TWI284360B - Semiconductor substrate, manufacturing method thereof, and semiconductor device - Google Patents

Semiconductor substrate, manufacturing method thereof, and semiconductor device Download PDF

Info

Publication number
TWI284360B
TWI284360B TW93140622A TW93140622A TWI284360B TW I284360 B TWI284360 B TW I284360B TW 93140622 A TW93140622 A TW 93140622A TW 93140622 A TW93140622 A TW 93140622A TW I284360 B TWI284360 B TW I284360B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
semiconductor substrate
semiconductor
strained
Prior art date
Application number
TW93140622A
Other languages
Chinese (zh)
Other versions
TW200522161A (en
Inventor
Kiyofumi Sakaguchi
Kazuya Notsu
Kazutaka Momoi
Nobuhiko Sato
Original Assignee
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kk filed Critical Canon Kk
Publication of TW200522161A publication Critical patent/TW200522161A/en
Application granted granted Critical
Publication of TWI284360B publication Critical patent/TWI284360B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76259Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along a porous layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A separation layer is formed on a silicon substrate. An SiGe layer serving as a strain induction layer and a silicon layer serving as a strained semiconductor layer are formed sequentially on the separation layer to prepare a first substrate. The first substrate is bonded to a second substrate made of the same material as the silicon layer of the strained semiconductor layer. The structure is separated into two parts at the separation layer. When the residue of the separation layer and the SiGe layer are removed, and the surface is planarized by hydrogen annealing, an Si substrate having a strained silicon layer on the uppermost surface is obtained.

Description

1284360 (1) 九、發明說明 【發明所屬之技術領域】 本發明係有關於一種半導體基底、其製造方法、和一 半導體裝置。 【先前技術】 隨著一基底以一高速與低能源消耗用以形成一半導體 裝置,具有一應變矽層的一基底已經吸引許多的注意。由 矽、鍺所製成的一 SiGe層生長於一矽基底,而一單晶矽 層則生長於該層。因此,一應變被應用至該矽層,且可以 獲得一應變矽層。由於該SiGe層的晶格常數略大於該單 晶矽層的晶格常數,因此產生該應變。舉例來說,AT&T 公司的美國專利案號5,221,4 13即敘述一種結合應變矽、 SiGe 以及矽(strained· Si/SiGe/Si )的基底。 在另一方面,一種具有一埋層氧化膜於一矽基底上的 一絕緣層上矽(silicon on insulator ; SOI )基底也吸引許 多的注意,且被作爲一基底以一高速與低能源消耗用以形 成一半導體裝置。結合應變矽與絕緣層上矽的結構也已見 於廣泛的硏究發表。此基底被加以實施以實現兩種優點, 一是藉由應變矽所實行的高速運算,另一則是藉由絕緣層 上矽所實行的低能源消耗性能以及較高的運算速度(詳細 請參見 Shin-ichi Tackagi,“Metal-Oxide-Semiconductior (MOS) device technologies using Si/SiGe heretointerfaces’’,Oy o Buturi 5 vol. 72.no. 3,pp. 284-290, (2) 1284360 2 0 03 )。在此參考文件中,係敘述了該基底以及一種結合 應變砂 、SiGe 、 絕緣體以及 (strained-Si/SiGe/insulator/Si)的基底之結構。 一種不具有SiGe層而結合應變砂、絕緣體以及砂 (strained-Si/insulator/Si)的基底也已經發表(詳細請參 見 T· A. Langdo,et. al·,Appl. Phys. Lett·,vol. 2,no. 24, pp· 4256-4257,2003 )。在此方法中,形成在一第一基底 上的應變矽/ SiGe藉由氫離子佈植、接合以及分離而被 轉換成一絕緣基底之後,該SiGe層被移除。 相比於目前的矽-大型積體電路(Si-LSI ),所有上 述的技術需要更進一步的裝置以及製程設計之最佳化。 SiGe的存在,已敘述於T.A. Langdo,et. al.的該論文中。 然而,仍然存在其他問題,例如:藉由退火處理所實行的 摻雜擴散、金屬接觸成形以及鍺擴散之間的差異性。此 外,由於該絕緣層的出現,具有一絕緣層的結構也有著如 絕緣層上矽相同的問題,也包含裝置運作的熱堆積問題。 【發明內容】 本發明基於上述習知技術的問題而詳加考慮之,且具 有其目的而提出一種新的技術來形成一種具有一應變矽層 的矽晶圓(以此爲例子)。 根據本發明的第一觀點係提出一種半導體基底,包 含:一應變半導體層在該半導體基底上,其中該應變半導 體層由與該半導體基底相同的材料製成。該半導體基底包 (3) 1284360 含至少一單晶半導體基底以及多晶半導體基底,也包含了 具有一多晶半導體(包含一微晶半導體層)的一基底形成 於一半導體基底上。 根據本發明的第二觀點係提出一種本發明之半導體基 底的製造方法,包含:一第一步驟,形成由一第一材料所 製成的一應變半導體層於由一第二材料所製成的一半導體 基底上,用以製作一第一基底,且至少於其表面上可作爲 一應變感應材料之用;一第二步驟:將該第一基底的該應 變半導體層接合至由該第一材料所製成的一第二基底;以 及一第三步驟:移除在該第一基底除了該應變半導體層外 一側上的一構件,且留下該應變半導體層在該第二基底 上。 根據本發明的第三觀點係提出一種由上述製造方法所 製造的半導體基底。 根據本發明的第四觀點係提出一種具有一種半導體裝 置,其具有一場效電晶體形成於該半導體基底的該應變感 應層上。 藉由本發明的該半導體層,該通道遷移率可以藉由該 應變而增加,而不需要改變由習知的矽-大型積體電路技 術所發展的該製程。 本發明的其他特點、目的以及優點將詳細描述如下且 伴隨著圖式而更加淸楚敘述,其中在所有的圖式中,相同 之參考數字係標明相同或類似的元件。 (4) (4)1284360 【實施方式】 本發明的一些較佳實施例將詳細描述如下。 然而,除了如下描述外,本發明還可以廣泛地在其他 的實施例施行’且本發明的範圍並不受實施例之限定’其 以之後的專利範圍爲準。再者,爲提供更淸楚的描述及更 易理解本發明,圖式內各部分並沒有依照其相對尺寸繪 圖,某些尺寸與其他相關尺度相比已經被誇張;不相關之 細節部分也未完全繪出,以求圖式的簡潔。 (第一實施例) 一應變感應層係形成於由一第二材料所製成的一半導 體基底之該表面上。由該第二材料所製成的一應變半導體 層係形成於該應變感應層上,用以製作一第一基底。由一 第一材料所製成的一第二基底被接合至該第一基底。由該 第二材料所製成的該半導體基底以及該應變感應層被移 除。因此,由該第一材料所製成的該應變半導體層,可以 被形成於由該第一材料所製成的該第二基底上,而與該第 二基底相接觸。 該第一、第二材料一般都使用矽。 至於該應變感應層,係由含有矽、鍺的一層 (Sh.xGex層)所形成。該層(較佳地係爲一單晶矽層) 幾乎係由矽所製成,且形成於該Si 層上作爲一應變 半導體層。 形成於由該第二材料所製成的該半導體基底上的該 (5) (5)12843601284360 (1) Description of the Invention [Technical Field] The present invention relates to a semiconductor substrate, a method of fabricating the same, and a semiconductor device. [Prior Art] A substrate having a strained layer has attracted a lot of attention as a substrate is used to form a semiconductor device at a high speed and low energy consumption. A SiGe layer made of tantalum and niobium is grown on a substrate, and a single crystal layer is grown on the layer. Therefore, a strain is applied to the tantalum layer, and a strained tantalum layer can be obtained. This strain is generated because the lattice constant of the SiGe layer is slightly larger than the lattice constant of the single crystal germanium layer. For example, U.S. Patent No. 5,221,413 to AT&T, discloses a substrate that incorporates strain enthalpy, SiGe, and strained Si/SiGe/Si. On the other hand, a silicon on insulator (SOI) substrate having a buried oxide film on a substrate also attracts a lot of attention and is used as a substrate for a high speed and low energy consumption. To form a semiconductor device. The combination of strain enthalpy and the structure of the upper layer of the insulating layer has also been published in a wide range of studies. This substrate is implemented to achieve two advantages, one is high-speed operation by strain enthalpy, and the other is low energy consumption performance and high calculation speed by 绝缘 on the insulating layer (see Shin for details) -ichi Tackagi, "Metal-Oxide-Semiconductior (MOS) device technologies using Si/SiGe heretointerfaces'', Oy o Buturi 5 vol. 72. no. 3, pp. 284-290, (2) 1284360 2 0 03 ). In this reference, the substrate and a structure incorporating a strained sand, SiGe, insulator, and (strained-Si/SiGe/insulator/Si) substrate are described. A strained sand, insulator, and sand without a SiGe layer The substrate of (strained-Si/insulator/Si) has also been published (for details, see T. A. Langdo, et. al., Appl. Phys. Lett., vol. 2, no. 24, pp. 4256-4257, 2003). In this method, after the strain 矽/SiGe formed on a first substrate is converted into an insulating substrate by hydrogen ion implantation, bonding, and separation, the SiGe layer is removed.矽-large integrated circuit (Si-LSI), The above techniques require further equipment and optimization of process design. The existence of SiGe has been described in the paper by TA Langdo, et. al. However, there are still other problems, such as: The difference between doping diffusion, metal contact forming, and germanium diffusion. In addition, due to the appearance of the insulating layer, the structure having an insulating layer also has the same problem as the upper layer of the insulating layer, and also includes the thermal accumulation of the device operation. SUMMARY OF THE INVENTION The present invention has been specifically considered based on the problems of the above-described prior art, and has a new technique for forming a germanium wafer having a strained germanium layer (as an example). According to a first aspect of the present invention, a semiconductor substrate is provided, comprising: a strained semiconductor layer on the semiconductor substrate, wherein the strained semiconductor layer is made of the same material as the semiconductor substrate. The semiconductor substrate package (3) 1284360 At least one single crystal semiconductor substrate and a polycrystalline semiconductor substrate also including a polycrystalline semiconductor (including a microcrystal) A substrate of the conductor layer is formed on a semiconductor substrate. According to a second aspect of the present invention, a method of fabricating a semiconductor substrate of the present invention includes: a first step of forming a first material made of a first material The strained semiconductor layer is formed on a semiconductor substrate made of a second material to form a first substrate, and at least on the surface thereof can be used as a strain sensing material; a second step: the first step The strained semiconductor layer of the substrate is bonded to a second substrate made of the first material; and a third step of removing a member on the side of the first substrate other than the strained semiconductor layer, and leaving The strained semiconductor layer is underlying the second substrate. According to a third aspect of the present invention, a semiconductor substrate manufactured by the above manufacturing method is proposed. According to a fourth aspect of the present invention, there is provided a semiconductor device having a field effect transistor formed on the strain sensing layer of the semiconductor substrate. With the semiconductor layer of the present invention, the channel mobility can be increased by the strain without changing the process developed by the conventional 矽-large integrated circuit technology. Other features, objects, and advantages of the invention will be described in the following description. (4) (4) 1284360 [Embodiment] Some preferred embodiments of the present invention will be described in detail below. However, the present invention may be widely practiced in other embodiments, and the scope of the present invention is not limited by the embodiments, except as described below. Furthermore, in order to provide a more succinct description and a better understanding of the invention, the various parts of the drawings are not drawn according to their relative dimensions, and some dimensions have been exaggerated compared to other related dimensions; the irrelevant details are not fully Draw, in order to make the schema simple. (First Embodiment) A strain sensing layer is formed on the surface of a half conductor substrate made of a second material. A strained semiconductor layer made of the second material is formed on the strain sensing layer to form a first substrate. A second substrate made of a first material is bonded to the first substrate. The semiconductor substrate made of the second material and the strain sensing layer are removed. Therefore, the strained semiconductor layer made of the first material may be formed on the second substrate made of the first material to be in contact with the second substrate. The first and second materials generally use ruthenium. The strain sensing layer is formed of a layer (Sh. x Gex layer) containing ruthenium and osmium. This layer (preferably a single crystal germanium layer) is almost entirely made of tantalum and is formed on the Si layer as a strained semiconductor layer. The (5) (5) 1284360 formed on the semiconductor substrate made of the second material

Sh-xGex層中,x較佳地係落在0至0.5的範圍之內。更 佳地,在該半導體基底的該表面上,X幾乎爲0且逐漸地 變化。在最高的表面上,即該應變半導體層形成處,X較 佳地係爲0.1至0.5。晶格鬆弛至少發生在該最高的表面 上,以使得該處的應變是微小的。 在該第一基底除了該應變半導體層外該側上的該構 件,其可以藉由一機械的移除方法,例如:硏磨法、拋光 法來加以移除。另外可以選擇的是,在接合之前以及接合 之後,氫離子可以被佈植至由該第二材料所製成的該半導 體基底上或者是該應變感應層上,該部分在該佈植介面可 以被分離。 在該應變半導體層上的該Sh-xGex層藉由拋光法或化 學蝕刻法來移除。 在該SihXGex層被移除之後,且僅該應變半導體層被 留在該第二基底上,即完成表面平面化。根據本發明第一 實施例的製造方法可以更進一步地包含一步驟:藉由使用 該應變半導體層作爲一活性層來形成一電路元件。對於具 有此一電路元件的裝置而言,一高速運算可以藉由該應變 半導體層來實行。 (第二實施例) •-分離層係形成於由一第二材料所製成的一半導體基 底的該表面上。一應變感應層係形成於該分離層上。此 外,由一第一材料所製成的一應變半導體層係形成於該應 -9- (6) (6)1284360 變感應層上,用以製作一第一基底。 由該第一材料所製成的一第二基底被接合至該第一基 底。該些部分在該分離層被分離。接著,該其餘的分離層 以及應變感應層被移除。因此’由該第一材料所製成的該 應變半導體層,可以形成於由該第一材料所製成的該第二 基底上,而與該第二基底相接觸。 該第一、第二材料一般都使用矽。該分離層通常可以 藉由拋光由該第二材料使用電鑛法所製成的該半導體基底 (矽基底)的該表面來形成。至於其他的方法,在該應變 感應層以及該感應半導體層形成之後,離子(例如··氫離 子)被佈植用以在該應變感應層或是由該第二材料所製成 的該半導體基底中,形成該分離層。 至於該應變感應層,係由含有鍺的一層(Si^Gex 層)所形成。該層(較佳地係爲一單晶矽層)幾乎係由石夕 所製成’且形成於該Sii.xGex層上作爲一應變半導體層。 在形成於該分離層上的該SihXGex層中,X較佳地係 落在〇至0.5的範圍之內。更佳地,在該分離層的該表面 上,X幾乎爲0且逐漸地變化。在最高的表面上,即該應 變半導體層形成處,X較佳地係爲0.1至0.5。晶格鬆弛 至少發生在該最高的表面上,以使得該處的應變是微小 的。 當該分離層係爲一多孔層,該分離步驟的執行係藉由 楔形物插入法、張力/剪力的應用、液噴(水噴)注射 法、氣噴注射法或超音波的應用。當該分離層係由離子佈 -10- (7) (7)1284360 植法所形成時,該分離步驟必須在200〜3 00 °C至5 00〜600 °C的溫度下藉由退火來完成。 在該應變半導體層上的該Si! 4〇^層,藉由拋光法或 化學蝕刻法來移除。 在該Si^Gex層被移除之後,且僅該應變半導體層被 留在該第二基底上,即完成表面平面化。 根據本發明第二實施例的製造方法可以更進一步地包 含一步驟:藉由使用該應變半導體層作爲一活性層來形成 一電路元件。對於具有此一電路元件的裝置而言,一高速 運算可以藉由該應變半導體層來實行。 (第三實施例) 一分離層係形成於由一第二材料所製成的一半導體基 底的該表面上。一應變感應層係形成於該分離層上。此 外,由一第一材料所製成的一應變半導體層係形成於該應 變感應層上,用以製作一第一基底。 由該第一材料所製成的一第二基底被接合至該第一基 底。該些部分在該分離層被分離。接著,該其餘的分離層 以及應變感應層被移除。因此,由該第一材料所製成的該 應變半導體層,可以形成於由該第一材料所製成的該第二 基底上’而與該第二基底相接觸。 該第一、第二材料一般都使用矽。 該分離層通常可以藉由拋光由該第二材料使用電鍍法 所製成的該半導體基底(矽基底)的該表面來形成。 -11 - (8) 1284360In the Sh-xGex layer, x preferably falls within the range of 0 to 0.5. More preferably, on the surface of the semiconductor substrate, X is almost zero and gradually changes. On the highest surface, i.e., where the strained semiconductor layer is formed, X is preferably from 0.1 to 0.5. The lattice relaxation occurs at least on the highest surface so that the strain at that point is minute. The member on the side of the first substrate other than the strained semiconductor layer can be removed by a mechanical removal method such as honing or polishing. Alternatively, before and after bonding, hydrogen ions may be implanted onto the semiconductor substrate made of the second material or on the strain sensing layer, and the portion may be Separation. The Sh-xGex layer on the strained semiconductor layer is removed by a polishing method or a chemical etching method. After the SihXGex layer is removed, and only the strained semiconductor layer is left on the second substrate, surface planarization is completed. The manufacturing method according to the first embodiment of the present invention may further comprise a step of forming a circuit component by using the strained semiconductor layer as an active layer. For devices having such a circuit component, a high speed operation can be performed by the strained semiconductor layer. (Second Embodiment) • A separation layer is formed on the surface of a semiconductor substrate made of a second material. A strain sensing layer is formed on the separation layer. Further, a strained semiconductor layer made of a first material is formed on the -9-(6) (6) 1284360 variable-sensing layer to form a first substrate. A second substrate made of the first material is bonded to the first substrate. The portions are separated at the separation layer. Then, the remaining separation layer and strain sensing layer are removed. Thus, the strained semiconductor layer made of the first material may be formed on the second substrate made of the first material to be in contact with the second substrate. The first and second materials generally use ruthenium. The separation layer can usually be formed by polishing the surface of the semiconductor substrate (ruthenium substrate) made of the second material using an electrominening method. As for other methods, after the strain sensing layer and the sensing semiconductor layer are formed, ions (eg, hydrogen ions) are implanted for the semiconductor substrate made of the strain sensing layer or the second material. The separation layer is formed. The strain sensing layer is formed of a layer containing germanium (Si^Gex layer). This layer (preferably a single crystal germanium layer) is almost made of the stone and formed on the Sii.xGex layer as a strained semiconductor layer. In the SihXGex layer formed on the separation layer, X is preferably within the range of 〇 to 0.5. More preferably, on the surface of the separation layer, X is almost 0 and gradually changes. On the highest surface, i.e., the formation of the strained semiconductor layer, X is preferably from 0.1 to 0.5. The lattice relaxation occurs at least on the highest surface so that the strain at that location is minute. When the separation layer is a porous layer, the separation step is performed by wedge insertion, tension/shear application, liquid jet (water jet) injection, gas jet injection or ultrasonic application. When the separation layer is formed by ion cloth-10-(7)(7)1284360, the separation step must be completed by annealing at a temperature of 200 to 300 ° C to 500 ° C to 600 ° C. . The Si! 4 layer on the strained semiconductor layer is removed by a polishing method or a chemical etching method. After the Si^Gex layer is removed, and only the strained semiconductor layer is left on the second substrate, surface planarization is completed. The manufacturing method according to the second embodiment of the present invention may further comprise a step of forming a circuit component by using the strained semiconductor layer as an active layer. For devices having such a circuit component, a high speed operation can be performed by the strained semiconductor layer. (Third Embodiment) A separation layer is formed on the surface of a semiconductor substrate made of a second material. A strain sensing layer is formed on the separation layer. Further, a strained semiconductor layer made of a first material is formed on the strain sensing layer to form a first substrate. A second substrate made of the first material is bonded to the first substrate. The portions are separated at the separation layer. Then, the remaining separation layer and strain sensing layer are removed. Therefore, the strained semiconductor layer made of the first material may be formed on the second substrate made of the first material to be in contact with the second substrate. The first and second materials generally use ruthenium. The separation layer can usually be formed by polishing the surface of the semiconductor substrate (ruthenium substrate) made of the second material using electroplating. -11 - (8) 1284360

至於該應變感應層,係由含有鍺的一層(Si 層)所形成用以作爲該多孔表面層的該氣孔密封材料。該 層(較佳地係爲一單晶矽層)幾乎係由矽所製成,且形成 於該Si bxGex層上作爲一應變半導體層。第8圖係爲一斷 面圖用以說明含有鍺的該層(Si!.xGex層)被形成以作爲 一多孔表面層的該氣孔密封部分之狀態。如第8圖所示, 一多孔層40的該表面層之該些氣孔被塡滿一 8丨^〇^層 41,以使得該矽表面被該Sh.xGex層 41所覆蓋。 在該應變感應Si !.xGex層中,X較佳地係落在〇至 〇·5的範圔之內。更佳地,該Sh.xGex層係藉由在該多孔 表面層中塡充複數個氣孔來形成。晶格鬆弛至少發生在該 最高的表面上,以使得該處的應變是微小的。 當該分離層係爲一多孔層,該分離步驟的執行係藉由 楔形物插入法、張力/剪力的應用、液噴(水噴)注射 法、氣噴注射法或超音波的應用。The strain sensing layer is formed of a layer (Si layer) containing germanium as the pore sealing material for the porous surface layer. The layer (preferably a single crystal germanium layer) is almost entirely made of tantalum and is formed on the Si bxGex layer as a strained semiconductor layer. Fig. 8 is a sectional view for explaining the state in which the layer containing ruthenium (Si!.xGex layer) is formed as the pore sealing portion of a porous surface layer. As shown in Fig. 8, the pores of the surface layer of a porous layer 40 are filled with a layer 41 so that the surface of the crucible is covered by the Sh. xGex layer 41. In the strain-sensing Si !.xGex layer, X is preferably within the range of 〇 to 〇·5. More preferably, the Sh.xGex layer is formed by filling a plurality of pores in the porous surface layer. The lattice relaxation occurs at least on the highest surface so that the strain at that point is minute. When the separation layer is a porous layer, the separation step is performed by wedge insertion, tension/shear application, liquid jet (water jet) injection, gas jet injection or ultrasonic application.

在該應變半導體層上的該Si ^xGex層,藉由拋光法或 化學蝕刻法來移除。 在該SinGex層被移除之後,且僅該應變半導體層被 留在該第二基底上,即完成表面平面化。根據本發明第三 實施例的製造方法可以更進一步地包含一步驟:藉由使用 該應變半導體層作爲一活性層來形成一電路元件。對於具 有此一電路元件的裝置而言,一高速運算可以藉由該應變 半導體層來實行。 -12- (9) (9)1284360 (第四實施例) 含有鍺的一層(Si^Gex層)形成於由一第二材料所 製成的一半導體基底的該表面上。接著,一多孔的SiGe 層藉由退火而形成用以作爲一分離層。含有鍺的一層 (SinGex層)再次地形成於該多孔的SiGe層上,用以 作爲一應變感應層。該層(較佳地係爲一單晶砂層)幾乎 係由矽所製成,且形成於該Si!-xGex層上作爲由一第一材 料所製成的一應變半導體層,藉此來製作一第一基底。 由該桌一材料所製成的一第一基底被接合至該第一基 底。該些部分在該分離層被分離。接著,該其餘的分離層 以及SiGe層被移除。因此,由該第一材料所製成的該應 變半導體層,可以形成於由該第一材料所製成的該第二基 底上,而與該第二基底相接觸。 該第一、第二材料一般都使用矽。 在作爲一應變感應層的該Si】.xGex層中,x較佳地係 落在〇·1至0.5的範圔之內。更佳地,在該半導體基底的 該表面上,X幾乎爲0且逐漸地變化。在最高的表面上, X較佳地係爲0.1至0.5。晶格鬆弛至少發生在該最高的 表面上,以使得該處的應變是微小的。 當該分離層係爲一多孔層,該分離步驟的執行係藉由 楔形物插入法、張力/剪力的應用、液噴(水噴)注射 法、氣噴注射法或超音波的應用。 在該應變半導體層上的該Si! 4〇^層,藉由拋光法或 化學蝕刻法來移除。 -13· (10) (10)1284360 在該Sh_xGex層被移除之後,且僅該應變半導體層被 留在該第二基底上,即完成表面平面化。 根據本發明第四實施例的製造方法可以更進一步地包 含一步驟:藉由使用該應變半導體層作爲一活性層來形成 一電路元件。對於具有此一電路元件的裝置而言,一高速 運算可以藉由該應變半導體層來實行。 (第五實施例) 含有鍺的一層(SihXGex層)被作爲一應變感應層, 形成於由一第二材料所製成的一半導體基底的該表面上。 接著’一多孔的SiGe層藉由退火而形成用以作爲一分離 層。形成於由該第二材料所製成的該半導體基底上的該應 變感應Sh.xGex層中,X較佳地係落在ο·〗至〇.5的範圍 之內。更佳地,在該半導體基底的該表面上,χ幾乎爲〇 且逐漸地變化。在最高的表面上,X較佳地係爲0.1至 0 · 5。晶格鬆弛至少發生在該最高的表面上,以使得該處 的應變是微小的。因此,該Si hxGex層幾乎如同一-應變感 應層的作用,即使在多孔形成之後。 該層(較佳地係爲一單晶砂層)幾乎係由砂所製成, 且形成於該Si^Gex層上作爲由一第一材料所製成的一應 變半導體層,藉此來製作一第一基底。 由該第一材料所製成的一第二基底被接合至該第一基 底。該些部分在該分離層被分離。接著,該其餘的分離層 以及Si!.xGex層被移除。因此,由該第一材料所製成的該 -14- (11) 1284360 應變半導體層,可以形成於由該第一材料所製成的該第二 基底上,而與該第二基底相接觸。 該第一、第二材料一般都使用矽。 當該分離層係爲一多孔層,該分離步驟的執行係藉由 楔形物插入法、張力/剪力的應用、液噴(水噴)注射 法、氣噴注射法或超音波的應用。 在該應變半導體層上的該Si hxGex層,藉由拋光法或 化學蝕刻法來移除。 在該Sii-xGex層被移除之後,且僅該應變半導體層被 留在該第二基底上,即完成表面平面化。 根據本發明第五實施例的製造方法可以更進一步地包 含一步驟:藉由使用該應變半導體層作爲一活性層來形成 一電路元件。對於具有此一電路元件的裝置而言,一高速 運算可以藉由該應變半導體層來實行。 本發明的一些例子將伴隨著圖式敘述如下。下述的例 子1〜5分別對應至上述的第一至第五實施例。 (例子1 ) 根據本發明例子1 一半導體基底(部件)的製造方法 將於下述說明,並請參照第1 A〜1C圖。 在如第1A圖所示的該步驟(磨薄步驟)中,一第一 基底(部件)10具有含矽、鍺(附加的材料)的一層 (8丨1.>(〇6\層)12形成於一砂基底11上,以及在該siGe 層上形成一砂層1 3。 -15- (12) (12)1284360 (SiGe層的晶膜生長) 首先,該應變感應Si1·xGex層12 ( X係爲0.1至 0.5,並以x = 0.3爲例)藉由化學蒸氣沈積法,並經由照 射器加熱用以在該矽基底1 1晶膜生長。該些較佳的生長 條件係如下所述。需要注意的是,預先烘乾可以在生長之 前執行。 •載送氣體(H2) H2的流率較佳地係爲25〜45升/分鐘,而通常是 3 0升/分鐘。 •第一來源氣體(SiH4)The Si ^ x Gex layer on the strained semiconductor layer is removed by a polishing method or a chemical etching method. After the SinGex layer is removed, and only the strained semiconductor layer is left on the second substrate, surface planarization is completed. The manufacturing method according to the third embodiment of the present invention may further comprise a step of forming a circuit component by using the strained semiconductor layer as an active layer. For devices having such a circuit component, a high speed operation can be performed by the strained semiconductor layer. -12- (9) (9) 1284360 (Fourth Embodiment) A layer containing germanium (Si^Gex layer) is formed on the surface of a semiconductor substrate made of a second material. Next, a porous SiGe layer is formed by annealing to serve as a separation layer. A layer containing germanium (SinGex layer) is again formed on the porous SiGe layer to serve as a strain sensing layer. The layer (preferably a single crystal sand layer) is almost entirely made of tantalum and is formed on the Si!-xGex layer as a strained semiconductor layer made of a first material. a first substrate. A first substrate made of a material of the table is joined to the first substrate. The portions are separated at the separation layer. Then, the remaining separation layer and the SiGe layer are removed. Therefore, the strained semiconductor layer made of the first material may be formed on the second substrate made of the first material to be in contact with the second substrate. The first and second materials generally use ruthenium. In the Si].xGex layer as a strain sensing layer, x is preferably within the range of 〇·1 to 0.5. More preferably, on the surface of the semiconductor substrate, X is almost zero and gradually changes. On the highest surface, X is preferably from 0.1 to 0.5. The lattice relaxation occurs at least on the highest surface so that the strain at that point is minute. When the separation layer is a porous layer, the separation step is performed by wedge insertion, tension/shear application, liquid jet (water jet) injection, gas jet injection or ultrasonic application. The Si! 4 layer on the strained semiconductor layer is removed by a polishing method or a chemical etching method. -13· (10) (10) 1284360 After the Sh_xGex layer is removed, and only the strained semiconductor layer is left on the second substrate, surface planarization is completed. The manufacturing method according to the fourth embodiment of the present invention may further comprise a step of forming a circuit component by using the strained semiconductor layer as an active layer. For devices having such a circuit component, a high speed operation can be performed by the strained semiconductor layer. (Fifth Embodiment) A layer containing germanium (SihXGex layer) is formed as a strain sensing layer on the surface of a semiconductor substrate made of a second material. Next, a porous SiGe layer is formed by annealing to serve as a separation layer. In the strain-sensing Sh.xGex layer formed on the semiconductor substrate made of the second material, X preferably falls within the range of ο·· to 〇.5. More preferably, on the surface of the semiconductor substrate, germanium is almost 〇 and gradually changes. On the highest surface, X is preferably from 0.1 to 0.5. Lattice relaxation occurs at least on the highest surface so that the strain at that location is minute. Therefore, the Si hxGex layer acts almost as the same - strain sensing layer even after the formation of the porous. The layer (preferably a single crystal sand layer) is almost made of sand and is formed on the Si^Gex layer as a strained semiconductor layer made of a first material, thereby fabricating a layer The first substrate. A second substrate made of the first material is bonded to the first substrate. The portions are separated at the separation layer. Then, the remaining separation layer and the Si!.xGex layer are removed. Therefore, the -14-(11) 1284360 strained semiconductor layer made of the first material may be formed on the second substrate made of the first material to be in contact with the second substrate. The first and second materials generally use ruthenium. When the separation layer is a porous layer, the separation step is performed by wedge insertion, tension/shear application, liquid jet (water jet) injection, gas jet injection or ultrasonic application. The Si hxGex layer on the strained semiconductor layer is removed by a polishing method or a chemical etching method. After the Sii-xGex layer is removed, and only the strained semiconductor layer is left on the second substrate, surface planarization is completed. The manufacturing method according to the fifth embodiment of the present invention may further comprise a step of forming a circuit component by using the strained semiconductor layer as an active layer. For devices having such a circuit component, a high speed operation can be performed by the strained semiconductor layer. Some examples of the invention will be described below with the accompanying drawings. Examples 1 to 5 described below correspond to the first to fifth embodiments described above, respectively. (Example 1) A method of manufacturing a semiconductor substrate (member) according to Example 1 of the present invention will be described below, and reference is made to Figs. 1A to 1C. In this step (thinning step) as shown in Fig. 1A, a first substrate (component) 10 has a layer containing ruthenium, iridium (additional material) (8丨1.>(〇6\layer) 12 is formed on a sand substrate 11, and a sand layer 13 is formed on the SiGe layer. -15- (12) (12) 1284360 (film growth of the SiGe layer) First, the strain-sensing Si1·xGex layer 12 ( The X system is 0.1 to 0.5, and x = 0.3 is exemplified by chemical vapor deposition, and heated by an illuminator for growth of the germanium substrate 11. The preferred growth conditions are as follows. It should be noted that pre-baking can be performed before growth. • Carrier gas (H2) The flow rate of H2 is preferably 25 to 45 liters/min, and is usually 30 liters/min. Source gas (SiH4)

SiH4的流率較佳地係爲50〜200立方公分/分鐘, 而通常是1〇〇立方公分/分鐘。 •弟一來源氣體(2% GeH4) 2% GeH4的流率較佳地係爲20〜5 00立方公分/分 鐘,而通常是300立方公分/分鐘。 •腔體氣壓 該腔體氣壓較佳地係爲10〜100陶爾,而通常是 1 00陶爾。 •溫度(基底溫度) 該溫度較佳地係爲65 0〜6 80°c。 •生長速率 該生長速率較佳地係爲〗〇〜50奈米/分鐘。 -16- (13) (13)1284360 鍺的製成比例可以隨著該來源氣體的該混合比例而變 化。較佳地’在生長於該單晶矽基底上的初期階段,該鍺 濃度被設爲較低的,且隨著該晶膜生長的進行而增加。該 鍺的比例較佳地最終係爲將X設爲0 · 1至0 · 5。在該最高 的表面上的該應變可以被鬆驰,例如:導入的缺陷。 另外亦爲較佳地,係在該Sh-xGex層12的生長之 前,將該矽基底11的該表面於一氫氣下退火(預先烘 乾)。在預先烘乾中,氫的流率較佳地係爲15〜45升/分 鐘,而通常是40升/分鐘。該溫度較佳地係爲700〜1000 °C,而通常是950°C。該腔體氣壓較佳地係爲10〜760陶 爾,而通常是80陶爾。在初期階段,該單晶矽層較佳地 係於低生長速率下生長,通常爲50奈米/分鐘或者更 小。 當一樣品被裝載在該化學蒸氣沈積裝置中或是從該化 學蒸氣沈積裝置卸載時,形成於該表面上的一天然的氧化 物膜,可以藉由在裝載於該裝置之前的每一步驟中,將該 表面浸泡在一稀釋的氫氟酸溶液中來移除。 (應變矽層的形成) 接著,該單晶矽層1 3藉由化學蒸氣沈積法生長於該 Si】.xGex層12上。以此方式形成的該單晶矽層13的晶格 常數與位於其下的該Si 層12之晶格常數不同,因 此,其作用如同一應變矽層。根據此例,在該應變矽層 13以及該Si】.xGex層12之間,接近該介面的該Si】.xGex -17- (14) (14)1284360 層1 2中的鍺之濃度可以被精確地加以控制。此外,在該 介面的濃度分佈可以是均勻的(平面的)分佈。因此,形 成於該Si!.xGex層12上的該應變矽層之該應變可以被輕 易地加以控制。基於此原因,可以獲得一高品質的應變矽 層1 3。作爲該應變矽層1 3的該單晶矽層之生長條件如下 述: •載送氣體(H2) 氫的流率較佳地係爲15〜45升/分鐘,而通常是 3 〇升/分鐘。 •來源氣體(SiH4) 該來源氣體的流率較佳地係爲50〜5 00立方公分/ 分鐘,而通常是100立方公分/分鐘。 •腔體氣壓 該腔體氣壓較佳地係爲1〇〜1〇〇陶爾,而通常是 80陶爾。 •生長溫度(基底溫度) 該生長溫度較佳地係爲65 0〜l〇〇〇°C,而通常是900 °C。 •生長速率 該生長速率較佳地係爲10〜5〇〇奈米/分鐘。 (在第一基底側邊的完成) 經由上述的步驟,可以獲得如第1 A圖所示的該第一 -18 - (15) 1284360 基底(部件)10。藉由多個步驟來形成該Si hGex J 以及該應變ϊ夕層13’已於上述說明,亦可由一單一 (例如:化學蒸氣沈積法)來形成該Sh.xGex層12 該應變矽層1 3,其係藉由逐漸地或逐步地改變鍺的 (或其他氣體的濃度)以及其他條件。 (接合) 在如第1A圖所示的該步驟之後,接著在如第1 所示的該步驟(接合步驟)中,一第二基底(部件 被接合至該第一基底(部件)1〇的該上表面側邊。 一基底(部件)1 〇以及該第二基底(部件)3 0可以 地被接合。另外可以選擇的是,爲了要堅固地耦合至 合的基底,可以執行電鍍或退火。該第二基底(部件 通常係爲一矽基底。待接合的該二基底的該接合表面 佳地需要經歷一疏水處理(也被應用至下述的例子中 這是因爲假如該接合表面係爲疏水性的,一矽氧化物 成於該接合介面中。 (基底的移除) 在如第1B圖所示的該步驟之後,接著在如第1 ^ 所示的該步驟(移除步驟)中,藉由接合步驟所形成 基底(接合的基底堆疊)的該矽基底11,被加以移 該移除步驟可以藉由一機械的移除方法,例如:硏磨 拋光法來完成,或是一化學的移除方法,例如:濕蝕 i 12 步驟 以及 濃度 B圖 )30 該第 簡單 該接 )30 ,較 )° 膜形 C圖 之該 除。 法、 刻或 -19- (16) (16)1284360 乾蝕刻來完成。假如該基底係藉由化學蝕刻法來移除,則 一種含有氫氧化鉀、重鉻酸鉀、丙醇以及水的混合溶液將 被使用。矽可以藉由與Si〇.7Ge().3有關的選擇性大約20次 而被移除(詳細請參見,D· J. Godbey,et· al.,Appl. Phys Lett·,vol. 56,no. 4,pp. 3 73 -3 79,1 990 )。另外可以選擇 的是,當 EDP 餓刻液(Ethylene Diamine Pyrochatechol) 被使用,矽可以在溫度爲82°C下藉由與SimGem有關 的選擇性大約390次而被移除(詳細請參見,D. Feijoo, et. al·,J· Electro. Mat·,vol. 23,no· 6,ρρ· 493-496, 1994 ) 〇 另外,該Sii_xGex層12被移除。該Sii.xGex層12可 以藉由,例如:拋光法或化學蝕刻法來移除。假設該 Si 1-X G ex層12藉由化學蝕刻法來移除,一種含有氫氟酸 (0.5%)、硝酸以及水(以5 ·· 4 0 ·· 2 0的比例)的混合溶 液被使用。Si〇.7Ge().3可以藉由與矽有關的選擇性大約13 次而被移除(詳細請參見,六.11.«:1^以,61&1.,八??1· Phys· Lett·,vol· 58,no· 17,pp. 1 8 99- 1 90 1,1991) 0 也就是說,一轉換步驟藉由如第1B圖所示的接合步 驟以及如第1 C圖所示的移除步驟來執行。第1 C圖係爲 一斷面圖用以說明根據本發明例子1所製造的該半導體基 底。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層1 3而形成時’可以獲 -20- (17) (17)1284360 得一高速且低能源消耗的一裝置。該電路元件的形成 半導體裝置的製造)將於下述說明。假如需要的話,該袠 面可以藉由拋光法或氫退火來平面化。 (例子2 ) 根據本發明例子2 —半導體基底(部件)的製造方法 將於下述說明,並請參照第2A〜2D圖。在例子!的該 Sii_xGex層形成之前,一多孔層形成於接近—砂基底η 的該表面以作爲一分離層。 (電鍍) 首先,一多孔矽層1 4係藉由電鍍形成於該單晶矽基 底11上。通常電鍍係以下述方式完成,亦即將一含有氫 氟酸的溶液塡滿具有一白金電極對的一電鏟儲槽、在兩電 極間放置該矽基底1 1,並且在兩電極間提供一電流。 藉由此步驟所形成的該多孔矽層14具有一易碎的結 構,並被作爲稍後的分離步驟中的一分離層。對於電鑛而 言,在日本專利申請案號7-3 028 8 9所揭露的技術可以作 爲其電鍍條件。 一保護膜,例如:一氧化物膜,可以形成於該多孔矽 層14內部氣孔的該些表面上。另外可以選擇的是,具有 不同的多孔性的複數層可以藉由控制該電鍍溶液或電流而 形成。舉例來說,一第一多孔層可以形成於該表面側邊 上,而具有一較高多孔性的一第二多孔層可以形成於該第 -21 - (18) 1284360 一多孔層的下面。 (SiGe/矽磊晶接合) 在該多孔矽層1 4上形成一含有矽、鍺(附 料)的應變感應Si hGcx層12以及一應變矽層1] 將該第一基底接合至該第二基底等步驟係與例子1 一第一基底(部件)具有一如第2A圖所示的結 2B圖所示的結構係由該接合步驟獲得。 另外亦爲較佳地,係在該層12形成 孔矽層14之前,將該多孔矽層14的該表面於一氫 火(預先烘乾)。在預先烘乾中,氫的流率較佳 15〜45升/分鐘,而通常是40升/分鐘。該溫度 係爲700〜l〇〇〇°C,而通常是950°C。該腔體氣壓較 爲10〜760陶爾,而通常是80陶爾。在初期階段 晶矽層較佳地係於低生長速率下生長,通常爲50 分鐘或者更小。 當一樣品被裝載在該化學蒸氣沈積裝置中或是 學蒸氣沈積裝置卸載時,形成於該表面上的一天然 物膜,可以藉由在裝載於該裝置之前的每一步驟中 表面浸泡在一稀釋的氫氟酸溶液中來移除。 (基底的移除) 在如第2B圖所示的該步驟之後,接著在如第 所示的該步驟(分離步驟)中,藉由接合步驟所形 加的材 ;,以及 相同° 構。第 於該多 氣下退 地係爲 較佳地 佳地係 ,該單 奈米/ 從該化 的氧化 ,將該 2 C圖 成之該 -22- (19) 1284360 基底(接合的基底堆疊),在部分該分離層(多孔矽層) 14處被分離爲兩個基底。也就是說,一轉換步驟藉由如 第2B圖所示的接合步驟以及如第2C圖所示的分離步驟 來執行。該分離步驟可以藉由下述來執行,例如:當繞著 其軸線旋轉該接合的基底堆疊時,注入一流體至該分離層 14。參考數字IV以及14〃係用以指明在分離後,在該些 基底上所留下的多孔層。 使用張應力、壓縮或剪應力的分離方法可以用來代替 使用一流體,例如:液體或氣體的上述分離方法。另外可 以選擇的是,這些方法也可以合倂使用。 在分離後仍留在該第二基底30的該多孔層14"藉由 蝕刻法、拋光法、硏磨法或是在一含有氫的還原空氣下退 火,來將之移除。爲了藉由蝕刻法來移除該多孔層,該多 孔層14"可以藉由使用一含有氫氟酸、雙氧水以及水的混 合溶液並以大約爲1 : 1 05的一選擇性來選擇性地移除。 當該多孔層的許多表面面積已被使用,則亦可藉由其 他的矽蝕刻劑來選擇性地移除。 另外,該Si^Gex層12被移除。該12可 以藉由,例如:拋光法或化學蝕刻法來移除。假設該 Si!.xGex層12藉由化學蝕刻法來移除,一種含有氫氟酸 (0.5%)、硝酸以及水(以5 : 40 : 20的比例)的混合溶 液被使用。Si〇.7Ge().3可以藉由與有關矽的選擇性大約13 次而被移除(詳細請參見,A. H_ Krist,et. al·, Appl. Phys· Lett·,vol. 58,no. 17,pp· 1 899- 1 90 1,1991) o -23- (20) 1284360 第2D圖係爲一斷面圖用以說明根據本發明例子2所 製造的該半導體基底。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層1 3而形成時,可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話,該表 面可以藉由拋光法或氫退火來平面化。 (例子3 ) 根據本發明例子3 —半導體基底(部件)的製造方法 將於下述說明,並請參照第3 A〜3D圖。例子2的該 Si bxGex層之形成步驟,可以藉由鍺來密封該多孔層的該 些氣孔。The flow rate of SiH4 is preferably from 50 to 200 cubic centimeters per minute, and is usually from 1 cubic centimeters per minute. • The gas flow rate of the source gas (2% GeH4) 2% GeH4 is preferably 20 to 500 cubic centimeters per minute, and is usually 300 cubic centimeters per minute. • Cavity Air Pressure The chamber air pressure is preferably 10 to 100 Torr, and is usually 1 00 Torr. • Temperature (base temperature) This temperature is preferably 65 0 to 6 80 °c. • Growth rate The growth rate is preferably 〇~50 nm/min. -16- (13) (13) 1284360 The ratio of the proportion of niobium may vary depending on the mixing ratio of the source gas. Preferably, the erbium concentration is set to be lower in the initial stage of growth on the single crystal germanium substrate, and increases as the crystal film growth progresses. The ratio of the ruthenium is preferably such that X is set to 0 · 1 to 0 · 5. This strain on the highest surface can be relaxed, for example: introduced defects. Further preferably, the surface of the ruthenium substrate 11 is annealed (pre-baked) under a hydrogen gas before the growth of the Sh-xGex layer 12. In the pre-baking, the flow rate of hydrogen is preferably 15 to 45 liters/minute, and is usually 40 liters/minute. The temperature is preferably from 700 to 1000 ° C, and is usually 950 ° C. The chamber gas pressure is preferably from 10 to 760 Torr, and is usually 80 Torr. In the initial stage, the single crystal germanium layer is preferably grown at a low growth rate, usually 50 nm/min or less. When a sample is loaded in or unloaded from the chemical vapor deposition apparatus, a natural oxide film formed on the surface can be used in each step before being loaded in the apparatus. The surface was immersed in a diluted hydrofluoric acid solution for removal. (Formation of strained ruthenium layer) Next, the single crystal ruthenium layer 13 is grown on the Si].xGex layer 12 by chemical vapor deposition. The lattice constant of the single crystal germanium layer 13 formed in this manner is different from the lattice constant of the Si layer 12 located therebelow, and therefore acts as the same strained germanium layer. According to this example, between the strained layer 13 and the Si].xGex layer 12, the concentration of germanium in the Si].xGex -17-(14) (14) 1284360 layer 1 2 close to the interface can be Control it precisely. Furthermore, the concentration profile at the interface can be a uniform (planar) distribution. Therefore, the strain of the strained layer formed on the Si!.xGex layer 12 can be easily controlled. For this reason, a high quality strain enthalpy layer 13 can be obtained. The growth conditions of the single crystal germanium layer as the strained germanium layer 13 are as follows: • Carrier gas (H2) The flow rate of hydrogen is preferably 15 to 45 liters/minute, and is usually 3 liters/minute. . • Source gas (SiH4) The flow rate of the source gas is preferably 50 to 500 cubic centimeters per minute, and is usually 100 cubic centimeters per minute. • Chamber Air Pressure The chamber air pressure is preferably 1 〇 1 〇〇 1 Torr, and is usually 80 Torr. • Growth temperature (base temperature) The growth temperature is preferably 65 0 to 1 ° C, and is usually 900 ° C. • Growth rate The growth rate is preferably 10 to 5 nanometers per minute. (Completion at the side of the first substrate) Through the above steps, the first -18 - (15) 1284360 substrate (component) 10 as shown in Fig. 1A can be obtained. The Si hGex J and the strained layer 13' are formed by a plurality of steps. The Sch. xGex layer 12 can also be formed by a single (for example, chemical vapor deposition). By changing the concentration of helium (or other gases) and other conditions gradually or stepwise. (joining) after the step as shown in FIG. 1A, then in the step (joining step) as shown in FIG. 1, a second substrate (the member is bonded to the first substrate (component) 1) The upper surface side. A substrate (component) 1 and the second substrate (component) 30 may be joined. Alternatively, plating or annealing may be performed in order to be firmly coupled to the bonded substrate. The second substrate (the component is usually a crucible substrate. The bonding surface of the two substrates to be joined preferably needs to undergo a hydrophobic treatment (also applied to the following example because if the bonding surface is hydrophobic) a single oxide is formed in the bonding interface. (Removal of the substrate) After the step as shown in FIG. 1B, then in the step (removal step) as shown in FIG. The ruthenium substrate 11 formed by the bonding step (the bonded substrate stack) is removed. The removal step can be performed by a mechanical removal method such as honing polishing, or a chemical Removal method, for example: Wet etching i 12 step and concentration B map) 30 This simple is the connection) 30, more than ° film shape C map. Method, engraved or -19- (16) (16) 1284360 dry etching to complete. If the substrate is removed by chemical etching, a mixed solution containing potassium hydroxide, potassium dichromate, propanol and water will be used.矽 can be removed by selectivity about Si〇.7Ge().3 about 20 times (for details, see D. J. Godbey, et al., Appl. Phys Lett., vol. 56, No. 4, pp. 3 73 -3 79,1 990 ). Alternatively, when EDP is used, Ethylene Diamine Pyrochatechol can be removed by a temperature of 82 ° C with a selectivity of about 390 times associated with SimGem (see, for details, D. Feijoo, et. al., J. Electro. Mat., vol. 23, no. 6, ρρ· 493-496, 1994) 〇 In addition, the Sii_xGex layer 12 is removed. The Sii.xGex layer 12 can be removed by, for example, polishing or chemical etching. It is assumed that the Si 1-XG ex layer 12 is removed by chemical etching, and a mixed solution containing hydrofluoric acid (0.5%), nitric acid, and water (in a ratio of 5 ··40··20) is used. . Si〇.7Ge().3 can be removed by the selectivity associated with 矽 about 13 times (for details, see 6.11.«:1^以,61&1.,八??1· Phys · Lett·, vol· 58, no. 17, pp. 1 8 99- 1 90 1,1991) 0 That is, a conversion step is performed by the bonding step as shown in FIG. 1B and as shown in FIG. 1C. The removal steps shown are performed. Fig. 1C is a cross-sectional view for explaining the semiconductor substrate manufactured according to Example 1 of the present invention. (Strain enthalpy and circuit obtained by hydrogen annealing) When a circuit component is formed by the strain enthalpy layer 13, -20-(17) (17) 1284360 can be obtained as a device with high speed and low energy consumption. The formation of the circuit element of the semiconductor device will be described below. The surface can be planarized by polishing or hydrogen annealing, if desired. (Example 2) According to Example 2 of the present invention, a method of manufacturing a semiconductor substrate (member) will be described below, and reference is made to Figs. 2A to 2D. In the example! Before the formation of the Sii_xGex layer, a porous layer is formed on the surface close to the sand substrate η as a separation layer. (Electroplating) First, a porous tantalum layer 14 is formed on the single crystal germanium base 11 by electroplating. Usually, the electroplating is performed in such a manner that a solution containing hydrofluoric acid is filled with a shovel reservoir having a platinum electrode pair, the crucible substrate 1 is placed between the electrodes, and a current is supplied between the electrodes. . The porous tantalum layer 14 formed by this step has a fragile structure and is used as a separate layer in a later separation step. For the electric ore, the technique disclosed in Japanese Patent Application No. 7-3 028 8 9 can be used as the plating condition. A protective film, such as an oxide film, may be formed on the surfaces of the pores inside the porous layer 14. Alternatively, a plurality of layers having different porosities may be formed by controlling the plating solution or current. For example, a first porous layer may be formed on the side of the surface, and a second porous layer having a higher porosity may be formed on the porous layer of the 21 - (18) 1284360 below. (SiGe/矽 epitaxial bonding) forming a strain-inducing Si hGcx layer 12 containing tantalum and niobium (attachment) and a strained tantalum layer 1 on the porous tantalum layer 14 to bond the first substrate to the second Steps such as substrate and Example 1 A first substrate (component) having a structure as shown in Fig. 2B shown in Fig. 2A is obtained by the bonding step. It is also preferred that the surface of the porous layer 14 is subjected to a hydrogen fire (pre-baked) before the layer 12 is formed into the aperture layer 14. In the pre-baking, the flow rate of hydrogen is preferably 15 to 45 liters / minute, and is usually 40 liters / minute. The temperature is 700 to 1 ° C, and is usually 950 ° C. The chamber pressure is 10 to 760 taels, and is usually 80 taels. In the initial stage, the germanium layer is preferably grown at a low growth rate, typically 50 minutes or less. When a sample is loaded in the chemical vapor deposition device or the vapor deposition device is unloaded, a natural film formed on the surface can be surface-immersed in each step before being loaded on the device. Remove in diluted hydrofluoric acid solution. (Removal of Substrate) After this step as shown in Fig. 2B, in the step (separation step) as shown in the first step, the material which is formed by the bonding step; and the same structure. Preferably, the multi-gas retreat is a better system, the single nano/from the oxidation, the 2 C is formed into the -22-(19) 1284360 substrate (joined substrate stack) It is separated into two substrates at a portion of the separation layer (porous ruthenium layer) 14. That is, a conversion step is performed by the joining step as shown in Fig. 2B and the separating step as shown in Fig. 2C. This separation step can be performed by, for example, injecting a fluid to the separation layer 14 as it rotates the bonded substrate stack about its axis. Reference numerals IV and 14 are used to indicate the porous layer left on the substrates after separation. Separation methods using tensile stress, compression or shear stress can be used instead of the above separation method using a fluid such as a liquid or a gas. Alternatively, these methods can be combined. The porous layer 14" remaining in the second substrate 30 after separation is removed by etching, polishing, honing or by annealing under a reducing air containing hydrogen. In order to remove the porous layer by etching, the porous layer 14" can be selectively moved by using a mixed solution containing hydrofluoric acid, hydrogen peroxide, and water and with a selectivity of about 1:105. except. When many surface areas of the porous layer have been used, they can also be selectively removed by other ruthenium etchants. In addition, the Si^Gex layer 12 is removed. The 12 can be removed by, for example, polishing or chemical etching. It is assumed that the Si!.xGex layer 12 is removed by chemical etching, and a mixed solution containing hydrofluoric acid (0.5%), nitric acid, and water (in a ratio of 5:40:20) is used. Si〇.7Ge().3 can be removed by selectivity about 矽 about 13 times (for details, see A. H_ Krist, et. al., Appl. Phys· Lett·, vol. 58, No. 17, pp. 1 899- 1 90 1,1991) o -23- (20) 1284360 The 2D drawing is a cross-sectional view for explaining the semiconductor substrate manufactured according to Example 2 of the present invention. (Strain enthalpy and circuit obtained by hydrogen annealing) When a circuit component is formed by the strain enthalpy layer 13, a device of high speed and low energy consumption can be obtained. The formation of this circuit element (manufacture of a semiconductor device) will be described below. The surface can be planarized by polishing or hydrogen annealing, if desired. (Example 3) According to Example 3 of the present invention, a method of manufacturing a semiconductor substrate (member) will be described below, and reference is made to Figs. 3A to 3D. In the forming step of the Si bxGex layer of Example 2, the pores of the porous layer can be sealed by ruthenium.

(電鍍) 首先,一多孔矽層14係藉由電鍍形成於該單晶矽基 底11上,如第3A圖所示。通常電鍍係以下述方式完 成,亦即將一含有氫氟酸的溶液塡滿具有一白金電極對的 一電鏟儲槽、在兩電極間放置該矽基底11,並且在兩電 極間提供一電流。藉由此步驟所形成的該多孔砂層1 4具 有一易碎的結構,並被作爲稍後的分離步驟中的一分離 層。對於電鍍而言,在日本專利申請案號7 - 3 0 2 8 8 9所揭 露的技術可以作爲其電#條件。 -24 - (21) 1284360 一保護膜,例如:一氧化物膜,可以形成於該多孔矽 層14內部氣孔的該些表面上。另外可以選擇的是,具有 不同的多孔性的複數層可以藉由控制該電鎪溶液或電流而 形成。舉例來說,一第一多孔層可以形成於該表面側邊 上,而具有一較高多孔性的一第二多孔層可以形成於該第 一多孔層的下面。 (藉由SiGe來密封氣孔) 該多孔矽層14的該些表面孔可以被Si hxGex所密 封。該些較佳的生長條件係如下所述。需要注意的是,預 先烘乾(將於下述說明)可以在生長之前執行。 •載送氣體(H2) H2的流率較佳地係爲25〜45升/分鐘,而通常是 30升/分鐘。(Electroplating) First, a porous tantalum layer 14 is formed on the single crystal germanium base 11 by electroplating as shown in Fig. 3A. Typically, electroplating is accomplished by filling a solution containing hydrofluoric acid with a shovel reservoir having a platinum electrode pair, placing the crucible substrate 11 between the electrodes, and providing a current between the two electrodes. The porous sand layer 14 formed by this step has a fragile structure and is used as a separation layer in a later separation step. For electroplating, the technique disclosed in Japanese Patent Application No. 7-3 0 8 8 9 can be used as its electric # condition. - 24 - (21) 1284360 A protective film, for example, an oxide film, may be formed on the surfaces of the pores inside the porous layer 14. Alternatively, a plurality of layers having different porosities can be formed by controlling the electrolysis solution or current. For example, a first porous layer may be formed on the side of the surface, and a second porous layer having a higher porosity may be formed under the first porous layer. (The pores are sealed by SiGe) The surface pores of the porous tantalum layer 14 can be sealed by Si hxGex. These preferred growth conditions are as follows. It should be noted that pre-drying (described below) can be performed prior to growth. • The flow rate of the carrier gas (H2) H2 is preferably from 25 to 45 liters/min, and is usually 30 liters/min.

•第一來源氣體(SiH4)• First source gas (SiH4)

SiH4的流率較佳地係爲50〜200立方公分/分鐘, 而通常是1〇〇立方公分/分鐘。 •第二來源氣體(2% GeH4 ) 2% GeH4的流率較佳地係爲20〜5 00立方公分/分 鐘,而通常是300立方公分/分鐘。 •腔體氣壓 該腔體氣壓較佳地係爲10〜100陶爾,而通常是 1 0 0陶爾。 -25· (22) 1284360 •溫度 該溫度較佳地係爲65 0〜6 80 °C。 •生長速率 該生長速率較佳地係爲5〜20奈米/分鐘。The flow rate of SiH4 is preferably from 50 to 200 cubic centimeters per minute, and is usually from 1 cubic centimeters per minute. • The flow rate of the second source gas (2% GeH4) 2% GeH4 is preferably 20 to 500 cubic centimeters per minute, and is usually 300 cubic centimeters per minute. • Chamber Air Pressure The chamber air pressure is preferably 10 to 100 Torr, and is usually 1 00 Torr. -25· (22) 1284360 • Temperature This temperature is preferably 65 0 to 6 80 °C. • Growth rate The growth rate is preferably from 5 to 20 nm/min.

該密封Sh-xGex層之鍺的製成比例可以隨著該來源氣 體的該混合比例而變化。較佳地,X係爲0.1至0.5。由 於表面孔的存在,在該密封層上的該應變可以被鬆弛。藉 由此步驟,係形成該應變感應Si 層。 另外亦爲較佳地,係在氣孔密封之前,將該矽基底 11的該表面於一氫氣下退火(預先烘乾)。在預先烘乾 中,氫的流率較佳地係爲15〜45升/分鐘,而通常是40 升/分鐘。該溫度較佳地係爲7〇〇〜1〇〇〇 °C,而通常是950 °C。該腔體氣壓較佳地係爲10〜760陶爾,而通常是80 陶爾。The ratio of the enthalpy of the sealed Sh-xGex layer may vary depending on the mixing ratio of the source gas. Preferably, the X system is from 0.1 to 0.5. This strain on the sealing layer can be relaxed due to the presence of surface holes. By this step, the strain-sensing Si layer is formed. Further preferably, the surface of the crucible substrate 11 is annealed (pre-baked) under a hydrogen gas prior to the pore sealing. In the pre-baking, the flow rate of hydrogen is preferably from 15 to 45 liters/min, and is usually 40 liters/min. The temperature is preferably from 7 〇〇 to 1 ° C, and is usually 950 ° C. The chamber pressure is preferably from 10 to 760 Torr and is typically 80 Torr.

當一樣品被裝載在該化學蒸氣沈積裝置中或是從該化 學蒸氣沈積裝置卸載時,形成於該表面上的一天然的氧化 物膜,可以藉由在裝載於該裝置之前的每一步驟中,將該 表面浸泡在一稀釋的氫氟酸溶液中來移除。 (矽磊晶接合至完成) 形成一矽層13於該SiGe密封層上,以及截至完成前 的步驟皆與例子2的步驟相同。一第一基底(部件)1〇,, 具有一如第3 A圖所示的結構。第3 B圖所示的結構係由 該接合步驟獲得。在分離後,該基底被分爲兩個部分,如 -26· (23) 1284360 第3 C圖所示,且一轉換步驟被執行。 第3 D圖係爲一斷面圖用以說明根據本發明例子3所 製造的該半導體基底。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層13而形成時’可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話’該表 面可以藉由拋光法或氫退火來平面化。 (例子4 ) 根據本發明例子4 一半導體基底(部件)的製造方法 將於下述說明,並請參照第4A〜4D圖。形成於一矽基底 11上的一 SiGe層被多孔化,以此來替代例子2的該矽基 底的多孔性。 (SiGe層的晶膜生長) 如第4A圖所示,含有矽、鍺(附加的材料)的一層 15 (Si卜yGey層,y係爲〇·ΐ至〇·5,並以y = 〇.3爲例)藉 由化學蒸氣沈積法,並經由照射器加熱用以在該單晶5夕基 底1 1晶膜生長。該些較佳的生長條件係如下所述。需要 注意的是,預先烘乾可以在生長之前執行。 載送氣體(H2) -27- (24) 1284360When a sample is loaded in or unloaded from the chemical vapor deposition apparatus, a natural oxide film formed on the surface can be used in each step before being loaded in the apparatus. The surface was immersed in a diluted hydrofluoric acid solution for removal. (矽 epitaxial bonding to completion) A layer 13 is formed on the SiGe sealing layer, and the steps up to completion are the same as those in the example 2. A first substrate (component) 1 has a structure as shown in Fig. 3A. The structure shown in Fig. 3B is obtained by the joining step. After separation, the substrate is divided into two sections, as shown in Figure -26 (23) 1284360, Figure 3C, and a conversion step is performed. Fig. 3D is a cross-sectional view for explaining the semiconductor substrate manufactured according to Example 3 of the present invention. (Strain enthalpy and circuit obtained by hydrogen annealing) When a circuit component is formed by the strain enthalpy layer 13, a device which is high in speed and low in energy consumption can be obtained. The formation of this circuit element (manufacture of a semiconductor device) will be described below. The surface can be planarized by polishing or hydrogen annealing, if desired. (Example 4) A method of manufacturing a semiconductor substrate (member) according to Example 4 of the present invention will be described below, and reference is made to Figs. 4A to 4D. A SiGe layer formed on a substrate 11 was made porous to replace the porosity of the ruthenium base of Example 2. (Crystal film growth of SiGe layer) As shown in Fig. 4A, a layer 15 containing yttrium and lanthanum (additional material) (Si yGey layer, y is 〇·ΐ to 〇·5, and y = 〇. 3 is exemplified by chemical vapor deposition and heating via an illuminator for growth of the substrate on the single crystal substrate. These preferred growth conditions are as follows. It should be noted that pre-baking can be performed prior to growth. Carrier gas (H2) -27- (24) 1284360

H2的流率較佳地係爲25〜45升/分鐘,而通常是 30升/分鐘。 •第一來源氣體(SiH4 )The flow rate of H2 is preferably from 25 to 45 liters per minute, and is usually 30 liters per minute. • First source gas (SiH4)

SiH4的流率較佳地係爲50〜200立方公分/分鐘, 而通常是1〇〇立方公分/分鐘。 •第二來源氣體(2% GeH4 )The flow rate of SiH4 is preferably from 50 to 200 cubic centimeters per minute, and is usually from 1 cubic centimeters per minute. • Second source gas (2% GeH4)

2% GeH4的流率較佳地係爲20〜5 00立方公分/分 鐘,而通常是300立方公分/分鐘。 •腔體氣壓 該腔體氣壓較佳地係爲10〜100陶爾,而通常是 1 00陶爾。 •溫度(基底溫度) 該溫度較佳地係爲650〜680°C。 •生長速率 該生長速率較佳地係爲10〜50奈米/分鐘。The flow rate of 2% GeH4 is preferably from 20 to 500 cubic centimeters per minute, and is usually 300 cubic centimeters per minute. • Cavity Air Pressure The chamber air pressure is preferably 10 to 100 Torr, and is usually 1 00 Torr. • Temperature (base temperature) The temperature is preferably 650 to 680 °C. • Growth rate The growth rate is preferably from 10 to 50 nm/min.

鍺的製成比例可以隨著該來源氣體的該混合比例而變 化。較佳地,在生長於該單晶矽基底上的初期階段,該鍺 濃度被設爲較低的,且隨著該晶膜生長的進行而增加。該 鍺的比例較佳地最終係爲將y設爲0.1至0.5。在該最高 的表面上的該應變可以被鬆弛,例如:導入的缺陷。 (SiGe電鍍) 在如第4A圖所示的該步驟之後,接著在如第4B圖 所示的該步驟(電鍍步驟)中,一多孔矽層]6係藉由電 -28- (25) 1284360 鍍形成於該SiwGey層15上。通常電鍍係以下述方式完 成,亦即將一含有氫氟酸的溶液塡滿具有一白金電極對的 一電鍍儲槽、在兩電極間放置具有該siHGey層15的該 矽基底1 1,並且在兩電極間提供一流。藉由此步驟所 形成的該多孔矽層16具有一暴碎的結構,並被作爲稍後 的分離步驟中的一分離層。 一保護膜,例如:一氧化物膜,可以形成於該多孔石夕 層16內部氣孔的該些表面上。當SiGe被氧化,二氧化矽 形成於該表面上,且鍺被往內地推進。一氧化物膜被形成 於該內部氣孔的該些表面上。另外可以選擇的是,具有不 同的多孔性的複數層可以藉由控制該電鍍溶液或電流而形 成。舉例來說,一第一多孔層可以形成於該Sh.yGey層 1 5的該表面側邊上,而具有一較高多孔性的一第二多孔 層可以形成於該第一多孔層的下面。比之該Sil.yGey層 1 5,該多孔層1 6可以較深,且達到該矽基底1 1 (而第4B 圖中的該多孔層16並未達到該矽基底11)。 由於藉由電鍍來形成多孔層是一種電解蝕刻法,其可 以輕易且選擇性地蝕刻該些缺陷。因此,在多孔層形成之 後,形成該Si! .yGey層15過程中所導入的該些缺-幾乎 不留在該單晶矽層剩餘的部分。結果導致該結晶度得以恢 復。 (SiGe/矽磊晶至完成) 形成一含有矽、鍺(附加的材料)的應變感應 -29- (26) 1284360The proportion of the bismuth produced may vary depending on the mixing ratio of the source gas. Preferably, the erbium concentration is set to be lower in the initial stage of growth on the single crystal germanium substrate, and increases as the crystal film growth progresses. The ratio of the ruthenium is preferably finally set to y from 0.1 to 0.5. This strain on the highest surface can be relaxed, for example, an introduced defect. (SiGe plating) After this step as shown in Fig. 4A, then in the step (electroplating step) as shown in Fig. 4B, a porous tantalum layer 6 is made by electricity - 28 - (25) 1284360 is plated on the SiwGey layer 15. Usually, the electroplating is performed in such a manner that a solution containing hydrofluoric acid is filled with a plating reservoir having a platinum electrode pair, and the crucible substrate 1 having the siHGey layer 15 is placed between the electrodes and in two The electrodes are superb. The porous tantalum layer 16 formed by this step has a violent structure and is used as a separate layer in a later separation step. A protective film, such as an oxide film, may be formed on the surfaces of the pores inside the porous layer 16. When SiGe is oxidized, cerium oxide is formed on the surface, and the ruthenium is advanced inward. An oxide film is formed on the surfaces of the internal pores. Alternatively, a plurality of layers having different porosity can be formed by controlling the plating solution or current. For example, a first porous layer may be formed on the surface side of the Sh.yGey layer 15 and a second porous layer having a higher porosity may be formed on the first porous layer. Below. The porous layer 16 can be deeper than the Sil.yGey layer 15 and reach the crucible substrate 11 (and the porous layer 16 in Figure 4B does not reach the crucible substrate 11). Since the formation of the porous layer by electroplating is an electrolytic etching method, these defects can be easily and selectively etched. Therefore, after the formation of the porous layer, the defects introduced during the formation of the Si!.yGey layer 15 hardly remain in the remaining portion of the single crystal germanium layer. As a result, the crystallinity is restored. (SiGe/矽 epitaxial to completion) Forms a strain sensing containing yttrium and lanthanum (additional material) -29- (26) 1284360

Si】-xGex層12於該多孔層16上,以及截至完成前的步驟 皆與例子2的步驟相同。一第一基底(部件)具有一 如第4C圖所示的結構。第4D圖所示的結構係由該接合 步驟獲得。在分離後,該基底被分爲兩個部分’如第4E 圖所示,且一轉換步驟被執行。第4F圖係爲一斷面圖用 以說明根據本發明例子4所製造的該半導體基底。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層13而形成時,可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話,該表 面可以藉由拋光法或氫退火來平面化。 (例子5 )The Si]-xGex layer 12 is on the porous layer 16, and the steps up to completion are the same as those in the example 2. A first substrate (component) has a structure as shown in Fig. 4C. The structure shown in Fig. 4D is obtained by the joining step. After separation, the substrate is divided into two portions as shown in Fig. 4E, and a conversion step is performed. Fig. 4F is a cross-sectional view for explaining the semiconductor substrate manufactured according to Example 4 of the present invention. (Strain enthalpy and circuit obtained by hydrogen annealing) When a circuit component is formed by the strain enthalpy layer 13, a device which is high in speed and low in energy consumption can be obtained. The formation of this circuit element (manufacture of a semiconductor device) will be described below. The surface can be planarized by polishing or hydrogen annealing, if desired. (Example 5)

根據本發明例子5 —半導體基底(部件)的製造方法 將於下述說明,並請參照第5A〜5F圖。假如晶格鬆弛已 經發生於例子4該多孔Si Ge層的該表面上,一應變矽層 13可以形成在其上而不需要形成另一 Si Ge層。 其餘的步驟與例子4相同。第5A圖係爲一斷面圖用 以說明該SiGe層的磊晶步驟。第5B圖係爲一斷面圖用以 說明該接合步驟。 一第一基底(部件)具有一如第5C圖所示的結 構。第5D圖所示的結構係由該接合步驟獲得。在分離 後,該基底被分爲兩個部分,如第5 E圖所示,且一轉換 -30- (27) (27)1284360 步驟被執行。第5 F圖係爲一斷面圖用以說明根據本發明 例子5所製造的該半導體基底。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層13而形成時,可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話,該表 面可以藉由拋光法或氫退火來平面化。 (例子6 ) 根據本發明例子6 —半導體基底(部件)的製造方法 將於下述說明,並請參照第6A〜6E圖。 -(半導體基底) 如例子4、5中所述之由該第二材料所製成的一半導 體基底’以及由一材料(例如:鍺,其晶格常數大於矽的 晶格常數)所製成的基底,被用來替代一矽基底。除了鍺 以外,一化合物半導體,例如:SiGe或砷化鎵等第四族 的混合結晶可以被使用。對於SiGe塊結晶而言,日本東 北大學的材料硏究所已經於用以科學硏究補助計畫的一份 新的硏究報告摘要中,發表了單晶塊siGe的生長。 一多孔層26悉成於—SiGe或鍺基底上(如第6A 圖所不)。由於魯結晶從開始係爲一塊結晶,該晶格被對 準於該基底。一應變砂層13生長於該多孔層26上(如第 -31 - 30, (28) 1284360 6B圖所示)。該結構被接合至一第二基底(部件) 如第6C圖所示。接著,該些部分在該多孔層26上尧 (如第6D圖所示)。如同上述多個例子一樣,該女 被移除以使得具有該應變矽層1 3在該第二基底(音| 30上的一應變半導體基底可以被製造(如第6E 示)。 在該多孔層26形成之前,一 Sh-xGex層可以开 減少與矽的晶格常數之差異。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層13而形成時,可 得一高速且低能源消耗的一裝置。該電路元件的形成 半導體裝置的製造)將於下述說明。假如需要的話, 面可以藉由拋光法或氫退火來平面化。 在上述多個例子中,一應變半導體層係藉由一具 格常數大於一單晶半導體之晶格常數的材料所製成, 以形成一應變感應層。本發明也可以被應用至另一例 亦即一應變半導體層係藉由一具有晶格常數小於一單 導體之晶格常數的材料所製成,並用以形成一應變 層。舉例來說,爲了形成一矽應變半導體層,且其晶 數小於一單晶矽的晶格常數,碳化矽或鑽石可以被使 形成該應變感應層。 在上述多個例子中,該矽應變半導體層係直接地 於該矽基底上,用以作爲該第二基底。然而,非結晶 分離 離層 件) 圖所 成以 以獲 (一 該表 有晶 並用 子, 晶半 感應 格常 用以 形成 層, -32- (29) 1284360 例如:一複晶矽(包含微晶矽)或非結晶矽可以被用來形 成於該應變半導體層上或第二基底上,以及被接合使得該 應變半導體層可以形成於該複晶矽層或該非結晶矽層(係 形成於該矽基底上,當退火被執行用以堅固地耦合該接合 的基底時,該非結晶矽層被轉換爲一複晶)上。本發明之 該半導體基底的製造方法,也包含此種形式。具有一複晶 層或其他形成於該矽基底上的該結構,也包含於本發明的 該半導體基底。該半導體基底並非一定需要是一單晶基 底。一複晶基底也可以被使用。 作爲該第二基底的該半導體基底,可以具有一濃密地 摻雜的雜質層形成於該表面上。另外可以選擇的是,該基 底本身可以包含一高濃度的雜質。舉例來說,當一 P +基 底或具有一 P +層的基底被用以當作該第二基底的該半導 體基底,且一應變半導體層如同一 P-層被接合至該基 底,因此一 P_/P +基底可以被製造。 (半導體裝置的例子) 一半導體裝置,其使用如上述多個例子中的該半導體 基底製造方法所製造的一半導體基底,以及該半導體裝置 的製造方法將於下述說明,並請參照第7A〜7D圖所示。 首先,一半導體基底藉由使用如上述例子1〜5中的該 半導體基底(部件)製造方法所製造。此半導體基底具有 一應變矽層位於一矽基底上,如上所述。於下述說明中, 該半導體基底將被作爲一應變矽基底。相較於一正常的石夕 -33- (30) 1284360 基底,藉由此一應變矽基底可以獲得具有一較高速jg 置。這是因爲該應變矽層優於沒有應變的一矽層。 在如第7A圖所示的步驟中,一活性區丨103', 一電晶體(例如:場效電晶體,金氧半電晶體或一雙 晶體)待形成之處’以及一兀件絕緣區1054被形成 預先準備的應變矽基底1 002上。特別地,該活性區 以及該元件絕緣區1054可以藉由下述的方式形成 如:將一應變矽層1 1 05圖案化爲一島形的方法、區 化隔絕層(LOCOS)氧化法、或一溝渠(trench)法 一閘極絕緣膜1 〇 5 6係形成於該應""變砂層1 1 〇 5的 面上。至於該閘極絕緣膜1 〇 5 6的材料可以使用下述 如:氧化矽、氮化矽、氧氮化矽、氧化鋁、氧化鉅、 鈴、氧化鈦、氧化銃、氧化釔、氧化釓、氧化鑭、氧 或上述的玻璃混合物。該閘極絕緣膜1 0 5 6可以藉由 方式來形成’例如:氧化該應變矽層Π 0 5的該表面 由化學蒸氣沈積法或是物理蒸氣沈積法來沈積一絕緣 於該應變矽層1 105上。 一閛極電極1 05 5係形成於該閘極絕緣膜1〇56上 閘極電極1 05 5可以由以下的材料製成,例如:摻雜 或n型雜質的複矽;一金屬’例如:鎢、鉬、鈦、鉬 或銅,或者是至少包含上述金屬之一的合金;一金屬 物,例如:矽化鉬、矽化鎢或矽化鈷;或者是一金屬 物,例如:氮化鈦、氮化鎢或氮化鉅。該閘極絕 1056可以藉由形成由不同材料所製成複數層而形成 :的裝 其係 極電 於一 1103' ,例 域氧 〇 該表 ,例 氧化 化鉻 下述 ,藉 物質 。該 一 P 、鋁 矽化 氮化 緣膜 ,如 -34- (31) 1284360 同一複晶金屬矽化物(p01 yc 1 d e)閘極。該閘極電極10 5 5 可以由以下的方式形成’例如:自行對準矽化物(self-asigned silicide ; salicide )的方法、镶嵌式 (damascene )閘極製程的方法,或其他任何方法。藉由 上述的步驟,可以獲得如第7A圖所示的結構。 在如第7B圖所示的步驟中,一 η型雜質,例如: 磷、砷、銻,或者是一 Ρ型雜質,例如硼,係被該活性區 1 1 〇 3 '所採用,以形成相對而言非常輕量的摻雜源極與汲 極區1 0 5 8。該雜質可以被離子佈植法以及退火所採用。 一絕緣膜被形成以覆蓋該閘極電極1 05 5,且被背蝕 刻用以形成在該閘極電極1 055側邊上的一邊牆1 05 9。 、 與上述雜質的導電率相同的一雜質被該活性區1 103' 所採用,以形成相對而言濃密的摻雜源極與汲極區 1 05 7。藉由上述的步驟,可以獲得如第7Β圖所示的結 構。 在如第7C圖所示的步驟中,一金屬矽化物層ι〇6〇形 成於該閘極電極1055的該上表面上、該源極與汲極區 1057的該上表面上。至於該金屬矽化物層106〇的松料, 可以使用下述材料,例如:矽化鎳、矽化鈦、矽化鈷、砂 化鉬或矽化鎢。這些矽化物可以藉由下述方式來形成,其 係沈積一金屬來覆蓋該閘極電極1 05 5的該上表面、該源 極與汲極區1 05 7的該上表面,且執行退火處理來導致金 屬與其下面的矽彼此互相作用,以及藉由一蝕刻劑(例 如:硫酸)’來移除該金屬一未反應的部分。如果需要的 -35- (32) (32)1284360 話,該矽化物層的該表面可以是氮化物的。藉由上述的步 驟,可以獲得如第7C圖所示的結構。 在如第7D圖所示的步驟中,一絕緣膜1061被形成 以覆蓋轉換爲一矽化物的該閘極電極1 0 5 5的該上表面, 以及該源極與汲極區1 05 7的該上表面。至於該絕緣膜 1061的材料,可以使用下述材料,例如:含有磷及 (或)硼的氧化矽。如果需要的話,接觸洞藉由化學機械 硏磨法被形成於該絕緣膜1061中。當一黃光製程被使用 時,其係使用氟化氪準分子雷射、氟化氬準分子雷射、氟 準分子雷射、電子光束或X光,則可以形成具有一邊短 於0.2 5 μπι的一矩形接觸洞、或者是具有一直徑小於0.2 5 μιη的一圓形接觸洞。 該些接觸洞以一導體塡滿。至於一適用的導體塡充法 係爲,在一耐火金屬或其氮化物的一薄膜形成於該接觸洞 的該內部表面上,以作爲一阻障金屬1 062 (如果需要的 話),而一導體1 0 6 3,例如:·一鶴合金、鋸、銘合金、 銅或銅合金藉由化學蒸氣沈積法、物理蒸氣沈積法或電鑛 法來沈積。被沈積高於該絕緣膜1061的該上表面之導 體,藉由背蝕刻或化學機械硏磨法來移除。在該些接觸洞 被以該導體塡滿之前,暴露至該些接觸洞之該些底部的該 源極與汲極區上的該矽化物之該表面可以是氮化物的。藉 由上述的步驟,一電晶體(例如:場效電晶體),可以被 形成於該應變矽層上,以使之可以獲得具有一電晶體的一 半導體裝置,且該電晶體具有如第7D圖所示結構。 -36- (33) (33)1284360 爲了要形成一互補式金氧半電晶體(CMOS ) ,一 p 型基底被用來作爲該應變矽基底,以及形成一 n井在該P 通道金氧半導體(PM0S)區域的該基底上。 第7Α〜7D圖僅說明一,電晶體區域。爲了獲得一半導 體裝置其可以達到所需的功能,大量的電晶體或其他電路 元件可以形成於該應變矽基底上,並且其間的互相連接可 以形成。 本發明被使用於一半導體基底用以形成一電路元件, 例如:在一應變半導體層上的一電晶體,該半導體基底的 一製造方法,以及形成該電路元件的一半導體裝置。 本發明可以提供一新的技術,例如:形成具有一應變 矽層的一矽晶圓。藉由本發明的該半導體基底,該通道遷 移率可以藉由該應變而增加,而不需要改變由習知的矽-大型積體電路技術所發展的該製程。 雖然本發明已以若干較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圔內,當可作些許之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者爲準。 【圖式簡單說明】 本發明的許多觀點可以參考以下的圖式而更加淸楚的 了解。相關圖式並未依比例繪製’其作用僅在淸楚表現本 發明有關定理。此外’使用數字來表示圖式中相對應的部 分0 -37- (34) 1284360 第1A圖係說明根據本發明例子】的一第一基底之分 層式結構; 第1Β圖係說明根據本發明例子1的一接合步驟;以 及 第1 C圖係說明根據本發明例子1的一移除步驟; 第2Α圖係說明根據本發明例子2的一第一基底之分 層式結構, 第2Β圖係說明根據本發明例子2的一接合步驟; 第2 C圖係說明根據本發明例子2的一分離步驟;以 及 第2D圖係說明根據本發明例子2的一移除步驟; 第3Α圖係說明根據本發明例子3的一第一基底之分 層式結構; 第3 Β圖係說明根據本發明例子3的一接合步驟; 第3 C圖係說明根據本發明例子3的一分離步驟;以 及 第3D圖係說明根據本發明例子3的一移除步驟; 第4Α圖係說明根據本發明例子4的一生長步驟; 第4Β圖係說明根據本發明例子4的一電鍍步驟; 第4C圖係說明根據本發明例子4的一第一基底之分 層式結構, 第4 D圖係說明根據本發明例子4的一接合步驟; 第4 Ε圖係說明根據本發明例子4的一分離步驟;以 及 -38 - (35) 1284360 第4F圖係說明根據本發明例子4的一移除步驟; 第5A圖係說明根據本發明例子5的一生長步驟; 第5B圖係說明根據本發明例子5的一電鍍步驟; 第5C圖係說明根據本發明例子5的一第一基底之分 層式結構; 第5 D圖係說明根據本發明例子5的一接合步驟; 第5E圖係說明根據本發明例子5的一分離步驟;以 及 第5 F圖係說明根據本發明例子5的一移除步驟; 第6A圖係說明根據本發明例子6的一電鍍步驟; 第6B圖係說明根據本發明例子6的一第一基底之分 層式結構; 第6 C圖係說明根據本發明例子6的一接合步驟; 第6D圖係說明根據本發明例子6的一分離步驟;以 及 第6E圖係說明根據本發明例子6的一移除步驟; 第7A〜7D圖係說明一半導體基底以及其製造方法; 以及 第8圖係爲一斷面圖用以說明含有鍺的一層 (Si】_xGex層)被形成以作爲一多孔表面層的該氣孔密封 部分之狀態。 【主要元件符號說明】 10 第一基底 -39- 1284360 (36) 10' 第一基底 10,, 第一基底 1 0丨·, 第一基底 1 0,,M 第一基底 11 矽基底 12 S i 1 - X G e X 層 13 應變矽層 14 多孔矽層 14* 其餘部分的多孔矽層 14,, 其餘部分的多孔矽層 15 Si】-yGey 層 16 多孔砂層 16' 其餘部分的多孔矽層 1 6,丨 其餘部分的多孔矽層 2 1 SiGe或鍺基底 26 多孔層 26’ 其餘部分的多孔層 26·· 其餘部分的多孔層 30 第二基底 40 多孔層 4 1 S i 1 - X G e x 層 1002 應變矽基底 1054 元件絕緣區 1055 閘極電極 -40- 1284360 (37) 1056 閘 極 絕 緣 膜 1057 源 極 與 汲 極 區 1058 源 極 與 汲 極 區 1059 邊 牆 1060 金 屬 石夕 化 物 層 1061 絕 緣 膜 1062 阻 障 金 屬 1063 導 體 1103' 活 性 1105 應 變 矽 層According to the fifth aspect of the present invention, a method of manufacturing a semiconductor substrate (member) will be described below, and reference is made to Figs. 5A to 5F. If lattice relaxation has occurred on the surface of the porous Si Ge layer of Example 4, a strained germanium layer 13 may be formed thereon without the need to form another Si Ge layer. The remaining steps are the same as in Example 4. Fig. 5A is a cross-sectional view for explaining the epitaxial step of the SiGe layer. Fig. 5B is a cross-sectional view for explaining the joining step. A first substrate (component) has a structure as shown in Fig. 5C. The structure shown in Fig. 5D is obtained by the joining step. After separation, the substrate is divided into two sections, as shown in Fig. 5E, and a conversion -30-(27)(27)1284360 step is performed. Fig. 5F is a cross-sectional view for explaining the semiconductor substrate manufactured according to Example 5 of the present invention. (Strain enthalpy and circuit obtained by hydrogen annealing) When a circuit component is formed by the strain enthalpy layer 13, a device which is high in speed and low in energy consumption can be obtained. The formation of this circuit element (manufacture of a semiconductor device) will be described below. The surface can be planarized by polishing or hydrogen annealing, if desired. (Example 6) According to Example 6 of the present invention, a method of manufacturing a semiconductor substrate (member) will be described below, and reference is made to Figs. 6A to 6E. - (semiconductor substrate) A semiconductor substrate made of the second material as described in Examples 4 and 5 and made of a material (for example, germanium, whose lattice constant is larger than the lattice constant of germanium) The base is used to replace a base. In addition to yttrium, a compound semiconductor, for example, a mixed crystal of a fourth group such as SiGe or gallium arsenide can be used. For the SiGe block crystallization, the Institute of Materials Research at Tohoku University of Japan has published the growth of single crystal block siGe in a new research report summary for the scientific research grant program. A porous layer 26 is formed on the -SiGe or germanium substrate (as shown in Figure 6A). Since the crystallization of the rude is a crystallization from the beginning, the lattice is aligned to the substrate. A strained sand layer 13 is grown on the porous layer 26 (as shown in Figures -31 - 30, (28) 1284360 6B). The structure is bonded to a second substrate (component) as shown in Fig. 6C. Next, the portions are on the porous layer 26 (as shown in Fig. 6D). As with the plurality of examples described above, the female is removed such that a strained semiconductor substrate having the strained layer 13 on the second substrate (sound | 30 can be fabricated (as shown in FIG. 6E). Before the formation of 26, a Sh-xGex layer can be opened to reduce the difference in lattice constant with germanium. (Strain enthalpy and circuit obtained by hydrogen annealing) When a circuit component is formed by the strain enthalpy layer 13, a high speed can be obtained. A device with low energy consumption. The fabrication of the circuit device to form a semiconductor device will be described below. The surface can be planarized by polishing or hydrogen annealing, if desired. In the above plurality of examples, a strained semiconductor layer is made of a material having a lattice constant greater than a lattice constant of a single crystal semiconductor to form a strain sensing layer. The present invention can also be applied to another example in which a strained semiconductor layer is made of a material having a lattice constant smaller than the lattice constant of a single conductor and used to form a strained layer. For example, in order to form a tantalum strained semiconductor layer having a crystal number smaller than the lattice constant of a single crystal germanium, tantalum carbide or diamond may be formed to form the strain sensing layer. In the above plurality of examples, the tantalum strained semiconductor layer is directly on the tantalum substrate for use as the second substrate. However, the amorphous separation layer is obtained by obtaining a crystal. The crystal is used to form a layer. -32- (29) 1284360 For example: a polycrystalline germanium (including microcrystals) Or a non-crystalline germanium may be formed on the strained semiconductor layer or on the second substrate, and bonded such that the strained semiconductor layer may be formed on the polycrystalline germanium layer or the amorphous germanium layer (formed on the germanium) On the substrate, when the annealing is performed to firmly couple the bonded substrate, the amorphous germanium layer is converted into a polycrystalline crystal. The method for fabricating the semiconductor substrate of the present invention also includes such a form. A crystal layer or other structure formed on the germanium substrate is also included in the semiconductor substrate of the present invention. The semiconductor substrate does not necessarily need to be a single crystal substrate. A polycrystalline substrate can also be used. The semiconductor substrate may have a densely doped impurity layer formed on the surface. Alternatively, the substrate itself may contain a high concentration of impurities. Said that when a P + substrate or a substrate having a P + layer is used as the semiconductor substrate of the second substrate, and a strained semiconductor layer such as the same P-layer is bonded to the substrate, a P_/P The substrate can be manufactured. (Example of a semiconductor device) A semiconductor device using a semiconductor substrate manufactured by the semiconductor substrate manufacturing method as in the above-described plurality of examples, and a method of manufacturing the semiconductor device will be described below. Referring to Figures 7A to 7D, first, a semiconductor substrate is manufactured by using the semiconductor substrate (component) manufacturing method as in the above Examples 1 to 5. The semiconductor substrate has a strained layer on a substrate. Above, as described above, in the following description, the semiconductor substrate will be used as a strained ruthenium substrate. Compared to a normal Shih-33-(30) 1284360 substrate, a strained ruthenium substrate can be obtained. A higher speed jg. This is because the strained layer is superior to a layer without strain. In the step shown in Figure 7A, an active region 丨103', a transistor (eg: field A transistor, a MOS transistor or a pair of crystals to be formed, and a device insulating region 1054 are formed on the prepared strain 矽 substrate 1 002. In particular, the active region and the device insulating region 1054 may A method of patterning a strained layer 1 1 05 into an island shape, a LOCOS oxidation method, or a trench method, a gate insulating film, is formed by the following method: 5 6 is formed on the surface of the sand layer 1 1 〇 5. The material of the gate insulating film 1 〇 5 6 can be as follows: yttrium oxide, tantalum nitride, yttrium oxynitride Alumina, oxidized giant, bell, titanium oxide, cerium oxide, cerium oxide, cerium oxide, cerium oxide, oxygen or a glass mixture as described above. The gate insulating film 1 0 5 6 can be formed by a method of, for example, oxidizing the surface of the strained layer Π 0 5 by chemical vapor deposition or physical vapor deposition to deposit an insulating layer on the strained layer 1 105 on. A gate electrode 205 is formed on the gate insulating film 1 〇 56. The gate electrode 205 5 can be made of the following materials, for example, retanning of doped or n-type impurities; a metal 'for example: Tungsten, molybdenum, titanium, molybdenum or copper, or an alloy containing at least one of the above metals; a metal such as: molybdenum telluride, tungsten telluride or cobalt telluride; or a metal such as titanium nitride or nitride Tungsten or nitrided giant. The gate 1056 can be formed by forming a plurality of layers made of different materials: the device is electrically connected to a 1103', such as the oxygen oxide, the following, by means of a substance. The P-aluminum-deposited nitride film, such as -34-(31) 1284360, is the same polycrystalline metal telluride (p01 yc 1 d e) gate. The gate electrode 10 5 5 may be formed by, for example, a self-asigned silicide (salicide) method, a damascene gate process, or any other method. By the above steps, the structure as shown in Fig. 7A can be obtained. In the step as shown in Fig. 7B, an n-type impurity such as phosphorus, arsenic, antimony or a germanium type impurity such as boron is used by the active region 1 1 〇 3 ' to form a relative Very lightweight doped source and drain region 1 0 5 8 . This impurity can be used by ion implantation and annealing. An insulating film is formed to cover the gate electrode 105 5 and is etched back to form a side wall 159 9 on the side of the gate electrode 1 055. An impurity having the same conductivity as the above impurity is used by the active region 1 103' to form a relatively dense doped source and drain region 1 05 7 . By the above steps, the structure as shown in Fig. 7 can be obtained. In the step shown in Fig. 7C, a metal telluride layer 〇6 is formed on the upper surface of the gate electrode 1055, the upper surface of the source and drain regions 1057. As for the loose material of the metal telluride layer 106, the following materials can be used, for example, nickel telluride, titanium telluride, cobalt telluride, molybdenum carbide or tungsten telluride. The telluride may be formed by depositing a metal to cover the upper surface of the gate electrode 085 5, the upper surface of the source and drain regions 185, and performing annealing treatment. This causes the metal to interact with the underlying crucibles and remove an unreacted portion of the metal by an etchant (eg, sulfuric acid). If desired -35-(32) (32) 1284360, the surface of the telluride layer can be nitrided. By the above steps, the structure as shown in Fig. 7C can be obtained. In the step shown in FIG. 7D, an insulating film 1061 is formed to cover the upper surface of the gate electrode 1 0 5 5 converted into a germanide, and the source and drain regions of the 507 The upper surface. As the material of the insulating film 1061, a material such as cerium oxide containing phosphorus and/or boron may be used. If necessary, a contact hole is formed in the insulating film 1061 by a chemical mechanical honing method. When a yellow light process is used, it uses a cesium fluoride excimer laser, an argon fluoride excimer laser, a fluorine excimer laser, an electron beam, or an X-ray to form a side shorter than 0.2 5 μπι. A rectangular contact hole or a circular contact hole having a diameter of less than 0.2 5 μm. The contact holes are filled with a conductor. As for a suitable conductor charging method, a film of a refractory metal or a nitride thereof is formed on the inner surface of the contact hole as a barrier metal 1 062 (if necessary), and a conductor 1 0 6 3, for example: · A crane alloy, saw, alloy, copper or copper alloy is deposited by chemical vapor deposition, physical vapor deposition or electromineralization. The conductor deposited higher than the upper surface of the insulating film 1061 is removed by back etching or chemical mechanical honing. The surface of the telluride exposed to the source and drain regions of the bottom portions of the contact holes may be nitrided before the contact holes are filled with the conductor. By the above steps, a transistor (for example, a field effect transistor) can be formed on the strained layer so that a semiconductor device having a transistor can be obtained, and the transistor has a 7D The structure shown in the figure. -36- (33) (33) 1284360 In order to form a complementary MOS transistor, a p-type substrate is used as the strain 矽 substrate, and an n-well is formed in the P-channel MOS. On the substrate of the (PM0S) region. The 7th to 7th diagrams only illustrate one, the transistor area. In order to obtain a half of the conductor device which can achieve the desired function, a large number of transistors or other circuit components can be formed on the strained substrate, and interconnections therebetween can be formed. The present invention is used in a semiconductor substrate for forming a circuit component, such as a transistor on a strained semiconductor layer, a method of fabricating the semiconductor substrate, and a semiconductor device forming the circuit component. The present invention can provide a new technique, for example, forming a wafer having a strained germanium layer. With the semiconductor substrate of the present invention, the channel mobility can be increased by the strain without changing the process developed by the conventional germanium-large integrated circuit technology. While the present invention has been described above in terms of several preferred embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Many aspects of the present invention can be more clearly understood by reference to the following drawings. The related drawings are not drawn to scale ', and their functions are only to present the relevant theorems of the present invention. In addition, the use of numerals to indicate the corresponding parts in the drawings 0 - 37 - (34) 1284360 Figure 1A illustrates a layered structure of a first substrate according to an example of the present invention; A joining step of Example 1; and a first C drawing illustrating a removing step according to Example 1 of the present invention; and a second drawing showing a layered structure of a first substrate according to Example 2 of the present invention, the second drawing system A joining step according to Example 2 of the present invention; a second C drawing illustrating a separating step according to Example 2 of the present invention; and a 2D drawing illustrating a removing step according to Example 2 of the present invention; A layered structure of a first substrate of Example 3 of the present invention; a third drawing illustrating a joining step according to Example 3 of the present invention; and a third C drawing illustrating a separating step according to Example 3 of the present invention; and 3D The figure illustrates a removal step according to Example 3 of the present invention; the fourth diagram illustrates a growth step according to Example 4 of the present invention; the fourth diagram illustrates a plating step according to Example 4 of the present invention; and FIG. 4C illustrates Example of the invention 4 is a layered structure of a first substrate, FIG. 4D illustrates a joining step according to Example 4 of the present invention; FIG. 4 is a view showing a separating step according to Example 4 of the present invention; and -38 - (35) 1284360 FIG. 4F illustrates a removal step according to Example 4 of the present invention; FIG. 5A illustrates a growth step according to Example 5 of the present invention; FIG. 5B illustrates a plating step according to Example 5 of the present invention; The figure illustrates a layered structure of a first substrate according to Example 5 of the present invention; FIG. 5D illustrates a joining step according to Example 5 of the present invention; and FIG. 5E illustrates a separating step according to Example 5 of the present invention; And FIG. 5F illustrates a removal step according to Example 5 of the present invention; FIG. 6A illustrates a plating step according to Example 6 of the present invention; and FIG. 6B illustrates a first substrate according to Example 6 of the present invention. Layered structure; Figure 6C illustrates a joining step in accordance with Example 6 of the present invention; Figure 6D illustrates a separating step in accordance with Example 6 of the present invention; and Figure 6E illustrates a removal in accordance with Example 6 of the present invention. Step; 7A~7D diagram A semiconductor substrate and a manufacturing method; and FIG. 8 is a sectional view of a state-based pore-sealing portion of the layer containing germanium for explaining (Si] _xGex layer) is formed as a porous surface layer. [Major component symbol description] 10 First substrate - 39 - 1284360 (36) 10' First substrate 10, First substrate 1 0, · First substrate 10, M First substrate 11 矽 Substrate 12 S i 1 - XG e X layer 13 strained layer 14 porous layer 14* the remaining part of the porous layer 14, the remaining part of the porous layer 15 Si]-yGey layer 16 porous layer 16' the remaining part of the porous layer 16 , the remaining part of the porous tantalum layer 2 1 SiGe or tantalum substrate 26 porous layer 26' the remaining part of the porous layer 26 · the remaining part of the porous layer 30 second substrate 40 porous layer 4 1 S i 1 - XG ex layer 1002 strain矽Substrate 1054 Component Insulation Zone 1055 Gate Electrode-40- 1284360 (37) 1056 Gate Insulation Film 1057 Source and Deuterium Zone 1058 Source and Bungee Zone 1059 Sidewall 1060 Metallization Layer 1061 Insulation Film 1062 Resistance Barrier metal 1063 conductor 1103' active 1105 strained layer

-41 --41 -

Claims (1)

12843®^S'———η 贫年年月峙日修(緣)正本 十、申請專利範圍 第93 1 40622號專利申請案 中文申請專利範圍修正本 民國95年4月28 日修正 I一種半導體基底,包含: 變半導體層在該半導體基底上,其中該應變半導 Μ層係由與該半導體基底相同的材料製成。 2 ·如申請專利範圍第1項所述之半導體基底,其中該 #導體基底以及該應變半導體層的材料爲矽。 3·~種半導體基底的製造方法,包含·· 第 步驟·形成由一第一材料所製成的一應變半導 體®%由一第二材料所製成的一半導體基底上,用以製作 $~基底’且至少於其表面上可作爲一應變感應材料之 用; 胃一步驟:將該第一基底的該應變半導體層接合至 由β第一材料所製成的一第二基底;以及 驟:移除在該第一基底除了該應變半導體層 外一側上的一in _件’且留下該應變半導體層在該第二基底 上。 4 女口串| ;古 、 ' % #利範圍第3項所述之半導體基底的製造方 法,其中該第〜材料爲矽。 5 ·如申g责達· Xtr - 、 圍第3項所述之半導體基底的製造方 法 5 其中該镇·~ 〜材料爲矽,且該第二材料爲Si].xGex,其 中x的範圍爲〇<>Γ〜Ί 1284360 6.如申請專利範圍第3項所述之半導體基底的製造方 法,其中該半導體基底係爲具有一應變感應層形成於一表 面上的一基底。 7 ·如申請專利範圍第6項所述之半導體基底的製造方 法,其中該半導體基底係爲由形成該應變感應層於一矽基 底上而獲得的一基底。 8 ·如申請專利範圍第6項所述之半導體基底的製造方 法,其中一分離層形成於該應變感應層的下方。 9.如申請專利範圍第6項所述之半導體基底的製造方 法,其中該應變感應層也作爲一分離層。 1 〇·如申請專利範圍第8項所述之半導體基底的製造 方法,其中在該第三步驟中移除該第一基底之該側上的該 構件包含一步驟:在該分離層上分離該第一基底的該側上 的部分構件。 1 1 ·如申請專利範圍第6項所述之半導體基底的製造 方法’其中該應變感應層本質上係由矽以及一附加的材料 所製成。 12·如申請專利範圍第n項所述之半導體基底的製造 方法,其中該應變感應層本質上係由Si Ge所製成。 1 3 ·如申請專利範圍第8項所述之半導體基底的製造 方法’其中該分離層本質上係由一多孔材料所製成。 1 4.如申請專利範圍第1 3項所述之半導體基底的製造 方法,其中該多孔材料係爲多孔矽或多孔SiGe之一。 1 5 ·如申請專利範圔第9項所述之半導體基底的製造 -2- 1284360 方法,其中亦可作爲該分離層的該應變感應層本質上係由 多孔矽所製成。 1 6 ·如申請專利範圍第1 〇項所述之半導體基底的製造 方法,其中在該第三步驟中,在該第一基底除了該應變感 應層外該側上的該構件,其留在該第二基底的一側上,而 在該分離層上的該分離步驟後被移除。 1 7 ·如申請專利範圍第3項所述之半導體基底的製造 方法,其中該筹三步驟包含一步驟:僅該應變感應層被留 在該第二基底上之後,平面化該應變感應層的一表面。 1 8 .如申請專利範圍第9項所述之半導體基底的製造 方法,其中亦可作爲該分離層的該應變感應層係爲一多孔 層,其導入用以至少密封表面孔的該應變感應材料。 1 9. 一種具有一電晶體的半導體裝置’其中該電晶體 形成於如申請專利範圍第1項所述之半導體基底的一應變 感應層上。12843®^S'———η 少年年月峙日修(缘)正本10, Patent Application No. 93 1 40622 Patent Application Chinese Patent Application Revision Amendment April 28, 1995 Revision I A Semiconductor The substrate includes: a variable semiconductor layer on the semiconductor substrate, wherein the strained semi-conductive layer is made of the same material as the semiconductor substrate. 2. The semiconductor substrate of claim 1, wherein the material of the #conductor substrate and the strained semiconductor layer is germanium. 3. A method for fabricating a semiconductor substrate, comprising: a step of forming a strained semiconductor made of a first material, a % of a semiconductor material made of a second material, for making a $~ The substrate 'and at least on the surface thereof can be used as a strain sensing material; the stomach one step: bonding the strained semiconductor layer of the first substrate to a second substrate made of the β first material; and An in-piece on the side of the first substrate except the strained semiconductor layer is removed and the strained semiconductor layer is left on the second substrate. 4 Female mouth string | ; Ancient, '% #利利范围范围 The manufacturing method of the semiconductor substrate according to Item 3, wherein the first material is 矽. 5. The method of manufacturing a semiconductor substrate according to claim 3, wherein the material of the town is 矽, and the second material is Si].xGex, wherein the range of x is 6. The method of fabricating a semiconductor substrate according to claim 3, wherein the semiconductor substrate is a substrate having a strain sensing layer formed on a surface. 7. The method of fabricating a semiconductor substrate according to claim 6, wherein the semiconductor substrate is a substrate obtained by forming the strain sensing layer on a substrate. 8. The method of fabricating a semiconductor substrate according to claim 6, wherein a separation layer is formed under the strain sensing layer. 9. The method of fabricating a semiconductor substrate according to claim 6, wherein the strain sensing layer also functions as a separation layer. The method of manufacturing a semiconductor substrate according to claim 8, wherein the removing the member on the side of the first substrate in the third step comprises the step of separating the separation layer A portion of the member on the side of the first substrate. A method of fabricating a semiconductor substrate as described in claim 6 wherein the strain sensing layer is essentially made of tantalum and an additional material. 12. The method of fabricating a semiconductor substrate according to claim n, wherein the strain sensing layer is substantially made of Si Ge. A method of manufacturing a semiconductor substrate as described in claim 8 wherein the separation layer is essentially made of a porous material. The method of producing a semiconductor substrate according to claim 13 wherein the porous material is one of porous tantalum or porous SiGe. The method of manufacturing a semiconductor substrate according to claim 9, wherein the strain sensing layer which is also the separation layer is essentially made of porous tantalum. The method of manufacturing a semiconductor substrate according to claim 1, wherein in the third step, the member on the side of the first substrate except the strain sensing layer remains in the first substrate On one side of the second substrate, the separation step on the separation layer is removed. The method of manufacturing a semiconductor substrate according to claim 3, wherein the three steps include a step of planarizing the strain sensing layer after the strain sensing layer is left on the second substrate. a surface. The method for manufacturing a semiconductor substrate according to claim 9, wherein the strain sensing layer which is also the separation layer is a porous layer which is introduced into the strain sensing for sealing at least the surface hole. material. A semiconductor device having a transistor in which the transistor is formed on a strain sensing layer of a semiconductor substrate as described in claim 1 of the patent application.
TW93140622A 2003-12-26 2004-12-24 Semiconductor substrate, manufacturing method thereof, and semiconductor device TWI284360B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434019A JP2005191457A (en) 2003-12-26 2003-12-26 Semiconductor substrate, manufacturing method therefor, and semiconductor device

Publications (2)

Publication Number Publication Date
TW200522161A TW200522161A (en) 2005-07-01
TWI284360B true TWI284360B (en) 2007-07-21

Family

ID=34736545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93140622A TWI284360B (en) 2003-12-26 2004-12-24 Semiconductor substrate, manufacturing method thereof, and semiconductor device

Country Status (3)

Country Link
JP (1) JP2005191457A (en)
TW (1) TWI284360B (en)
WO (1) WO2005064654A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012914A (en) 2004-06-22 2006-01-12 Canon Inc Method of manufacturing integrated circuit chip, and semiconductor device
JP5810718B2 (en) 2011-03-18 2015-11-11 富士ゼロックス株式会社 Silicon layer transfer substrate and semiconductor substrate manufacturing method
FR2977074A1 (en) * 2011-06-23 2012-12-28 Soitec Silicon On Insulator PROCESS FOR PRODUCING A SEMICONDUCTOR SUBSTRATE COMPRISING POROUS SILICON

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325134B2 (en) * 2001-08-31 2009-09-02 株式会社Sumco Manufacturing method of semiconductor substrate and manufacturing method of field effect transistor
JP2003078118A (en) * 2001-08-31 2003-03-14 Canon Inc Method of manufacturing semiconductor member and semiconductor device

Also Published As

Publication number Publication date
WO2005064654A1 (en) 2005-07-14
TW200522161A (en) 2005-07-01
JP2005191457A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
TW533501B (en) Semiconductor member manufacturing method and semiconductor device manufacturing method
TWI242232B (en) Semiconductor substrate, semiconductor device, and method of manufacturing the same
TWI250649B (en) Transistor gate electrode having conductor material layer
TWI269384B (en) Formation of patterned silicon-on-insulator (SOI)/silicon-on-nothing (SON) composite structure by porous Si engineering
EP0719452B1 (en) Bonded wafer process incorporating diamond insulator
US20080280416A1 (en) Techniques for Layer Transfer Processing
JP5185284B2 (en) Method for manufacturing a semiconductor on insulator structure
KR101431780B1 (en) Patterned thin soi
US7750367B2 (en) Semiconductor member, manufacturing method thereof, and semiconductor device
TWI297192B (en)
JP2002359247A (en) Semiconductor member, semiconductor device and manufacturing method therefor
TW201104796A (en) Integrated circuit system with through silicon via and method of manufacture thereof
WO2008078132A1 (en) Method for producing a semiconductor-on-insulator structure
TWI304622B (en) Use of thin soi to inhibit relaxation of sige layers
TWI258172B (en) Transistor device with strained Ge layer by selectively grown and fabricating method thereof
TWI284360B (en) Semiconductor substrate, manufacturing method thereof, and semiconductor device
JP2003078116A (en) Method of manufacturing semiconductor member and semiconductor device
JPH05206422A (en) Semiconductor device and its manufacture
US20060124961A1 (en) Semiconductor substrate, manufacturing method thereof, and semiconductor device
WO2003046992A1 (en) Soi wafer manufacturing method
JP7224325B2 (en) Semiconductor substrate manufacturing method and semiconductor substrate
JP2003078117A (en) Semiconductor member, semiconductor device and method of manufacturing them
JP4371710B2 (en) Semiconductor substrate, semiconductor device and manufacturing method thereof
JP2003078118A (en) Method of manufacturing semiconductor member and semiconductor device
JP2005191458A (en) Semiconductor component and manufacturing method therefor, and semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees