TWI286395B - Method to manufacture luminescence diode-chips and luminescence diode-chips - Google Patents

Method to manufacture luminescence diode-chips and luminescence diode-chips Download PDF

Info

Publication number
TWI286395B
TWI286395B TW94133343A TW94133343A TWI286395B TW I286395 B TWI286395 B TW I286395B TW 94133343 A TW94133343 A TW 94133343A TW 94133343 A TW94133343 A TW 94133343A TW I286395 B TWI286395 B TW I286395B
Authority
TW
Taiwan
Prior art keywords
electroluminescent
conversion material
layer
electroluminescent diode
manufacturing
Prior art date
Application number
TW94133343A
Other languages
Chinese (zh)
Inventor
Gertrud Kraeuter
Berthold Hahn
Volker Haerle
Herbert Brunner
Dieter Eissler
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Application granted granted Critical
Publication of TWI286395B publication Critical patent/TWI286395B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

This invention relates to a method to manufacture luminescence diodes-chips, which are provided with a luminescence conversion-material, which has at least one luminous material. Thus a layer-compound is prepared, which includes a luminescence-diode layer-sequence for a number of luminescence diodes-chips and which has on the main surface for each luminescence diode-chip at least one electrical contact-surface for the electrical connection of the diode-chip. A layer adhesion-mediator is applied on the main surface and selectively removed from at least some parts of the contact-surfaces. Then at least one luminous material is applied on the main surface. Alternatively a luminescence conversion-material is applied on the main surface and selectively removed from at least some parts of the contact-surfaces. This invention also relates to a luminescence diode-chip provided with a luminescence conversion-material.

Description

1286395 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種電致發光二極體晶片,其以含有至少一 發光材料之電致發光轉換材料來製成。此外,本發明另涉 及此種電致發光二極體晶片之製造方法。 在發出電磁輻射的光電組件中,藉由澆注材料來包封電 致發光二極體晶片已爲人所知,其中電致發光轉換材料與 至少一發光材料相混合。此種包封例如藉由外殼空腔之澆 注來達成,該外殼空腔中安裝著一種電致發光二極體晶 片,或藉由濺鑛壓製機對一種安裝在導線架上的電致發光 二極體晶片進行濺鍍來達成上述的包封。 發光材料可藉由一種由電致發光二極體晶片所發出的主 電磁輻射來激發且發出一種次(secondary)輻射,其中主輻射 和次輻射具有不同的波長範圍。此組件所期望之彩色位置 例如可藉由主輻射和次輻射之混合比之調整來設定。 在使用上述的澆注材料時,會由於發光材料在澆注材料 中不均勻的分佈(其例如與發光材料微粒之沈積有關)而使 彩色位置發生變動。此外,就澆注材料之可加入的劑量, 電致發光二極體晶片之高度及/或電致發光二極體晶片在濺 鍍工具之空腔中之可定位性而言亦會造成一種製程上的容 許度(tolerance),其會對發射方向中配置在電致發光二極體 晶片之後的澆注材料之數量造成很大的變動且因此亦會使 此組件之彩色位置發生變動。此外,準確地分配該澆注材 料所用的配件在購買時所需之高費用以及各配件由於電致 1286395 發光轉換材料或發光材料之磨蝕所造成之損耗會以不可忽 視的方式作用在此組件的製造成本上。 【先前技術】 在WO 0 1/6561 3 A1中已揭示半導體組件之製造方法,其 中一種電致發光轉換元件直接施加在半導體本體上,這樣 所具有的優點是:發光材料可均勻地且數量已完全確定地 施加在半導體本體上。於是,此發光半導體晶片之均勻的 色相即可達成。 在上述方法中,半導體本體安裝在載體上,設有多個接 觸區且塗佈一層電致發光轉換元素。此塗層藉由適當的懸 浮液(其具有一種溶劑,此溶劑在塗佈之後會消失)來形成或 藉由塗佈一種黏合介面劑來形成,其上隨後施加一種發光 材料。 【發明內容】 本發明的目的是提供一種設有電致發光轉換材料之電致 發光二極體晶片之較佳的製造方法,其特別是可以簡單且 成本有利的方式來達成。此外,本發明亦提供一種設有電 致發光轉換材料之電致發光二極體晶片,其能以技術上較 簡易且成本有利的方式來製成。 上述目的以申請專利範圍第1或2項的方法以及申請專 利範圍第1 5項的電致發光二極體晶片來達成。電致發光二 極體晶片之有利的實施形式和本方法之較佳方式描述在申 請專利範圍各附屬項中。 本方法中須製備一種層複合物,其包含多個電致發光二 1286395 . 極體晶片用之電致發光二極體-層序列且在每一電致發光二 極體晶片用之一主面上具有至少一電性接觸面以在電性上 連接此電致發光二極體晶片。 依據第一種方法,在層複合物的主面上施加一層黏合介 面劑,其隨後選擇性地由接觸面之至少一部份去除。下一 步驟包括:施加至少一種發光材料至此層複合物之主面上。 在第二種方法中,電致發光轉換材料施加在層複合物之 I 主面上。此外,電致發光轉換材料選擇性地由接觸面之至 少一部份去除。 本方法中該電致發光轉換材料以技術上較簡易的方式同 時施加在一種共同之層複合物(例如,一種完整的晶圓)之多 個電致發光二極體晶片上。由於黏合介面劑或電致發光轉 換材料選擇性地由接觸面之至少一部份去除,則依據本方 法所製成的電致發光二極體晶片可像傳統的電致發光二極 體晶片一樣地被使用且特別是亦可達成電性上之接觸。 _ 基本上是在此種區域(其在橫向中與接觸面相重疊)中使 接觸面裸露,則電致發光轉換材料或發光材料(其施加在一 種已良好地界定之層(較佳是薄層)中)不會由於接觸面裸露 而受到影響。這些接觸面之至少一部份藉由選擇性地將黏 合介面劑或電致發光轉換材料去除而裸露,其中黏合介面 劑或電致發光轉換材料基本上只在接觸面之區域中被去 除。 當黏合介面劑可較電致發光轉換材料更容易被去除時, 則依據第一種方法使黏合介面劑選擇性地被去除時特別有 1286395 利。此外,有利的方式是使接觸面在施加一發光材料之前 即已裸露,使發光材料不會受到該裸露步驟之不良影響。 依據第二種方法在施加該電致發光轉換材料時,有利的 方式是首先施加一種黏合介面劑且隨後施加一種發光材 料。另一方式是優先在唯一的步驟中施加一種黏合性之電 致發光轉換材料,因此可節省一步驟。 層複合物較佳是具有一種施加在載體上以磊晶方式生長 _ 之半導體層序列。此半導體層序列可有利地直接以磊晶方 式生長在載體上或在其以磊晶方式生長之後施加在載體 上。 層複合物之電致發光二極體-層序列不必以單件方式形 成,在本方法之一種有利的實施形式中此層序列可劃分成 多個電致發光二極體晶片,其施加在一種共同的載體上且 藉此載體而固定在層複合物中。因此,電致發光轉換材料 可施加在電致發光二極體晶片之側面上。另一方式是其至 _ 少一部份可有利地以下述方式來達成:以單件方式所形成 的電致發光二極體-層序列沿著切割線而設有溝渠以便由主 面之方向來劃分多個電致發光二極體晶片。 發光材料或電致發光轉換材料較佳是藉由橡皮刮板施加 而成。因此,各別的材料在技術上可較簡單地且成本有利 地以一種均勻的薄層及大面積之方式而施加在層複合物之 整個主面上。 另一方式是發光材料或電致發光轉換材料藉由浸入至一 種轉換材料中施加而成,該轉換材料含有該發光材料或電 1286395 致發光轉換材料或含有此二種材料所形成的先質 (pre-stage) ° —成本特別低的過程是有利的,藉此同樣可以 大面積方式施加一種均句的薄材料層。 在另一過程中,發光材料或電致發光轉換材料較佳是藉 由靜電式噴粉過程施加而成。這適合用來以可特別微細地 分配劑量之方式來均勻地施加一種發光材料或施加一種目 前以固體形式存在的電致發光轉換材料。 | 電致發光轉換材料在第二種方法之有利的實施形式中藉 由塗粉過程施加而成,其中特別是首先施加靜電式噴粉過 程,然後加熱使黏合在主面上。塗粉過程適用於以可特別 微細地分配劑量之方式來均勻地施加一種電致發光轉換材 料。 在下一過程中,發光材料或電致發光轉換材料有利地藉 由轉換材料之噴灑而形成,此轉換材料含有該發光材料或 電致發光轉換材料或含有此二種材料所形成的先質。這是 > 一種技術上較簡單且成本有利的過程,藉此可均勻地施加 各別的材料。 噴灑過程中使用揮發性之驅動劑且另外使用一種氣流時 特別有利。 在本方法之另一實施形式中,發光材料或電致發光轉換 材料之施加是藉由多次噴灑來達成。因此可使塗佈過程達 成特別好的劑量分配。以此種方式可施加多個具有不同發 光材料之層或多個具有不同電致發光轉換材料之層。 在上述之施加過程之後較佳是藉由微影術以選擇性地去 1286395 除該黏合介面劑或電致發光轉換材料。此處可優先使用一 種微影術,其中藉由施加光罩材料層且使其結構化以產生 一種光罩。這可有利地以標準過程來達成,藉此可在光電 組件中以一般方式使半導體層或接觸金屬面被結構化。 另一方式是微影過程可包括一種已預製成的光罩的使 用,此光罩施加在主面上。因此,此過程”藉由施加一種由 光罩材料所構成的層且進行結構化以製成一種光罩”即可 省略。 除了微影術之外,可使用雷射束以去除該黏合介面劑或 電致發光轉換材料,即,各別的材料藉由雷射束之作用而 選擇性地被剝蝕。 本發明的電致發光二極體晶片在主面上具有至少一電性 接觸面,其中此主面設有一種電致發光轉換材料。在一種 區域(其在橫向中與接觸面相重疊)中此電致發光轉換材料 須具有凹口,使電性接觸面裸露出,即,電性接觸面之至 少一部份由電致發光轉換材料裸露出。 上述方法或電致發光二極體晶片之其它有利的實施形式 以下將依據第1 a至6d圖之實施例來詳述。 【實施方式】 各實施例和圖式中相同或作用相同之組件設有相同的參 考符號。所示的各組件和各組件之間的大小比例未依比例 繪出。反之,爲了較易了解之故圖中有些細部是以放大方 式來顯示。 第la圖顯示一種層複合物1〇,其具有一電致發光二極體 -10- 1286395 -層序列1,此層序列1施加在載體2上。電致發光二極體-層序列1例如是一種以磊晶生長的半導體層序列,其用於 多個電致發光二極體晶片中。載體2例如是一種生長基板, 其上生長該電致發光二極體-層序列。 另一方式是層複合物10亦可爲一種薄膜-層複合物,其 中電致發光二極體-層序列1生長在各別的生長基板上,然 後由此生長基板上剝離且施加(例如,黏合)在載體2(其例如 是一種由半導體材料所構成之載體基板)上。在電致發光二 極體-層序列1和載體2之間例如配置一種反射性之電性接 觸結構(未顯示),其上可使電致發光二極體-層序列1中所 產生的電磁輻射被反射且藉此使電致發光二極體-層序列導 電性地與載體2相連接。 電致發光二極體-層序列1例如以氮化物-化合物半導體 爲主,即,其較佳是含有八1*111山&1 +以,其中0$;^1,〇$;/ 且x + y^l。此材料未必含有上述公式中如數學式所示 之正確的成份。反之,此材料可含有一種或多種施體材料 以及其它成份,這些成份不會改變此材料之物理性質。爲 了簡單之故,上述公式只包含晶格(Al,In, Ga,N)之主要成 份,當這些成份之一部份亦可由少量之其它材料來取代時。 電致發光二極體-層序列在施加一種電流時例如會發出 一種由藍色-或紫外線波長範圍所構成之電磁輻射。此層序 列例如可具有一傳統之pn-接面,一種雙異質結構,一單一 量子井結構(SQW)或一多重量子井結構(MQW)。這些結構已 爲此行之專家所知悉,此處因此不再詳述。 -11 - iT1· S. J286395 在層複合物10之主面11上施加一種黏合介面劑6(參閱 第lb圖)。此黏合介面劑6對一種由電致發光二極體-層序 列1所產生之電磁輻射而言是可透過的且較佳是對此電磁 輻射具有老化穩定性。例如,可使用一種黏合介面劑,其 以聚矽氧爲主且對紫外線輻射具有老化穩定性。例如,一 種黏性的聚矽氧即適用於此處,其是一種由W a c k e r公司所 提供的黏合介面劑,其產品編號爲SLM 647。在室溫時大約 24小時可使此黏合介面劑硬化或在大約丨ovc時大約1小 時可使此黏合介面劑硬化。 然後,使此黏合介面劑6選擇性地由電性接觸面3去除, 使電性接觸面3至少一部份裸露出來而可各別地達成電性 上的接觸(參閱第lc圖)。 在下一步驟中,至少一種發光材料5施加在層複合物1 0 之主面1 1上。發光材料5本身不具備黏性,使其只能黏合 在黏合介面劑6已存在的位置上。各接觸面3情況需要時 例如可藉由未黏合在黏合介面劑6上之發光材料5所形成 的氣體束來清洗。 設有電致發光轉換材料(其例如由黏合介面劑6和發光材 料5所構成)之層複合物1〇然後沿著一種切割線(其在第ld 圖中是由虛線所示)而被劃分,這例如是藉由切鋸及/或刻劃 和折斷來達成。 例如,無機發光材料(例如,稀土族)適合用作上述之發光 材料,其特別是可包含以Ce或Tb來摻雜的石榴石(其較佳 是具有基本結構AsBsOi〇或有機發光材料(例如,戊二烯-發 •12- 1286395 光材料)。其它適當的發光材料例如已揭示在WO 98/12757 和WO 01/65613 A1中,其內容只要與本發明有關都可作爲 參考。 第2a圖中顯示層複合物1 0,其例如可像先前一樣依據第 1 a圖所示的層複合物來形成。此層複合物1 0上直接施加一 種黏性的電致發光轉換材料9,其包含至少一種發光材料 (參閱第2b圖)。此發光材料之重量成份在電致發光轉換材 料9中至少佔有50%,較佳是大於或等於60 Wt·%。爲了比 較之故,此處須注意:澆注材料(其中已混合著發光材料) 典型上具有5至20 Wt. %之發光材料。 基本上所有用在LEDs中已爲人所知的轉換劑都適合用 來施加在層複合物的表面上。例如,適合作爲轉換劑用之 發光材料和發光材料混合物如下: -氯矽酸鹽,例如,DE 1 0036940中及該文件所述之先前 技術中已揭示者, •正矽酸鹽,硫化物,硫金屬和釩酸鹽,其例如已揭示在 W〇2000/333 90及該文件所述之先前技術中, -鋁酸鹽,氧化物,鹵磷酸鹽,其例如已揭示在US 6616862 及該文件所述之先前技術中, -氮化物,Sione和Sialone,例如,DE 10147040中及該 文件所述之先前技術中已揭示者,以及 -稀土族之石榴石(例如,YAG:Ce)和鹼土族元件之石榴 石,其例如已揭示在US 2004-062699及該文件所述之先前 技術中。上述各文件之內容就其所述之發光材料之成份和 -13- 1286395 特性及其製造方法而言此處都可明確地作爲參考。 就可發出的彩色而言,在電致發光二極體晶片或電致發 光轉換材料中基本上並無限制。 例如,電致發光轉換材料9是以一種具有適當黏性的物 質而存在著,其具有一發光材料,黏合介面劑(例如,以聚 矽氧爲主者)以及情況需要時另具有其它材料(例如,溶 劑),例如,其可藉由橡皮刮板施加而成,其中電致發光轉 換材料9藉由一種橡膠唇或金屬軌以經由一濾器之孔或模 板之孔來進行塗佈(未顯示)。模板例如具有1 25微米之厚度 且設有多個孔,這些孔例如具有邊長大約3 5 0微米之四方 形的橫切面。另一方式是模板例如具有300微米之厚度且 設有四方形的孔,這些孔之邊長大約是300微米。 除了橡皮刮板之外,層複合物1 0亦可以主面1 1浸入一 適當的轉換材料中。橡皮刮板和此種浸入作用不只適合用 來施加該電致發光轉換材料或轉換材料,而且亦可用來施 加該黏合介面劑(參閱第la至Id圖所示的實施例)。 施加該電致發光轉換材料,轉換材料,發光材料或黏合 介面劑所用的其它過程例如可爲靜電式噴粉過程,塗粉過 程或噴灑過程,以後仍將詳述。噴濺或點滴塗佈基本上亦 可行。 第2c圖中顯示該電致發光轉換材料9選擇性地由接觸面 3去除之後的層複合物10。 使電致發光轉換材料或黏合介面劑選擇性地去除時例如 是藉由一種微影術來達成,如以下依據第3a至3d圖中所述1286395 IX. Description of the Invention: [Technical Field] The present invention relates to an electroluminescent diode wafer made of an electroluminescent conversion material containing at least one luminescent material. Furthermore, the invention further relates to a method of fabricating such an electroluminescent diode wafer. In photovoltaic modules that emit electromagnetic radiation, it is known to encapsulate an electroluminescent diode wafer by a potting material in which the electroluminescent conversion material is mixed with at least one luminescent material. Such encapsulation is achieved, for example, by casting a cavity of the housing in which an electroluminescent diode wafer is mounted, or by electrospraying a pair of electroluminescent diodes mounted on the lead frame The polar body wafer is sputtered to achieve the above encapsulation. The luminescent material can be excited by a primary electromagnetic radiation emitted by the electroluminescent diode wafer and emits a secondary radiation wherein the primary and secondary radiations have different wavelength ranges. The desired color position of the component can be set, for example, by adjusting the mixing ratio of the primary radiation and the secondary radiation. When the casting material described above is used, the color position is varied due to the uneven distribution of the luminescent material in the casting material, which is associated, for example, with the deposition of luminescent material particles. In addition, the dosage of the castable material, the height of the electroluminescent diode wafer and/or the positionality of the electroluminescent diode wafer in the cavity of the sputtering tool can also result in a process Tolerance, which causes a large variation in the amount of casting material disposed in the direction of emission behind the electroluminescent diode wafer and thus also causes variations in the color position of the assembly. In addition, the high cost of the fittings used to accurately dispense the potting material and the wear and tear of the parts due to the abrasion of the electro-optical 1286965 luminescence conversion material or luminescent material may act in the manufacture of this component in a non-negligible manner. Cost. [Prior Art] A method of manufacturing a semiconductor component is disclosed in WO 0 1/6561 3 A1, in which an electroluminescent conversion element is directly applied to a semiconductor body, which has the advantage that the luminescent material can be uniformly and quantitatively It is applied completely to the semiconductor body. Thus, a uniform hue of the light-emitting semiconductor wafer can be achieved. In the above method, the semiconductor body is mounted on a carrier, provided with a plurality of contact regions and coated with a layer of electroluminescent conversion elements. The coating is formed by a suitable suspension (which has a solvent which will disappear after coating) or is formed by coating an adhesive interface onto which a luminescent material is subsequently applied. SUMMARY OF THE INVENTION It is an object of the invention to provide a preferred method of fabricating an electroluminescent diode chip provided with an electroluminescent conversion material, which can be achieved in a particularly simple and cost-effective manner. Furthermore, the present invention also provides an electroluminescent diode wafer provided with an electroluminescent conversion material which can be fabricated in a technically simple and cost-effective manner. The above object is achieved by the method of claim 1 or 2 and the electroluminescent diode wafer of the fifteenth patent application. Advantageous embodiments of the electroluminescent diode chip and preferred embodiments of the method are described in the respective scope of the patent application. In the present method, a layer composite comprising a plurality of electroluminescent layers 1 286 359. The electroluminescent diode-layer sequence for a polar body wafer and on one of the major faces of each electroluminescent diode wafer is prepared. There is at least one electrical contact surface to electrically connect the electroluminescent diode wafer. According to a first method, a layer of adhesive interposer is applied to the major side of the layer composite, which is then selectively removed from at least a portion of the contact surface. The next step includes applying at least one luminescent material to the major surface of the layer composite. In the second method, an electroluminescence conversion material is applied to the main surface of the layer composite. In addition, the electroluminescent conversion material is selectively removed from at least a portion of the contact surface. In the method, the electroluminescent conversion material is simultaneously applied to a plurality of electroluminescent diode wafers of a common layer composite (e.g., a complete wafer) in a technically simple manner. Since the bonding interface or electroluminescent conversion material is selectively removed from at least a portion of the contact surface, the electroluminescent diode wafer fabricated in accordance with the method can behave like a conventional electroluminescent diode wafer The ground is used and in particular electrical contact can also be achieved. _ basically exposing the contact surface in such a region (which overlaps the contact surface in the lateral direction), then an electroluminescent conversion material or a luminescent material (which is applied to a well-defined layer (preferably a thin layer) ))) will not be affected by the exposed surface. At least a portion of the contact faces are exposed by selectively removing the bonding interface or electroluminescent conversion material, wherein the bonding interface or electroluminescent conversion material is substantially removed only in the region of the contact surface. When the adhesive interface agent can be more easily removed than the electroluminescent conversion material, the adhesion of the adhesive interface agent according to the first method is particularly advantageous when it is selectively removed. Furthermore, it is advantageous if the contact surface is exposed before application of a luminescent material so that the luminescent material is not adversely affected by the bare step. According to the second method, in applying the electroluminescent conversion material, it is advantageous to first apply an adhesive interface agent and then apply a luminescent material. Another way is to preferentially apply an adhesive electroluminescent conversion material in a single step, thus saving a step. The layer composite preferably has a semiconductor layer sequence which is applied to the support for epitaxial growth. This semiconductor layer sequence can advantageously be grown directly on the support in an epitaxial manner or after it has been epitaxially grown. The electroluminescent diode-layer sequence of the layer composite does not have to be formed in a single piece. In an advantageous embodiment of the method, the layer sequence can be divided into a plurality of electroluminescent diode wafers, which are applied to one The layer composite is immobilized on a common carrier and by means of a carrier. Therefore, an electroluminescence conversion material can be applied on the side of the electroluminescent diode wafer. Alternatively, it may be advantageously achieved in that a portion of the electroluminescent diode-layer sequence formed in a single piece is provided along the cutting line so as to be oriented by the main surface. To divide a plurality of electroluminescent diode wafers. The luminescent material or electroluminescent conversion material is preferably applied by a squeegee. Thus, the individual materials are technically simpler and cost-effective to apply over the entire major face of the layer composite in a uniform thin layer and large area. Another way is that the luminescent material or the electroluminescent conversion material is applied by immersing into a conversion material containing the luminescent material or the electro-light 126395 luminescence conversion material or the precursor formed by the two materials ( Pre-stage) ° A particularly low-cost process is advantageous, whereby a uniform layer of thin material can also be applied over a large area. In another process, the luminescent material or electroluminescent conversion material is preferably applied by an electrostatic dusting process. This is suitable for uniformly applying a luminescent material or applying an electroluminescent conversion material currently present in solid form in such a manner that a dose can be dispensed particularly finely. In an advantageous embodiment of the second method, the electroluminescent conversion material is applied by a powder coating process, in which in particular an electrostatic dusting process is applied first and then heated to bond to the main surface. The powder coating process is suitable for uniformly applying an electroluminescent conversion material in such a manner that a dose can be dispensed particularly finely. In the next process, the luminescent material or electroluminescent conversion material is advantageously formed by spraying of a conversion material containing the luminescent material or electroluminescent conversion material or a precursor formed by the two materials. This is > a technically simpler and more cost-effective process whereby the individual materials can be applied evenly. It is particularly advantageous to use a volatile driving agent during spraying and to additionally use a gas stream. In a further embodiment of the method, the application of the luminescent material or the electroluminescent conversion material is achieved by multiple spraying. This results in a particularly good dosage distribution for the coating process. In this way a plurality of layers having different luminescent materials or a plurality of layers having different electroluminescent conversion materials can be applied. Preferably, after the application process described above, the bonding interface or electroluminescent conversion material is selectively removed by lithography to remove 1286395. Preference is given here to a lithography in which a reticle is produced by applying and structuring a layer of reticle material. This can advantageously be achieved in a standard process whereby the semiconductor layer or the contact metal face can be structured in a general manner in the optoelectronic component. Alternatively, the lithography process can include the use of a prefabricated reticle that is applied to the major surface. Therefore, this process can be omitted by applying a layer composed of a reticle material and structuring to form a reticle. In addition to lithography, a laser beam can be used to remove the bonding interface or electroluminescent conversion material, i.e., the individual materials are selectively ablated by the action of a laser beam. The electroluminescent diode wafer of the present invention has at least one electrical contact surface on the major surface, wherein the main surface is provided with an electroluminescent conversion material. In an area which overlaps the contact surface in the transverse direction, the electroluminescent conversion material must have a recess to expose the electrical contact surface, ie at least a portion of the electrical contact surface is composed of an electroluminescent conversion material Bare exposed. Other advantageous embodiments of the above method or electroluminescent diode wafer will be described in more detail below on the basis of the embodiments of Figures 1a to 6d. [Embodiment] The same or similar components in the respective embodiments and drawings are provided with the same reference numerals. The size ratios of the various components and components shown are not drawn to scale. Conversely, some of the details in the diagram are shown in an enlarged manner for easier understanding. Figure la shows a layer composite 1 具有 having an electroluminescent diode -10- 1286395 - layer sequence 1, which is applied to the carrier 2. The electroluminescent diode-layer sequence 1 is, for example, a semiconductor layer sequence grown by epitaxy for use in a plurality of electroluminescent diode wafers. The carrier 2 is, for example, a growth substrate on which the electroluminescent diode-layer sequence is grown. Alternatively, the layer composite 10 can also be a film-layer composite in which the electroluminescent diode-layer sequence 1 is grown on a separate growth substrate and then peeled off and applied from the growth substrate (eg, Bonding is carried out on a carrier 2, which is for example a carrier substrate composed of a semiconductor material. Between the electroluminescent diode-layer sequence 1 and the carrier 2, for example, a reflective electrical contact structure (not shown) is provided on which the electromagnetic generated in the electroluminescent diode-layer sequence 1 can be applied. The radiation is reflected and thereby the electroluminescent diode-layer sequence is electrically connected to the carrier 2 . The electroluminescent diode-layer sequence 1 is, for example, predominantly a nitride-compound semiconductor, that is, it preferably contains eight 1*111 mountains & +1, where 0$; ^1, 〇$;/ x + y^l. This material does not necessarily contain the correct ingredients as shown in the above formula. Conversely, the material may contain one or more donor materials and other ingredients that do not alter the physical properties of the material. For the sake of simplicity, the above formula contains only the major components of the crystal lattice (Al, In, Ga, N), when one of these components can also be replaced by a small amount of other materials. The electroluminescent diode-layer sequence, for example, emits an electromagnetic radiation consisting of a blue- or ultraviolet wavelength range when a current is applied. This sequence may for example have a conventional pn-junction, a double heterostructure, a single quantum well structure (SQW) or a multiple quantum well structure (MQW). These structures are known to experts in the field and will not be described here. -11 - iT1·S. J286395 An adhesive interface agent 6 is applied to the major face 11 of the layer composite 10 (see Figure lb). The bonding interface agent 6 is permeable to electromagnetic radiation generated by the electroluminescent diode-layer sequence 1 and preferably has aging stability to the electromagnetic radiation. For example, an adhesive interface agent which is mainly polyfluorene oxide and has aging stability to ultraviolet radiation can be used. For example, a viscous polyfluorene is suitable for use herein as an adhesive interface agent supplied by W a c k e r, product number SLM 647. The adhesive interface agent can be hardened at room temperature for about 24 hours or hardened by about 1 hour at about 丨ovc. Then, the adhesive interface agent 6 is selectively removed from the electrical contact surface 3 to expose at least a portion of the electrical contact surface 3 to achieve electrical contact, respectively (see Figure lc). In the next step, at least one luminescent material 5 is applied to the main face 11 of the layer composite 10. The luminescent material 5 itself is not viscous, so that it can only be bonded to the position where the bonding interface agent 6 is already present. The contact surface 3 can be cleaned, for example, by a gas beam formed by the luminescent material 5 which is not bonded to the adhesive interface agent 6. A layer composite 1 provided with an electroluminescent conversion material, for example composed of a bonding interface agent 6 and a luminescent material 5, is then divided along a cutting line which is indicated by a dashed line in the ld diagram This is achieved, for example, by sawing and/or scoring and breaking. For example, a phosphor (for example, a rare earth group) is suitably used as the above-mentioned light-emitting material, and particularly may include a garnet doped with Ce or Tb (which preferably has a basic structure of AsBsOi〇 or an organic light-emitting material (for example) , pentadiene-fabric 1212286395 optical material. Other suitable luminescent materials are disclosed, for example, in WO 98/12757 and WO 01/65613 A1, the contents of which are hereby incorporated by reference. The middle layer composite 10, which can be formed, for example, as previously described, according to the layer composite shown in Fig. 1a. This layer of composite 10 directly applies a viscous electroluminescent conversion material 9, which comprises At least one luminescent material (see Figure 2b). The luminescent material has a weight component of at least 50%, preferably greater than or equal to 60 Wt.%, in the electroluminescent conversion material 9. For comparison, attention must be paid here. The casting material (where the luminescent material has been mixed) typically has 5 to 20 Wt. % of luminescent material. Essentially all of the conversion agents known in LEDs are suitable for application to the surface of the layer composite. On. A mixture of luminescent materials and luminescent materials suitable for use as a conversion agent is as follows: - chloroguanate, for example, as disclosed in DE 1 0 036 940 and in the prior art described in this document, • n-decanoate, sulfide, sulfur Metals and vanadates, which are disclosed, for example, in WO 2000/333 90 and the prior art described in this document, - aluminates, oxides, halophosphates, which are disclosed, for example, in US Pat. In the prior art, - nitrides, Sione and Sialone, for example, in DE 10147040 and in the prior art described in this document, and - rare earth garnets (for example, YAG:Ce) and alkaline earth elements Garnets, which are disclosed, for example, in the prior art described in US 2004-062699 and in the file, the contents of each of which are incorporated herein by reference to It can be clearly used as a reference. In terms of the color that can be emitted, there is basically no limitation in the electroluminescent diode wafer or the electroluminescence conversion material. For example, the electroluminescence conversion material 9 is suitably sticky The substance is present, which has a luminescent material, an adhesive interface agent (for example, a poly-xylene-based one) and, if necessary, another material (for example, a solvent), for example, which can be applied by a squeegee. The electroluminescent conversion material 9 is coated by a rubber lip or a metal rail through a hole of a filter or a hole of a template (not shown). The template has a thickness of, for example, 15 μm and is provided with a plurality of layers. The holes, for example, have a square cross-section with a side length of about 350 μm. Alternatively, the template has, for example, a thickness of 300 microns and is provided with square holes having sides that are approximately 300 microns long. In addition to the squeegee, the layer composite 10 can also be immersed in a suitable conversion material on the major surface 1 1 . The squeegee and such immersion are not only suitable for applying the electroluminescent conversion material or the conversion material, but also for applying the adhesion interface agent (see the examples shown in Figures la to Id). Other processes for applying the electroluminescent conversion material, converting material, luminescent material or bonding interface agent may be, for example, an electrostatic dusting process, a powder coating process or a spraying process, which will be described later. Splash or drip coating is also basically feasible. The layer composite 10 after the electroluminescent conversion material 9 is selectively removed by the contact surface 3 is shown in Fig. 2c. The selective removal of the electroluminescent conversion material or the adhesive interface agent is achieved, for example, by a lithography process as described below in accordance with Figures 3a to 3d.

C S -14- 1286395 者。第3a圖中顯示一種設有連續式電致發光轉換 或黏合材料層6之層複合物10。爲了使電致發光 9或黏合介面劑6選擇性地去除,則須使用一種为 閱第3b圖,藉此使相對應的材料選擇性地被去除 是以適當的蝕刻劑藉由鈾刻來達成,請參閱第3c 當電致發光轉換材料具有聚矽氧時,則例如可 氯化學物,醋酸及/或氫氟酸來進行蝕刻。 光罩7例如可在微影過程中藉由施加一層光罩 行結構化來形成。另一方式是亦可使用一已預製 7,其施加在層複合物10之主面11上在上述二種 光罩或光罩材料在電致發光轉換材料9或黏合介 擇性地去除之後亦被去除,請參閱第3d圖。 電致發光二極體-層序列未必以單件(例如,以單 成的晶圓)方式存在著,反之,在施加電致發光轉 黏合介面劑之前該層序列可劃分成多個電致發光 片,其中電致發光二極晶-層序列之各別的一些部 在一種共同的載體2上且藉此而保持在一種共同 物1 0中,請參閱第4a圖。若使用此種設有電致發 料之電致發光二極體晶片製造時所用的已製備完 合物10,則此種已製成的電致發光二極體晶片不 於接觸面3而延伸之主面上-而且在與接觸面之主 相平行而延伸的側面上都具有電致發光轉換材料。 另一方式是電致發光二極體-層序列1亦可在設 光轉換材料之前即設有溝渠丨2,使黏合介面劑, :材料層9 轉換材料 i罩7,參 ,這例如 圖。 藉由乾的 材料且進 成的光罩 i情況下, 面劑6選 件方式形 換材料或 二極體晶 份可施加 的層複合 光轉換材 成之層複 只在平行 延伸面不 有電致發 發光材料 、3 -15- 1286395 及/或電致發光轉換材料亦可施加在溝渠1 2中。各溝渠例如 藉由切鋸來產生。 第5a至6d圖中分別顯示層複合物1〇之一部份,其中電 致發光二極體·層序列1已劃分成多個電致發光二極體晶片 13。第5b圖中顯示電致發光二極體-層序列1之一部份,其 上施加一種薄層之黏合介面劑6。黏合介面劑6在電性接觸 面3之區域中選擇性地被去除,使此層黏合介面劑6具有 一凹口 8,凹口 8中裸露出電性接觸層3。 第5c圖顯示一種藉由靜電噴粉過程以施加該發光材料5時 的情況。發光材料5此處例如以一種平均顆粒大小大約1 〇 微米之粉而存在著。依據所使用的方法,小粉粒充電成帶 正電或負電且層複合物10(其包含該載體2和電致發光二極 體層序列1)接地,使已充電之小粉粒受到靜電吸引力。發 光材料5持續地只黏合在黏合介面劑6上(參閱第5b圖)。 另一方式是發光材料例如藉由揮發性之驅動劑所形成 的煙霧施加而成或施加在氣流中,其中可使用鈍氣或空氣 作爲氣體。 就黏合介面劑6-或電致發光轉換材料9之選擇性的去 除而言,基本上亦可使用一種藉由雷射束來進行的材料溶 解過程以取代微影過程且不使用光罩。未必須使用光罩, 但亦可使用光罩。藉由雷射束之局部性的加熱作用,可使 相對應的材料選擇性地去除。爲了使此過程加速,則可藉 由輻射劃分器(例如,稜鏡)來對雷射束進行劃分,以便只 以一雷射源即可同時支配4條雷射束,這樣可加速此製程 且可成本更有利地來進行。 -16- 1286395 第6a至6d圖顯示藉由一種懸浮物4來施加一種電致發 光轉換材料9時的情況。於此,發光材料5之一種懸浮物 4之薄層施加在電致發光二極體層序列1上,請參閱第6b 圖。此懸浮物4例如具有一種丁基醋酸鹽以作爲溶劑。例 如,可使用一種共聚丙烯酸酯(例如,pEREN〇L F45 (H e n k e 1 K G a A))作爲黏合介面劑。發光材料5包含在此懸浮 物中且體積成份之濃度超過40%。 懸浮物層4(如第6b圖所示)可藉由噴濺或點滴塗佈來製 成。 此外,流變添加劑和沾濕劑可添加至該懸浮物4以達成 一種儘可能均勻的層。 可使用一種具有消除特性的運行劑,使黏合介面劑之表 面應力改變且因此使附著力改良。此處較佳是使用一種未 具有聚矽氧之運行劑。 在上述的施加過程之後,使層複合物及載體2和電致發 光二極體-層序列1乾燥,其中如第1 c圖所示的溶劑會蒸 發。半導體本體上只留下該發光材料5和黏合介面劑,如 第Id圖所示,其中已施加完成之電致發光轉換材料9由電 性接觸面3和圍繞此接觸面3之區域中選擇性地被去除, 即,此層電致發光轉換材料9設有一凹口 9,使電性接觸面 3裸露出來。然後,電致發光二極體晶片13由層複合物1〇 中分開,此時載體2由電致發光二極體-層序列1去除或在 電致發光二極體-層序列之一些部份之間進行切割。 本方法中施加多種不同之發光材料,其例如可依序在不 严- -17- 1286395 同的層中進行。同樣,不同之電致發光轉換材料之多個層 亦可重疊地進行施加。另一種可能方式是在已施加完成之 發光材料上施加另一層黏合介面劑,其上分別施加至少另 一發光材料。 此外,亦可在電致發光轉換材料上施加至少一保護層 9 1,藉此可使晶片上之電致發光轉換材料之一部份或全部 受到保護使不受濕氣所作用,請參閱第7,8圖。一部份之 保護作用可藉由電致發光轉換材料之一部份面積覆蓋著該 I 保護層91來達成,如第8圖所示。對濕氣之完全的保護作 用例如可藉由將該電致發光轉換材料完全以保護層9 1來包 封而達成,此種方式特別有利。一種例子如第7圖所示。 保護層91適當的方式是具有一種不透水之材料。此種材 料例如可爲氧化矽。保護層例如可完全由氧化矽所構成。 保護層9 1可施加在整面上且隨後例如可藉由微影術而去 除一部份,以便使已複蓋之電性接觸面裸露出來。使用其 它方法來施加及/或去除該保護層9 1當然亦可行,特別是先 I 前所述之施加-及/或一部份去除該電致發光轉換材料所用 的全部方法基本上都可類似地用於此處。 藉由施加一種保護層9 1,則亦能以此種發光材料(其在濕 氣作用時不穩定或易老化)來達成高的壽命。這特別是在電 致發光二極體晶片上直接施加電致發光轉換材料時扮演一 種角色,其中不需使用原質(matrix)材料或所使用的原質材 料較以一種發光材料來偏移的澆注物質來對電致發光二極 體晶片進行澆注時少很多。 »«*·. -^ -18- c/4f 1286395 本發明不限於依據上述實施例所作的描述。因此,例如 亦可一開始就以黏合介面劑或電致發光轉換材料來複蓋電 性接觸面3。這例如可使用一種適當的模板(例如,針卡)來 達成’針卡可針對層複合物之主面而受到擠壓且因此利用 其上的針使電性接觸面之至少一部份被密封。本發明包括 已揭示的特徵之每一新的特徵和每一種組合,這特別是包 括各申請專利範圍中各特徵的每一種組合,當該特徵或該 組合本身未明顯地顯示在各申請專利範圍中或各實施例中 時亦同。 【圖式簡單說明】 第1 a至1 d圖本發明之方法之第一實施例之不同的階段中 一層複合物之切面圖。 第2a至2c圖本發明之方法之第二實施例之不同的階段中 一層複合物之切面圖。 第3a至3d圖本發明之方法之第三實施例之不同的階段中 一層複合物之切面圖。 第4a,4b圖一層複合物之不同實施例之切面圖。 第5a至5d圖本發明之方法之第四實施例之不同的階段中 一層複合物之一部份區域之切面圖。 第6a至6d圖本發明之方法之第五實施例之不同的階段中 一層複合物之一部份區域之切面圖。 第7圖在電致發光轉換材料上施加至少一保護層之表示圖。 第8圖在電致發光轉換材料上施加至少一保護層之表示圖。 【主要元件符號說明】 -19- 1286395 1 電 致 發 光 2 載 體 3 電 性 接 fftrn 觸 4 轉 換 材料 5 發 光 材 料 6 黏 合 介 面 7 光 罩 8 電 致 發 光 9 電 致 發 光 10 層 複 合 物 11 主 面 12 電 致 發 光 13 電 致 發 光 二極體-層序列 面 劑 轉換材料中之凹口 轉換材料 二極體-層序列中之凹口 二極體晶片 -20-C S -14- 1286395. Figure 3a shows a layer composite 10 provided with a continuous layer of electroluminescent conversion or bonding material 6. In order to selectively remove the electroluminescent 9 or the bonding interface agent 6, a pattern of Figure 3b must be used, whereby the corresponding material is selectively removed by a suitable etchant by uranium engraving. Please refer to the 3c. When the electroluminescent conversion material has polyfluorene oxide, for example, it can be etched by a chlorine chemical, acetic acid and/or hydrofluoric acid. The reticle 7 can be formed, for example, by applying a layer of reticle structuring during lithography. Alternatively, a prefabricated 7 may be used which is applied to the major face 11 of the layer composite 10 after the two reticle or reticle materials have been selectively removed by the electroluminescent conversion material 9 or the adhesive. Removed, see Figure 3d. The electroluminescent diode-layer sequence does not necessarily exist in a single piece (eg, in a single wafer), whereas the layer sequence can be divided into multiple electroluminescences prior to application of the electroluminescent trans-bonding interface agent. A sheet in which portions of the electroluminescent dipole-layer sequence are on a common carrier 2 and thereby held in a common compound 10, see Figure 4a. If the prepared composite 10 used in the manufacture of an electroluminescent diode wafer provided with an electro-emission is used, the fabricated electroluminescent diode wafer does not extend over the contact surface 3. The main surface - and on the side extending parallel to the main surface of the contact surface, has an electroluminescent conversion material. Alternatively, the electroluminescent diode-layer sequence 1 may be provided with a trench 丨 2 prior to the provision of the light-converting material, such that the bonding agent, the material layer 9 is converted into a material hood 7, and this is shown, for example. In the case of a dry material and a reticle i, the mask 6 can be replaced by a material or a layer of a composite light-transformable material that can be applied to the layer. An luminescent material, 3-15-1286395 and/or an electroluminescent conversion material may also be applied to the trench 12. Each trench is produced, for example, by a saw. A part of the layer composite 1 分别 is shown in Figs. 5a to 6d, respectively, in which the electroluminescent diode layer sequence 1 has been divided into a plurality of electroluminescent diode chips 13. Figure 5b shows a portion of the electroluminescent diode-layer sequence 1 to which a thin layer of bonding interface agent 6 is applied. The adhesive interface agent 6 is selectively removed in the region of the electrical contact surface 3 such that the adhesive layer 6 of the layer has a recess 8, and the electrical contact layer 3 is exposed in the recess 8. Fig. 5c shows a case where the luminescent material 5 is applied by an electrostatic dusting process. The luminescent material 5 is here, for example, present as a powder having an average particle size of about 1 微米 microns. Depending on the method used, the small particles are charged positively or negatively and the layer composite 10 (which comprises the carrier 2 and the electroluminescent diode layer sequence 1) is grounded to subject the charged small particles to electrostatic attraction. . The luminescent material 5 is continuously bonded only to the adhesive interface agent 6 (see Figure 5b). Alternatively, the luminescent material may be applied or applied to the gas stream, e.g., by a fumes formed by a volatile driving agent, wherein a blunt gas or air may be used as the gas. For the selective removal of the adhesive interface agent 6 or the electroluminescent conversion material 9, it is basically also possible to use a material dissolution process by a laser beam to replace the lithography process without using a photomask. It is not necessary to use a reticle, but a reticle can also be used. Corresponding materials can be selectively removed by localized heating of the laser beam. In order to accelerate this process, the laser beam can be divided by a radiation divider (for example, 稜鏡) so that only four laser beams can be simultaneously controlled by one laser source, which speeds up the process and It can be done more cost-effectively. -16- 1286395 Figures 6a to 6d show the case when an electroluminescent conversion material 9 is applied by a suspension 4 . Here, a thin layer of a suspension 4 of luminescent material 5 is applied to the electroluminescent diode layer sequence 1, see Figure 6b. This suspension 4 has, for example, a butyl acetate as a solvent. For example, a copolyacrylate (e.g., pEREN〇L F45 (H e n k e 1 K G a A)) can be used as the adhesive interface agent. The luminescent material 5 is contained in this suspension and the concentration of the volume component exceeds 40%. Suspended layer 4 (as shown in Figure 6b) can be formed by sputtering or spot coating. Additionally, rheological additives and wetting agents can be added to the suspension 4 to achieve a layer that is as uniform as possible. An actuating agent having an erasing property can be used to change the surface stress of the adhesive interface agent and thus improve the adhesion. It is preferred here to use an operating agent which does not have polyoxane. After the above application process, the layer composite and carrier 2 and the electroluminescent diode-layer sequence 1 are dried, wherein the solvent as shown in Fig. 1c is evaporated. Only the luminescent material 5 and the bonding interface agent remain on the semiconductor body, as shown in FIG. 1D, wherein the completed electroluminescent conversion material 9 is selectively selected from the electrical contact surface 3 and the region surrounding the contact surface 3. The ground is removed, that is, the layer of electroluminescent conversion material 9 is provided with a notch 9 to expose the electrical contact surface 3. The electroluminescent diode wafer 13 is then separated from the layer composite 1〇, at which time the carrier 2 is removed by the electroluminescent diode-layer sequence 1 or in some portions of the electroluminescent diode-layer sequence. Cut between. A plurality of different luminescent materials are applied in the method, which can be carried out, for example, sequentially in the same layer as the -17-1286395. Likewise, multiple layers of different electroluminescent conversion materials can also be applied in an overlapping manner. Another possibility is to apply another layer of adhesive interposer on the applied luminescent material to which at least one further luminescent material is applied. In addition, at least one protective layer 9 1 may be applied on the electroluminescent conversion material, so that part or all of the electroluminescent conversion material on the wafer may be protected from moisture, see 7,8 picture. A portion of the protection can be achieved by covering a portion of the electroluminescent conversion material with the I protective layer 91, as shown in FIG. A complete protection against moisture can be achieved, for example, by completely encapsulating the electroluminescent conversion material with a protective layer 91, which is particularly advantageous. An example is shown in Figure 7. A suitable way for the protective layer 91 is to have a material that is impermeable to water. Such a material may be, for example, cerium oxide. The protective layer can for example consist entirely of yttrium oxide. The protective layer 91 can be applied over the entire surface and then a portion can be removed, for example by lithography, to expose the covered electrical contact surface. It is of course also possible to use other methods for applying and/or removing the protective layer 91. In particular, all of the methods used to apply - and/or partially remove the electroluminescent conversion material are substantially similar. The ground is used here. By applying a protective layer 9.1, it is also possible to achieve a high lifetime with such a luminescent material which is unstable or aging during the action of moisture. This plays a special role, in particular when applying an electroluminescent conversion material directly on an electroluminescent diode wafer, in which no matrix material is used or the original material used is offset by a luminescent material. Casting materials to cast electroluminescent diode wafers is much less. »«*·. -^ -18- c/4f 1286395 The present invention is not limited to the description made in accordance with the above embodiments. Thus, for example, the electrical contact surface 3 can be overlaid with an adhesive interface or electroluminescent conversion material. For example, a suitable template (eg, a needle card) can be used to achieve that the needle card can be squeezed against the major face of the layer composite and thus the at least a portion of the electrical contact surface is sealed by the needle thereon. . The present invention includes each new feature and each combination of the disclosed features, which in particular includes each combination of features in the scope of the various claims, and the feature or the combination itself is not The same applies to the middle or the embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1a to Fig. 1d are cross-sectional views showing a layer of a composite in a different stage of the first embodiment of the method of the present invention. Figures 2a through 2c are cross-sectional views of a layer of composites in different stages of the second embodiment of the method of the present invention. Figures 3a through 3d are cross-sectional views of a layer of composites in different stages of a third embodiment of the method of the present invention. A cross-sectional view of a different embodiment of a layer of composites in Figures 4a, 4b. Figures 5a through 5d are cross-sectional views of a portion of a layer of a composite in a different stage of the fourth embodiment of the method of the present invention. Figures 6a through 6d are cross-sectional views of a portion of a layer of a composite in a different stage of the fifth embodiment of the method of the present invention. Figure 7 is a representation of at least one protective layer applied to an electroluminescent conversion material. Figure 8 is a representation of at least one protective layer applied to an electroluminescent conversion material. [Main component symbol description] -19- 1286395 1 Electroluminescence 2 Carrier 3 Electrical connection fftrn Touch 4 Conversion material 5 Luminescent material 6 Adhesive interface 7 Photomask 8 Electroluminescence 9 Electroluminescence 10 Layer composite 11 Main surface 12 Electroluminescence 13 Notch-converting material in the electroluminescent diode-layer sequence agent conversion material Notch diode wafer in the diode-layer sequence-20-

Claims (1)

1286395 第94 1 33 343號「電致發光二極體晶片及其製造方法」專利案 (2007年3月修正) 十、申請專利範圍·· L一種多個電致發光二極體晶片之製造方法,其電致發光轉 換材料具有至少一種發光材料,此製造方法具有以下各步 驟: •製備一種層複合物,其包括多個電致發光二極體晶片用之 電致發光二極體-層序列,此層序列在每一電致發光二極體 晶片用之主面上具有至少一電性接觸面以作爲電致發光 二極體晶片之電性連接之用; •施加一層黏合介面劑至該層複合物之主面上; •將黏合介面劑選擇性地由接觸面之至少一部份中去除; •施加至少一發光材料至層複合物之主面上;以及由該層複 合物中劃分出多個電致發光二極體晶片。 2·如申請專利範圍第丨項之製造方法,其中在施加該發光材 料之前,選擇性地去除該黏合介面劑。 3.—種電致發光二極體晶片之製造方法,其電致發光轉換材 料具有至少一種發光材料,此製造方法具有以下各步驟: -製備一種層複合物,其包括多個電致發光二極體晶片用之 電致發光二極體-層序列,此層序列在每一電致發光二極體 晶片用之主面上具有至少一電性接觸面以作爲電致發光 二極體晶片之電性連接之用; -施加該電致發光轉換材料至該層複合物之主面上; -將此電致發光轉換材料選擇性地由接觸面之至少一部份 1286395 中去除。,以及 -由該層複合物中劃分出多個電致發光二極體晶片。 4·如申請專利範圍第i或3項之製造方法,其中電致發光二 極體-層序列具有一種施加在載體上的以磊晶生長之半導 體層序列。 5.如申請專利範圍第1或3項之製造方法,其中發光材料或 電致發光轉換材料藉由橡皮刮板施加而成。 6 ·如申請專利範圍第1或3項之製造方法,其中發光材料或 電致發光轉換材料藉由浸入至一種包含,,該發光材料或 電致發光轉換材料或此二種材料所形成的先質,,之轉換 材料中施加而成。 7·如申Sra專利範圍弟1或3項之製造方法,其中發光材料或 電致發光轉換材料藉由靜電式噴粉過程施加而成。 8 ·如申請專利範圍第3項之製造方法,其中電致發光轉換材 料藉由塗粉過程施加而成。 9 ·如申請專利範圍第1或3項之製造方法,其中發光材料或 電致發光轉換材料藉由噴灑一種包含,,該發光材料或電 致發光轉換材料或此二種材料所形成的先質,,之轉換材 料施加而成。 10.如申請專利範圍第9項之製造方法,其中該噴灑過程是使 用揮發性之驅動劑及/或一種氣流來達成。 1 1 ·如申請專利範圍第9項之製造方法,其中發光材料或電致 發光轉換材料藉由多次噴灑施加而成。 1 2 ·如申ιβ專利範圍弟1 〇項之製造方法,其中發光材料或電 -2 - 1286395 致發光轉換材料藉由多次噴灑施加而成。 1 3 ·如申請專利範圍第1或3項之製造方法,其中黏合介面劑 或電致發光轉換材料藉由微影術而去除。 14.如申請專利範圍第13項之製造方法,其中黏合介面劑或 電致發光轉換材料藉由光學微影術而去除。 15·如申請專利範圍第13項之製造方法,其中微影術包括使 用一種已預製完成的光罩。 16·如申請專利範圍第1或3項之製造方法,其中黏合介面劑 或電致發光轉換材料使用雷射束而被去除。 17·—種電致發光二極體晶片,其在主面上具有至少一電性接 觸面且該主面設有一種電致發光轉換材料,其特徵爲:此 電致發光轉換材料具有一凹口,使電性接觸面裸露出來, 且該電致發光二極體晶片藉由申請專利範圍第1或3項之 製造方法而製成。 18·如申請專利範圍第17項之電致發光二極體晶片,其中該 電致發光轉換材料之一部份或全部是以一種保護層來覆 蓋。1286395 Patent No. 94 1 33 343 "Electroluminescent Diode Wafer and Method of Manufacturing Same" (Revised March 2007) X. Patent Application Scope L. A Method for Manufacturing a Multi-Electroluminescent Diode Wafer The electroluminescent conversion material has at least one luminescent material, and the manufacturing method has the following steps: • preparing a layer composite comprising electroluminescent diode-layer sequences for a plurality of electroluminescent diode wafers The layer sequence has at least one electrical contact surface on each of the major faces of each of the electroluminescent diode chips for electrical connection of the electroluminescent diode chip; • applying a layer of adhesive interface agent to the The main surface of the layer composite; • selectively removing the bonding interface agent from at least a portion of the contact surface; • applying at least one luminescent material to the major surface of the layer composite; and dividing by the layer composite A plurality of electroluminescent diode wafers are produced. 2. The method of manufacture of claim </ RTI> wherein the affixing agent is selectively removed prior to applying the luminescent material. 3. A method of fabricating an electroluminescent diode wafer, the electroluminescent conversion material having at least one luminescent material, the method of manufacture having the following steps: - preparing a layer composite comprising a plurality of electroluminescent Electroluminescent diode-layer sequence for a polar body wafer having at least one electrical contact surface on each of the major faces of each of the electroluminescent diode wafers as an electroluminescent diode chip For electrically connecting; applying the electroluminescent conversion material to the major surface of the layer composite; - selectively removing the electroluminescent conversion material from at least a portion of the contact surface 1286359. And - dividing a plurality of electroluminescent diode wafers from the layer composite. 4. The method of manufacture of claim i or 3, wherein the electroluminescent diode-layer sequence has a sequence of epitaxially grown semiconductor layers applied to the support. 5. The manufacturing method according to claim 1 or 3, wherein the luminescent material or the electroluminescence conversion material is applied by a squeegee. 6. The manufacturing method according to claim 1 or 3, wherein the luminescent material or the electroluminescence conversion material is formed by immersing in an inclusion, the luminescent material or the electroluminescence conversion material or the two materials Quality, and the conversion material is applied. 7. The manufacturing method of claim 1 or 3, wherein the luminescent material or the electroluminescence conversion material is applied by an electrostatic dusting process. 8. The manufacturing method of claim 3, wherein the electroluminescence conversion material is applied by a powder coating process. 9. The manufacturing method of claim 1 or 3, wherein the luminescent material or the electroluminescent conversion material is formed by spraying an inclusion, the luminescent material or the electroluminescence conversion material or the precursor formed by the two materials ,, the conversion material is applied. 10. The method of manufacture of claim 9, wherein the spraying is accomplished using a volatile driving agent and/or a gas stream. The manufacturing method of claim 9, wherein the luminescent material or the electroluminescence conversion material is applied by multiple spraying. 1 2 · The manufacturing method of the ι β 专利 专利 , , , , , , , , , , , , , , 发光 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The manufacturing method of claim 1 or 3, wherein the bonding interface agent or the electroluminescence conversion material is removed by lithography. 14. The method of manufacture of claim 13, wherein the adhesive interface or electroluminescent conversion material is removed by optical lithography. 15. The method of manufacture of claim 13, wherein the lithography comprises using a prefabricated reticle. The manufacturing method of claim 1 or 3, wherein the bonding interface agent or the electroluminescence conversion material is removed using a laser beam. 17. An electroluminescent diode wafer having at least one electrical contact surface on a major surface and an electroluminescent conversion material on the main surface, wherein the electroluminescent conversion material has a concave The electrical contact surface is exposed, and the electroluminescent diode wafer is fabricated by the manufacturing method of claim 1 or 3. 18. The electroluminescent diode wafer of claim 17, wherein one or all of the electroluminescent conversion material is covered with a protective layer.
TW94133343A 2004-09-30 2005-09-26 Method to manufacture luminescence diode-chips and luminescence diode-chips TWI286395B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10404764 2004-09-30
DE10406035 2004-12-15

Publications (1)

Publication Number Publication Date
TWI286395B true TWI286395B (en) 2007-09-01

Family

ID=39458676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94133343A TWI286395B (en) 2004-09-30 2005-09-26 Method to manufacture luminescence diode-chips and luminescence diode-chips

Country Status (1)

Country Link
TW (1) TWI286395B (en)

Similar Documents

Publication Publication Date Title
US20080203410A1 (en) Methods for the Production of Luminescent Diode Chips and Luminescent Diode Chip
JP6237181B2 (en) Method for manufacturing light emitting device
JP4336480B2 (en) Use of electrophoresis to fabricate conformally coated fluorescence converted luminescent semiconductor structures
JP4415572B2 (en) Semiconductor light emitting device and manufacturing method thereof
TWI462352B (en) Optical semiconductor device and method for manufacturing same
US8227269B2 (en) Manufacture of light emitting devices with phosphor wavelength conversion
KR102228997B1 (en) Phosphor in inorganic binder for led applications
JP4527197B2 (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting device
EP2903039A1 (en) Semiconductor device and method for manufacturing the same
TWI789342B (en) Flip chip led with side reflectors and phosphor
JP2008527720A (en) System and method for manufacturing a white light emitting diode
JP2001177145A (en) Semiconductor light emitting device and method of manufacturing the same
TWI278130B (en) Light-emitting diode and method of manufacturing the same
JP2007059418A (en) Nitride gallium based compound semiconductor light-emitting element
US20140054638A1 (en) Light emitting devices having shielded silicon substrates
CN102044624B (en) Light-emitting device (LED) capable of emitting compound light, light-emitting element and manufacturing methods of LED and light-emitting element
JP2007067183A (en) Led package with compound semiconductor light emitting device
JP2008205229A (en) Semiconductor light-emitting element, semiconductor light-emitting apparatus, and manufacturing method
JP6974324B2 (en) Flip chip LED with side reflector and phosphor
JP2008071805A (en) Multi-wavelength light-emitting device for coating not less than two kinds of semiconductor light-emitting elements with a plurality of types of phosphors
KR101678286B1 (en) Method for producing a polychromizing layer and substrate and also light-emitting diode having a polychromizing layer
TWI286395B (en) Method to manufacture luminescence diode-chips and luminescence diode-chips
CN109285936B (en) Method for producing a plurality of conversion elements and optoelectronic component
TWI476956B (en) Semiconductor light-emitting device and method of manufacturing the same
US11121300B2 (en) Method of producing optoelectronic semiconductor devices and optoelectronic semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees