TWI287628B - Ultraviolet-visible lighting detector - Google Patents

Ultraviolet-visible lighting detector Download PDF

Info

Publication number
TWI287628B
TWI287628B TW95131973A TW95131973A TWI287628B TW I287628 B TWI287628 B TW I287628B TW 95131973 A TW95131973 A TW 95131973A TW 95131973 A TW95131973 A TW 95131973A TW I287628 B TWI287628 B TW I287628B
Authority
TW
Taiwan
Prior art keywords
ultraviolet
visible light
hole
density
quantum dot
Prior art date
Application number
TW95131973A
Other languages
Chinese (zh)
Other versions
TW200811424A (en
Inventor
Jia-Min Shieh
An-Thung Cho
Yi-Fan Lai
Bau-Tong Dai
Original Assignee
Nat Applied Res Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Applied Res Laboratories filed Critical Nat Applied Res Laboratories
Priority to TW95131973A priority Critical patent/TWI287628B/en
Application granted granted Critical
Publication of TWI287628B publication Critical patent/TWI287628B/en
Publication of TW200811424A publication Critical patent/TW200811424A/en

Links

Abstract

One kind of ultraviolet-visible lighting detector characterizes a sensing film, which is formed by nano holes of silicon dioxide (mesoporous silica, MS) with forming by nano hole silicon dioxide embedded in the passageway a quantum dot array of nanocrystal (NC) or germanium. This invention with ultraviolet-visible lighting detector has an extremely good stability obviously.

Description

,1287628 • 九、發明說明: • 【發明所屬之技術領域】· 本發明係有關於一種紫外-可見光光偵測器,尤其係有 關於一種矽奈米量子點紫外_可見光光偵測器,其具有極佳 的效能穩定性。 【先前技術】 紫外光(Ultraviolet,UV)偵測器目前已廣泛地被應用於 • 火災監測、污染分析、天文觀測、醫療儀器,甚至於軍事 用途上,而近來更是希望能利用紫外光偵測器搭配氮化銦 鎵(InGaN)等發光二極體(LED)或是雷射,以形成紫外_藍光 資料存取系統。然而,習知的紫外光偵測器在紫外光偵測 的過程中,其對紫外線的吸收容易造成偵測器中元件的溫 度上升,致使元件的效能受到影響,甚至造成該元件的損 害。因此紫外光偵測器除了需要有一定的訊號/雜訊比外, 其穩定度也是非常重要的。 • 目前被應用於製備紫外光偵測器的材料,仍以三五族 (Πΐ-ν)金屬之半導體材料為主,例如氮化鎵(GaN)、氮化鋁 鎵(AlGaN)等。由於這些材料的價格不低’致使其製造本仍 …、法有效的降低。為解決此一問題,目前已有許多研究團 ,試著以矽基材料取代三五族金屬之半導體材料,以達到 喊省貝源與降低成本的目的。然而,目前除了能階稱大的 碳化矽有較完整的研究外,其餘的矽基材料仍有很大的進 步空間。先前由美國科學基金會(U.S.NSF)所支持的一研究 ,1287628 計晝中提出了 _接 陽極處理方#f"奈料子點紫外光賴11,其係利用 電泳方式將此為1奈米的科細粒後,再利用 進行偵測絲耗侧好峨財,而後 極為=:致使 良好之石夕奈米量子點紫外光偵測 的幾個特點:⑴均勺的大…卜九價L而具備以下 碎rlr % )勾勺的奈米1子點尺寸;(2)量子點堆疊良, 1287628 • Nine, invention description: • [Technical field of the invention] The present invention relates to an ultraviolet-visible light detector, and more particularly to a nanometer quantum dot ultraviolet-visible light detector, Excellent performance stability. [Prior Art] Ultraviolet (UV) detectors have been widely used in fire monitoring, pollution analysis, astronomical observation, medical instruments, and even military applications. Recently, it is hoped to use ultraviolet light detection. The detector is equipped with a light-emitting diode (LED) such as indium gallium nitride (InGaN) or a laser to form an ultraviolet-blue light data access system. However, in the ultraviolet light detection process, the absorption of ultraviolet light by the conventional ultraviolet light detector is likely to cause the temperature of the component in the detector to rise, which may affect the performance of the component and even cause damage to the component. Therefore, in addition to the need for a certain signal/noise ratio, the UV detector is also very important. • Materials currently used in the preparation of UV detectors are still based on semiconductor materials such as gallium nitride (GaN) and aluminum gallium nitride (AlGaN). Because the price of these materials is not low, it has caused the manufacturing cost to be reduced. In order to solve this problem, many research groups have tried to replace the semiconductor materials of the three-five metals with bismuth-based materials in order to achieve the purpose of calling for the province and reducing costs. However, in addition to the relatively complete research on the large-scale carbonized niobium, the remaining niobium-based materials still have a lot of room for further development. A study previously supported by the US Science Foundation (USNSF), 1287628, proposed the _ anode treatment side #f" 奈子点点光光赖11, which is 1 nanometer by electrophoresis. After the fine grain, it is used to detect the silk consumption side of the good money, and then extremely =: several characteristics that cause the good Shi Xi nano quantum point ultraviolet light detection: (1) the size of the scoop is large... Has the following broken rlr %) nanometer 1 sub-point size; (2) quantum dot stacking good

古(7 備高品質的界面);(3)含量子點之薄膜的品質 仍未有可符合此三種條件之料米量子點紫外 的設計’或是製備此種侧㈣製程被提出,因 1::::—種能符合此三種特性之矽奈米量子點紫外光 貞“為便成為一件極為重要的事。 【發明内容】Ancient (7 high-quality interface); (3) the quality of the film at the sub-point has not yet met the three conditions of the material quantum dot UV design 'or prepare this side (four) process is proposed, because 1 ::::—The nano-quantum dot ultraviolet ray that meets these three characteristics is “very important thing.” [Summary]

為解决别述習知紫外光谓測器所存在的缺點,本發明 之目的即在於提供-種以石夕基(silic〇i>base)為基礎的紫外_ 可見光光偵測器,其除可用於偵測紫外光外亦可用於偵測 可見光,且可相容於現有的半導體製程甲。 為達成本發明之目的,根據本發明所指出之紫外_可見 光光偵測杰,其特徵在於具有一感測層,且該感測層係由 一奈米孔洞二氧化石夕(mesoporous silica,Ms)與一形成於該 奈米孔洞二氧化矽中之孔道中的奈米微晶(nan〇crystal,NC) 矽(或鍺)之量子點陣列所構成。該感測層於紫外光與可見 光之波長範圍的光源照射下具有極佳的光電響應。 1287628 本發明之紫外-可見光光偵測器,可進一步包含: 一石夕基板; 一形成於該矽基板上的感測層;以及 一形成於該感測層 上的氧化銦錫(indium tin oxide, ITO)層;In order to solve the shortcomings of the conventional ultraviolet photometric detector, the object of the present invention is to provide an ultraviolet-visible light detector based on silic〇i> It can also be used to detect visible light in addition to detecting ultraviolet light, and is compatible with existing semiconductor processes. For the purpose of the present invention, the ultraviolet-visible light detection according to the present invention is characterized in that it has a sensing layer, and the sensing layer is composed of a nanometer pore magnetite (mesoporous silica, Ms). And consisting of a quantum dot array of nanocrystals (NC) 矽 (or 锗) formed in a pore in the nanoporous ceria. The sensing layer has an excellent photo-electric response when illuminated by a source of light in the wavelength range of ultraviolet light and visible light. 1287628 The ultraviolet-visible light detector of the present invention may further comprise: a stone substrate; a sensing layer formed on the germanium substrate; and an indium tin oxide formed on the sensing layer. ITO) layer;

八中’该感測層係由一奈米孔洞二氧化石夕(mesoporous silica,MS)與一形成於該奈米孔洞二氧化矽中之孔道内壁 上的奈米微晶(nanocrystal,NC)矽(或鍺)之量子點陣列所構 成,且該感測層於吸收紫外光及/或可見光波長範圍的光源 後會產生一光電響應。 本發明紫外_可見光光偵測器由於係以矽(Si)與氧(0) 所組成之奈米微結構所構成⑽基材料來製備其感測層, 因此本發明紫外·可見光光偵測器的製備可完全相容於現 =的半導體製財,且由於感測層僅係由⑪、錯與氧所構 成’故而不會發生製程上交又污染的問題。The sensory layer consists of a nanoporous silica crystal (MS) and a nanocrystal (NC) formed on the inner wall of a pore formed in the nanoporous ceria. (or 锗) of quantum dot arrays, and the sensing layer produces a photoelectric response after absorbing light sources in the ultraviolet and/or visible wavelength range. The ultraviolet-visible light detector of the present invention prepares the sensing layer by using the (10) base material composed of the nanostructures composed of yttrium (Si) and oxygen (0), so the ultraviolet/visible light detector of the present invention The preparation can be completely compatible with the current semiconductor manufacturing, and since the sensing layer is composed only of 11, wrong and oxygen, the problem of process turn-up and contamination does not occur.

本發明將藉由下述的詳細說明及實施例做進一 明,這些實施舰不_本翻前面所縣之内容。孰習 本發明之技藝者,可做4b許之改饮# … 一疔之改良與修飾,但仍不脫離本 發明之範疇 【實施方式】 勺人根sr月所指出之紫外,光光偵測器,盆·為 舆-形成於該奈米孔两二氧二二氧切_ 中之孔上的奈米微 7 ,1287628 nc_Ge)之高密度量子 或錯(以下簡稱 外笊乖孔洞 r 和儿啰具有高達75%的高孔隙率 (:^)、極大的表面積(約麵^⑼,以及可調整的孔 狀寸大小(2〜1〇 nm),亦即其 =,製備:因此本發明的感測層即= 丁; 乳切的孔道表面上形成 nc-Si (或noGe)的量子點_來製得。 一准 、前述量子點陣列中之娜(或nc剑的尺寸於本發明 、中並沒有制的限制,但基於考量奈米孔洞二氧化石夕中孔 迢直徑的大小’其較佳為2〜5 nm。另外,前述(或 nc-Ge)的讀於本發日种亦沒有制的限制,但為使本發 明感測層有較佳之光電響應,其密度較佳為ΐχΐ()17〜5χΐ〇ΐ8 cm3 〇The present invention will be further exemplified by the following detailed description and embodiments. Those skilled in the art of the present invention can do the improvement and modification of the 4b Xuzhishen drink, but still do not deviate from the scope of the invention. [Embodiment] The ultraviolet light and light detection indicated by the scoop human root sr month , a pot of ytterbium - a high-density quantum or error formed by the nano-micron, 1287628 nc_Ge formed on the pore of the nanoporous dioxodioxide _ (hereinafter referred to as the external pores r and啰 has a high porosity (:^) of up to 75%, an extremely large surface area (approximately ^(9), and an adjustable pore size (2~1〇nm), ie its =, preparation: thus the invention The sensing layer is = butyl; the quantum dot _ of the nc-Si (or noGe) is formed on the surface of the milk-cut channel. The quasi-there is the size of the nc sword in the quantum dot array (or the size of the nc sword in the present invention, There is no restriction on the system, but it is based on the size of the hole diameter of the nanopore in the nanopore, which is preferably 2 to 5 nm. In addition, the aforementioned (or nc-Ge) reading is not found in the present day. Limitation of the system, but in order to make the sensing layer of the present invention have a better photoelectric response, the density is preferably ΐχΐ() 17~5χΐ〇ΐ8 cm3 〇

雨述於奈米孔洞二氧化石夕中形成石夕(或鍺)量子點陣列 的方法,於本發明中並沒有特別的限制,習知技藝者經由 閱讀本發明說明書所揭示之内容,可選用任何適合的習知 技術來執行,在此可舉出例子,包含離子佈植 (implantation)、氧化析出、傳統化學沉積法(CVD)、高密度 感應偶合電漿(inductively coupled plasma,ICP)化學氣相沉 積(CVD)法、電漿加強化學氣相沉積法(plasma enhanced CVD,PECVD)、脈衝式高密度電漿輔助原子層化學氣相沉 積法(plasma assistant atomic layer chemical vapor deposition, PAALD)等,但並不僅限於此。其中,以paalD來製備nc-Si 8 ,1287628 (或nc-Ge)之量子點陣列的效果最佳,此係由於此技術除了 能讓所形成之奈米量子點的密度大幅提昇外 ,同時亦可克 服其他技術製程時間過長、溫度過高與界面劣化等問題。The method of forming a cluster of quantum dots in the nanopore of the nano-holes in the evening is not particularly limited in the present invention, and those skilled in the art can select the contents disclosed in the specification of the present invention. Any suitable conventional technique can be used to exemplify, including ion implantation, oxidative precipitation, conventional chemical deposition (CVD), and high-intensity inductively coupled plasma (ICP) chemical gas. Phase deposition (CVD) method, plasma enhanced CVD (PECVD), plasma assist atomic layer chemical vapor deposition (PAALD), etc. But it is not limited to this. Among them, the preparation of nc-Si 8 , 1287628 (or nc-Ge) quantum dot array with paalD is the best, because this technology can greatly increase the density of the formed nano quantum dots. It can overcome the problems of long process time, high temperature and interface deterioration of other technologies.

^以PAALD為例’本發明感測層可藉由使用奈米孔洞 二氧化矽做為奈米模板(nanotemplate) ,並利用PAALD,以 氫格配碎㈤燒電漿’反覆的進行量子點成核揭露與量子 點合成等兩步驟,於低溫下(低於400t)在此奈米模板中的 c表面上形成表面態(surface_state)及量子偈限 (:m跡conflnement,Qc)特性可調控之均勾分布的高密 X二維nc-Si (或nc_Ge)的量子點陣列所製成。 參閱第-圖,為本發明利用pAALD在奈米孔洞二氧 了中形成n〇Sl (或nc_Ge)的量子點之步驟的示意圖。 八D製_單—週射分為步驟a與步驟b兩個部 i I 2 A部分駐要魏為進行奈米量子軸核點的揭 八路中步則部分則為進行量子點的合成。於此方法的步驟 孔祠二4/^ ^ 猎由减漿的能量贿部份奈米 —减矽10的孔道12内壁14表面的分 〜刀子的擴散通道並露出量子里占成 汗 ;)’於步驟B中’繼續利用===:成核 :聚16施力峨孔洞二氧化㈣的孔=;)〇與氫 子點2W量子點成核㈣18上==巾’以使量 ㈣壁Η上沉積奈米量子點22。接於孔心^ Taking PAALD as an example. The sensing layer of the present invention can be used as a nanotemplate by using nanoporous ceria as a nanotemplate, and using PAALD to perform a quantum dot formation in a hydrogen grid with a crushed (five) pyroelectric slurry. Two steps, such as nuclear exposure and quantum dot synthesis, form a surface state (surface_state) and a quantum limit (:m trace conflement, Qc) on the surface of c in the nano-template at low temperature (less than 400t). Hook distribution of high density X two-dimensional nc-Si (or nc_Ge) quantum dot arrays. Referring to Fig. 1, there is shown a schematic diagram of the step of forming quantum dots of n〇S1 (or nc_Ge) in nanoholes by using pAALD. The eight-D system-single-peripheral shot is divided into two parts: step a and step b. i I 2 A part of the station Wei is for the nano-quantum axis of the nucleus. The middle part of the step is the synthesis of quantum dots. The steps of this method are 祠2/4 ^ hunting by the energy-reducing part of the pulp-reducing part of the inner wall 14 of the channel 12 of the channel 12 to the diffusion channel of the knife and exposing the quantum lining into sweat;)' In step B, 'continue to use ===: nucleation: poly 16 施 force 峨 hole dioxide (four) hole =;) 〇 and hydrogen point 2W quantum dot nucleation (four) 18 on = = towel 'to make amount (four) on the wall Nano quantum dots 22. Connected to the hole

與步驟Β所構成的製程週期,重複:=進行步驟A 制進仃成核點的揭露與 9 .1287628 、 量子點的合成,最後即可於奈米孔洞二氧化矽10的孔道 • 12内形成均勻分布的高密度三維nc-Si (或nc-Ge)的量子點 陣列24。 此種以PAALD於奈米孔洞二氧化矽孔洞中形成量子 點之奈米團簇(nanodusters)的方法,包含數個反應。首先, • 經電漿溶解的SiHn (或GeHn)會以奈米級團簇的形式擴散 • 至奈米孔洞中,之後被吸收且包埋於奈米孔洞二氧化石夕 中。奈米孔洞二氧化矽孔洞内壁上大量的Si_〇H基可經由 • 脫氫反應(hydrogen_elimination reaction,HER) [Si_〇H +Repeat with the process cycle formed by the step :: = perform the step A to expose the nucleation point and the 9.1287628, the synthesis of quantum dots, and finally form in the pores of the nanoporous ceria 10 • 12 A uniformly distributed high density three-dimensional nc-Si (or nc-Ge) quantum dot array 24. Such a method of forming nanorods of quantum dots by PAALD in a pore of a nanometer pore contains a plurality of reactions. First, • Plasma-dissolved SiHn (or GeHn) diffuses in the form of nanoscale clusters • into the nanopores, which are then absorbed and embedded in the nanopore dioxide. A large number of Si_〇H groups on the inner wall of the pores of the nanopores can pass the hydrogen_elimination reaction (HER) [Si_〇H +

SiHn(GeHn) — Si-0-SiHm(GeHm) + H2]活化,以供作為 (或GeHn)的固著點(anchoring sites)。接著,進一步的脫气 反應[Si-0_SiHm(GeHm) -> Si_0_Sin(Ge)n + H2]會將SiHn(GeHn) — Si-0-SiHm(GeHm) + H2] is activated for the anchoring sites of (or GeHn). Next, a further degassing reaction [Si-0_SiHm(GeHm) -> Si_0_Sin(Ge)n + H2] will

Si-0_SiHm(GeHm)轉換為在奈米孔洞二氧化石夕中的%((^) 團鎮,進而形成量子點。 月(J述以PAALD製備本發明紫外_可見光光偵測器中的 感測層時,由於其係利用高動能的解離粒子,配合適當之 春 餘關露/f子點合成之週期進行製備,目此此製程同時 具有低溫(低於400°C)、快速(少於2分鐘),以及可進行大 面積製備等優點,且可與超大型積體電路⑽y丨啡e㈣ integtration,VLSI)的製程相容。 、可述習知奈米孔洞二氧化石夕的製備方法於本發明中並 沒有特別的限制,習知技藝者均了解其可藉由參閱先前已 公開之文獻加以製備。例如,藉由將一用以製備奈米孔洞 二氧化料先導物溶液(p_· SQhitiQn>x_㈣法形 1287628 、 成於P型石夕基板上,但並不僅限於此。前述之先導物溶液, - 例如可藉由將三團聯共聚物(例如,Pluronic P-123,簡稱 P123)的乙醇溶液加入酸催化(acid-catalyzed)的二氧化石夕溶 膠-凝膠(sol-gel)來製得,但並不僅限於此。前述之酸催化 二氧化矽溶膠-凝膠,例如藉由將四乙基矽(tetraethyl • 〇rthosilicate,TEOS)、水、氯化氫與乙醇的混合物於6〇〜8〇 , °C下回流(refluxing) 60〜120分鐘來加以製備,但並不僅限 於此。前述混合物的莫耳比率為1 : 0.008〜〇.〇3 : 3.5〜5.0 : • 0·003〜0力3 : 4〇(TEOS/P123/水/氣化氫/乙醇)。前述之先導 物溶液於調配完成後較佳係於室溫下先熟成(age) 3〜6小 時,之後再以3,000 rpm轉速旋轉塗佈於矽基板上。最後, 於40〜60°C下乾燥4〜6小時,再於i〇0〜120°c下烘烤3小 時,即可完成奈米孔洞二氧化矽的製備。 請先參閱第二圖(B),為以本發明感測層所製成之金氧 半(metal-oxide-silicon,M0S)結構之一實施例的剖面示意 圖。此M0S結構係由一 P型(p_type)矽基板26、一形成於 P型矽基板26上之奈米孔洞二氧化矽層28,以及一形成於 奈米孔洞二氧化矽層28上之氧化銦錫(indium tin oxide, IT0)層30所構成。P型矽基板26與氧化钢錫⑴^層3〇 表面上可分锻置-電性連接點32, 34。再參閱第二圖 (A),為第工圖⑼MOS結構中奈米孔洞二氧化石夕層別的 細部結構立體示意圖。由圖中可以看出加々的量子點36 係形成於奈米孔洞二氧化秒層28的孔道内壁%的底部, 並向上沉積。 1287628 由於根據本發明所指出之感測層中的奈米量子點陣列 " #有大量之表面態,故於室溫下在藍光與可見光波段範圍 内具有一肉眼可見與極佳之發光效能(>ι❻/〇),此表示其具 有極佳且數量龐大之激子(excit〇n)(電子電洞對)。此外,由 於本發明感測層具有利於載子穿遂之極薄的二氧化矽孔 • 壁,因此本發明感測層可以在不需進一步縮小奈米量子點 • 的條件下(例如,縮小至Inm),即可於藍光與可見光波段 範圍内具有極高的光電響應,例如對40〇nm的光於3V偏 • 壓下有0.4A/W之光電響應。前述之藍光與可見光波段範 圍係指320_700 nm的光線。 本發明感測層具有極佳的效能穩定性,其可於長時間 的10mW雷射照射下,仍具有一定之效能。當將本發明感 測層所製得之紫外-可見光光偵測器的樣品與習知紫外光 偵測器比較時,可發現本發明感測層具有良好的光電響應 (responsivity) 〇 鲁實施例一 製備具有本發明記憶特性層之MOS結構 首先,於一 P型矽基板上旋轉塗佈一 300 nm厚之奈米 孔洞二氧化矽層。 前述奈米孔洞二氧化矽層的製備,可藉由將三團聯共 聚物(Pluronic P-123,P123)的乙醇溶液加入酸催化 (acid-catalyzed)的二氧化石夕溶膠-凝膠(sol_gel)中,藉以製傷 出先導物溶液(precursor solution)。前述的酸催化的二氣化 12 1287628 T£〇S膠旋膠係藉由將四乙基矽⑽raethyl 〇rth〇silicate, S).、水、氣化氫與乙醇的混合物於6〇〜8〇t:下回流 1 UXlng) 60〜120分鐘所製備。前述混合物的莫耳比率為 ^ .〇〇8^〇.〇3 : 3.5^5.0 : 0.〇〇3^〇.〇3 : 40 (TEOS/P123/7JC/ 2化,醇)。將先導物溶液於室溫下熟成㈣3〜6小時 1)〜6以3,嶋_、3〇秒旋轉塗佈於石夕基板上。最後,於 昉下乾燥4〜6小時,隨後再於1〇〇〜12(rc下烘烤3小 才藉此即可製得供做用以生長nc-Si (或nc-Ge)之奈米模 j的不米孔洞二氧化梦層。此奈米孔洞二氧化碎層係經由 ,體’晶反應機制所合成,於此反應機制中此奈米結構 糸猎由分子自組裝(self_assembly)聚集所形成。 接著’藉由PAALD技術(以1秒/3秒的工作週期(此❼ CyCle)脈衝氫化石夕(1 sccm)與氫(2〇Osccm) /脈衝氫(2〇〇 ))於奈米孔洞一氧化石夕層的孔道(p〇re_channels)内部 表面上形成nc_Sl。經此製程後,即可於奈米孔洞二氧化矽 層的孔道(p〇re_channeis)内部表面上形成nc_Si,如第二圖 ㈧所示。藉此可於前述奈米孔洞二氧化石夕層中合成高密度 的nc_Si的量子點陣列。 最後,於奈米孔洞二氧化矽層上沉積一氧化銦錫 (indium tin oxide,IT0)層,且隨後分別於p型矽基板與氧 化銦錫’)層的表面上設置一電性連接點,以完成—Μ〇§ 結構的紫外光偵測器,如第二圖(B)所示。 由於所有的製程皆依序於高真空環境下執行,因此 nc-Si/Si〇2界面的品質與特性將得以被控制與製作。 1287628 將此MOS結構以穿透式電子顯微鏡(TEM)分析其奈 米孔洞二氧化矽層之截面,所得之穿透式電子顯微鏡影像 如第三圖所示。 參閱第三圖,其係顯示一具有nc-Si之奈米孔洞二氧 化石夕層截面的穿透式電子顯微鏡影像圖。第三圖左上角的 插圖顯示出明顯的晶格像(lattice fringes),此表示此nc-Si 具有高的結晶品質,且n(>Si所形成之量子點的尺寸約為 2〜5 nm,其密度<達 2·5χ1〇18 cm3。Si-0_SiHm(GeHm) is converted into %(()) clusters in the nano-holes of the nano-holes, and then forms quantum dots. Month (described in PAALD to prepare the sensibility of the ultraviolet-visible light detector of the present invention) When measuring the layer, it is prepared by using the dissociated particles with high kinetic energy, and the cycle of the appropriate spring residual dew/f sub-synthesis, so that the process has low temperature (below 400 ° C) and fast (less than 2 minutes), and can be used for large-area preparation, and can be compatible with the process of ultra-large integrated circuit (10) y 丨 e e (4) integtration, VLSI). The present invention is not particularly limited, and those skilled in the art will understand that it can be prepared by referring to the previously published literature. For example, by using a solution for preparing a nanoporous dioxide dioxide precursor (p_·SQhitiQn>;x_(四)法形1287628, formed on the P-type slab substrate, but is not limited thereto. The foregoing lead solution, for example, can be obtained by using a triplet copolymer (for example, Pluronic P-123, abbreviated as P123) Acid solution (acid-catalyzed) The sol-gel is prepared by, but not limited to, the above-mentioned acid-catalyzed cerium oxide sol-gel, for example, by tetraethyl 〇rthosilicate, TEOS. , water, a mixture of hydrogen chloride and ethanol is prepared at 6 Torr to 8 Torr, refluxing at 60 ° C for 60 to 120 minutes, but is not limited thereto. The molar ratio of the above mixture is 1: 0.008 〇. 〇3 : 3.5~5.0 : • 0·003~0 force 3 : 4〇 (TEOS/P123/water/vaporized hydrogen/ethanol). The above-mentioned lead solution is preferably matured at room temperature after the preparation is completed. (age) 3~6 hours, then spin-coated on the enamel substrate at 3,000 rpm. Finally, dry at 40~60 °C for 4~6 hours, then bake at i〇0~120°c. In the hour, the preparation of the nanoporous cerium oxide can be completed. Please refer to the second figure (B) for one of the metal-oxide-silicon (M0S) structures fabricated by the sensing layer of the present invention. A schematic cross-sectional view of the embodiment. The MOS structure is composed of a P-type (p_type) germanium substrate 26 and a nano-hole germanium dioxide layer 28 formed on the P-type germanium substrate 26. And an indium tin oxide (IT0) layer 30 formed on the nanoporous ceria layer 28. The P-type germanium substrate 26 and the oxidized steel tin (1) layer 3 can be divided and forged. - Electrical connection points 32, 34. Referring again to the second figure (A), it is a three-dimensional schematic diagram of the fine structure of the nanopore dioxide layer in the MOS structure of the first working figure (9). It can be seen from the figure that the twisted quantum dots 36 are formed at the bottom of the inner wall % of the pores of the nanopore dioxide layer 28 and are deposited upward. 1287628 Since the nano-quantum dot array "# in the sensing layer according to the present invention has a large number of surface states, it has a visible and excellent luminous efficacy in the range of blue light and visible light at room temperature ( > ι❻/〇), which means that it has an excellent and large number of excitons (electron hole pairs). In addition, since the sensing layer of the present invention has an extremely thin ceria pore wall which facilitates the passage of the carrier, the sensing layer of the present invention can be reduced to the extent that the nano quantum dot is not further reduced (for example, to Inm) has a very high photoelectric response in the blue and visible light range, for example, a photoelectric response of 0.4 A/W at 40 〇 nm under 3 V bias. The aforementioned blue and visible light bands refer to light of 320_700 nm. The sensing layer of the invention has excellent performance stability, and it can still have certain performance under a long time of 10 mW laser irradiation. When comparing the sample of the ultraviolet-visible light detector prepared by the sensing layer of the present invention with a conventional ultraviolet light detector, it can be found that the sensing layer of the present invention has good photoelectric response (responsivity). A MOS structure having a memory characteristic layer of the present invention is first prepared by spin coating a 300 nm thick nanoporous ceria layer on a P-type germanium substrate. The above-mentioned nanoporous ceria layer can be prepared by adding an ethanol solution of a triad copolymer (Pluronic P-123, P123) to an acid-catalyzed dioxide sol-gel (sol_gel). In order to make a precursor solution. The aforementioned acid-catalyzed two-gasification 12 1287628 T 〇 S gum is obtained by mixing tetraethyl hydrazine (10) raethyl 〇rth 〇 silicate, S), water, hydrogenated hydrogen and ethanol at 6 〇 8 〇 t: Under reflux 1 UXlng) Prepared for 60~120 minutes. The molar ratio of the foregoing mixture is ^.〇〇8^〇.〇3 : 3.5^5.0 : 0.〇〇3^〇.〇3 : 40 (TEOS/P123/7JC/ 2, alcohol). The lead solution was cooked at room temperature (4) for 3 to 6 hours. 1)~6 was spin-coated on the Shixi substrate at 3, 嶋_, 3 〇 seconds. Finally, dry it for 4 to 6 hours under the armpits, and then bake it for 3 hours at rc~12 to make a nanometer for growing nc-Si (or nc-Ge). The nano-holes are oxidized in the mold layer. The nano-holes are formed by a body-crystal reaction mechanism. In this reaction mechanism, the nanostructures are formed by molecular self-assembly. Then 'by the PAALD technique (with a 1 second / 3 second duty cycle (this CyCle) pulse hydrogenation stone (1 sccm) and hydrogen (2 〇 Osccm) / pulse hydrogen (2 〇〇)) in the nano-hole nc_Sl is formed on the inner surface of the pores of the oxidized stone layer (p〇re_channels). After this process, nc_Si can be formed on the inner surface of the pore layer (p〇re_channeis) of the nanometer pore layer, as shown in the second figure (eight) As shown in the figure, a high-density nc_Si quantum dot array can be synthesized in the nanopore dioxide layer. Finally, indium tin oxide (IT0) is deposited on the nanoporous ceria layer. a layer, and then an electrical connection point is respectively disposed on the surface of the p-type germanium substrate and the indium tin oxide layer) UV detector into -Μ〇§ structure, such as a second (B) of FIG. Since all processes are performed in a high vacuum environment, the quality and characteristics of the nc-Si/Si〇2 interface can be controlled and produced. 1287628 The MOS structure was analyzed by a transmission electron microscope (TEM) for the cross section of the nanoporous ceria layer, and the resulting transmission electron microscope image was as shown in the third figure. Referring to the third figure, it is a transmission electron microscope image showing a cross section of a nano-hole with a nc-Si nanopore. The illustration in the upper left corner of the third figure shows a distinct lattice fringes, which indicates that the nc-Si has a high crystalline quality, and the size of the quantum dots formed by n (>Si is about 2 to 5 nm). , its density < 2. 5χ1〇18 cm3.

實施例二 以相同於實施例一中之方法,但將奈米孔洞二氧化發 層中改合成nc_Ge,藉以製備出相似的MOS結構。以二次 離子枭禮儀(secondary ion mass spectroscopy,SIMS)對實施 例一所製得之MOS結構的奈米孔洞二氧化石夕層進行成分 縱深分析(depth profiling measurement),所得結果示於第四Example 2 In the same manner as in Example 1, except that the nanopore dioxide layer was converted into nc_Ge, a similar MOS structure was prepared. The depth profiling measurement of the nanoporous silica dioxide layer of the MOS structure obtained in the first embodiment was carried out by secondary ion mass spectroscopy (SIMS), and the results were shown in the fourth.

圖。參閱第四®,根據SIMS的分析結果,並搭配穿透式 電子顯微郷像目進行分析,可騎ne_Ge亦可形成尺寸 為2〜_5nm的量子點,且其密度可達2 Qxi(^w。此一結 貝不’在奈米孔洞二氧切層巾的々與錯具有相似的成 實施例三 得之紫外光偵測器,以420 nm與 以檢測其於有/無420 nm與632 nm 將實施例一中所穿J 632 nm雷射的光照射, 14 1287628 雷射的光照射下之電流電顯性表現,所得結果示於第五 圖中。 由第五圖所知結果顯示,在未照光時,由於元件在逆 向偏廢下感受到1量阻障,其電流小於順向偏壓之電 流’表現出-極體的胜。H77 I / 妁特11在照光後,由於能隙結構,光 感應層極㈣捉正電荷造成―正内建電場,使得在逆向偏 壓下,累積在㈣材/奈米孔洞二氧化㈣之大量電子,得Figure. Refer to the fourth®, according to the analysis results of SIMS, and with the analysis of the transmission electron microscopy image, you can also form quantum dots with a size of 2~_5nm by riding ne_Ge, and its density can reach 2 Qxi(^w This oyster does not have a similar UV-detector in the third hole of the nano-porous oxidized layer towel, to 420 nm with 420 nm and to detect it with/without 420 nm and 632. Nm is irradiated with the light of the J 632 nm laser beam worn in the first embodiment, and the current is electrically dominant under the illumination of the light of 14 1287628 laser, and the obtained result is shown in the fifth figure. The results obtained by the fifth figure show that When the light is not illuminated, the current is less than the current of the forward bias as the element feels a resistance in the reverse bias. The H77 I / 妁11 is illuminated, due to the energy gap structure. The light-sensing layer pole (4) catches a positive charge and causes a positive internal electric field, so that under the reverse bias, a large amount of electrons accumulated in the (four) material/nano hole dioxide (four)

以經由高密度之量子點穿遂至正極,造成明顯之電流增 益,使的電流大於順偏壓下之電流。 由此結果可得知,本發明感測層確實可於藍光與可見 光波段下具有極高的光電響應,與極高之訊π桑比。 實施例四 實施例一中所製得之MOS結構中的奈米孔洞二氧化 石夕層’於至Μ下對應不同波長之激發光,所得光電響應結 果示於第六圖中。 圖中顯示光電響應圖譜涵蓋了紫外光至可見光波段, 習知,此-複合㈣由於奈米量子點與奈米細二氧化石夕 層之鍵結結構複雜,因此具有極寬( 350_700nm)之放光 頻帶’而光電響應®譜之所以涵蓋紫外絲可見光波段即 是因為有藍光波段的能隙所致,圖中顯示元件於590nm光 波照射下有G.9A/W的光激發電流,於紫外光波段約有 0.2-0.4A/W的光激發電流,頻譜圖中之光激發電流差異主 要來自於元件對光波的吸收效率大小與光照射時載子之再 15 1287628 回覆率(recombination)有關,此外,無論在任何波長的光線 照射下,元件均表現出強烈的整流特性。 ' 實施例五 將實施例一中所製得之紫外光偵測器,以不同波手 (420 nm、540nm、580 nm與640 nm)之脈衝雷射光日召射 以檢測其對各種波長之光電響應速度,所得結果示於第七 圖中。 由第七圖所得結果顯示,此紫外光檢測器對紫外_藍光 波段之光照射均有極快之光電響應速度。 實施例六 將實施例一中所製得之紫外光偵測器於2mW,420nm 光線照射與5V偏壓下檢測其電流_時間曲線,所得結果示 於第八圖中。 ""’ 由第八圖所得結果顯示,此紫外光檢測器並不會因長 時間的強光照射而造成其訊號有任何明顯的改變。曰 【圖式簡單說明】 第-圖係為本發明利用pAALD在奈米孔洞二氧化石夕中 形成nc-Si (或nc_Ge)的量子點之步驟的示意圖; 弟二圖⑷係為第二圖⑻M〇s結構中奈米孔洞二氧化 石夕層的細部結構立體示意圖; ⑻係為以本發明制層所製成之MOS結構之- 16 1287628 實施例的剖面示意圖; 第三圖係顯示具有nc-Si之奈米孔洞二氧化石夕層截面、 穿透式電子顯微鏡(TEM)影像圖,其中左上角插 圖為進一步經放大後的影像圖; 第四圖係為成長鍺量子點後,奈米孔洞二氧化矽層針對 鍺成分之SIMS分析結果圖; ㈢ ’ 第五圖為本發明紫外-可見光光檢測器於632ηηι與 々 420nm雷射光照射下之電流·電壓特性分析圖厂 第六圖為室溫下對應不同波長之激發光,其光電響應量 測結果圖; 3 第七圖為本發明紫外-可見光光檢測器不同波長脈衝雷 — 射光照射下之光電響應速度結果分析圖 苐八圖為本發明紫外可見光光檢測器於2mw,⑽ ®射光照射與5V偏壓下之電流_時間特性分析曲 線圖。 【主要元件符號說明】 10奈米孔洞二氧化梦 12孔道 14内壁 16氫電漿 18里子點成核位置 20矽烷 22量子點 24量子點陣列 1287628 、 26 P型矽基板 - 28奈米孔洞二氧化矽層 30氧化銦錫(ITO)層 32電性連接點 34電性連接點 - 36量子點 . 38孔道内壁By passing through a high-density quantum dot to the positive electrode, a significant current gain is caused, causing the current to be greater than the current at the forward bias. From this result, it can be seen that the sensing layer of the present invention can have a very high photoelectric response in the blue light and visible light bands, and an extremely high π sang ratio. Embodiment 4 The nanopore dioxide layer in the MOS structure prepared in the first embodiment corresponds to excitation light of different wavelengths to the underside, and the obtained photoelectric response result is shown in the sixth figure. The figure shows that the photoelectric response spectrum covers the ultraviolet to visible light band. It is known that this-composite (4) has a very wide (350-700 nm) due to the complex bonding structure between the nano-quantum dots and the nano-fine silica dioxide layer. The optical band's and the photoelectric response® spectrum cover the visible light band of the ultraviolet light because of the band gap of the blue light band. The figure shows that the element has a photoexcitation current of G.9A/W under the illumination of 590 nm light, in ultraviolet light. The band has a photoexcitation current of about 0.2-0.4 A/W. The difference in photoexcitation current in the spectrogram is mainly due to the absorption efficiency of the component to the light wave and the recombination of the carrier at the time of light irradiation. The component exhibits strong rectifying characteristics regardless of the illumination of any wavelength of light. In the fifth embodiment, the ultraviolet light detector prepared in the first embodiment is irradiated with pulsed laser light of different wave hands (420 nm, 540 nm, 580 nm and 640 nm) to detect the photoelectricity of various wavelengths. The response speed is shown in the seventh graph. The results obtained in the seventh graph show that the ultraviolet light detector has an extremely fast photoelectric response speed to the ultraviolet-blue light band. Example 6 The ultraviolet photodetector prepared in Example 1 was subjected to a current-time curve at 2 mW, 420 nm light irradiation and a 5 V bias, and the results are shown in the eighth figure. ""' The results obtained in Figure 8 show that the UV detector does not cause any significant change in its signal due to long-term exposure to strong light.曰 [Simplified description of the diagram] The first diagram is a schematic diagram of the steps of forming quantum dots of nc-Si (or nc_Ge) in the nanopore dioxide by using pAALD; the second diagram (4) is the second diagram (8) A schematic view showing the detailed structure of the nanopore dioxide layer in the M〇s structure; (8) is a cross-sectional view of the embodiment of the MOS structure made of the layer of the present invention - 16 1287628; -Si nano-holes, a layer of SiO2, and a transmission electron microscope (TEM) image, in which the upper left corner is a further enlarged image; the fourth image is the growth of the quantum dot, the nano The SIMS analysis results of the pores of the pores of the pores of the pores; (3) 'The fifth figure is the analysis of the current and voltage characteristics of the ultraviolet-visible light detector of the invention under the irradiation of 632 ηηι and 々420 nm laser light. Temperature response to different wavelengths of excitation light, its photoelectric response measurement results; 3 The seventh figure is the ultraviolet-visible light detector of the present invention, different wavelengths of pulse-thunder-lighting, the results of photoelectric response speed analysis The picture shows the UV-visible light detector of the present invention to 2mw, under the current irradiated with light emitted ⑽ ® _ 5V bias time characteristic curve analysis of FIG. [Main component symbol description] 10 nm hole dioxide dioxide dream 12 hole 14 inner wall 16 hydrogen plasma 18 neutron point nucleation position 20 decane 22 quantum dot 24 quantum dot array 1287628, 26 P type 矽 substrate - 28 nm hole dioxide oxidation矽 30 indium tin oxide (ITO) layer 32 electrical connection point 34 electrical connection point - 36 quantum dots. 38 channel inner wall

1818

Claims (1)

1287628 7·如申請專利範圍第1項所述之紫外-可見光光偵測器,其 中使該高密度量子點陣列形成於該奈米孔洞二氧化矽中 之孔這内壁上的方法,係為脈衝式高密度電漿輔助原子層 化學氣相沉積法。 8·如申請專利範圍第丨項所述之紫外_可見光光偵測器,其 中該紫外光與可見光波長範圍係指32〇_7〇〇nm的光波長。 9. 一種紫外-可見光光偵測器,其包含: 一石夕基板;The method of claim 1, wherein the method of forming the high-density quantum dot array on the inner wall of the hole in the nanoporous ceria is pulsed. High-density plasma-assisted atomic layer chemical vapor deposition. 8. The ultraviolet-visible light detector as described in the scope of the patent application, wherein the ultraviolet light and visible light wavelength range refers to a light wavelength of 32 〇 _7 〇〇 nm. 9. An ultraviolet-visible light detector comprising: a stone substrate; 一形成於該矽基板上的感測層;以及 一形成於该感測層上的氧化銦錫(indhjm tin⑽丨如, ITO) 其中减顺係由—奈米孔洞二氧化㈣—形成於該奈 米孔洞二氧切中之孔道内壁上的奈綠晶之高密度量 子點陣列所構成,且该奈米微晶為奈米微晶矽或奈米微晶 鍺,且該感測層於吸收紫料與可見光波長範_光源後 會產生一光電響應。 10·如申//利範圍第9項所述之紫外-可見光光偵測器,戈 中該示米微晶的密度為1Χ1017〜5xl0i8cm3。 、 中3亥不米礒晶的直徑大小為2〜5 nm。 12. 9項所述之紫外_可見細測器,宜 中列係由該奈米微晶以三維方式堆積而成:、 nm 中该奈+孔洞二氧切的該孔道直徑為2〜iq 、 20 1287628 14.如申請專利範圍第9項所述之紫外-可見光光偵測器,其 • 中使該高密度量子點陣列形成於該奈米孔洞二氧化矽中 之孔道内壁上的方法係為離子佈植(implantati〇n)、氧化 析出、傳統化學沉積法(CVD)、高密度感應偶合電漿 (inductively coupled plasma,ICP)化學氣相沉積(CVD) 法、笔漿加強化學氣相沉積法(plasma enhanced CVD, 、 PECVD)或脈衝式高密度電漿輔助原子層化學氣相沉積 法(plasma assistant atomic layer chemical vapor # deposition, PAALD)。 15·如申凊專利範圍第9項所述之紫外可見光光傾測器,其 中使該高密度量子轉削彡成於該奈米孔洞二氧化石夕中 之孔道内壁上的方法,係為脈衝式高密度㈣辅助原子 層化學氣相沉積法。 16.如申請專利範圍第9項所述之紫外·可見光光偵測器,其 中騎外先與可見光波長範圍係指32Q_7_m的光波 長0a sensing layer formed on the germanium substrate; and an indium tin oxide (indhjm tin (10), for example, ITO) formed on the sensing layer, wherein the subtractive system is formed by the nanopore dioxide (four) a high-density quantum dot array of naphthalene crystals on the inner wall of the channel in the methane hole, and the nanocrystallite is a nanocrystallite or a nanocrystallite, and the sensing layer is in the absorption purple material. An optical response is produced after the wavelength of the visible light source. 10. The ultraviolet-visible light detector of claim 9 in the scope of the application, wherein the density of the rice crystallites is 1Χ1017~5xl0i8cm3. The diameter of the crystal in the 3 hai is not 2 nm. 12. The ultraviolet-visible fine detector described in item 9 is formed by stacking the nanocrystallites in three dimensions: the diameter of the hole in the nanometer + hole dioxotomy in nm is 2~iq, 20 1287628. The ultraviolet-visible light detector of claim 9, wherein the method for forming the high-density quantum dot array on the inner wall of the pore in the nanoporous ceria is Ion implantation (implantati〇n), oxidative precipitation, conventional chemical deposition (CVD), high-intensity inductively coupled plasma (ICP) chemical vapor deposition (CVD), and plasma-enhanced chemical vapor deposition (plasma enhanced CVD, PECVD) or plasma assist atomic layer chemical vapor deposition (PAALD). The ultraviolet-visible light detector according to claim 9, wherein the method of pulsing the high-density quantum into the inner wall of the hole in the nano-hole of the nano-hole is a pulse High-density (four) auxiliary atomic layer chemical vapor deposition method. 16. The ultraviolet light-visible light detector according to claim 9, wherein the outer wavelength range of the visible light and the visible light wavelength range is 32Q_7_m.
TW95131973A 2006-08-30 2006-08-30 Ultraviolet-visible lighting detector TWI287628B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95131973A TWI287628B (en) 2006-08-30 2006-08-30 Ultraviolet-visible lighting detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95131973A TWI287628B (en) 2006-08-30 2006-08-30 Ultraviolet-visible lighting detector

Publications (2)

Publication Number Publication Date
TWI287628B true TWI287628B (en) 2007-10-01
TW200811424A TW200811424A (en) 2008-03-01

Family

ID=39201720

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95131973A TWI287628B (en) 2006-08-30 2006-08-30 Ultraviolet-visible lighting detector

Country Status (1)

Country Link
TW (1) TWI287628B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692250B2 (en) 2008-07-21 2014-04-08 Au Optronics Corporation Thin film transistor array substrate and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692250B2 (en) 2008-07-21 2014-04-08 Au Optronics Corporation Thin film transistor array substrate and method for fabricating the same

Also Published As

Publication number Publication date
TW200811424A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
Liu et al. Black silicon: fabrication methods, properties and solar energy applications
TWI262610B (en) Semiconductor light emitting device capable of suppressing silver migration of reflection film made of silver
CN105431940B (en) Utilize the LED light lamp of microminiature light emitting diode electrode assembly
CN107004745B (en) The manufacturing method of group iii nitride semiconductor light-emitting device
TW200845429A (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP2006236997A (en) Light emitting device and its manufacturing method
TW201015742A (en) Light emitting diode device and manufacturing method thereof
CN106229382B (en) A kind of silicon-doped gallium nitride nanobelt ultraviolet light detector and preparation method thereof
TWI299577B (en)
TW200805693A (en) Silicon solar cells comprising lanthanides for modifying the spectrum and method for the production thereof
TW200924214A (en) Solar cell
CN109132997A (en) (In) the GaN nano-pillar and the preparation method and application thereof being grown on Ti substrate
Ren et al. Facile synthesis and photoluminescence mechanism of ZnO nanowires decorated with Cu nanoparticles grown by atomic layer deposition
TWI287628B (en) Ultraviolet-visible lighting detector
CN104966617A (en) Composite photoanode for quantum dot sensitized solar cell and manufacturing method
Hou et al. InGaP/GaAs/Ge triple‐junction solar cells with ZnO nanowires
TW201021246A (en) A lighting device having high efficiency and a method for fabricating the same
Pu et al. Effective CdS/ZnO nanorod arrays as antireflection coatings for light trapping in c-Si solar cells
CN103078031A (en) Nano silver ring local surface plasmon enhanced light emitting diode and preparation method thereof
CN109873048A (en) A kind of manufacturing method of the outer opto-electronic device of transparent violet
CN106486560B (en) Plasma drop epitaxial GaAs quantum dot solar battery and its manufacturing method
Kang et al. InGaN-based photoanode with ZnO nanowires for water splitting
CN209507579U (en) The InGaN nano-pillar being grown on Ti substrate
CN208142209U (en) A kind of quasi- vertical structure p- diamond/i-SiC/n- diamond LED
Imamura et al. Effective passivation for nanocrystalline Si layer/crystalline Si solar cells by use of phosphosilicate glass

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees