilizer among the constituents of the styrene-based elastomer composition of the present invention will be described. The (C) resin-based compatibilizer used is a polar polymer that is compatible with the above-mentioned component (a) styrene-based elastomer, and has a polar functional group in the molecule. When the component (a) is compatible with the styrene-based elastomer as a component (c), the above-mentioned (b) layered inorganic compound cannot be sufficiently dispersed in the styrene-based elastomer composition. Therefore, it is not suitable to obtain an improved gas barrier styrene-based elastomer composition, so it is not suitable. A polymer having a compatibility with a styrene-based elastomer, for example, polystyrene can be used, for example. Styrene-based polymers, styrene-conjugated diene block copolymers or hydrogenated products thereof, polyester-based polymers, polyolefin-based polymers such as polyethylene, polypropylene, polybutadiene, and ethylene -Propylene block copolymer Etc. (c) As the resin-based compatibilizer, a polar polymer having such a polymer as a basic structure and having a polar functional group in the molecule may be used. The above-mentioned polyolefin-based polymer may be, for example, Ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, cyclopentafluorobutane, 1-hexane fine, 2-hexane fine, 1-hexane, 1-heptane , 2-heptane, cycloheptan, 1-octene, 2-octene, cyclooctene, vinylcyclopentene, vinylcyclohexene, vinylcycloheptene, vinylcyclooctene, etc. Compounds; 丨, 3-butadiene, isoprene, 2,3-dimethyl-i, 3-butadiene, 1,3-pentadiene, 1,3-hexadiene, etc. Individual polymers or copolymers of diene-based compounds, etc. In addition, it is also possible to use a product obtained by hydrogenating an aliphatic-23- 200400227 group carbon-carbon double bond contained in a polyolefin-based polymer. A styrenic polymer, for example, which may be, for example, styrene, α-methylstyrene, o-, m-, or p-methylstyrene, 2, 3-dimethylstyrene, 2, 3-dimethylstyrene , Monochlorinated styrene, dichlorinated styrene, P-brominated styrene, 2,4,5-tribromostyrene, 2,4,6-tribromostyrene, 〇-, m-, Or p-tertiary-butylstyrene, ethylstyrene, vinylnaphthalene, vinylanthracene, etc., an individual polymer or copolymer of an aromatic vinyl compound, etc. Also, a styrene-conjugated diene block The copolymer or a hydrogenated product thereof, for example, may be, for example, a polystyrene-polybutadiene-polystyrene triblock copolymer or a hydrogenated product thereof, polystyrene-polybutadiene-polybenzene Ethylene triblock copolymer or hydrogenated product thereof, polystyrene-poly (isoprene / butadiene) -polystyrene triblock copolymer or hydrogenated product thereof, poly (α-methylstyrene) ) -Polybutadiene-poly (α-methylstyrene) triblock copolymer or hydrogenated product thereof, poly (α-methylstyrene) -polyisoprene-poly (α-methylbenzene) Ethylene) triblock copolymer or hydrogenated product thereof, poly (α-methylstyrene) -poly (isoprene / butadiene) -poly (α-methylstyrene) triblock copolymer or Its hydrogenation. The polyester polymer may be, for example, a glycol alcohol component such as ethylene glycol, propylene glycol, butylene glycol, bis (hydroxymethyl) benzene, and phthalic acid, isophthalic acid, A polymer obtained by condensation polymerization between dicarboxylic acid components such as phthalic acid. Furthermore, ring-opening polymers using cyclic compounds such as lactones are also very suitable. (c) The polar functional group in the resin-based compatibilizer, in order to suppress the agglomeration of the layered inorganic compound in the obtained styrene-based elastomer composition. If it is sufficiently finely dispersed, it is preferred to have affinity or reactivity with the layered inorganic compound. The polar functional group in the (c) resin-based compatibilizer, for example, it may be a hydroxyl group, a hydroxyl group, an aryloxy group, a silyloxy group, a hydrogenthio group, an alkylthio group, an arylthio group. , Fluorenyl, residue or a salt thereof, fluorenyloxy, alkoxycarbonyl, aryloxycarbonyl, acid anhydride, alkyl, acetal, fluorenyl, fluorenimine, nitro, halogen atom, sulfonate Or a derivative thereof, an epoxy group, or the like; among these, a hydroxyl group, a carboxyl group or a salt thereof, an alkoxycarbonyl group, a fluorenyl group, an acid anhydride group, and an epoxy group are preferred. (c) The resin-based compatibilizing agent may have only one polar functional group, and may have two or more polar functional groups. (c) The content of the polar functional group in the resin-based compatibilizing agent is preferably in a range of 0.05 to the total mole number of the repeating unit constituting the polar polymer used as the resin-based phase solvent. More than mol%, more preferably more than 0.05 mol% and less than 50 mol%. When using (a) styrenic elastomer, (b) the type and amount of layered inorganic compounds, and (c) the content of polar functional groups in the resin-based compatibilizer, relative to the composition When the total molar number of the repeating units of the polar polymer used in the resin-based phase solvent is less than 0.05 mol%, it becomes impossible to obtain (b) a layered inorganic compound uniformly dispersed in (a) The effect of styrenic elastomers. In addition, on the contrary, the content of the polar functional group in the (c) resin-based compatibilizer exceeds 50 moles relative to the total mole number of the repeating units constituting the polar polymer used as the resin-based solvent. In the case of ear%, gelatin may be produced during the production of styrenic elastomer or processing. A polar functional group may be included as one of (c) a resin-based compatibilizing agent, a single-end or two-end, a middle or a side chain of a molecular chain of a polar polymer for use in 25-200400227. . The distribution of the polar functional group in the polar polymer is not particularly limited. For example, it may be a regular distribution, a block (block) distribution, a random distribution, a cone distribution, and a distribution in which all or a part of them are mixed. can. The polar polymer used as the (C) resin-based compatibilizer can be used in a manufacturing process by (i) a method in which a polar functional group-containing compound is used as a polymerization terminator and reacted, (ii) the A compound containing a polar functional group is produced by a method such as copolymerization or addition. A compound containing a polar functional group, for example, it may be an α, / 3-unsaturated carboxylic acid such as acrylic acid, methacrylic acid, etc., methacrylate, ethacrylate, propylacrylate, butylacrylic acid, etc. Ester, pentyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexyl methyl Alkyl esters of α, / 3-unsaturated carboxylic acid such as acrylate, cyclohexyl methacrylate, cis-butene diimide, N-methyl cis butylene diimide, N-ethyl cis Α, / 3-unsaturated carboxylic acid imine compounds such as butene difluorene imide, v-phenylcis butylene diimide, N-cyclohexyl cis butene diimine, glycidol Methacrylic acid esters, allyl glycidyl ethers and other unsaturated compounds containing epoxy groups, itaconic acid, maleic acid and other α, / 3-unsaturated carboxylic acids, itaconic anhydride, maleic acid ^, / 3 -unsaturated carboxylic acid anhydrides of dianhydride, citraconic anhydride, allylamine, methacrylic acid Amino ether-containing unsaturated compounds of ethylene such as amino ethers, aminopropyl methacrylate, aminobenzene, etc. '3-hydroxy · 1-propene, 4-hydroxy-1-propene, 200400227 bis-4-hydroxy-2-butane Hydroxyl unsaturated compounds such as alkene, tri-4-hydroxy-2-butene, 3-hydroxy-2-methyl-1-propene, 2-hydroxyethyl acrylate, 2, hydroxyethyl acrylate, etc. , Polyalkylene glycols such as polyethylene glycol, cyclic ethers of formaldehyde, tetrahydropyran, 1,4-dioxane, etc., acrylamide, vinylacetin 'ethyl acetate, etc .; can be alone One of these may be used, or two or more may be used. The polar polymer used as the (c) resin-based compatibilizing agent may be saponified as necessary, or may be formed into a salt of an alkali metal or an alkaline earth metal. Furthermore, the polar polymer used as (c) the resin-based compatibilizing agent may have a structure of an ionic polymer crosslinked by a polyvalent metal. The number average molecular weight of the polar polymer used as the (c) resin-based compatibilizing agent is usually in the range of 500,000 to 500,000, and more preferably in the range of 1,000 to 300,000. Specific examples of the above-mentioned polar polymers are shown below. ίΙΙΆΜΜ. based or 箕 _ extreme polymer_ ethylene / acrylic acid copolymer, propylene / acrylic acid copolymer, ethylene / propylene / acrylic acid copolymer, ethylene / methacrylic acid copolymer, propylene / methacrylic acid copolymer, Ethylene / propylene / methacrylic acid copolymer, ethylene / butene / acrylic acid copolymer, ethylene / butene / methacrylic acid copolymer, ethylene / hexene / acrylic acid copolymer, ethylene / hexene / methacrylic acid copolymer, Ethylene / octene / acrylic acid copolymer, ethylene / octene / methacrylic acid copolymer, or its metal 〇umu; oxygen extreme polymer polymerization 1 ethylene / allyl alcohol copolymer, propylene Greek / pivalyl alcohol Copolymer, Ethylene / -27-200400227 propylene / allyl alcohol copolymer, ethylene / methallyl alcohol copolymer, propylene / methallyl alcohol copolymer, ethylene / propylene / methallyl alcohol Alcohol copolymers, ethylene / butene / allyl alcohol copolymers, ethylene / butene / methallyl alcohol copolymers, ethylene / hexene / allyl alcohol copolymers, ethylene / hexene / methylene copolymers Propyl alcohol copolymer, ethylene / octene / allyl alcohol copolymer, ethylene / octene / methallyl Alcohol copolymer. Ethylene / 2-hydroxyethyl acrylate copolymer, propylene / 2-hydroxyethyl acrylate copolymer, ethylene / propylene / 2-hydroxyethyl acrylate copolymer, ethylene / 2-hydroxyethyl methacrylate copolymer Polymer, propylene / 2-hydroxyethyl methacrylate copolymer, ethylene / propylene / 2-hydroxyethyl methacrylate copolymer, ethylene / butene / 2-hydroxyethyl acrylate copolymer, ethylene / butyl Ene / 2-hydroxyethyl methacrylate copolymer, ethylene / hexene / 2-hydroxyethyl acrylate copolymer, ethylene / hexene / 2-hydroxyethyl methacrylate copolymer, ethylene / octene / 2-hydroxyethyl acrylate copolymer, ethylene / octene / 2-hydroxyethyl methacrylate copolymer. Single- or two-terminal hydroxypolyethylene, single- or two-terminal hydroxypolypropylene, single- or two-terminal hydroxypolyethylene / propylene copolymer, single- or two-terminal hydroxypolyethylene / propylene / butadiene copolymer , Single- or two-terminal hydroxy polystyrene. Mono- or rain-terminated hydroxy polybutadiene, single- or both-end hydroxy polyisoprene, single- or both-end hydroxy poly (isoprene / butadiene), or a hydrogenated product thereof. Single- or two-terminal hydroxyl (polystyrene-polybutadiene-polystyrene triblock copolymer), single- or two-terminal hydroxyl (polystyrene-polyisoprene-28-200400227-polystyrene Triblock copolymer), single-terminal + Zaohe _ or both terminal hydroxyl groups [polystyrene-poly (butadiene / isoprene polyphenylene 7 benzene ~ a; water-based ethylene diblock copolymer 〕] Or qualitative hydrogenates. Single- or two-terminal hydroxyl groups (polyfluorene 7 ^ _, former minor earth (water-based ethylene-polyisobutylene-polystyrene triblock copolymer).)) Pole 丨 φ y

乙烯/順丁細一酸酐共聚物、丙烯/順丁烯二酸酐共聚 異丁烯/順丁烯—酸酐共聚物、乙烯/順丁烯二酸酐共Ethylene / maleic anhydride copolymer, propylene / maleic anhydride copolymer, isobutylene / maleic anhydride copolymer, ethylene / maleic anhydride copolymer

聚物、乙關ϋ 丁嫌二酸酐共聚物、甲基乙烧基酸/順丁燦 一酸酐共聚物、乙基乙烯基醚/順丁烯二酸酐共聚物、乙烯 /丙烯/順丁烯二酸酐共聚物、乙烯/丁烯/順丁烯二酸酐共 聚物、乙烯/己烯/順丁烯二酸酐共聚物、乙烯/辛烯/順丁 烯二酸酐共聚物、苯乙烯/順丁烯二酸酐共聚物 順丁烯二酸酐改性聚乙烯、順丁烯二酸酐改性聚丙嫌、 順丁;—酸酐改性聚乙細/丙;(:希共聚物、順丁烧二酸酐改性 聚乙烯/丙烯/ 丁二烯共聚物、順丁烯二酸酐改性聚苯乙燒。Polymer, Ethylene Glycol, Butanedioic Anhydride Copolymer, Methyl Ethylene / Methyl Butanic Anhydride Copolymer, Ethyl Vinyl Ether / Menedicarboxylic Anhydride Copolymer, Ethylene / Propylene / Methylene Butadiene Anhydride copolymer, ethylene / butene / maleic anhydride copolymer, ethylene / hexene / maleic anhydride copolymer, ethylene / octene / maleic anhydride copolymer, styrene / maleic anhydride Acid anhydride copolymer maleic anhydride modified polyethylene, maleic anhydride modified polypropylene, maleic acid; -anhydride modified polyethylene / propylene; (: Greek copolymer, maleic anhydride modified polymer Ethylene / propylene / butadiene copolymer, maleic anhydride modified polystyrene.

順丁烯二酸酐改性(聚苯乙烯-聚丁二烯-聚苯乙烯三嵌 段共聚物)、順丁烯二酸酐改性〔聚苯乙烯-聚(丁二烯/異 戊二烯)-聚苯乙烯三嵌段共聚物〕〕、順丁烯二酸酐改性(聚 苯乙烯-聚異丁烯-聚苯乙烯三嵌段共聚物)。 ί_4 )具有環氯基的極性聚合物 乙烯/縮水甘油基丙烯酸酯共聚物、丙烯/縮水甘油基 丙烯酸酯共聚物、乙烯/丙烯/縮水甘油基丙烯酸酯共聚物、 乙烯/縮水甘油基甲基丙烯酸酯共聚物、丙烯/縮水甘油基 甲基丙烯酸酯共聚物、乙烯/丙烯/縮水甘油基甲基丙烯酸 -29- 200400227 酯共聚物、乙烯/ 丁烯/縮水甘油基丙烯酸酯共聚物、乙烯/ 丁烯/縮水甘油基甲基丙烯酸酯共聚物、乙烯/己烯/縮水甘 油基丙烯酸酯共聚物、乙烯/己烯/縮水甘油基甲基丙烯酸 酯共聚物、乙烯/辛烯/縮水甘油基丙烯酸酯共聚物、乙烯/ 辛烯/縮水甘油基甲基丙烯酸酯共聚物。 (5 )具有烷氣羰基的極忤聚合物 乙烯/乙基丙烯酸酯共聚物、丙烯/乙基丙烯酸酯共聚 物、乙烯/丙烯/乙基丙烯酸酯共聚物、乙烯/乙基甲基丙烯 酸酯共聚物、丙烯/乙基甲基丙烯酸酯共聚物、乙烯/丙烯/ 乙基甲基丙烯酸酯共聚物、乙烯/ 丁烯/乙基丙烯酸酯共聚 物、乙烯/ 丁烯/乙基甲基丙烯酸酯共聚物、乙烯/己烯/乙 基丙烯酸酯共聚物、乙烯/己烯/乙基甲基丙烯酸酯共聚物、 乙烯/辛烯/乙基丙烯酸酯共聚物、乙烯/辛烯/乙基甲基丙 烯酸酯共聚物。 另外,藉由利用鹼等將上述(3 )具有酸酐基的極性聚合 物予以中和,可以得到具有羧基或其鹽的聚合物。又且, 藉由利用氨或胺類等將上述(3 )具有酸酐基的極性聚合物予 以中和,並視情況需要地予以脫水,凸以得到具有醯胺基 之聚合物、或具有醯亞胺基的聚合物。 可以使用上述之極性化合物中之1種、或2種以上的 混合物來做爲(c )樹脂系相溶化劑。 構成本發明之苯乙烯系彈性體組成物的(a )苯乙烯系彈 性體(以下’稱爲成分(a ) )、( b )層狀無機化合物(以下,稱 爲成分(b ))、及(c )樹脂系相溶化劑(以下,稱爲成分(c )) -30- 200400227 之重量比,雖然是依照所使用的各種成分之種類、所得到 的苯乙烯系彈性體組成物所要求的物性而適當地決定,然 而,通常是在以下之範圍。 成分(b)/成分(a)=0.01/l〇〇 〜200 / 1 00;而且 成分(〇/成分(a) = 0.01/100 〜5000/100 當(b )層狀無機化合物之使用量超出上述之範圍的時 候,所得到的苯乙烯系彈性體組成物之柔軟性、橡膠彈性、 成形性等之物性就有降低的情況。相反地,在(b )層狀無機 化合物之使用量比上述之範圍少的時候,就有不能發揮由 於添加層狀無機化合物而改良機械特性及氣體阻障性之效 果的情形。 又且,當(c )樹脂系相溶化劑之使用量超出上述之範圍 的時候,所得到的苯乙烯系彈性體組成物之柔軟性、橡膠 彈性、成形性等之物性就有降低的情況。相反地,在(c )樹 脂系相溶化劑之使用量比上述之範圍少的時候,因爲難以 將層狀無機化合物充分微分散在苯乙烯系彈性體組成物 中’因而就會有不能發揮由於添加層狀無機化合物而改良 機械特性及氣體阻障性之效果的情形。(c )樹脂系相溶化劑 之使用量較宜是在以下之範圍。 成分(c) /成分(a)二 0.03/100 〜3000/100 (重量比) 在本發明之苯乙烯系彈性體組成物中,於不損及本發 明之旨趣的限度內,即使添加通常在之苯乙烯系彈性體組 成物中所摻混的各種加物也沒有問題。此處所說的各種添 加物,舉例來說’例如其可以是紫外線吸收劑、耐光安定 -31- 200400227 劑、耐熱安定劑、可塑劑、各種油、各種礦物油、發泡劑、 結晶核劑、滑劑、帶電防止劑、著色劑、交聯劑、防燃劑、 房銹劑、低收縮劑、增黏劑、剝離劑、防霧劑、提監劑、 砂院親合劑、補強材料(例如,碳黑、碳纖維、玻璃纖維、 · 硼纖維、醯胺纖維、液晶聚酯纖維等)、塡料、氧化防止劑、 抗菌劑等。 又且’在本發明之苯乙烯系彈性體組成物中,於不損 及本發明之旨趣的限度內,即使添加在通常之苯乙烯系彈 性體組成物中所摻混的以外之聚合物也沒有問題。此處所 鲁 說的聚合物,舉例來說,例如其可以是乙烯-丙烯共聚物橡 膠、聚苯乙烯、苯乙烯-丙烯膪聚合物、ABS等之苯乙烯系 樹脂、聚伸苯基醚系樹脂、聚酯系樹脂、聚胺基甲酸酯系 樹脂、聚醯胺系樹脂、聚縮醛樹脂、丙烯酸系樹脂等。 本發明之苯乙烯系彈性體組成物係能夠藉由依照一般 方法而將成分(a )苯乙烯系彈性體、成分(b )層狀無機化合 物、及成分(c )樹脂系相溶化劑、以及視情況需要的各種添 加物及其他的聚合物予以熔融混練調製而得。熔融混練, ® 例如’係可以使用班柏里混合機、嗔砂硏磨機、單軸擠壓 機、雙軸擠壓機等來實施。 混練時,各種成分之添加順序並沒有特別地限定,然 而可以使用如下之方法來調製本發明之苯乙烯系彈性體組 成物。 ①將(a )苯乙烯系彈性體、(b )層狀無機化合物、及(c )樹脂 系相溶化劑全部一起混合之熔融混練的方法;或 -32 - 200400227 ② 將(a )苯乙烯系彈性體、及(c )樹脂系相溶化劑熔融混練 使形成組成物之後,再添加(b )層狀無機化合物之熔融混 練的方法; ③ 將(b )層狀無機化合物、及(c )樹脂系相溶化劑予以熔融 混練使形成組成物之後,再添加(a )苯乙烯系彈性體之熔 融混練的方法等; 以③所示之方法較爲理想。 另外,在③之方法中,即使是在由(b )層狀無機化合物、 及(c )樹脂系相溶化劑所形成的組成物一旦成爲糊狀之後, 再添加(a )苯乙烯系彈性體,也可以良好地熔融混練;也可 以在熔融混練所調制的(b )層狀無機化合物、及(c )樹脂系 相溶化劑所形成之熔融狀態的組成物中,利用側邊進料機 添加(a )苯乙烯系彈性體再予以混練。 又且,也可以使用熔融混練以外的方法來調製本發明 之苯乙烯系彈性體組成物,例如, ④ 將(a )苯乙烯系彈性體、(b )層狀無機化合物、及(c )樹脂 系相溶化劑在有機溶媒中予以混合之方法; ⑤ 將分散在有機溶媒狀態下之(b )層狀無機化合物,添加在 (a )苯乙烯系彈性體、及(c )樹脂系相溶化劑中之方法。 如以上所述,視情況需要所使用的各種添加及其他的 聚合物,可以預先地摻混在(a )苯乙烯系彈性體、(b )層狀 無機化合物、及(c )樹脂系相溶化劑中,也可以將個別成分 與(a )苯乙烯系彈性體、及(c )樹脂系相溶化劑一起摻混。 以如以上所述調制的本發明之苯乙烯系彈性體組成物 -33- 200400227 中,有機化之層狀無機化合物的層間距離有必要是在1 5埃 以上。 在本發明中,使用藉有機陽離子而有機化的物質做爲 前述(b )層狀無機化合物,並使用前述(c )樹脂系相溶化劑, 除此之外,開始時在苯乙烯系彈性體組成物中之該(b )層狀 無機化合物具有如以上所述的層間距離時,就可能得到具 有經改良的氣體阻障性之苯乙烯系彈性體組成物。 又且,隨著(b )層狀無機化合物的層間距離變大時,可 發現本發明之苯乙烯系彈性體組成物的氣體阻障性具有向 上增加的傾向。 在本發明之苯乙烯系彈性體組成物中,層狀無機化合 物的層間距離較宜是在20埃以上,更宜是在25埃以上, 又更宜是在3 0埃以上,而非常理想的是在44埃以上。 此處,(b )層狀無機化合物的層間距離係利用廣角X射 線繞射檢測,以相對應於在層狀無機化合物之(〇〇 1 )面的波 峰爲基準而求得。 在本發明中,層狀無機化合物中的層間距離,具體而 言,係可以利用以下之方法而求得。 層狀無機化合物的層間距離之測定: 使用由苯乙烯系彈性體組成物所製做而成的薄膜(直 徑:4 · 5毫米、厚度:〇 · 1毫米),利用廣角X射線繞射(xRD ) 測定裝置「RINT 2400 X射線差分儀(日本理學製)」,於測 定角度(20):2至12度,掃描速度:〇.2度/分鐘之條件 下測定X射線繞射圖案。 - 3 4 - 200400227 以相對應於在層狀無機化合物之(0 0 1 )面的波峰爲基 準,利用下述之式子,而算出從層狀無機化合物具而來的 層間距離d (埃)。 D = λ / 2 s i η 0 λ = 1 . 5 4 (埃) 在本發明之苯乙烯系彈性體組成物中,有機化的(b )層 狀無機化合物之各層,較宜是在完全地剝離之狀態。從而, 在本發明中,(b )層狀無機化合物的層間距離並無上限。 在本發明中,以廣角X射線繞射測定苯乙烯系彈性體 組成物時,當從(b )層狀無機化合物而來的波峰完全地消 時,即可判斷(b )層狀無機化合物之各層係爲完全地剝離的 狀態。在此種狀態下的本發明之苯乙烯系彈性體組成物, 由於苯系彈性體之氣體阻障性非常地良好,因而示常的理 想。又且,在此種狀態的本發明之苯乙烯系彈性體組成物, 因爲所含有的(b )層狀無機化合物之含量少、且良好地分散 在該組成物中的原故,因而將多量的層狀無機化合物添加 在組成物中的情況下,不會有損害所生成苯乙烯系彈性體 組成物之柔軟性、成形等之各種特性的問題,而且成本也 低,並可以改良氣體阻障性。 本發明之苯乙烯系彈性體組成物係可利用射出成形、 擠壓成形、壓縮成形、膨脹成形、熔吹成形、軋出成形、 旋轉成形等之成形法’以及熱可塑性彈性體之成形中一般 所用的成形法,予以加工形成薄膜、薄片 '成形容器、吹 塑容器等之成形品。 -35- 200400227 在此種情況下,藉由熔融混練所調製的苯乙烯系彈性 體組成物也可以利用其照原樣成形,也可以在某日使九粒 化之後再予以成形。 又且’本發明之苯乙烯系彈性體組成物,也可以與的 材料複合加工製成各種積層構造物。其他的材料,舉例來 說’例如其可以是熱硬化性樹脂、紙、布帛、金屬、木材、 陶瓷等。 從本發明之苯乙嫌系彈性體組成物所得到的積層構造 物,並沒有特別地限定爲何種物體,舉例來說,例如其可 以是將1層的從本發明之苯乙烯系彈性體組成物所形成的 層、和1層之從其他的材料所形成的層予以積層之2層構 造物;在從其他的材料所形成的2枚表面層(內表面層)之 間’存在有從本發明之苯乙烯系彈性體組成物所形成的層 做爲中間層之3層構造物,以及在從其他的材料所形成的1 層之內表面上積層由本發明之苯乙烯系彈性體組成物所形 成的層之3層構造物。 積層構造物係可以藉由利用公知的方法製造而得,例 如,(i )以本發明之苯乙烯系彈性體組成物熔融被覆前述其 他的材料而製造積層構造物之方法,(i i )將本發明之苯乙 烯系彈性體組成物熔融導入2種以上之其他材料之間,並 使之黏著而一體化之方法,(1 i i )在將其他材料配置在模具 內的狀態下,將熔融的本發明之苯乙烯系彈性體組成物充 塡於模具內,並使之黏著而一體化之方法,(i v )於其他材 料具有熱可塑性的情況下,將本發明之苯乙烯系彈性體組 - 3 6 - 200400227 成物與其他材料一同擠壓成形,並使之黏著而一體化之方 法等。 此外,本發明之苯乙烯系彈性體組成物,於製造各種 製品及上述之積層構造物中,也可以視情況需要地當做熱 溶融型黏著劑來使用。 在使用由本發明之苯乙烯系彈性體組成物所形成的熱 熔融型黏著劑時,其形態並沒有特別地限定,例如,可以 是如九粒等之粒狀物、棒狀物、薄膜、薄片、板狀物等之 任意形狀。 在本發明之苯乙烯系彈性體組成物之中,因爲(b)層狀 無機化合物係充分地微分散的原故,所以氣體阻障性乃顯 著地向上增加。又且,機械特性也良好。 氣體阻障性,例如,係可以氧穿透係數來表現。一方 面,本發明之苯乙烯系彈性體組成物的氧穿透係數p,已知 與(b)層狀無機化合物的分散狀態具有相關性,並可以顯示 分散狀態之指標而推知。從而,如果所使用的各種成分種 類、物性及使用量均相同的話,則當在苯乙烯系彈性體組 成物中之(b )層狀無機化合物的分散狀態愈良好時,意即(b ) 層狀無機化合物之層間距離愈大(較佳爲(b )層狀無機化合 物之各層是完全剝離的,而且(b )層狀無機化合物在組成物 中微分散)時,P値就變得愈小,則可想而知氣體阻障性就 會愈良好。 其中,理想的態樣爲本發明之苯乙烯系彈性體組成物 的氧穿透係數P、與(a )苯乙烯系彈性體之氧穿透係數Ρ τ P E、 -37- 200400227 以及在苯乙烯系彈性體組成物中的層狀無機化合物之重量 分率Φ F之間,係成立下述之關係式。此處所稱的「苯乙烯 系彈性體組成物的氧穿透係數P」、及「 ( a )苯乙烯系彈 性體之氧穿透係數PTPE」係如下述的「氧穿透係數P和PTPE 之測定方法」中所說明的那樣,其意義係指於苯乙烯系彈 性體組成物、與(a )苯乙烯系彈性體分別成形爲薄膜狀時所 測定之氧穿透係數。 P< 0.5x Ρτρεχ (1-ΦΡ)/(1 + φρ/2) (1) (式中’ Φ F係僅爲層狀無機化合物之無機成分的重量 分率)。 在此種關係式(1 )成立的情況下,本發明之苯乙烯系彈 性體組成物的氣體阻障性增加並達到充分的程度。尤其, 像本發明這樣的苯乙烯系彈性體組成物,已可實用地提供 要求氣體阻障性之物品,意即在實用上可以提供做爲氣體 P且障性物品用之材料。 氧穿透係數P和PTPE之測定方法 使用由本發明之苯乙烯系彈性體組成物製做而成之厚 度爲0 . 1毫米的薄膜,利用氣體穿透性試驗裝置(柳本氣相 層析儀G2800T(柳本製造廠製)),於35它、50%RH之條件下, 依照J IS K7 126(等壓法)所記載的方法爲基準而測定氧穿透 量’並從該値計算出氧穿透係數ρ。另外,使用由(a )苯乙 稀系彈性體所製做的厚度爲〇 ·丨毫米之薄膜,以同樣的方 法計算出氧穿透係數PpE。 苯乙烯系彈性體組成物之氧穿透係數P、及(a )苯乙烯 200400227 系弓早1生之興牙透係Μ ptpe間丨成立上述關係式⑴的組成 物,因爲爲了求得氣體阻障性而發現需要添加多量的(b)層 狀無機化合物,結果造成苯乙_系彈性體組成物之柔軟性 降低、以及產生成形性不良等之問題。 依照本發明所得到的苯乙烯系彈性體組成物,係可以 使用在氣體阻障性物品(例如,各種食品包裝容器、農業用 包裝材料、醫療用包裝材料、柴油儲槽、化粧品容器、藥 劑谷器、醫療品包裝材料、輪胎用內襯管、積層品、各種 谷器之薄膜及薄片、挖力彳材料(例如,〇 _環、墊圈、密合墊、 室材、蓋帽、帽襯等)等)、蛇管、管、汽車零件、鞋用氣 墊等之用途上。 其中’依照本發明所得到的苯乙烯系彈性體組成物係 同時產生氣體阻障性及柔軟性,因而特別地適合適用於做 爲密封材料(例如,0-環、墊圈、密合墊(例如,注射筒用 岔合墊等)、蓋材(例如,藥栓等)、蓋帽(例如,真空採血 管之盡帽等)、帽襯等)用之材料。 【實施方式】 【實施例】 以下’雖然藉由實施例而具體地說明本發明,但本發 明並不因此而僅限定於此等實施例之事物而已。 又,在實施例及比較例中,氧穿透係數之測定、以及 苯乙烯系彈性體組成物中層狀無機化合物之層間距離的測 定係依照上述之方法來進行。 實施例1 使用1 0克之經以二甲基雙十八基銨離子處理的合成雲 200400227 母(層狀無機化合物,生協化學(股)公司製,商品名:MAE, 無機物含量:6 8重量% )、與2 3克之乙烯/丙烯酸共聚合樹 脂(樹脂系相溶化劑,日本聚煙(股)公司製,EAA A2 1 0K ), 使用拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以 熔融混練之後,加入6 7克之聚苯乙烯-聚異戊二烯-聚苯乙 烯三嵌段共聚物之加氫加成物(苯乙烯系彈性體,可樂麗(股) 公司製,商品名:歇普通2 0 0 2 ),更進一步予以熔融混練, 接著冷卻到室溫而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 15,l〇〇cc.20#m/m2*day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 3 . 2埃。 對照例1 使用拉伯普拉斯特混合機(東洋精機製造(股)公司 製),將聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加 氫加成物(苯乙烯系彈性體,可樂麗(股)公司製’商品名: 歇普通2 0 0 2 )予以熔融,冷卻到室溫之後’進行壓縮成形而 製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿透 係數 PTPE,係爲 72,400cc.20/zm/m2.day.atm。 比較例1 ( 1 ) 使用1 0克之未經處理的合成雲母(層狀無機化合物’ 生協化學(股)公司製,商品名·· ME 1 0 〇 )、與6 7克之聚苯乙 烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫加成物(苯乙 -40- 200400227 烯系彈性體’可樂麗(股)公司製,商品名:歇普通2 0 0 2 ), 使用拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以 熔融混練’接著冷卻到室溫而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 55,700cc.20/zm/m2.day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲1 2 . 1埃。 比較例1 ( 2 ) 使用10克之經以二甲基雙十八基銨離子處理的合成雲 母(層狀無機化合物,生協化學(股)公司製,商品名:MAE)、 與67克之聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之 加氫加成物(苯乙烯系彈性體,可樂麗(股)公司製,商品名: 歇普通2002 ),使用拉伯普拉斯特混合機(東洋精機製造(股) 公司製)予以熔融混練,接著冷卻到室溫而得到苯乙烯系彈 性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 31,600cc*20/zm/m2*day*atm。又,藉由 前述之方法測定苯乙燏系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 2 · 4埃。 比較例1 ( 3 ) 除了使用1 0克之未經處理的合成雲母(層狀無機化合 物,生協化學(股)公司製’商品名:ME 100)來代替10克之 200400227 經以二甲基雙十八基銨離子處理的合成雲母(層狀無機化合 物,生協化學(股)公司製,商品名:MAE,無機物含量:6 8 重量% )以外,均以和實施例1同樣的做法而得到苯乙烯系 彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P(cc · 20//m/m2 · day · atm),係爲 41,700 cc · 2 0 // m / m2 · d a y · a t m。又,藉由前述之方法測定苯乙烧系彈 性體組成物中之層狀無機化合物之層間距離,係爲1 2 . 1埃。 實施例2 除了使用23克之乙烯-縮水甘油基甲基丙烯酸酯共聚 物(EGMA)(住友化學工業(股)公司製,商品名:邦朵法斯特 E )做爲樹脂系相溶化劑以外,均以和實施例1同樣的做法 而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 28,400 cc*20/zm/m2*day.atni。又’藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 2 · 5埃。 實施例3 除了使用23克之乙烯/乙基丙烯酸酯共聚物(日臺聯合 (股)公司製,商品名:NUC共聚物NUC- 6 2 2 1 )做爲樹脂系相 溶化劑以外,均以和實施例1同樣的做法而得到苯乙烯系 彈性體組成物。 -42 - 200400227 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P’ 係爲 25,600 cc.20#m/m2.day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲32.6埃。 實施例4 除了使用23克之乙烯/甲基丙烯酸鋅鹽共聚合離子聚 合物(三井•杜邦化學(股)公司製,商品名:高密朗1 70 6Zn) 做爲樹脂系相溶化劑以外,均以和實施例1同樣的做法而 得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 22,200 cc.20//m/m2*day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 2 . 8埃。 實施例5 除了使用2 3克之順丁烯二酸酐改性聚丙烯(三洋化成 工業(股)公司製’商品名:優美克斯1001 )做爲樹脂系相溶 化劑以外,均以和實施例1同樣的做法而得到苯乙烯系彈 性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 19,400 cc’20//m/m2’day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 -43- 200400227 物之層間距離,係爲3 3 . 4埃。 實施例6 除了使用23克之依照特開平1 0 - 3 0 6 1 9 6號公報之參考 例7中所記載的法爲準而合成之聚丙烯-聚(丙烯酸/乙基丙 烯酸酯)型二嵌段共聚物(聚丙烯嵌段之數平均分子量: 1 0, 000、聚(丙烯酸/乙基丙烯酸酯)嵌段的數平均分子量: 40,0 0 0、相對於嵌段共聚物全部之重複單位計之從丙烯酸 而來的構造單位之含量:8 . 1莫耳%)做爲樹脂系相溶化劑以 外,均以和實施例1同樣的做法而得到苯乙烯系彈性體組 成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 29,400 cc*20//m/m2*day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 2 . 6埃。 實施例7 除了使用23克之依照特開平10-306 1 96號公報之參考 例7中所記載的法爲準而合成之聚丙烯-聚(丙烯酸/乙基丙 烯酸酯)型二嵌段共聚物(聚丙燒嵌段之數平均分子量: 10,000、聚(丙烯酸/乙基丙烯酸酯)嵌段的數平均分子量: 1 0,00 0、相對於嵌段共聚物全部之重複單位計之從丙烯酸 而來的構造單位之含量·· 7莫耳% )做爲樹脂系相溶化劑以 外,均以和實施例1同樣的做法而得到苯乙烯系彈性體組 成物。 -44 一 200400227 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 16,000 cc.20#m/m2*day.atm。又’藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 7 . 1埃。 實施例8 除了使用2 3克之依照特開平1 〇 - 3 0 6 1 9 6號公報之參考 例7中所記載的法爲準而合成之聚丙烯-聚(丙烯酸/乙基丙 烯酸酯)型二嵌段共聚物(聚丙烯嵌段之數平均分子量: 4, 00 0、聚(丙烯酸/乙基丙烯酸酯)嵌段的數平均分子量: 4,00 0、相對於嵌段共聚物全部之重複單位計之從丙烯酸而 來的構造單位之含量:1 1莫耳%)做爲樹脂系相溶化劑以外, 均以和實施例1同樣的做法而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 12,000 cc*20/zm/m2.day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲3 7 . 8埃。 實施例9 除了使用1 0克之經以雙(2 -羥基乙基)甲基十二基銨離 子處理的合成雲母(生協化學(股)公司製,商品名:MEE, 無機物含量:7 0重量% )當做層狀無機化合物、以及使用聚 苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫加成物 (可樂麗(股)公司製,商品名:歇普通2 0 0 7 )做爲苯乙烯系 200400227 彈性體以外,均以和實施例1同樣的做法而得到苯乙烯系 彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數P’係爲9,600cc.20/zm/m2.day*atm。與後述之比 較例2相互比較時,可確認氣體阻障性明顯地大幅向上增 加。又,藉由前述之方法測定苯乙烯系彈性體組成物中之 層狀無機化合物之層間距離時,在X射線圖案中由合成雲 母來的波峰係完全地消失,可確認層狀無機化合物之各層 係完全地剝離,層間距離係在44埃以上。 對照例2 使用拉伯普拉斯特混合機(東洋精機製造(股)公司 製),將聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加 氫加成物(苯乙烯系彈性體,可樂麗(股)公司製,商品名: 歇普通2007 )予以熔融,冷卻到室溫之後,進行壓縮成形而 製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿透 係數 PTPE,係爲 76,400cc · 20/zm/m2 · day · atm。 比較例2 ( 1 ) 使用1 0克之未經處理的合成雲母(層狀無機化合物, 生協化學(股)公司製,商品名:ME 100)、與67克之聚苯乙 烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫加成物(苯乙 烯系彈性體,可樂麗(股)公司製,商品名:歇普通200 7 ), 使用拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以 熔融混練,接著冷卻到室溫而得到苯乙烯系彈性體組成物。 -46- 200400227 使用所得到的苯乙烯系彈性體組成物,進行壓 而製做成薄膜。利用前述之方法測定所得到的薄膜 透係數 P,係爲 58,700(:(:*20//111/1112*(1&7.&1:111。又 前述之方法測定苯乙烯系彈性體組成物中之層狀無 物之層間距離,係爲1 2 . 1埃。 比較例2 ( 2 ) 使用10克之經以雙(2 -羥基乙基)甲基十二基銨 理的合成雲母(生協化學(股)公司製,商品名:MEE ) 克之聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物 加成物(可樂麗(股)公司製,商品名:歇普通2 0 0 7 ) 拉伯普拉斯特混合機(東洋精機製造(股)公司製)予 混練,接著冷卻到室溫而得到苯乙烯系彈性體組成物 使用所得到的苯乙烯系彈性體組成物,進行壓 而製做成薄膜。利用前述之方法測定所得到的薄膜 透係數 P ’ 係爲 48,000cc · 20/zm/m2 · day · atm。又 前述之方法測定苯乙烯系彈性體組成物中之層狀無 物之層間距離,係爲26 . 1埃。 比較例2 ( 3 ) 除了使用1 0克之經以雙(2 -羥基乙基)甲基十二 子處理的合成雲母(生協化學(股)公司製,商品名: 代替1 Q克之未經處理的合成雲母(層狀無機化合物 化學(股)公司製,商品名:ME100)以外,均以和實 同樣的做法而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮 縮成形 之氧穿 ,藉由 機化合 離子處 、與67 之加氫 ,使用 以熔融 f ° 縮成形 之氧穿 ,藉由 機化合 基銨離 MEE )來 ,生協 施例9 f成形 200400227 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P(cc*20/zm/m2.day*atm),係爲 35,500 cc.20//m/m2· day · a t m。又,藉由前述之方法測定苯乙烯系彈性體組成物 中之層狀無機化合物之層間距離,係爲1 2 . 1埃。 另外,爲了比較、對照之用,乃將從在實施例9和比 較例2 ( 2 )中所得到的苯乙烯系彈性體組成物製得之薄膜(厚 度:0 · 1毫米)的X射線繞射圖案,示於第1圖中。 實施例1 0 除了使用聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚 物之加氫加成物(可樂麗(股)公司製,商品名:亥普拉7 1 2 5 ) 做爲苯乙烯系彈性體以外,均以和實施例9同樣的做法而 得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數P,係爲5,300cc.20/zm/m2*day.atm。與後述之對 照例3相互比較時,可確認氣體阻障性明顯地大幅向上增 加。又,藉由前述之方法測定苯乙烯系彈性體組成物中之 層狀無機化合物之層間距離時,在X射線圖案中由合成雲 母來的波峰係完全地消失,可確認層狀無機化合物之各層 係完全地剝離,層間距離係在44埃以上。 對照例2 使用拉伯普拉斯特混合機(東洋精機製造(股)公司 製),將聚苯乙烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加 氫加成物(苯乙烯系彈性體,可樂麗(股)公司製,商品名: 一 4 8 - 200400227 亥普拉7 1 2 5 )予以熔融,冷卻到室溫之後,進行壓縮成形而 製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿透 係數 Ρτρε,係爲 54,600cc*20//ni/nQ2*day*atm。 比較例3 ( 1 ) ’ 使用1 0克之未經處理的合成雲母(層狀無機化合物, 生協化學(股)公司製,商品名:ME100)、與67克之聚苯乙 烯-聚異戊二烯-聚苯乙烯三嵌段共聚物之加氫加成物(苯乙 烯系彈性體,可樂麗(股)公司製,商品名:亥普拉7 1 2 5 ), 使用拉伯普拉斯特混合機(東洋精機製造(股)公司製)予以 ® 熔融混練,接著冷卻到室溫而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P’ 係爲 MJOOcc.SOem/ra^.day.atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲1 2 . 0埃。 比較例3 ( 2 ) 使用10克之經以雙(2 -羥基乙基)甲基十二基銨離子處 理的合成雲母(生協化學(股)公司製,商品名:MEE無機物 含量:70重量%)、與67克之聚苯乙烯-聚異戊二烯-聚苯乙 烯三嵌段共聚物之加氫加成物(可樂麗(股)公司製,商品 名:亥普拉7 1 2 5 ),使用拉伯普拉斯特混合機(東洋精機製 造(股)公司製)予以熔融混練,接著冷卻到室溫而得到苯乙 烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 一 4 9 - 200400227 而製做成薄fe。利用前述之方法測定所得到的薄膜之氧穿 透係數 P(cc.20//m/m2.day.atm),係爲 26,〇〇〇cc.2〇/zm/m2· d a y · a t m。又,藉由前述之方法測定苯乙烯系彈性體組成 物中之層狀無機化合物之層間距離,係爲2 4 . 9埃。 比較例3 ( 3 ) 除了使用10克之經以雙(2 -羥基乙基)甲基十二基銨離 子處理的合成雲母(生協化學(股)公司製,商品名:MEE )來 代替1 0克之未經處理的合成雲母(層狀無機化合物,生協 化學(股)公司製,商品名·· ME 1 00 )以外,均以和實施例1 〇 同樣的做法而得到苯乙烯系彈性體組成物。 使用所得到的苯乙烯系彈性體組成物,進行壓縮成形 而製做成薄膜。利用前述之方法測定所得到的薄膜之氧穿 透係數 P,係爲 28,100 cc.2〇Mm/m2*day*atm。又,藉由 前述之方法測定苯乙烯系彈性體組成物中之層狀無機化合 物之層間距離,係爲1 2 · 1埃。 另外,爲了比較、對照之用,乃將從在實施例1 0和比 較例3 ( 2 )中所得到的苯乙烯系彈性體組成物製得之薄膜(厚 度:0 . 1毫米)的X射線繞射圖案,示於第2圖中。 更且,爲了確認在本發明及比較例的苯乙烯系彈性體 組成物中之分散狀態,乃進行以下之觀察。 將從在實施例1 〇和比較例3 ( 2 )中所得到的苯乙烯系 彈性體組成物製得之薄膜(厚度:〇 · 1毫米)’使用超微機(商 品名,萊卡公司製)予以陳結超薄切譬之後,以四氧化餓染 色,並利用穿透式電子顯微鏡(TEM ’ H- 80 0NA型,日立製造 200400227 公司製,測定條件:加速電壓1 〇〇kV )進行觀察。彼等之斷 面照片,係示於第3圖及第4圖中。 在第3圖中,實施例1 〇之苯乙烯系彈性體組成物中層 狀無機化合物係完全地層間剝離,因而可理解實施例1 0係 充分地分散。另一方面,在第4圖中,比較例3(2)之苯乙 烯系彈性體組成物中層狀無機化合物明顯地不是層間剝 離。 【發明效果】 【產業利用性】 若依照本發明的話,就可以提供一種氣體阻障性向上 增加、機械特性也良好的苯乙烯系彈性體組成物。 本案係以在日本申請之特願2002 - 1 47 5 35爲優先權主 張的基礎,其內容乃全部包括在本說明書之中。又且,本 說明書中所引用的專利及專利文獻,係依照與被引用所揭 示的全部內容相同程度地被組合倂入本說明書之中。 【圖式之簡單說明】 第1圖爲在前述實施例9及比較例2 ( 2 )中所得到的苯 乙烯系彈性體組成物所形成的薄膜之廣角X射線繞射圖 案。在第1圖中以虛線表示之比較例2 ( 2 )的2個波峰中, 左邊的波峰是對應於層狀無機化合物之(001 )面之波峰,而 右側的波峰是對應於層狀無機化合物之(002 )面之波峰。 第2圖爲在前述實施例1 〇及比較例3 ( 2 )中所得到的 苯乙烯系彈性體組成物所形成的薄膜之廣角X射線繞射圖 案。在第2圖中以虛線表示之比較例2 ( 2 )的2個波峰中, 200400227 左邊的波峰是對應於層狀無機化合物之(001 )面之波峰,而 右側的波峰是對應於層狀無機化合物之(〇 〇 2 )面之波峰。 第3圖爲在前述實施例1 〇中所得到的苯乙烯系彈性體 組成物所形成的片材之超薄切片斷面於穿透型電子顯微鏡 中觀察的照片(上),以及顯示在該組成物中層狀無機化合 物(合成雲母)之分散狀態的模示圖(下)。 第4圖爲在前述比較例3 ( 2 )中所得到的苯乙烯系彈性 體組成物所形成的片材之超薄切片斷面於穿透型電子顯微 鏡中觀察的照片(上),以及顯示在該組成物中層狀無機化 合物(合成雲母)之分散狀態的模示圖(下)。 第5圖爲在第3圖中所記載的在前述實施例1 0中所得 到的苯乙烯系彈性體組成物所形成的片材之超薄切片斷面 於穿透型電子顯微鏡中觀察到的照片。 第6圖爲在第4圖中所記載的在前述比較例3 ( 2 )中所得到 的苯乙烯系彈性體組成物所形成的片材之超薄切片斷面於 穿透型電子顯微鏡中觀察到的照片。Maleic anhydride modified (polystyrene-polybutadiene-polystyrene triblock copolymer), maleic anhydride modified [polystyrene-poly (butadiene / isoprene) -Polystyrene triblock copolymer]], maleic anhydride modified (polystyrene-polyisobutylene-polystyrene triblock copolymer). ί_4) Polar polymer having a cyclochloro group ethylene / glycidyl acrylate copolymer, propylene / glycidyl acrylate copolymer, ethylene / propylene / glycidyl acrylate copolymer, ethylene / glycidyl methacrylic acid Ester copolymer, propylene / glycidyl methacrylate copolymer, ethylene / propylene / glycidyl methacrylate-29-200400227 ester copolymer, ethylene / butene / glycidyl acrylate copolymer, ethylene / butyl Olefin / glycidyl methacrylate copolymer, ethylene / hexene / glycidyl acrylate copolymer, ethylene / hexene / glycidyl methacrylate copolymer, ethylene / octene / glycidyl acrylate Copolymer, ethylene / octene / glycidyl methacrylate copolymer. (5) Ethylene / ethyl acrylate copolymer, propylene / ethyl acrylate copolymer, ethylene / propylene / ethyl acrylate copolymer, ethylene / ethyl methacrylate copolymer with alkane carbonyl group Polymer, propylene / ethyl methacrylate copolymer, ethylene / propylene / ethyl methacrylate copolymer, ethylene / butene / ethyl acrylate copolymer, ethylene / butene / ethyl methacrylate copolymer Polymer, ethylene / hexene / ethyl acrylate copolymer, ethylene / hexene / ethyl methacrylate copolymer, ethylene / octene / ethyl acrylate copolymer, ethylene / octene / ethyl methacrylate Ester copolymer. In addition, a polymer having a carboxyl group or a salt thereof can be obtained by neutralizing the above-mentioned (3) polar polymer having an acid anhydride group with a base or the like. In addition, the above-mentioned (3) polar polymer having an acid anhydride group is neutralized by using ammonia or amines, etc., and dehydrated as necessary to obtain a polymer having an amidine group, or a polymer having amidine. Amine-based polymers. As the (c) resin-based compatibilizing agent, one kind or a mixture of two or more kinds of the above-mentioned polar compounds can be used. (A) a styrene-based elastomer (hereinafter referred to as a component (a)), (b) a layered inorganic compound (hereinafter, referred to as a component (b)) constituting the styrene-based elastomer composition of the present invention, and (C) The weight ratio of the resin-based compatibilizer (hereinafter referred to as component (c)) -30-200400227 is required in accordance with the types of various components used and the styrene-based elastomer composition obtained. The physical properties are appropriately determined. However, it is usually within the following range. Ingredient (b) / ingredient (a) = 0.01 / l00 ~ 200/1 00; and ingredient (0 / ingredient (a) = 0.01 / 100 ~ 5000/100 when (b) the use amount of the layered inorganic compound exceeds In the above range, physical properties such as softness, rubber elasticity, moldability, and the like of the obtained styrene-based elastomer composition may be reduced. On the contrary, the amount of the layered inorganic compound used in (b) is higher than that described above. When the range is small, the effects of improving the mechanical properties and gas barrier properties due to the addition of the layered inorganic compound may not be exhibited. In addition, when the amount of the (c) resin-based compatibilizer exceeds the above range, In some cases, the obtained styrene-based elastomer composition may have reduced physical properties such as flexibility, rubber elasticity, moldability, etc. Conversely, the amount of the resin-based compatibilizer used in (c) is smaller than the above range. In this case, it is difficult to sufficiently finely disperse the layered inorganic compound in the styrene-based elastomer composition, so that the effects of improving the mechanical properties and gas barrier properties due to the addition of the layered inorganic compound may not be exhibited. (C) The amount of the resin-based compatibilizer is preferably in the following range: Component (c) / component (a) 0.03 / 100 to 3000/100 (weight ratio) The styrene-based elasticity of the present invention In the body composition, to the extent that the object of the present invention is not impaired, there is no problem even if various additives are usually added to the styrene-based elastomer composition. The various additives mentioned here are examples For example, it can be an ultraviolet absorber, a light-resistant stabilizer-31-200400227 agent, a heat-resistant stabilizer, a plasticizer, various oils, various mineral oils, foaming agents, crystal nucleating agents, slip agents, antistatic agents, colorants , Cross-linking agents, flame retardants, room rust agents, low shrinkage agents, tackifiers, peeling agents, anti-fog agents, monitoring agents, sand garden affinity agents, reinforcing materials (for example, carbon black, carbon fiber, glass fiber, · Boron fibers, amine fibers, liquid crystal polyester fibers, etc.), fillers, oxidation inhibitors, antibacterial agents, etc. Furthermore, in the styrene-based elastomer composition of the present invention, the object of the present invention is not impaired. Within the limits, even if added in the usual benzene There is no problem with polymers other than those blended in the ethylene-based elastomer composition. The polymers mentioned herein may be, for example, ethylene-propylene copolymer rubber, polystyrene, and styrene-propylene. Styrenic resins, polyphenylene ether resins, polyester resins, polyurethane resins, polyamine resins, polyacetal resins, acrylic resins, and the like, such as fluorene polymers and ABS. The styrene-based elastomer composition of the present invention is capable of mixing the component (a) a styrene-based elastomer, the component (b) a layered inorganic compound, and the component (c) a resin-based compatibilizer in accordance with a general method, and Various additives and other polymers are melt-kneaded and prepared according to the situation. Melt-knead, for example, 'Banbury mixer, screed honing machine, uniaxial extruder, and biaxial extrusion can be used. Machine to implement. In the kneading, the order of adding the various components is not particularly limited, but the following method can be used to prepare the styrene-based elastomer composition of the present invention. ① A method of melt-kneading (a) a styrene-based elastomer, (b) a layered inorganic compound, and (c) a resin-based compatibilizer together; or -32-200400227 ② (a) a styrene-based Elastomer and (c) resin-based compatibilizing agent are melt-kneaded to form a composition, and then (b) a method of melt-kneading a layered inorganic compound; ③ (b) a layered inorganic compound and (c) a resin A method of melt-kneading the system-based dissolving agent to form a composition, and then adding (a) melt-kneading of a styrene-based elastomer; the method shown in (3) is preferable. In addition, in the method (3), even if the composition formed by (b) the layered inorganic compound and (c) the resin-based compatibilizer becomes a paste, (a) a styrene-based elastomer is added. It can also be melt-kneaded well. It can also be added to the composition in the molten state formed by (b) layered inorganic compound and (c) resin-based compatibilizing agent prepared by melt-kneading by using a side feeder. (A) The styrene-based elastomer is kneaded again. Furthermore, the styrene-based elastomer composition of the present invention may be prepared by a method other than melt-kneading. For example, (4) (a) a styrene-based elastomer, (b) a layered inorganic compound, and (c) a resin. Method for mixing a phase-compatible agent in an organic solvent; ⑤ Add (a) a layered inorganic compound dispersed in an organic solvent to (a) a styrene-based elastomer and (c) a resin-based phase solubilizer In the method. As described above, various additives and other polymers used as necessary may be previously blended with (a) a styrene-based elastomer, (b) a layered inorganic compound, and (c) a resin-based compatibilizer. In addition, you may mix individual components with (a) a styrene-type elastomer, and (c) a resin-based compatibility agent. In the styrene-based elastomer composition of the present invention -33-200400227 prepared as described above, the interlayer distance of the organic layered inorganic compound needs to be 15 angstroms or more. In the present invention, a substance that is organicized by an organic cation is used as the (b) layered inorganic compound, and the (c) resin-based compatibilizing agent is used. In addition, a styrene-based elastomer is initially used. When the (b) layered inorganic compound in the composition has an interlayer distance as described above, it is possible to obtain a styrene-based elastomer composition having improved gas barrier properties. Further, as the interlayer distance of the (b) layered inorganic compound becomes larger, it is found that the gas barrier property of the styrene-based elastomer composition of the present invention tends to increase upward. In the styrene-based elastomer composition of the present invention, the interlayer distance of the layered inorganic compound is preferably 20 angstroms or more, more preferably 25 angstroms or more, and more preferably 30 angstroms or more, which is very desirable. It is above 44 Angstroms. Here, the interlayer distance of the (b) layered inorganic compound is detected by wide-angle X-ray diffraction, and is determined based on a peak corresponding to the (001) plane of the layered inorganic compound. In the present invention, the interlayer distance in the layered inorganic compound is specifically determined by the following method. Measurement of the interlayer distance of a layered inorganic compound: A thin film (diameter: 4.5 mm, thickness: 0.1 mm) made of a styrene-based elastomer composition was used, and wide-angle X-ray diffraction (xRD ) The measuring device "RINT 2400 X-ray differential meter (manufactured by Rigaku)" measures the X-ray diffraction pattern under the conditions of a measurement angle (20): 2 to 12 degrees, and a scanning speed: 0.2 degrees / minute. -3 4-200400227 Based on the peak corresponding to the (0 0 1) plane of the layered inorganic compound, use the following formula to calculate the interlayer distance d (A) from the layered inorganic compound. . D = λ / 2 si η 0 λ = 1. 5 4 (Angstrom) In the styrene-based elastomer composition of the present invention, it is preferable that the layers of the organic (b) layered inorganic compound are completely peeled off. Of the state. Therefore, in the present invention, there is no upper limit on the interlayer distance of the (b) layered inorganic compound. In the present invention, when the styrene-based elastomer composition is measured by wide-angle X-ray diffraction, when the peak from the (b) layered inorganic compound is completely eliminated, the (b) Each layer is completely peeled. The styrene-based elastomer composition of the present invention in this state is very desirable because the gas barrier properties of the benzene-based elastomer are very good. In addition, the styrene-based elastomer composition of the present invention in this state has a small amount of the (b) layered inorganic compound and is well dispersed in the composition. Therefore, a large amount of When the layered inorganic compound is added to the composition, there is no problem that the various properties of the styrene-based elastomer composition that is produced are impaired, the cost is low, and the gas barrier properties can be improved. . The styrene-based elastomer composition of the present invention can be formed by injection molding, extrusion molding, compression molding, expansion molding, melt blow molding, roll molding, rotation molding, and the like, and molding of thermoplastic elastomers is generally used. The molding method used is processed to form a molded product such as a film, a sheet, a molded container, and a blow-molded container. -35- 200400227 In this case, the styrenic elastomer composition prepared by melt-kneading may be used as it is, or it may be formed after nine pellets are formed on a certain day. Further, the styrene-based elastomer composition of the present invention can be processed in combination with materials to form various laminated structures. Other materials include, for example, 'thermosetting resin, paper, fabric, metal, wood, ceramic, and the like. The laminated structure obtained from the styrene-ethyl benzene-based elastomer composition of the present invention is not particularly limited to any object. For example, it may be composed of one layer of the styrene-based elastomer of the present invention. There is a two-layer structure layered with a layer formed of an object and a layer formed of a layer formed of another material; between the two surface layers (inner surface layers) formed of other materials, there is The layer formed by the styrene-based elastomer composition of the present invention is a three-layer structure of the intermediate layer, and the inner surface of the one layer formed from other materials is laminated with the styrene-based elastomer composition of the present invention. Three layers of structures formed. The laminated structure system can be produced by a known method, for example, (i) a method of manufacturing a laminated structure by melt-coating the other materials with the styrene-based elastomer composition of the present invention, and (ii) forming the laminated structure A method of inventing a styrenic elastomer composition that is melt-introduced between two or more other materials and adheres and integrates them. (1 ii) In a state where other materials are arranged in a mold, the molten material is melted. The method for filling the styrene-based elastomer composition of the present invention into a mold and making it sticky and integrated. (Iv) When other materials have thermoplasticity, the styrene-based elastomer group of the present invention is-3 6-200400227 The method of extruding the finished product together with other materials and making it sticky and integrated. In addition, the styrene-based elastomer composition of the present invention can also be used as a hot-melt adhesive as needed in the manufacture of various products and the above-mentioned laminated structure. When the hot-melt type adhesive formed from the styrene-based elastomer composition of the present invention is used, its shape is not particularly limited, and it may be, for example, granules, rods, films, or flakes such as nine grains. , Plate, etc. In the styrene-based elastomer composition of the present invention, (b) the layered inorganic compound is sufficiently finely dispersed, so that the gas barrier property increases significantly upward. Moreover, the mechanical characteristics are also good. Gas barrier properties, for example, can be expressed by the oxygen permeability coefficient. On the one hand, it is known that the oxygen transmission coefficient p of the styrene-based elastomer composition of the present invention is correlated with the dispersion state of the layered inorganic compound (b), and can be estimated by showing an index of the dispersion state. Therefore, if the types, physical properties, and amounts of various components used are the same, the better the dispersion state of the (b) layered inorganic compound in the styrenic elastomer composition, the (b) layer The larger the interlayer distance of the layered inorganic compound (preferably (b) the layers of the layered inorganic compound are completely peeled off, and (b) the layered inorganic compound is slightly dispersed in the composition), the smaller P 値 becomes , It is conceivable that the gas barrier properties will be better. Among them, the ideal aspect is the oxygen transmission coefficient P of the styrene-based elastomer composition of the present invention, and (a) the oxygen transmission coefficient P τ PE of the styrene-based elastomer, -37- 200400227, and The relationship between the weight fraction Φ F of the layered inorganic compound in the elastomer composition is as follows. The "oxygen permeability coefficient P of the styrene-based elastomer composition" and "(a) the oxygen permeability coefficient of the styrene-based elastomer PTPE" referred to herein are "the oxygen permeability coefficient P and the PTPE As described in "Measurement Method", the meaning is the oxygen transmission coefficient measured when the styrene-based elastomer composition and (a) the styrene-based elastomer are respectively formed into a film shape. P < 0.5x ρτρεχ (1-ΦP) / (1 + φρ / 2) (1) (wherein 'ΦF is only the weight fraction of the inorganic component of the layered inorganic compound). When such a relational expression (1) is established, the gas barrier property of the styrene-based elastomer composition of the present invention is increased to a sufficient degree. In particular, a styrenic elastomer composition such as the present invention can practically provide an article requiring gas barrier properties, that is, it can be practically provided as a material for gas P and a barrier article. The method for measuring the oxygen permeability coefficient P and PTPE uses a film having a thickness of 0.1 mm made of the styrene-based elastomer composition of the present invention, and a gas permeability test apparatus (Yanamoto Gas Chromatograph G2800T (Manufactured by Yanagimoto Manufacturing Co., Ltd.), under the conditions of 35% and 50% RH, the amount of oxygen penetration was measured in accordance with the method described in J IS K7 126 (Isobaric Method), and the oxygen permeability was calculated from the value. Transmission coefficient ρ. In addition, a thin film made of (a) styrene-based elastomer having a thickness of 0 mm was used to calculate the oxygen transmission coefficient PpE in the same manner. The styrene elastomer composition has an oxygen permeability coefficient P, and (a) styrene 200 400 227. The composition of the above-mentioned relationship ⑴ is established between the dental prosthesis system M ptpe and the composition of the formula ⑴, in order to obtain the gas resistance. It is found that it is necessary to add a large amount of the (b) layered inorganic compound due to its barrier properties. As a result, the flexibility of the styrene-based elastomer composition is reduced, and problems such as poor moldability are caused. The styrene-based elastomer composition obtained according to the present invention can be used in gas-barrier articles (for example, various food packaging containers, agricultural packaging materials, medical packaging materials, diesel storage tanks, cosmetic containers, and pharmaceutical valleys). Devices, packaging materials for medical products, inner liners for tires, laminated products, films and sheets of various troughs, excavation materials (eg, O-rings, gaskets, gaskets, room materials, caps, cap liners, etc.) Etc.), coils, tubes, automotive parts, air cushions for shoes, etc. Among them, the styrenic elastomer composition obtained in accordance with the present invention simultaneously produces gas barrier properties and flexibility, and is therefore particularly suitable for use as a sealing material (for example, 0-ring, gasket, adhesive pad (for example, , Injection bifurcation pads, etc.), cover materials (for example, medicine plugs, etc.), caps (for example, vacuum caps, etc.), cap liners, etc. [Embodiment] [Embodiment] Although the present invention will be specifically described below by way of the embodiment, the present invention is not limited to these embodiments. In the examples and comparative examples, the measurement of the oxygen transmission coefficient and the measurement of the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition were performed according to the methods described above. Example 1 10 g of synthetic cloud 200400227 treated with dimethylbisoctadecyl ammonium ion (layered inorganic compound, manufactured by Shengxie Chemical Co., Ltd., trade name: MAE, inorganic content: 68% by weight) ), And 23 grams of ethylene / acrylic copolymer resin (resin-based compatibilizing agent, manufactured by Japan Poly Tobacco Co., Ltd., EAA A2 1 0K), using a Labber mixer (manufactured by Toyo Seiki) After being melt-kneaded, 67 g of a polystyrene-polyisoprene-polystyrene triblock copolymer was added to the hydrogenation adduct (styrene-based elastomer, Kuraray Co., Ltd.). , Trade name: Xie ordinary 20002), further melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 15,100cc.20 # m / m2 * day * atm. In addition, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 33.2 angstroms. Comparative Example 1 Using a Labber mixer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a hydrogenated addition product of polystyrene-polyisoprene-polystyrene triblock copolymer (benzene Ethylene-based elastomers are produced by Kuraray Corporation's "Trade name: Xie ordinary 2000 2") and melted and cooled to room temperature, and then compression-molded to produce a film. The oxygen transmission coefficient PTPE of the obtained film measured by the aforementioned method was 72,400 cc.20 / zm / m2.day.atm. Comparative Example 1 (1) Using 10 g of untreated synthetic mica (layered inorganic compound 'Made by Hyosuke Chemical Co., Ltd., trade name · ME 1 0 〇), and 67 g of polystyrene-polyiso Hydrogenated adduct of pentadiene-polystyrene triblock copolymer (phenethyl-40- 200400227 olefinic elastomer manufactured by Kuraray Co., Ltd., trade name: Xie ordinary 2000 0 2), used The Laber Plaster mixer (manufactured by Toyo Seiki Manufacturing Co., Ltd.) was melt-kneaded and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 55,700 cc.20 / zm / m2.day.atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 122.1 angstroms. Comparative Example 1 (2) Using 10 g of synthetic mica (layered inorganic compound, manufactured by Biosyn Chemical Co., Ltd., trade name: MAE) treated with dimethylbisoctadecyl ammonium ion, and 67 g of polystyrene -Hydrogenated adduct of polyisoprene-polystyrene triblock copolymer (styrene-based elastomer, manufactured by Kuraray Co., Ltd., trade name: Xie ordinary 2002), using Laberplace A special mixer (manufactured by Toyo Seiki Manufacturing Co., Ltd.) was melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 31,600 cc * 20 / zm / m2 * day * atm. The interlayer distance of the layered inorganic compound in the acetofluorene-based elastomer composition was measured by the method described above, and was 3 2 · 4 Angstroms. Comparative Example 1 (3) Instead of using 10 g of untreated synthetic mica (layered inorganic compound, "Product name: ME 100" manufactured by Biosyn Chemical Co., Ltd.) instead of 10 g of 200400227 Except for ammonium ion-treated synthetic mica (layered inorganic compound, manufactured by Shengxie Chemical Co., Ltd., trade name: MAE, inorganic content: 68% by weight), a styrene system was obtained in the same manner as in Example 1. Elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P (cc · 20 // m / m2 · day · atm) of the obtained film measured by the method described above was 41,700 cc · 2 0 // m / m2 · d a y · a t m. In addition, the interlayer distance of the layered inorganic compound in the styrene-based sintered elastomer composition was measured by the aforementioned method, and was 122.1 angstroms. Example 2 Except that 23 g of ethylene-glycidyl methacrylate copolymer (EGMA) (manufactured by Sumitomo Chemical Industries, Ltd., trade name: Bondo Fast E) was used as the resin-based compatibility agent, In the same manner as in Example 1, a styrene-based elastomer composition was obtained. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 28,400 cc * 20 / zm / m2 * day.atni. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 3 2 · 5 Angstroms. Example 3 Except using 23 g of an ethylene / ethyl acrylate copolymer (manufactured by Nichitai United Co., Ltd., trade name: NUC copolymer NUC-6 2 2 1) as a resin-based compatibility agent, In the same manner as in Example 1, a styrene-based elastomer composition was obtained. -42-200400227 The obtained styrene-based elastomer composition was compression-molded to produce a film. The oxygen permeability coefficient P 'of the obtained film measured by the aforementioned method was 25,600 cc.20 # m / m2.day.atm. The interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 32.6 Angstroms. Example 4 Except that 23 g of an ethylene / zinc methacrylate copolymerized ionic polymer (manufactured by Mitsui DuPont Chemical Co., Ltd., trade name: Gaomiron 1 70 6Zn) was used as the resin-based compatibilizer, A styrene-based elastomer composition was obtained in the same manner as in Example 1. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 22,200 cc.20 // m / m2 * day.atm. In addition, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 32.8 angstroms. Example 5 Except that 23 grams of maleic anhydride-modified polypropylene (Sanyo Chemical Industry Co., Ltd.'s trade name: Umilux 1001) was used as the resin-based compatibilizing agent, the same procedure was used as in Example 1. In the same manner, a styrene-based elastomer composition was obtained. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 19,400 cc'20 // m / m2'day * atm. In addition, the interlayer distance of the layered inorganic compound -43-200400227 in the styrene-based elastomer composition was measured by the aforementioned method, and was 33.4 angstroms. Example 6 A polypropylene-poly (acrylic acid / ethyl acrylate) type diblock was synthesized using 23 g of a polypropylene-poly (acrylic acid / ethyl acrylate) type synthesized in accordance with the method described in Reference Example 7 of JP-A No. 1-3 0 6 1 9 6 Segment copolymer (number average molecular weight of polypropylene block: 10,000, number average molecular weight of poly (acrylic acid / ethyl acrylate) block: 40,000, repeating unit relative to all of the block copolymer Calculating the content of the structural unit from acrylic acid: 8.1 mol%) A resin-based compatibilizer was used in the same manner as in Example 1 to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 29,400 cc * 20 // m / m2 * day * atm. In addition, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 32.6 Angstroms. Example 7 A polypropylene-poly (acrylic acid / ethyl acrylate) -type diblock copolymer (in accordance with the method described in Reference Example 7 of Japanese Patent Application Laid-Open No. 10-306 1 96 was used in place of 23 grams ( Number average molecular weight of polypropylene block: 10,000, number average molecular weight of poly (acrylic acid / ethyl acrylate) block: 10,000, from acrylic acid to the total repeating unit of the block copolymer. The content of the original structural unit (7 mol%) was used in the same manner as in Example 1 except that the resin-based compatibilizing agent was used to obtain a styrene-based elastomer composition. -44-200400227 Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method, and was 16,000 cc.20 # m / m2 * day.atm. Further, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 37.1 angstroms. Example 8 A polypropylene-poly (acrylic acid / ethyl acrylate) type II synthesized in accordance with the method described in Reference Example 7 of Japanese Patent Application Laid-Open No. 10-306 0 1 1 6 was used in addition to 23 g. Block copolymer (number average molecular weight of polypropylene block: 4,000, number average molecular weight of poly (acrylic acid / ethyl acrylate) block: 4,000, repeating unit relative to all of the block copolymer Considering the content of the structural unit from acrylic acid: 11 mol%) except for the resin-based compatibilizing agent, the same method as in Example 1 was used to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 12,000 cc * 20 / zm / m2.day * atm. In addition, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 37.8 angstroms. Example 9 Except using 10 g of synthetic mica (manufactured by Shengxie Chemical Co., Ltd.) treated with bis (2-hydroxyethyl) methyldodecyl ammonium ion, trade name: MEE, inorganic content: 70% by weight ) As a layered inorganic compound and a hydrogenated adduct using a polystyrene-polyisoprene-polystyrene triblock copolymer (made by Kuraray Co., Ltd., trade name: Xie ordinary 2 0 0 7) Except for the styrene-based 200400227 elastomer, a styrene-based elastomer composition was obtained in the same manner as in Example 1. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P 'of the obtained film measured by the aforementioned method was 9,600 cc.20 / zm / m2.day * atm. When compared with Comparative Example 2 described later, it was confirmed that the gas barrier property significantly increased significantly. In addition, when the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the aforementioned method, the wave system of synthetic mica from the X-ray pattern completely disappeared, and each layer of the layered inorganic compound was confirmed It is completely peeled off and the interlayer distance is above 44 angstroms. Comparative Example 2 Using a Labber Mixer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a hydrogenated addition product of polystyrene-polyisoprene-polystyrene triblock copolymer (benzene Ethylene-based elastomers are produced by Kuraray (Korea Co., Ltd., trade name: Xie Ordinary 2007), melted, cooled to room temperature, and then compression-molded to produce films. The oxygen transmission coefficient PTPE of the obtained film measured by the aforementioned method was 76,400cc · 20 / zm / m2 · day · atm. Comparative Example 2 (1) Using 10 g of untreated synthetic mica (layered inorganic compound, manufactured by Biosynthetics Co., Ltd., trade name: ME 100), and 67 g of polystyrene-polyisoprene- Hydrogenated adduct of polystyrene triblock copolymer (styrene-based elastomer, made by Kuraray Co., Ltd., trade name: Xie ordinary 200 7), using a Labber mixer (Toyo Seiki) Manufacturing (manufactured by the company)), melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. -46- 200400227 The obtained styrene-based elastomer composition was pressed to prepare a film. The obtained film permeability coefficient P was measured by the aforementioned method, and it was 58,700 (: (: * 20 // 111/1112 * (1 & 7. & 1: 111.) And the aforementioned method was used to determine the composition of the styrene elastomer. The layer-to-layer distance between objects is 12.1 Angstroms. Comparative Example 2 (2) 10 m of synthetic mica (biosynthetic) treated with bis (2-hydroxyethyl) methyldodecyl ammonium Made by Chemical Co., Ltd., trade name: MEE) grams of polystyrene-polyisoprene-polystyrene triblock copolymer adduct (made by Kuraray Co., Ltd., trade name: Xie ordinary 2 0 0 7) a Rabbit Plaster mixer (manufactured by Toyo Seiki Seisakusho Co., Ltd.) for pre-kneading, and then cooling to room temperature to obtain a styrene-based elastomer composition, using the styrene-based elastomer composition obtained, The film was pressed to form a film. The film transmittance P 'measured by the method described above was 48,000cc · 20 / zm / m2 · day · atm. The method described above was also used to measure the content of the styrene-based elastomer composition. The layer-to-layer distance between layers is 26.1 Angstroms. Comparative Example 2 (3) except for using 10 g Synthetic mica treated with bis (2-hydroxyethyl) methyl dodeca (manufactured by Shengxie Chemical Co., Ltd., trade name: instead of 1 Q g of untreated synthetic mica (layered inorganic compound chemical (stock) company) , Trade name: ME100), styrene-based elastomer composition is obtained in the same manner as in practice. Using the obtained styrene-based elastomer composition, oxygen penetration of compression shrink molding is performed, and ions are combined by an organic compound. It was hydrogenated at a temperature of 67 ° C, using oxygen-condensation formed by melting f °, and using organic ammonium ionization (MEE) to produce a thin film of Example 9 f, 2002400227. The obtained film was measured by the method described above. The oxygen transmission coefficient P (cc * 20 / zm / m2.day * atm) of the thin film was 35,500 cc.20 // m / m2 · day · atm. The styrene elasticity was measured by the method described above. The interlayer distance of the layered inorganic compound in the body composition is 12.1 Angstroms. For comparison and comparison, the styrene obtained in Example 9 and Comparative Example 2 (2) is used. Film made of elastomer composition (thickness: 0 · 1 mm) X-ray diffraction pattern is shown in Figure 1. Example 1 0 Except the use of a hydrogenated adduct of a polystyrene-polyisoprene-polystyrene triblock copolymer ( Kuraray Co., Ltd., trade name: Hipla 7 1 2 5) A styrene-based elastomer composition was obtained in the same manner as in Example 9 except that it was a styrene-based elastomer. The styrene-based elastomer composition is compressed and formed into a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 5,300 cc.20 / zm / m2 * day.atm. When compared with Comparative Example 3 described later, it was confirmed that the gas barrier property significantly increased significantly. In addition, when the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition was measured by the method described above, the wave system of synthetic mica completely disappeared in the X-ray pattern, and each layer of the layered inorganic compound was confirmed. It is completely peeled off and the interlayer distance is above 44 angstroms. Comparative Example 2 Using a Labber Mixer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a hydrogenated addition product of polystyrene-polyisoprene-polystyrene triblock copolymer (benzene Ethylene-based elastomer, manufactured by Kuraray Co., Ltd., trade name:-4 8-200400227 Hipla 7 1 2 5) Melted, cooled to room temperature, and then compression-molded to make a film. The oxygen transmission coefficient Pτρε of the obtained film was measured by the aforementioned method, and it was 54,600cc * 20 // ni / nQ2 * day * atm. Comparative Example 3 (1) 'Using 10 g of untreated synthetic mica (layered inorganic compound, manufactured by Shengxie Chemical Co., Ltd., trade name: ME100), and 67 g of polystyrene-polyisoprene- Hydrogenated adduct of polystyrene triblock copolymer (styrene-based elastomer, manufactured by Kuraray Co., Ltd., trade name: Hipla 7 1 2 5), using a Labber mixer (Manufactured by Toyo Seiki Manufacturing Co., Ltd.), melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P 'of the obtained film measured by the aforementioned method was MJOOcc.SOem / ra ^ .day.atm. The interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 12.0 angstroms. Comparative Example 3 (2) Using 10 g of synthetic mica treated with bis (2-hydroxyethyl) methyldodecyl ammonium ion (manufactured by Shengsei Chemical Co., Ltd., trade name: MEE inorganic content: 70% by weight) Hydrogenated product of 67 g of polystyrene-polyisoprene-polystyrene triblock copolymer (made by Kuraray Co., Ltd., trade name: Hipla 7 1 2 5), used The Labburst mixer (manufactured by Toyo Seiki Manufacturing Co., Ltd.) was melt-kneaded, and then cooled to room temperature to obtain a styrene-based elastomer composition. Using the obtained styrene-based elastomer composition, compression molding was performed-4 9-200400227 to make a thin fe. The oxygen permeability coefficient P (cc.20 // m / m2.day.atm) of the obtained film measured by the method described above was 26,000,000cc.20 / zm / m2 · d a y · a t m. In addition, the interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the aforementioned method was 24.9 Angstroms. Comparative Example 3 (3) Instead of using 10 g of synthetic mica (produced by Shengsei Chemical Co., Ltd., trade name: MEE) treated with bis (2-hydroxyethyl) methyldodecyl ammonium ion instead of 10 g A styrene-based elastomer composition was obtained in the same manner as in Example 10, except for untreated synthetic mica (layered inorganic compound, manufactured by Biosyn Chemical Co., Ltd., ME 100). Using the obtained styrene-based elastomer composition, compression molding was performed to form a film. The oxygen permeability coefficient P of the obtained film was measured by the aforementioned method and was 28,100 cc. 20 Mm / m2 * day * atm. The interlayer distance of the layered inorganic compound in the styrene-based elastomer composition measured by the method described above was 1 2 · 1 Angstrom. In addition, for comparison and comparison, X-rays of a film (thickness: 0.1 mm) made from the styrene-based elastomer composition obtained in Example 10 and Comparative Example 3 (2) are used. The diffraction pattern is shown in Figure 2. Furthermore, in order to confirm the dispersion state in the styrene-based elastomer composition of the present invention and the comparative example, the following observations were made. Films (thickness: 0.1 mm) made from the styrene-based elastomer composition obtained in Example 10 and Comparative Example 3 (2) using an ultramicrocomputer (trade name, manufactured by Lycra) After the ultra-thin cutting was performed, the samples were stained with tetroxide, and observed with a transmission electron microscope (TEM'H-800ONA type, manufactured by Hitachi 200400227, measurement conditions: acceleration voltage 1000 kV). Their cross-section photos are shown in Figures 3 and 4. In Fig. 3, the layered inorganic compound in the styrene-based elastomer composition of Example 10 was completely peeled between layers, and it can be understood that Example 10 was sufficiently dispersed. On the other hand, in Fig. 4, the layered inorganic compound in the styrene-based elastomer composition of Comparative Example 3 (2) is clearly not exfoliated. [Inventive effect] [Industrial applicability] According to the present invention, it is possible to provide a styrene-based elastomer composition having an increased gas barrier property and good mechanical properties. This case is based on Japanese Patent Application No. 2002-1 47 5 35, and its contents are included in this specification. In addition, the patents and patent documents cited in this specification are incorporated into this specification in the same degree as all the contents disclosed in the references. [Brief description of drawings] Fig. 1 is a wide-angle X-ray diffraction pattern of a thin film formed of a styrene-based elastomer composition obtained in the foregoing Example 9 and Comparative Example 2 (2). In the two peaks of Comparative Example 2 (2) indicated by dashed lines in FIG. 1, the left peak is a peak corresponding to the (001) plane of the layered inorganic compound, and the right peak is corresponding to the layered inorganic compound. The peak of the (002) plane. Fig. 2 is a wide-angle X-ray diffraction pattern of a film formed of the styrene-based elastomer composition obtained in the foregoing Example 10 and Comparative Example 3 (2). Of the two peaks of Comparative Example 2 (2) indicated by dashed lines in FIG. 2, the peak on the left of 200400227 corresponds to the peak on the (001) plane of the layered inorganic compound, and the peak on the right corresponds to the layered inorganic The peak of the (002) plane of the compound. FIG. 3 is a photograph (top) of an ultra-thin section of a sheet formed from the styrenic elastomer composition obtained in the foregoing Example 10, observed with a transmission electron microscope (top), and shown in FIG. Schematic diagram of dispersion state of layered inorganic compound (synthetic mica) in the composition (bottom). Fig. 4 is a photograph (top) of an ultra-thin section of a sheet formed of a styrene-based elastomer composition obtained in the aforementioned Comparative Example 3 (2), observed with a transmission electron microscope (top), and showing A model diagram of the dispersion state of the layered inorganic compound (synthetic mica) in the composition (bottom). FIG. 5 is an ultra-thin section of a sheet formed of the styrene-based elastomer composition obtained in Example 10 described in FIG. 3 and observed in a transmission electron microscope. photo. Fig. 6 is an ultra-thin section of a sheet formed from the styrene-based elastomer composition obtained in the aforementioned Comparative Example 3 (2) described in Fig. 4 and observed under a transmission electron microscope. To the photo.

Claims (1)

200400227 拾、申請專利範圍: 1. 一種苯乙烯系彈性體組成物,其係由(a)苯乙烯系彈性 體、(b)由有機陽離子有機化之層狀無機化合物、以及(c) 具有與該(a)苯乙烯系彈性體相容性、且在分子內具有極 丨生吕目b基之極性聚合物所構成之本乙細系彡早性體組成 物’其特徵在於:該組成物中之(b )有機化之層狀無機化 合物的層間距離係爲1 5埃以上。 2 ·如申請專利範圍第1項之組成物,其在廣角X射線繞射 測定圖案中,從(b )層狀無機化合物而來之波峰係完全地 消失。 3.如申請專利範圍第1或2項之組成物,其中(a)苯乙烯 系彈性體係具有相對於構成該彈性體之重複單位總量計 不足0.05莫耳%之比例的極性官能基。 4 ·如申請專利範圍第1至3項中任一項之組成物,其中(b) 層狀無機化合物係由在分子內含有極性官能基之有機陽 離子有機化所構成。 5 ·如申請專利範圍第4項之組成物,其中有機陽離子係爲 在分子內含有自氫氧基、烷氧基、芳氧基、羧基、醯氧 基、烷氧羰基及酸酐基中所選出的至少1種之極性官能 基的有機陽離子。 6 ·如申請專利範圍第1至5項中任一項之組成物,其中(c) 極性聚合物爲含有相對於構成該極性聚合物之重複單位 總量計0.05莫耳%以上之極性官能基的聚合物。 200400227 7 ·如申請專利範圍第1至6項中任一項之組成物,其中成 分(a)、成分(b)、及成分(c)之重量比例爲成分(b)/成分(a) = 0.01/100 〜200/100、而且成分(C)/成分(a ho.cnnoo 〜5000/1 〇〇 〇 8 .如申請專利範圍第1至7項中任一項之組成物,其中前 述苯乙烯系彈性體組成物之氧穿透係數P、與前述(a)苯乙 烯系彈性體之氧穿透係數PTPE、及前述(b)層狀無機化合物 在聚合物組成物中所佔的重量分率Φ F之間,係滿足下列關 係式(1)= P<0.5x PTPEx (1-OF)/(1 + OF/2) (1) 9. 一種製造申請專利範圍第1之組成物之方法,其係將(a) 苯乙烯系彈性體、(b)由有機陽離子有機化之層狀無機化 合物、以及(c)具有與該(a)苯乙烯系彈性體相容性、且 在分子內具有極性官能基之極性聚合物所構成之苯乙烯 系彈性體組成物予以熔融混練、摻混而成。 10. —種製造申請專利範圍第1之組成物之方法,其係將(b) 由有機陽離子有機化之層狀無機化合物、和(c)極性聚合 物予以熔融混練、調製,以及將該組成物與(a)苯乙烯系 彈性體予以熔融混練而成。 1 1 . 一種物品,其係由在申請專利範圍第1至8項中任一項 所記載之苯乙烯系彈性體組成物所形成。 1 2 . —種氣體阻障性物品,其係由在申請專利範圍第1至8 項中任一項所記載之苯乙烯系彈性體組成物所形成。 200400227 1 3 .如申請專利範圍第1 2項之氣體阻障性物品,其係具有 從〇-環、墊圏、密合墊、蓋材、蓋帽、帽襯中所選出之 任何一種片材。 1 4 .如申請專利範圍第1 3項之氣體阻障性物品,其中片材 係選自於帽襯、真空採血管之蓋帽、藥栓、注射筒用密 合墊。200400227 The scope of patent application: 1. A styrene-based elastomer composition, which is (a) a styrene-based elastomer, (b) a layered inorganic compound that is organicized by an organic cation, and (c) The (a) styrenic elastomer is compatible with a styrenic elastomer and has a polar polymer in the molecule, which is a B-type premature protagonist composition, which is characterized in that: (B) The interlayer distance of the organic layered inorganic compound is 15 angstroms or more. 2. The composition according to item 1 of the scope of patent application, in which the peak system from the (b) layered inorganic compound completely disappears in the wide-angle X-ray diffraction measurement pattern. 3. The composition according to item 1 or 2 of the scope of patent application, wherein (a) the styrene-based elastic system has a polar functional group in a proportion of less than 0.05 mole% relative to the total amount of repeating units constituting the elastomer. 4. The composition according to any one of claims 1 to 3, wherein (b) the layered inorganic compound is organically composed of an organic cation containing a polar functional group in the molecule. 5. The composition according to item 4 of the scope of patent application, wherein the organic cation is selected from the group consisting of a hydroxyl group, an alkoxy group, an aryloxy group, a carboxyl group, a fluorenyloxy group, an alkoxycarbonyl group, and an acid anhydride group. An organic cation of at least one polar functional group. 6. The composition according to any one of claims 1 to 5 of the scope of the patent application, wherein (c) the polar polymer contains a polar functional group of 0.05 mol% or more relative to the total amount of repeating units constituting the polar polymer Polymer. 200400227 7 · The composition according to any one of claims 1 to 6, wherein the weight ratio of component (a), component (b), and component (c) is component (b) / component (a) = 0.01 / 100 to 200/100, and the component (C) / ingredient (a ho.cnnoo to 5000/1 000). The composition according to any one of claims 1 to 7 in the scope of patent application, wherein the aforementioned styrene The oxygen penetration coefficient P of the elastomer composition, the oxygen penetration coefficient PTPE of the (a) styrene elastomer, and the weight fraction of the layered inorganic compound in the polymer composition (b) Φ F satisfies the following relationship (1) = P < 0.5x PTPEx (1-OF) / (1 + OF / 2) (1) 9. A method for manufacturing the composition of the first scope of the patent application, It is (a) a styrene-based elastomer, (b) a layered inorganic compound that is organicized by an organic cation, and (c) has compatibility with the (a) styrene-based elastomer and has A styrenic elastomer composition composed of a polar polymer with a polar functional group is prepared by melt-kneading and blending. 10.-Patent application scope for manufacturing 1 A method for forming a composition by melt-kneading (b) a layered inorganic compound organically formed by an organic cation, and (c) a polar polymer, and preparing the composition with (a) a styrene-based elastomer It is melt-kneaded. 1 1. An article formed of the styrene-based elastomer composition described in any one of items 1 to 8 of the scope of patent application. 1 2. —Gas barrier properties Articles formed of the styrene-based elastomer composition described in any one of items 1 to 8 of the scope of patent application. 200400227 1 3. If the gas barrier article of the 12th scope of patent application, It is provided with any sheet selected from O-rings, gaskets, close-fitting pads, cover materials, caps, and cap liners. 1 4. The gas-barrier article as described in item 13 of the patent application scope, wherein The sheet material is selected from the group consisting of a cap liner, a cap for a vacuum blood collection tube, a medicine plug, and an adhesive pad for a syringe. - 55--55-
TW092113803A 2002-05-22 2003-05-22 Styrene elastomer composition TWI289150B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147535 2002-05-22

Publications (2)

Publication Number Publication Date
TW200400227A true TW200400227A (en) 2004-01-01
TWI289150B TWI289150B (en) 2007-11-01

Family

ID=29545187

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092113803A TWI289150B (en) 2002-05-22 2003-05-22 Styrene elastomer composition

Country Status (3)

Country Link
JP (1) JP3959421B2 (en)
TW (1) TWI289150B (en)
WO (1) WO2003097741A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1711558T3 (en) * 2004-01-30 2008-10-31 Renolit Ag Syndiotatic polypropylene composition comprising a thermoplastic elastomer
JP2007039498A (en) * 2005-08-01 2007-02-15 Kuraray Co Ltd Thermoplastic elastomer composition, molding, and multilayer molding
JP2007070410A (en) * 2005-09-05 2007-03-22 Kuraray Co Ltd Thermoplastic elastomer composition, molded article, and multi-layered molded article
JP2007091856A (en) * 2005-09-28 2007-04-12 Kuraray Co Ltd Thermoplastic elastomer composition, molded product and multilayer molded product
FR2918669A1 (en) * 2007-07-11 2009-01-16 Michelin Soc Tech PNEUMATIC OBJECT COMPRISING A GAS SEALED LAYER BASED ON A THERMOPLASTIC ELASTOMER AND A LAMELLAR LOAD.
KR100985904B1 (en) * 2008-10-22 2010-10-08 금호타이어 주식회사 Tire tread rubber composition comprising organo kenyaite
JP5273560B2 (en) * 2009-10-01 2013-08-28 住友ゴム工業株式会社 Polymer composition for inner liner and pneumatic tire using the same
JP5758618B2 (en) * 2010-12-14 2015-08-05 住友ゴム工業株式会社 Pneumatic tire and manufacturing method thereof
JP6364814B2 (en) * 2014-02-28 2018-08-01 日本ゼオン株式会社 Method for producing medical molded body
KR102425416B1 (en) * 2018-12-21 2022-07-25 코오롱인더스트리 주식회사 Tire inner liner film

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030039A (en) * 1996-05-14 1998-02-03 Showa Denko Kk Polyolefin composite material and its production
NL1006743C2 (en) * 1997-08-08 1999-02-09 Tno Nanocomposite material.
JP4549447B2 (en) * 1997-08-25 2010-09-22 クニミネ工業株式会社 COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND COMPOSITE MATERIAL-CONTAINING RESIN COMPOSITION
US6117932A (en) * 1997-09-18 2000-09-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite
JP3356026B2 (en) * 1997-09-24 2002-12-09 株式会社豊田中央研究所 Resin composite
JPH11181309A (en) * 1997-12-19 1999-07-06 Toyota Central Res & Dev Lab Inc Resin composite material
JP2000159960A (en) * 1998-11-27 2000-06-13 Kanegafuchi Chem Ind Co Ltd Styrene-based thermoplastic elastomer composition and its production
JP3587709B2 (en) * 1998-12-08 2004-11-10 株式会社豊田中央研究所 Resin composite material
JP2000281847A (en) * 1999-01-26 2000-10-10 Nippon Polyolefin Kk Master batch composition for modifying polypropylene resin
JP3576055B2 (en) * 1999-11-15 2004-10-13 有限会社コーキ・エンジニアリング Manufacturing method of sliding member for piston for syringe
JP4463435B2 (en) * 2000-01-21 2010-05-19 三井化学株式会社 Filler dispersibility improving material, filler-containing resin composition and production method thereof
JP2002080686A (en) * 2000-06-29 2002-03-19 Kuraray Co Ltd Aqueous dispersion
JP2003221473A (en) * 2002-02-01 2003-08-05 Yokohama Rubber Co Ltd:The Rubber composition
JP2004099830A (en) * 2002-09-12 2004-04-02 Kuraray Co Ltd Inorganic and organic composite material and its preparing method

Also Published As

Publication number Publication date
WO2003097741A1 (en) 2003-11-27
TWI289150B (en) 2007-11-01
JPWO2003097741A1 (en) 2005-09-15
JP3959421B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP5437247B2 (en) Hydrogenated block copolymer composition and molded article using the same
CN102449062B (en) EVOH resin composition, and molded article and multilayer structure both comprising same
CA2899573C (en) Thermoplastic polymer composition, shoes and outer soles
JP2016020508A (en) Hydrogenated block copolymer and composition containing the same
TW200400227A (en) Styrene elastomer composition
TW200415195A (en) Thermoplastic polymer composition, molded product, and multilayer structure
KR20200022518A (en) Hydrogenated Additives of Block Copolymers, Resin Compositions, and Their Various Applications
JP2019510858A (en) Semicrystalline block copolymers and compositions therefrom
JP7439308B2 (en) Resin composition and molded body
JP2021172812A (en) Thermoplastic elastomer composition and molded body
JP4357924B2 (en) Polyolefin resin composition and use thereof
JP4675712B2 (en) Polyolefin resin composition
JP2004091775A (en) Olefin polymer composition
TW202237730A (en) Resin composition, adhesive agent, and compatibilizer
TW202212377A (en) Resin composition, resin modifier, dispersion composition, member for automobile, and method for producing resin composition
JP2513958B2 (en) Polyolefin composition
JP2529807B2 (en) Good flow high impact polyolefin composition
JP2009249489A (en) Thermoplastic resin composition and its manufacturing method
JP4067990B2 (en) Polymer composition
JP5068971B2 (en) Masterbatch composition, composite material composition, composite material molded body, and method for producing the same
WO2023002932A1 (en) Thermoplastic elastomer composition and molded body comprising said composition
JP2513962B2 (en) Polyolefin composition with excellent impact resistance and heat distortion resistance
JP2513951B2 (en) Polyolefin composition with excellent impact resistance
WO2022163786A1 (en) Resin composition and molded body
JP7006878B2 (en) Resin composition, modeling material and molded body

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees