TWI288248B - Electrical scanning probe microscopy device - Google Patents
Electrical scanning probe microscopy device Download PDFInfo
- Publication number
- TWI288248B TWI288248B TW92119918A TW92119918A TWI288248B TW I288248 B TWI288248 B TW I288248B TW 92119918 A TW92119918 A TW 92119918A TW 92119918 A TW92119918 A TW 92119918A TW I288248 B TWI288248 B TW I288248B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrical
- probe
- long
- wavelength
- scanning probe
- Prior art date
Links
Landscapes
- Microscoopes, Condenser (AREA)
Abstract
Description
!288248 案號 9211Qm^ 五、發明說明(1) 發明所屬之技術領域 月 曰 修正 微鏡裝置,特別是有 鏡之電性掃描探針顯 本發明係有關於電性掃描探針顯 關於一種結合長波長雷射原子力顯微 微鏡裝置。 先前技術: 掃描探針顯微鏡(scanning probe micr〇sc〇py, 為應用極廣的表面分析技術,其特點為操作容易,且铲 接而快速地提供關於材料表面特性的資訊,例如硬度、b平 坦度三表面形態以及電磁場強度等,所得的資訊具有大範 圍、咼解析度等優點。利用探針與待測樣品表面間各種不 同物理作用力,引導出各式各樣的掃描探針顯微鏡的應 用,其中包含觀察材料表面形貌及平坦度的原子力顯微鏡 (atomic force microscopy,AFM);應用在微區電性以及 物丨生里測为析方面之電力顯微鏡(e 1 e c t r i C f 〇 r c e microscopy,EFM);掃描電容顯微鏡(scanning capacitance microscopy,SCM);掃描電阻顯微鏡 (scanning spreading resistance microscopy ,SSRM); 知描電位顯你i:鏡(scanning Kelvin force microscopy, SKM)以及抑*描電流顯微鏡(c〇nductive atomic force microscopy , C-AFM) 〇 掃描電容顯微鏡對微小電容變化具有極高的靈敏度, 其在二維電荷分部分析方面的應用潛力極佳。同步取得表 面形貌與對應的微分電容影像對分析工作而言是十分重要 的。一般而言,掃描電容顯微鏡主要包括兩大部分:接觸!288248 Case No. 9211Qm^ V. INSTRUCTION DESCRIPTION (1) Technical Field of the Invention The invention relates to a micro-mirror device, in particular a mirrored electrical scanning probe. The invention relates to an electrical scanning probe for a combination Long-wavelength laser atomic force microscopic micromirror device. Prior Art: Scanning probe micr〇sc〇py, an extremely versatile surface analysis technique that is easy to operate, and provides information on the surface properties of materials such as hardness and b flatness. The three surface morphology and the electromagnetic field strength, etc., the information obtained has the advantages of large range, 咼 resolution, etc. The application of various scanning probe microscopes is guided by various physical forces between the probe and the surface of the sample to be tested. , including atomic force microscopy (AFM) for observing the surface topography and flatness of the material; power microscopy (e 1 ectri C f 〇rce microscopy, which is applied to the micro-area electrical and object-induced analysis) EFM); scanning capacitance microscopy (SCM); scanning diffusion resistance microscopy (SSRM); scanning Kelvin force microscopy (SKM) and scanning current microscopy (c) 〇nductive atomic force microscopy, C-AFM) 〇 scanning capacitance microscope for tiny electricity The change has extremely high sensitivity, and its application potential in two-dimensional charge fraction analysis is excellent. Synchronous acquisition of surface topography and corresponding differential capacitance image is very important for analysis work. In general, scanning capacitance microscope Mainly includes two major parts: contact
〇522-l〇185TWFl(Nl) ;jammgwo.ptc 第5頁 1288248 五、發明說明 曰 MM 9211QQ1R (2) 式原子力顯微鏡與微分電容感測模組。前者主要用以提供 表f形貌影像;後者則提供二維微分電容影像。習知的電 ,掃描探針顯微鏡裝置係以反應表面形貌的光束偏折法, 藉由紅光雷射(波長670奈米)做為其原子力顯微鏡系統的 ^偏折成像架構,目的在同步取得表面形貌影像與對應之 微分電容影像,因其採用的紅光雷射之雜散光造成光擾效 應’包括光電壓效應(ph〇t〇v〇ltaic effect)與高階載子 注^(high-levei injecti〇n),嚴重影響了量測結果,造 f較差的微分電容影像對比以及導致載子分佈與電性接面 影,的失真,如較寬的載子分佈影像與較窄的電性接面寬 度等,明顯限制了量測結果的精確度,因此去除光擾確 其必要性。 一由於光擾機制起因於材料的光學吸收,對低能隙半導 ,材料而言,如SiGe、GaAs及InP等,上述問題將更顯 ,,也唯有採用本專利設計,方能徹底解決表面形貌成 杀構的雷射光源對電性訊號的干擾現象,同時兼顧同 析材料表面形貌的目的。 刀 發明内容: :鑑於此’本發明的目的在於提供—種電性掃 =Γ。ΪΓ;係以長波長雷射做為電性掃描探G 表面成綱,以增強微分電容影像對 十;員〇522-l〇185TWFl(Nl);jammgwo.ptc Page 5 1288248 V. INSTRUCTIONS 曰 MM 9211QQ1R (2) Atomic force microscope and differential capacitance sensing module. The former is mainly used to provide the image of the topography; the latter provides the two-dimensional differential capacitance image. Conventional electric, scanning probe microscopy is a beam deflection method that reflects the surface topography, and uses a red laser (wavelength of 670 nm) as the deflection imaging architecture of its atomic force microscope system. Obtaining the surface topography image and the corresponding differential capacitance image, the light disturbance effect caused by the stray light of the red laser is used, including the photovoltage effect (ph〇t〇v〇ltaic effect) and the high-order carrier injection ^(high -levei injecti〇n), which seriously affects the measurement results, makes the differential capacitance image contrast worse, and causes distortion of the carrier distribution and electrical connection, such as wider carrier distribution image and narrower electrical properties. The width of the junction, etc., significantly limits the accuracy of the measurement results, so the removal of optical interference is necessary. Since the optical interference mechanism is caused by the optical absorption of the material, for the low energy gap semiconducting, materials such as SiGe, GaAs and InP, the above problems will be more obvious, and only the patent design can be used to completely solve the surface. The appearance of the laser source of the killing interferes with the electrical signal, and at the same time takes into account the purpose of the surface morphology of the material. Knife Summary of the Invention: In view of the present invention, it is an object of the present invention to provide an electrical sweep. ΪΓ; is a long-wavelength laser as an electrical scanning G surface to outline, to enhance the differential capacitance image pairs;
兼顧,析材與m訊=干 0522-10185TWF1(Nl);j ammgwo.ptc 第6頁 ^ 92119918 曰 ^88248 五、發明說明(3) 根據上述目的,本發 一 ,包括:-原子力顯微鏡“種探針顯微鏡 面成傻靼搂m μ上述4置利用長波長 一修正 裝置 雷射光源做為 一電性掃插偵測感測褒置,以;面形貌影像;以及 之二維電性影像。 取侍同步對應表面形貌影像 於继ί據上述目的,本發明亦提供一種 •兄裝置,包括··-樣品基座.電性知描探針顯微 ^臂與位於獨立懸臂前端之一以:裝置,包括-獨 -長波長雷射弁*獨立於知描探針裝置’包括 測裝置以& # ^ 長波長雷射光源相對應之雷射偵 制掃描探針穿f的銘^ —控制系統裝置,控 電谷知描偵測感測裝置, 衣罝回度,以及一 二維微分電容影像。 于同^應该表面形貌影像之 明。以下配合圖式以及較佳實施例,以更詳細地說明本發 實施方式: 第1圖係顯示本發明之掃描電性探針顯微鏡的機能區 料二r upCtl〇nal bl〇ck diagram)。在此,以掃描電容顯 明况 scanning capacitance microscopy,SCM)為例來說 仁並非限制本發明。本發明之掃描電容顯微鏡主要包 f ^大部分:接觸式原子力顯微鏡與微分電容感測模組。 ^主要利用長波長雷射光源,例如波長大於6 7 〇奈米, 車乂佳者為1 · 3或1 · 5 5微米,做為表面成像架構,用以提供 第7頁 0522-10185TWF1(Nl);j ammgwo.ptcTake care of, the material and m signal = dry 0522-10185TWF1 (Nl); j ammgwo.ptc page 6 ^ 92119918 曰 ^ 88248 five, invention description (3) According to the above purpose, the first one, including: - atomic force microscope "species The probe microscope surface is silly 靼搂m μ The above 4 uses a long wavelength-correction device laser light source as an electrical sweep detection sensing device, a surface topography image; and a two-dimensional electrical image According to the above purpose, the present invention also provides a brother device, including a sample base. The electrical probe probe micro arm and one of the front ends of the independent cantilever To: device, including - single-long-wavelength laser 弁 * independent of the known probe device 'including the measuring device with &# ^ long-wavelength laser light source corresponding to the laser-detection scanning probe wearing the f ^ - control system device, control valley sensing detection device, clothing return, and a two-dimensional differential capacitance image. The same as the surface topography image. The following cooperation diagram and preferred embodiment To explain the present embodiment in more detail: Figure 1 shows the hair The functional area of the scanning electrical probe microscope is r upCtl〇nal bl〇ck diagram. Here, the scanning capacitance microscopy (SCM) is taken as an example, and the invention is not limited to the invention. Capacitance microscope main package f ^ Most: contact atomic force microscope and differential capacitance sensing module. ^ Mainly use long-wavelength laser light source, such as wavelength greater than 6 7 〇 nanometer, 乂 者 is 1 · 3 or 1 · 5 5 micron, as a surface imaging architecture, to provide page 5, 0522-10185TWF1 (Nl); j ammgwo.ptc
五、發明說明(4) 維 表面形貌影像;後者則提供同步對應表 微分電容影像。 两小貌衫像之 晴參閱第1圖,一種電性掃描探針 ,(J # 〇〇〇 200 的位置。一AC訊號源1 1 〇及直流偏壓12〇 , ^ 口二二口口 100以控制待測樣品。一掃描探針裝置,^接—樣。σ基座 (canti lever )結構300與位於懸臂樑3〇〇前端之—樑 320所組成,懸臂樑300的另一端連接固定於掃描,二f = 控制裝置,且上述懸臂樑30〇具有一長、田木、十置 :鏡:表面型態影像成像裝置,冑立於掃描探針裝置力: 光源:i J如波長1,3或h 55微米之紅外線雷 射先源400、一與長波長雷射光源相 置420、一長波長光學校準裝置“。以及—回田:電先路崎 (feedback circuit)80 0。一控制系統裝置7〇〇,控制掃# 探針裝置的移動位置及掃描探針裝置高度。以及一 田 掃描偵測感測模組50 0 (例如電容感測器)以及一鎖相放大 里器a〇ck-in anPlifier) 60 0,以取得同步對應該表面形貌 1像之-維微分電容影I。根據本發明實施例,電性掃福 ^測感測模組5〇〇亦可包括展阻感測器、電 流感測器。V. Description of the invention (4) Dimensional surface topography image; the latter provides a synchronous correspondence table differential capacitance image. See the first picture, an electrical scanning probe, (J # 〇〇〇200 position. One AC signal source 1 1 〇 and DC bias 12 〇, ^ mouth two two mouth 100 To control the sample to be tested. A scanning probe device is connected to the sample. The θ pedestal structure 300 is composed of a beam 320 located at the front end of the cantilever beam 3, and the other end of the cantilever beam 300 is connected and fixed. Scanning, two f = control device, and the cantilever beam 30 〇 has a long, Tianmu, ten-position: mirror: surface type image imaging device, standing on the scanning probe device force: light source: i J such as wavelength 1, 3 or h 55 micron infrared laser source 400, a long wavelength laser source 420, a long wavelength optical calibration device ". and - Huitian: electric circuit (back) (return circuit) 80 0. The control system device 7〇〇 controls the movement position of the sweeping device and the height of the scanning probe device, and the field scanning detection sensing module 50 0 (for example, a capacitive sensor) and a lock-in amplification device a 〇 ck-in anPlifier) 60 0, in order to obtain a synchronous corresponding surface topography 1 - dimensional differential capacitance I. According to Inventive Example electrically fu ^ scan of the sensing module comprises 5〇〇 also show resistance sensor, a current sensor.
0522-10185TWFl(Nl) ;jammgwo.ptc $ 8頁 第2圖係、顯示本發明之掃描電性探針顯微鏡利用長波 長雷射光源做為表面成像架構配置圖。其中以丨.3或丨.55 微米紅外線雷射光源40 0做為入射光源,'入射光4〇2聚焦於 f;臂標300之長波長反射面,^反射得到一反射光422到達 1288248 千 修正 茶號 92Π9918 五、發明說明(5) 相對應之雷射偵測裝置420。I 3及丨.55微米紅外線雷射一 極體係以InGaAsP為主要材料,雖然其元件的光電特性良 好,但抗溫性差,往往需要熱電偶致冷器 (therm〇-electric (TE) c〇〇ler)來降低操作溫度 發明者在此舉一操作例,在相同的操作條件下比較光 擾效應差異。待測樣品的製作過程包括提供一 <ι〇〇功—型 底:摻雜濃度為5X1(P Cm-3,其上具有以熱氧化程序 ιί μ ί Γ氧化矽層,厚度2〇nm。接著,以微影及乾式反應 ,、 虫刻(R 1 E )製程形成栅狀圖案,其中柵狀開口及間 ,的覓度刀別為〇 · 8 # m及2 // m。然後,植入bf2+離子於矽 土,友内,植广能量為2〇K eV,植入劑量為5 x 1〇14 cm-2。於 N2氣氛下進行一快速升溫退火(RTA)製程,條件π, 秒丄以形成一Ρ-Ν接面。在快速升溫退火(rta)製程之後 再儿,一厚度50 〇nm之四乙氧基矽酸鹽(te〇s)層於矽基底 上,完成待測樣品的製備。 e ^ 明之知作例所提供之掃描電容顯微鏡,係利用一 ί f t〜450微米、寬約30〜50微米、厚約5微米且具有一 你太2 ^電檨操針,接近待測樣品表面,以接觸模式操 八 力低至奈牛頓(nano Newton,約為1克重之一千 二:之)’以描綠出同步對應表面形貌影像之二維電容 影像。 =3圖係顯不操作例中入射光照射在懸臂樑之反射面 ^ a , 置圖。於知作例中係使用波長670奈米的 ^于光源。於操作例1中,入射光照射在懸臂樑之反 t面白二位置1處此掃描區所受雜散光引致光學吸收影 0522-10185TWF1(N1);j ammgwo.ptc _ 案號 921199180522-10185TWFl(Nl);jammgwo.ptc $8 page Fig. 2 shows a scanning electrical probe microscope of the present invention using a long wavelength laser source as a surface imaging architecture configuration diagram. Among them, 丨.3 or 丨.55 micron infrared laser light source 40 0 is used as the incident light source, 'incident light 4 〇 2 is focused on f; the long wavelength reflection surface of the arm standard 300 is reflected, and a reflected light 422 is obtained to reach 1,288,248 thousand Corrected the tea number 92Π9918 V. The invention (5) corresponds to the laser detecting device 420. I 3 and 丨.55 micron infrared laser one pole system uses InGaAsP as the main material. Although its photoelectric characteristics are good, but the temperature resistance is poor, thermocouple cooler (therm〇-electric (TE) c〇〇 is often required. In order to reduce the operating temperature, the inventors have used an example of the operation to compare the difference in optical interference effects under the same operating conditions. The preparation process of the sample to be tested includes providing a < 〇〇 〇〇 — 型 : : : : : : : : : : : : : : : 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂 掺杂Then, the lithography and dry reaction, and the insect engraving (R 1 E ) process are used to form a grid pattern, wherein the grating opening and the width of the knives are 〇·8 # m and 2 // m. Into the bf2+ ion in the bauxite, the inside, the planting energy is 2〇K eV, the implantation dose is 5 x 1〇14 cm-2. Under a N2 atmosphere, a rapid temperature annealing (RTA) process is carried out, the condition is π, seconds.丄 to form a Ρ-Ν junction. After the rapid thermal annealing (rta) process, a thickness of 50 〇 nm of tetraethoxy phthalate (te〇s) layer on the ruthenium substrate to complete the sample to be tested The scanning capacitance microscope provided by the method of e ^ Ming is a ί ft ~ 450 μm, a width of about 30 ~ 50 microns, a thickness of about 5 microns and has a 2 ^ electric 檨 needle, close to the test On the surface of the sample, in the contact mode, the force is as low as nano Newton (about 1 gram weight is one thousand two: it) The two-dimensional capacitive image of the image is displayed. The image of the incident light is irradiated on the reflecting surface of the cantilever beam. The pattern is used in the example. In the example, the light source with a wavelength of 670 nm is used. In 1st, the incident light is irradiated on the opposite side of the cantilever beam at the white position 2, and the stray light received by the scanning region causes the optical absorption shadow 0522-10185TWF1 (N1); j ammgwo.ptc _ case number 9219978
1288248 五、發明說明(6) 響最大;於操作例2中,入射光照射在懸臂樑之反射面的 位置2處,因此相對地,掃描區在操作例2中,所受雜 引致光學吸收影響最小,相當於使用無光擾之長波長^ 光源。請參閱第3A圖,其中丨及2分別顯示操作例丨及操 例2入射光的聚焦位置,操作例丨聚焦於接近懸臂樑 操作例2聚焦於懸臂樑固定座位置。第⑽及此圖分別顯亍 操:例1及操作例2中入射光照射在懸臂樑的不 位置之配置圖。 』叫日J个Μ 第4Α及4Β圖分別顯示操作例i及操作例2中微分 (dC/dV)-位置的關係。請參閱第“圖,由於波 微分電容訊號下降(芸1288248 V. Inventive Note (6) The loudest is loud; in Operation Example 2, the incident light is irradiated at the position 2 of the reflecting surface of the cantilever beam, so that the scanning region is affected by the optical absorption caused by the impurity in the operation example 2 The smallest is equivalent to using a long wavelength ^ light source without light disturbance. Please refer to Fig. 3A, where 丨 and 2 respectively show the focus position of the operation example 丨 and the incident light of the operation 2, and the operation example 丨 focuses on the approaching cantilever beam. The operation example 2 focuses on the position of the cantilever beam holder. (10) and this figure show the arrangement of the incident light at the non-position of the cantilever beam in the example 1 and the operation example 2, respectively. 』日日J Μ The fourth and fourth diagrams show the relationship between the differential (dC/dV)-position in the operation example i and the operation example 2, respectively. Please refer to the figure "Figure, due to wave differential capacitance signal drop (芸
所產:的雜;,致光學吸收,其中載子I 叫ectmn)現象導致材料中,低載子濃度區的Produced: the impurity; the optical absorption, in which the carrier I is called ectmn) causes the material to be in the low carrier concentration region.
^ dC dC 子濃度區的微分電容訊號差異::低::電農f區:高載 ^下降,導致對比較差的微…;== = : 架構,因無光學吸收現象,•可使:之表面成像 增強,如第4Β圖所示。 Λ刀電合影像對比明顯 # ί t μ ^ t ^ 2 ==广接面寬度二二產生的光y 決差可達50%以上。若採 囬見度%乍,其 為電::掃描料故 象,將可測得精確的p-讀面寬度,如第5β口圖所吸收現 1288248 92119918 车月日 條正 五、發明說明(7) 第6A及6B圖分別顯示操作例1及操作例2中,量測一金 氧半元件結構的二維載子分佈影像。請參閱第6 A圖,由於 波長6 7 0奈米的紅光雷射所引起的光學吸收亦產生導電探 針與掃描面間的表面光電壓效應,該效應使得觀察到的載 子分佈影像較實際為廣,亦即產生電性接面位移,該缺點 已明顯影響分析結果的精確度,如測得的等效通道長度變 短便是一例,光學吸收所產生的光電壓效應導致量測到的 等效通道長度(effective channel length) L (結果為 529 nm)較實際的等效通道長度[2 (結果為596 nm)窄,其誤差 可達11. 2%以上。該缺點也嚴格限制此一系統在次5 〇奈米 元件材料上的分析能力。若採用本專利設計,以長波長雷 射做為電性掃描探針顯微鏡之表面成像架構,因無光學吸 收現象,將可測得精確的等效通道長度L2,如第6B圖所 示。 此外’由於掃描電流顯微鏡(conduct i ve a tom i c force microscopy,C-AFM)、掃描電位顯微鏡(scanning Kelvin force microscopy,SKM)與掃描展阻顯微鏡 (scanning spreading resistance microscopy,SSRM)之 架構與掃描電容顯微鏡之架構雷同,基於相同原理,亦可 利用長波長雷射光源做為表面形貌影像成像架構,降低光 擾效應對量測結果的影響。 [本案特徵及效果] 本發明之特徵與效果在於利用長波長雷射光源做為表 面形貌影像成像架構,該雷射光波長可為丨.3或1. 5 5微^ dC dC sub-concentration zone differential capacitance signal difference:: low:: electrician f zone: high load ^ drop, resulting in a relatively poor micro...; == = : architecture, due to no optical absorption, can make: The surface image is enhanced as shown in Figure 4. The contrast of the electric image of the sickle is obvious. # ί t μ ^ t ^ 2 == The width of the light y produced by the width of the wide joint is more than 50%. If the visibility is 乍, it is electricity:: the image of the scanned material, the accurate p-reading width can be measured, such as the absorption of the 5th mouth map, 1288248 92119918, the month of the month, the fifth, the invention ( 7) Figs. 6A and 6B respectively show two-dimensional carrier distribution images of the structure of a gold-oxide half element in the operation example 1 and the operation example 2. Referring to Figure 6A, the optical absorption caused by the red laser at a wavelength of 607 nm also produces a surface photovoltage effect between the conductive probe and the scanning surface. This effect makes the observed carrier distribution image more practical. To be wide, that is, to produce electrical junction displacement, this shortcoming has obviously affected the accuracy of the analysis results. For example, the measured equivalent channel length becomes short, and the photovoltage effect produced by optical absorption is measured. The effective channel length L (resulting at 529 nm) is narrower than the actual equivalent channel length [2 (resulting at 596 nm), and the error is 11.2% or more. This shortcoming also severely limits the analytical capabilities of this system on the next 5 nanometer component materials. If this patented design is used, long-wavelength lasers are used as the surface imaging architecture of the electrical scanning probe microscope. Since there is no optical absorption, the exact equivalent channel length L2 can be measured, as shown in Fig. 6B. In addition, due to the scanning current microscopy (C-AFM), scanning potential microscopy (SKM) and scanning diffusion resistance microscopy (SSRM) architecture and scanning capacitance The structure of the microscope is similar. Based on the same principle, a long-wavelength laser source can also be used as the surface topography image imaging architecture to reduce the effect of the optical interference effect on the measurement results. The present invention is characterized in that the long-wavelength laser light source is used as the surface topography image imaging structure, and the wavelength of the laser light may be 丨.3 or 1. 5 5 micro.
0522-10185TWFl(Nl) ;jammgwo.ptc 第11頁 12882480522-10185TWFl(Nl) ;jammgwo.ptc Page 11 1288248
案號 92119918 五、發明說明(8) 米,因長波長雷射之 皆無光學吸收現象, 干擾,將可使微分電 载子分佈影像、測得 面形貌成像架構的雷 兼顧同步分析材料表 此外,本發明所 探針顯微鏡裝置,對 具光擾效應,因此能 的材料適用性,亦易 光子此ΐ低,對多數半導體材料而言 因此不會產生電性量測分析時的光學 容影像對比明顯增強、可獲致精確的 精確的ρ~η接面寬度以及徹底解決表 射光源對電性訊號的干擾現象,同時 面形貌的目的。 提供使用長波長雷射光源之電性掃描 ,大多數半導體材料而言,幾乎都不 提供更精確的分析結果,並兼顧廣泛 與現行的量測分析設備進行整合。 Τ然本發明已以較佳實施例揭露如上,缺盆並 神和範圍内,當可作更動】者,在不脫離本發明之精 田視後附之甲印專利範圍所界定者為準。 固Case No. 92119918 V. Inventive Note (8) Meters, because of the long-wavelength laser, there is no optical absorption phenomenon, and the interference will make the differential electric carrier distribution image, the measured surface topography imaging architecture, and the synchronous analysis material table. The probe microscope device of the invention has the effect of light disturbance, and therefore the material suitability of the energy, and the photon is also low, and the optical image contrast of the electrical measurement analysis is not generated for most semiconductor materials. Obviously enhanced, accurate and accurate ρ~η junction width can be obtained, and the interference phenomenon of the surface light source to the electrical signal can be completely solved, and the surface topography is also used. Providing electrical scanning using long-wavelength laser sources, most semiconductor materials offer virtually no more accurate results and are widely integrated with existing metrology analysis equipment. The invention has been described above with reference to the preferred embodiments, and the scope of the invention is not limited by the scope of the patent application of the present invention. solid
年 月_日修正 1288248 案號 92119918 圖式簡單說明 第1圖係顯示本發明之掃描電性探針顯微鏡的機能區 塊圖(functional block diagram); 第2圖係顯示本發明之掃描電性探針顯微鏡利用長波 長雷射光源做為表面成像架構配置圖; 第3 A圖係顯示操作例中入射光照射在懸臂樑之反射面 的不同位置之配置圖,第3B及3(:圖分別顯示操作例1及操 作例2中入射光照射在懸臂樑之反射面的不同位置之配 第4Α及4Β圖分別顯示操作例i及操作例2中微分 (dC/dV)-位置的關係; 第5A及5B圖分別顯示操作例j及操作例2中電性 度的二維影像;以及 文®見 /第6A及6B圖分別顯示操作例i及操作例2中二維載子八 佈影像。 77 [符號說明] 1 0 0〜樣品基座; 110〜AC訊號源; 1 2 0〜直流偏壓; 20 0〜待測樣品; 3 0 0〜懸臂樑; 32 0〜導電探針; 4 0 0〜長波長光源; 40 2〜入射光;Year _ Day Correction 1288248 Case No. 92119918 Brief Description of the Drawings Fig. 1 shows a functional block diagram of a scanning electrical probe microscope of the present invention; Fig. 2 shows a scanning electrical probe of the present invention. The needle microscope uses a long-wavelength laser source as a surface imaging architecture configuration diagram; the 3A diagram shows a configuration diagram of incident light irradiated at different positions on the reflection surface of the cantilever beam in the operation example, 3B and 3 (: respectively In the operation examples 1 and 2, the incident light is irradiated to different positions of the reflecting surface of the cantilever beam, and the fourth and fourth graphs show the relationship of the differential (dC/dV)-position in the operation example i and the operation example 2, respectively; And FIG. 5B respectively show the two-dimensional images of the electrical degrees in the operation example j and the operation example 2; and the diagrams of the texts / 6A and 6B respectively show the two-dimensional carrier eight cloth images in the operation example i and the operation example 2. 77 [Symbol description] 1 0 0~sample base; 110~AC signal source; 1 2 0~DC bias; 20 0~sample to be tested; 3 0 0~cantilever;32 0~conductive probe; 4 0 0 ~ long wavelength light source; 40 2 ~ incident light;
1288248 案號 92119918 A_η 曰 修正 圖式簡單說明 42 0〜長波長偵測裝置; 4 2 2〜反射光; 44 0〜光學校準裝置; 6 0 0〜鎖相放大器; 70 0〜控制系統裝置; 80 0〜回授電路; 1 、2〜分別顯示操作例1及操作例2入射光的聚焦位 置1288248 Case No. 929198 A_η 曰 Correction diagram simple description 42 0~ long wavelength detection device; 4 2 2~ reflected light; 44 0~ optical calibration device; 6 0 0~ lock-in amplifier; 70 0~ control system device; 80 0~ feedback circuit; 1 and 2~ respectively show the focus position of the incident light of operation example 1 and operation example 2
Mi〜量測到的接面寬度; M2〜實際的接面寬度; k〜量測到的等效通道長度 L2〜實際的等效通道長度。Mi~ measured joint width; M2~ actual joint width; k~ measured equivalent channel length L2~ actual equivalent channel length.
0522-10185TWF1(Nl);j ammgwo.ptc 第14頁0522-10185TWF1(Nl);j ammgwo.ptc第14页
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92119918A TWI288248B (en) | 2003-07-22 | 2003-07-22 | Electrical scanning probe microscopy device |
US10/861,385 US6975129B2 (en) | 2003-06-17 | 2004-06-07 | Electrical scanning probe microscope apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW92119918A TWI288248B (en) | 2003-07-22 | 2003-07-22 | Electrical scanning probe microscopy device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200504382A TW200504382A (en) | 2005-02-01 |
TWI288248B true TWI288248B (en) | 2007-10-11 |
Family
ID=39202962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92119918A TWI288248B (en) | 2003-06-17 | 2003-07-22 | Electrical scanning probe microscopy device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI288248B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI495838B (en) * | 2011-01-10 | 2015-08-11 | Hon Hai Prec Ind Co Ltd | Image measuring apparatus |
EP2706560B1 (en) * | 2012-09-06 | 2017-11-22 | Imec | Method for determining local resistivity and charge carrier concentration using a scanning spreading resistance measurement set-up |
-
2003
- 2003-07-22 TW TW92119918A patent/TWI288248B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200504382A (en) | 2005-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2516292B2 (en) | Atomic force microscope | |
US5289004A (en) | Scanning probe microscope having cantilever and detecting sample characteristics by means of reflected sample examination light | |
US7615738B2 (en) | Scanning probe microscope assembly and method for making spectrophotometric, near-field, and scanning probe measurements | |
US6242734B1 (en) | Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images | |
US9404855B2 (en) | Method to obtain absorption spectra from near-field infrared scattering using homo-dyne detection | |
EP3500864A1 (en) | Infrared characterization of a sample using peak force tapping | |
CN101173885B (en) | Near-field optical microscope system for micro-cell mesomeric state/transient state photoelectric detection and scanning image | |
US7193424B2 (en) | Electrical scanning probe microscope apparatus | |
Linnemann et al. | Characterization of a cantilever with an integrated deflection sensor | |
US6975129B2 (en) | Electrical scanning probe microscope apparatus | |
CN106645807A (en) | Photoelectrical coupling environment-controllable atomic force microscopy test system | |
CN109799369A (en) | Atomic force microscope external equipment multi-parameter in-situ measurement system and measurement method | |
CN108562764A (en) | A kind of mechanical-optical setup device for vacuum environment type atomic force microscope | |
TWI288248B (en) | Electrical scanning probe microscopy device | |
CN206193031U (en) | Micro - test system of controllable atomic force of photoelectric coupling environment | |
JP2002156409A (en) | Measuring sonde for detecting electrical signal in integrated circuit, method for using the measuring sonde, method for manufacturing the measuring sonde and measuring system by the measuring sonde | |
CN114217095B (en) | Scanning probe microscope suitable for semiconductor defect location | |
Janus et al. | Design, technology, and application of integrated piezoresistive scanning thermal microscopy (SThM) microcantilever | |
Lin et al. | Development of a cryogenic passive-scattering-type near-field optical microscopy system | |
Li et al. | Development of a multi-functional multi-probe atomic force microscope system with optical beam deflection method | |
KR101493836B1 (en) | Microscopy Scanning Photocurrent and Photovoltage | |
Naruse et al. | Fourier transform photoabsorption spectroscopy based on scanning tunneling microscopy | |
Xiao et al. | A novel 3D traceable optical beam detection system designed for probe-scanning metrological AFM | |
Dal Savio et al. | A compact sensor head for simultaneous scanning force and near-field optical microscopy | |
Danzebrink | Optoelectronic detector probes for scanning near‐field optical microscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |