TW200522161A - Semiconductor substrate, manufacturing method thereof, and semiconductor device - Google Patents

Semiconductor substrate, manufacturing method thereof, and semiconductor device Download PDF

Info

Publication number
TW200522161A
TW200522161A TW93140622A TW93140622A TW200522161A TW 200522161 A TW200522161 A TW 200522161A TW 93140622 A TW93140622 A TW 93140622A TW 93140622 A TW93140622 A TW 93140622A TW 200522161 A TW200522161 A TW 200522161A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
semiconductor substrate
silicon
manufacturing
Prior art date
Application number
TW93140622A
Other languages
Chinese (zh)
Other versions
TWI284360B (en
Inventor
Kiyofumi Sakaguchi
Kazuya Notsu
Kazutaka Momoi
Nobuhiko Sato
Original Assignee
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kk filed Critical Canon Kk
Publication of TW200522161A publication Critical patent/TW200522161A/en
Application granted granted Critical
Publication of TWI284360B publication Critical patent/TWI284360B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76259Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along a porous layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A separation layer is formed on a silicon substrate. An SiGe layer serving as a strain induction layer and a silicon layer serving as a strained semiconductor layer are formed sequentially on the separation layer to prepare a first substrate. The first substrate is bonded to a second substrate made of the same material as the silicon layer of the strained semiconductor layer. The structure is separated into two parts at the separation layer. When the residue of the separation layer and the SiGe layer are removed, and the surface is planarized by hydrogen annealing, an Si substrate having a strained silicon layer on the uppermost surface is obtained.

Description

200522161 ⑴ 九、發明說明 【發明所屬之技術領域】 本發明係有關於一種半導體基底、其製造方法、和一 半導體裝置。 【先前技術】 隨著一基底以一高速與低能源消耗用以形成一半導體 裝置’具有一應變砂層的一基底已經吸引許多的注意。由 矽、鍺所製成的一 s i G e層生長於一矽基底,而一單晶矽 層則生長於該層。因此,一應變被應用至該矽層,且可以 獲得一應變矽層。由於該SiGe層的晶格常數略大於該單 晶矽層的晶格常數,因此產生該應變。舉例來說,AT&T 公司的美國專利案號5,221,413即敘述一種結合應變矽、 SiGe 以及砂(strained-Si/SiGe/Si)的基底。 在另一方面,一種具有一埋層氧化膜於一矽基底上的 一絕緣層上砂(silicon on insulator; SOI)基底也吸引許 多的注意,且被作爲一基底以一高速與低能源消耗用以形 成一半導體裝置。結合應變矽與絕緣層上矽的結構也已見 於廣泛的硏究發表。此基底被加以實施以實現兩種優點, 一是藉由應變矽所實行的高速運算,另一則是藉由絕緣層 上矽所實行的低能源消耗性能以及較高的運算速度(詳細 請參見 Shin-ichi Tackagi,“Metal-Oxide-Semiconductior (Μ 0 S) device technologies using Si/SiGe heretointerfaces’’,Oyo B u t u r i 9 v o 1. 72. no. 3 5 p p . 2 8 4- 2 90, 200522161 (2) 2 0 0 3 )。在此參考文件中,係敘述了該基底以及一種結合 應變矽 、SiGe 、 絕緣體以及 (strained-Si/SiGe/insulator/Si)的基底之結構。 一種不具有SiGe層而結合應變矽、絕緣體以及矽 (strained-Si/insulator/Si)的基底也已經發表(詳細請參 見 T . A . L an g d 〇,e t · a 1 · 5 A pp 1 · P hy s . L e 11 ·,v ο 1 · 2,η〇 · 2 4, pp. 4256-425 7,2003 )。在此方法中,形成在一第一基底 上的應變矽/ SiGe藉由氫離子佈植、接合以及分離而被 轉換成一絕緣基底之後,該SiGe層被移除。 相比於目前的矽-大型積體電路(Si-LSI ),所有上 述的技術需要更進一步的裝置以及製程設計之最佳化。 SiGe的存在,已敘述於T.A· Langdo,et. al.的該論文中。 然而,仍然存在其他問題,例如:藉由退火處理所實行的 摻雜擴散、金屬接觸成形以及鍺擴散之間的差異性。此 外,由於該絕緣層的出現,具有一絕緣層的結構也有著如 絕緣層上矽相同的問題,也包含裝置運作的熱堆積問題。 【發明內容】 本發明基於上述習知技術的問題而詳加考慮之’且具 有其目的而提出一種新的技術來形成一種具有一應變矽層 的矽晶圓(以此爲例子)。 根據本發明的第一觀點係提出一種半導體基底,包 含:一應變半導體層在該半導體基底上,其中該應變半導 體層由與該半導體基底相同的材料製成。該半導體基底包 -6 - 200522161 (3) 3至少一單晶半導體基底以及多晶半導體基底,也包含了 具有一多晶半導體(包含一微晶半導體層)的一基底形成 於一半導體基底上。 根據本發明的第二觀點係提出一種本發明之半導體基 底的製造方法,包含:一第一步驟,形成由一第一材料所 製成的 應變半導體層於由一弟一材料所製成的一半導體 基底上’用以製作一^第一基底,且至少於其表面上可作爲 一應變感應材料之用;一第二步驟:將該第一基底的該應 變半導體層接合至由該第一材料所製成的一第二基底;以 及一第二步驟··移除在該第一基底除了該應變半導體層外 一側上的一構件,且留下該應變半導體層在該第二基底 上。 根據本發明的第三觀點係提出一種由上述製造方法所 製造的半導體基底。 根據本發明的第四觀點係提出一種具有一種半導體裝 置’其具有一場效電晶體形成於該半導體基底的該應變感 應層上。 藉由本發明的該半導體層,該通道遷移率可以藉由該 應變而增加,而不需要改變由習知的矽—大型積體電路技 術所發展的該製程。 本發明的其他特點、目的以及優點將詳細描述如下且 伴隨著圖式而更加淸楚敘述,其中在所有的圖式中,相同 之參考數字係標明相同或類似的元件。 200522161 (4) 【實施方式】 本發明的一些較佳實施例將詳細描述如下。 然而,除了如下描述外,本發明還可以廣泛地在其他 的實施例施行,且本發明的範圍並不受實施例之限定,其 以之後的專利範圍爲準。再者,爲提供更淸楚的描述及更 易理解本發明,圖式內各部分並沒有依照其相對尺寸繪 圖’某些尺寸與其他相關尺度相比已經被誇張;不相關之 細節部分也未完全繪出,以求圖式的簡潔。 (第一實施例) 一應變感應層係形成於由一第二材料所製成的一半導 體基底之該表面上。由該第二材料所製成的一應變半導體 層係形成於該應變感應層上,用以製作一第一基底。由一 弟一材料所製成的一第二基底被接合至該第一基底。由該 第一材料所製成的該半導體基底以及該應變感應層被移 除。因此’由該第一材料所製成的該應變半導體層,可以 被形成於由該第一材料所製成的該第二基底上,而與該第 二基底相接觸。 Μ第一、第一材料一般都使用砂。 至於該應變感應層’係由含有矽、鍺的一層 (Si】_xGex層)所形成。該(較佳地係爲一單晶砂層) 幾乎係由砂所製成,且形成於該Sli xGex層上作爲一應變 半導體層。 形成於由該第二材料所製成的該半導體基底上的該 -8- 200522161 (5)200522161 ⑴ IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to a semiconductor substrate, a manufacturing method thereof, and a semiconductor device. [Prior Art] A substrate with a strained sand layer has attracted much attention as a substrate is used to form a semiconductor device at a high speed and low energy consumption. A SiGe layer made of silicon and germanium is grown on a silicon substrate, and a single crystal silicon layer is grown on this layer. Therefore, a strain is applied to the silicon layer, and a strained silicon layer can be obtained. This strain occurs because the lattice constant of the SiGe layer is slightly larger than the lattice constant of the single crystal silicon layer. For example, US Patent No. 5,221,413 of AT & T company describes a substrate combining strained silicon, SiGe, and sand (Strained-Si / SiGe / Si). On the other hand, a silicon on insulator (SOI) substrate with a buried oxide film on a silicon substrate has also attracted much attention and is used as a substrate for high speed and low energy consumption. To form a semiconductor device. Structures that combine strained silicon with silicon on insulation have also been published in extensive research. This substrate is implemented to achieve two advantages, one is the high-speed operation performed by strained silicon, and the other is the low energy consumption performance and high operation speed performed by silicon on the insulating layer (see Shin for details) -ichi Tackagi, “Metal-Oxide-Semiconductior (Μ 0 S) device technologies using Si / SiGe heretointerfaces”, Oyo B uturi 9 vo 1. 72. no. 3 5 pp. 2 8 4- 2 90, 200522161 (2 ) 2 0 0 3). In this reference, the structure of the substrate and a substrate combining strained silicon, SiGe, insulator, and (strained-Si / SiGe / insulator / Si) is described. A type without a SiGe layer Strained silicon, insulators, and substrates of strained-Si / insulator / Si have also been published (see T. A. Lan gd 〇, et · a 1 · 5 A pp 1 · Phy s. Le 11 ·, v ο 1 · 2, η〇 · 2 4, pp. 4256-425 7, 2003). In this method, strained silicon / SiGe formed on a first substrate is implanted and bonded by hydrogen ions. And after being separated and converted into an insulating substrate, the SiGe layer is removed. In the current silicon-large-scale integrated circuit (Si-LSI), all the above-mentioned technologies require further optimization of the device and process design. The existence of SiGe has been described in this paper by TA · Langdo, et. Al. However, there are still other problems, such as the differences between doping diffusion performed by annealing, metal contact forming, and germanium diffusion. In addition, due to the appearance of the insulating layer, there is also a structure with an insulating layer. The same problem as silicon on the insulating layer also includes the problem of thermal deposition of the device operation. [Summary of the Invention] The present invention proposes a new technology to form based on the problems of the conventional technology described above and has its purpose. A silicon wafer with a strained silicon layer (this is taken as an example). According to a first aspect of the present invention, a semiconductor substrate is provided, including: a strained semiconductor layer on the semiconductor substrate, wherein the strained semiconductor layer is formed by the semiconductor layer and the The semiconductor substrate is made of the same material. The semiconductor substrate package-200522161 (3) 3 at least one single crystal semiconductor substrate and polycrystalline semiconductor substrate It also includes a substrate having a polycrystalline semiconductor (including a microcrystalline semiconductor layer) formed on a semiconductor substrate. According to a second aspect of the present invention, a method for manufacturing a semiconductor substrate of the present invention is provided, including: a first A step of forming a strained semiconductor layer made of a first material on a semiconductor substrate made of a material and used to make a first substrate, and at least on its surface can be used as a strain Use of induction materials; a second step: bonding the strained semiconductor layer of the first substrate to a second substrate made of the first material; and a second step of removing the first substrate A member on one side other than the strained semiconductor layer, and the strained semiconductor layer is left on the second substrate. According to a third aspect of the present invention, a semiconductor substrate manufactured by the above manufacturing method is proposed. According to a fourth aspect of the present invention, there is provided a semiconductor device 'having a field effect crystal formed on the strain sensitive layer of the semiconductor substrate. With the semiconductor layer of the present invention, the channel mobility can be increased by the strain without changing the process developed by the conventional silicon-mass integrated circuit technology. Other features, objects, and advantages of the present invention will be described in detail below and more clearly described with accompanying drawings, wherein in all the drawings, the same reference numerals indicate the same or similar elements. 200522161 (4) [Embodiments] Some preferred embodiments of the present invention will be described in detail as follows. However, in addition to the following description, the present invention can also be widely implemented in other embodiments, and the scope of the present invention is not limited by the embodiments, and it is subject to the scope of subsequent patents. Furthermore, in order to provide a more concise description and easier understanding of the present invention, the parts in the drawings have not been drawn according to their relative dimensions. 'Some dimensions have been exaggerated compared to other related dimensions; irrelevant details are not complete. Draw for brevity. (First Embodiment) A strain sensing layer is formed on the surface of a semi-conductive substrate made of a second material. A strained semiconductor layer made of the second material is formed on the strain-sensing layer to make a first substrate. A second substrate made of a primary material is bonded to the first substrate. The semiconductor substrate and the strain sensing layer made of the first material are removed. Therefore, the strained semiconductor layer made of the first material can be formed on the second substrate made of the first material to be in contact with the second substrate. For the first and first materials, sand is generally used. The strain-sensing layer 'is formed of a layer (Si) _xGex layer containing silicon and germanium. The (preferably a single crystal sand layer) is almost made of sand and is formed on the SlixGex layer as a strained semiconductor layer. -8- 200522161 (5) formed on the semiconductor substrate made of the second material

Sii-xGex層中,x較佳地係落在〇至〇·5的範圍之內。更 佳地,在該半導體基底的該表面上,X幾乎爲0且逐漸地 變化。在最高的表面上,即該應變半導體層形成處,X較 佳地係爲〇 · 1至〇 · 5。晶格鬆弛至少發生在該最高的表面 上,以使得該處的應變是微小的。 在該第一基底除了該應變半導體層外該側上的該構 件’其可以藉由一機械的移除方法,例如:硏磨法、抛光 法來加以移除。另外可以選擇的是,在接合之前以及接合 之後,氫離子可以被佈植至由該第二材料所製成的該半導 體基底上或者是該應變感應層上,該部分在該佈植介面可 以被分離。 在該應變半導體層上的該S i! _ x G e χ層藉由拋光法或化 學蝕刻法來移除。 在該Si^xGex層被移除之後,且僅該應變半導體層被 邊在該第一基底上,即完成表面平面化。根據本發明第一 貝S也例的製造方法可以更進一步地包含一步驟:藉由使用 該應變半導體層作爲一活性層來形成一電路元件。對於具 有此一電路元件的裝置而言,一高速運算可以藉由該應變 半導體層來實行。 (第二實施例) 一分離層係形成於由一第二材料所製成的一半導體基 底的該表面上。一應變感應層係形成於該分離層上。此 外,由一第一材料所製成的一應變半導體層係形成於該應 -9 - 200522161 (6) 變感應層上,用以製作一第一基底。 由該第一材料所製成的一第二基底被接合至該第一基 底。該些部分在該分離層被分離。接著,該其餘的分離層 以及應變感應層被移除。因此,由該第一材料所製成的該 應變丰導體層’可以形成於由該第一材料所製成的琴第一 基底上’而與該弟一^基底相接觸。 該第一、第二材料一般都使用矽。該分離層通常可以 藉由拋光由該第二材料使用電鍍法所製成的該半導體基底 (矽基底)的該表面來形成。至於其他的方法,在該應變 感應層以及該感應半導體層形成之後,離子(例如:氯離 子)被佈植用以在該應變感應層或是由該第二材料所製成 的該半導體基底中,形成該分離層。 至於該應變感應層,係由含有鍺的一層(Sii xGex 層)所形成。該層(較佳地係爲一單晶矽層)幾乎係由砂 所製成,且形成於該SinGex層上作爲一應變半導體層。 在形成於該分離層上的該Si bxGex層中,X較佳地係 落在0至0.5的範圍之內。更佳地,在該分離層的該表面 上’ X幾乎爲0且逐漸地變化。在最高的表面上,即該應 變半導體層形成處,X較佳地係爲〇 · i至〇. 5。晶格鬆弛 至少發生在該最高的表面上,以使得該處的應變是微小 的。 當該分離層係爲一多孔層,該分離步驟的執行係藉由 楔形物插入法、張力/剪力的應用、液噴(水噴)注射 法、氣噴注射法或超音波的應用。當該分離層係由離子佈 -10- 200522161 (7) 植法所形成時 °C的溫度下藉 在該應變 化學蝕刻法來 在該Sih 留在該第二基 根據本發 含一步驟:藉 一電路元件。 運算可以藉由 (第三實 一分離層 底的該表面上 外,由一第一 變感應層上, 由該第一 底。該些部分 以及應變感應 應變半導體層 基底上,而與 該第一、 該分離層 所製成的該半 ,該分離步驟必須在200〜300°C至5 00〜600 由退火來完成。 半導體層上的該Si nGex層’藉由拋光法或 移除。 xGex層被移除之後,且僅該應變半導體層被 底上,即完成表面平面化。 明第二實施例的製造方法可以更進一步地包 由使用該應變半導體層作爲一活性層來形成 對於具有此一電路元件的裝置而言,一高速 該應變半導體層來實行。 施例) 係形成於由一第二材料所製成的一半導體基 。一應變感應層係形成於該分離層上。此 材料所製成的一應變半導體層係形成於該應 用以製作一第一基底。 材料所製成的一第二基底被接合至該第一基 在該分離層被分離。接著,該其餘的分離層 層被移除。因此,由該第一材料所製成的該 ,可以形成於由該第一材料所製成的該第二 該第二基底相接觸。 第二材料一般都使用矽。 通常可以藉由拋光由該第一材M ' /乐一材枓使用電鍍法 導體基底(矽基底)的該表面來形成。 -11 - 200522161 (8) 至於該應變感應層,係由含有鍺的一層(SibxC}e) 層)所形成用以作爲該多孔表面層的該氣孔密封材料。該 層(較佳地係爲一單晶矽層)幾乎係由矽所製成,且形成 於該Si ^Gex層上作爲一應變半導體層。第8圖係爲一斷 面圖用以說明含有鍺的該層(Si bXGex層)被形成以作爲 一多孔表面層的該氣孔密封部分之狀態。如第8圖所示, 一多孔層40的該表面層之該些氣孔被塡滿一 Sil_xGex層 41 ’以使得該矽表面被該Si HGex層41所覆蓋。 在該應變感應Si bXGex層中,X較佳地係落在〇至 〇·5的範圍之內。更佳地,該Si ^xGex層係藉由在該多孔 表面層中塡充複數個氣孔來形成。晶格鬆弛至少發生在該 最高的表面上,以使得該處的應變是微小的。 當該分離層係爲一多孔層,該分離步驟的執行係藉由 楔形物插入法 '張力/剪力的應用、液噴(水噴)注射 法、氣噴注射法或超音波的應用。 在該應變半導體層上的該Si】 .xGex層,藉由拋光法或 化學蝕刻法來移除。 在該層被移除之後,且僅該應變半導體層被 留在該第二基底上,即完成表面平面化。根據本發明第三 實施例的製造方法可以更進一步地包含一步驟:藉由使用 該應變半導體層作爲一活性層來形成一電路元件。對於具 有此一電路元件的裝置而言,一高速運算可以藉由該應變 半導體層來實行。 -12 - 200522161 (9) (第四實施例) 含有鍺的一層(S i1 _ X G e x層)形成於由一第二材料所 製成的一半導體基底的該表面上。接著,一多孔的SiGe 層藉由退火而形成用以作爲一分離層。含有鍺的一層 (Si^Gex層)再次地形成於該多孔的SiGe層上,用以 作爲一應變感應層。該層(較佳地係爲一單晶矽層)幾乎 係由砂所製成,且形成於該Sll_xGex層上作爲由一第一材 料所製成的一應變半導體層,藉此來製作一第一基底。 由該第一材料所製成的一第二基底被接合至該第一基 底。該些部分在該分離層被分離。接著’該其餘的分離層 以及S i G e層被移除。因此,由該第一材料所製成的該應 變半導體層,可以形成於由該第一材料所製成的該第二基 底上,而與該第一*基底相接觸。 該第一、第二材料一般都使用矽。 在作爲一應變感應層的該Si】_xGex層中,χ較佳地係 落在0.1至0.5的範圍之內。更佳地,在該半導體基底的 該表面上’ X幾乎爲0且逐漸地變化。在最高的表面上, X較佳地係爲0 ·:[至0 · 5。晶格鬆弛至少發生在該最高的 表面上,以使得該處的應變是微小的。 當該分離層係爲一多孔層’該分離步驟的執行係藉由 楔开物插入法、張力/剪力的應用、液噴(水噴)注射 法、氣噴注射法或超音波的應用。 在該應變半導體層上的該S i ! _ x G e χ層,藉由拋光法或 化學蝕刻法來移除。 -13- 200522161 (10) 在該Si bxGex層被移除之後,且僅該應變半導體層被 留在該第二基底上,即完成表面平面化。 根據本發明第四實施例的製造方法可以更進一步地包 含一步驟:藉由使用該應變半導體層作爲一活性層來形成 一電路元件。對於具有此一電路元件的裝置而言,一高速 運算可以藉由該應變半導體層來實行。 (第五實施例) 含有鍺的一層(SiHGex層)被作爲一應變感應層, 形成於由一第二材料所製成的一半導體基底的該表面上。 接著,一多孔的SiGe層藉由退火而形成用以作爲一分離 層。形成於由該第二材料所製成的該半導體基底上的該應 變感應Sh.xGex層中,X較佳地係落在ο·〗至〇5的範圍 之內。更佳地,在該半導體基底的該表面上,χ幾乎爲〇 且逐漸地變化。在最高的表面上,X較佳地係爲 〇. 1至 0 · 5。晶格鬆弛至少發生在該最高的表面上,以使得該處 的應變是微小的。因此,該Si!-xGex層幾乎如同一應變感 應層的作用,即使在多孔形成之後。 該層(較佳地係爲一單晶矽層)幾乎係由砂所製成, 且形成於該S i 1 · x G e x層上作爲由一第一材料所製成的一應 變半導體層,藉此來製作一第一基底。 由該第一材料所製成的一第二基底被接合至該第一基 底。該些部分在該分離層被分離。接著,該其餘的分離層 以及Si ^xGex層被移除。因此,由該第一材料所製成的該 -14- 200522161 (11) 應變半導體層’可以形成於由該第—材料所製成的該第二 基底上,而與該第二基底相接觸。 該第一、第二材料一般都使用矽。 當該分離層係爲-多孔層,該分離步驟的執行係藉由 楔形物插入法、張力/剪力的應用、液噴(水噴)注射 法、氣噴注射法或超音波的應用。 在該應變半導體層上的該,藉由拋光法或 化學蝕刻法來移除。 在該Si^xGex層被移除之後,且僅該應變半導體層被 留在該第二基底上,即完成表面平面化。 根據本發明第五實施例的製造方法可以更進一步地包 含一步驟··藉由使用該應變半導體層作爲一活性層來形成 一電路元件。對於具有此一電路元件的裝置而言,一高速 運算可以藉由該應變半導體層來實行。 本發明的一些例子將伴隨著圖式敘述如下。下述的例 子1〜5分別對應至上述的第一至第五實施例。 (例子1 ) 根據本發明例子1 一半導體基底(部件)的製造方法 將於下述說明,並請參照第1 A〜1 C圖。 在如第1 A圖所示的該步驟(磨薄步驟)中,一第〜 基底(部件)1 〇具有含矽、鍺(附加的材料)的〜層 (Si^Gex層)12形成於一矽基底1 1上,以及在該Si Ge 層上形成一政層13。 -15- 200522161 (12) (SiGe層的晶膜生長) 首先,該應變感應SinGex層12 ( X係爲〇.1至 0.5,並以χ = 〇·3爲例)藉由化學蒸氣沈積法,並經由照 射器加熱用以在該矽基底1 1晶膜生長。該些較佳的生長 條件係如下所述。需要注意的是,預先烘乾可以在生長之 前執行。 •載送氣體(Η2 ) Η2的流率較佳地係爲25〜45升/分鐘,而通常是 3〇升/分鐘。 •第一來源氣體(SiH4 )In the Sii-xGex layer, x preferably falls within a range of 0 to 0.5. More preferably, on the surface of the semiconductor substrate, X is almost 0 and gradually changes. On the highest surface, that is, where the strained semiconductor layer is formed, X is more preferably in the range of 0.1 to 0.5. Lattice relaxation occurs at least on the highest surface so that the strain there is minimal. The member 'on the side of the first substrate except the strained semiconductor layer can be removed by a mechanical removal method, such as a honing method or a polishing method. Alternatively, before bonding and after bonding, hydrogen ions can be implanted on the semiconductor substrate or the strain sensing layer made of the second material, and the portion can be implanted on the implant interface. Separation. The Si! _XGex layer on the strained semiconductor layer is removed by a polishing method or a chemical etching method. After the Si ^ Gex layer is removed and only the strained semiconductor layer is edged on the first substrate, the surface planarization is completed. The manufacturing method according to the first embodiment of the present invention may further include a step of forming a circuit element by using the strained semiconductor layer as an active layer. For a device having such a circuit element, a high-speed operation can be performed by the strained semiconductor layer. (Second embodiment) A separation layer is formed on the surface of a semiconductor substrate made of a second material. A strain sensing layer is formed on the separation layer. In addition, a strained semiconductor layer made of a first material is formed on the application layer to form a first substrate. A second substrate made of the first material is bonded to the first substrate. The parts are separated at the separation layer. Then, the remaining separation layer and the strain sensing layer are removed. Therefore, the strain-conducting conductor layer 'made of the first material can be formed on the first substrate of the piano made of the first material' and contact the substrate. The first and second materials generally use silicon. The separation layer can usually be formed by polishing the surface of the semiconductor substrate (silicon substrate) made of the second material using a plating method. As for other methods, after the strain sensing layer and the sensing semiconductor layer are formed, ions (for example, chloride ions) are implanted in the strain sensing layer or the semiconductor substrate made of the second material. To form the separation layer. As for the strain sensing layer, it is formed of a layer containing germanium (Sii xGex layer). This layer (preferably a single crystal silicon layer) is almost made of sand, and is formed on the SinGex layer as a strained semiconductor layer. In the Si bxGex layer formed on the separation layer, X preferably falls within a range of 0 to 0.5. More preferably, 'X is almost 0 on the surface of the separation layer and gradually changes. On the highest surface, that is, where the strained semiconductor layer is formed, X is preferably from 0.i to 0.5. Lattice relaxation occurs at least on the highest surface so that the strain there is minimal. When the separation layer is a porous layer, the separation step is performed by a wedge insertion method, application of tension / shear force, liquid jet (water jet) injection method, air jet injection method, or ultrasonic application. When the separation layer is formed by the ion cloth-10-200522161 (7) implantation method, the strain chemical etching method is used at the temperature of ° C to leave the Sih on the second substrate. According to the present invention, there is a step: borrow A circuit element. The calculation can be performed by (the third real and a separation layer bottom on the surface, from a first change induction layer, from the first bottom. These parts and the strain-induced strain semiconductor layer substrate, and the first The half of the separation layer, the separation step must be completed by annealing at 200 ~ 300 ° C to 5 00 ~ 600. The Si nGex layer on the semiconductor layer is' polished or removed. XGex layer After being removed, and only the strained semiconductor layer is on the bottom, the surface planarization is completed. It is clear that the manufacturing method of the second embodiment can further include forming the strained semiconductor layer as an active layer. For the device of the circuit element, a high-speed semiconductor layer is implemented. Example) The semiconductor layer is formed on a semiconductor substrate made of a second material. A strain sensing layer is formed on the separation layer. A strained semiconductor layer made of this material is formed on the application to make a first substrate. A second substrate made of material is bonded to the first substrate and is separated at the separation layer. Then, the remaining separation layers are removed. Therefore, the substrate made of the first material may be formed in contact with the second substrate made of the first material. The second material is generally silicon. It can usually be formed by polishing the surface of the first substrate M '/ Leyicai using an electroplated conductive substrate (silicon substrate). -11-200522161 (8) As for the strain-sensing layer, the pore sealing material formed by a layer (SibxC} e) containing germanium is used as the porous surface layer. This layer (preferably a single crystal silicon layer) is almost made of silicon, and is formed on the Si ^ Gex layer as a strained semiconductor layer. Fig. 8 is a sectional view for explaining a state where the germanium-containing layer (Si bXGex layer) is formed as the pore sealing portion of a porous surface layer. As shown in FIG. 8, the pores of the surface layer of a porous layer 40 are filled with a Sil_xGex layer 41 ′ so that the silicon surface is covered by the Si HGex layer 41. In the strain-inducing Si bXGex layer, X preferably falls in the range of 0 to 0.5. More preferably, the Si x Gex layer is formed by filling a plurality of pores in the porous surface layer. Lattice relaxation occurs at least on the highest surface so that the strain there is minimal. When the separation layer is a porous layer, the separation step is performed by wedge insertion method 'application of tension / shear force, liquid jet (water jet) injection method, air jet injection method or ultrasonic application. The Si] .xGex layer on the strained semiconductor layer is removed by a polishing method or a chemical etching method. After the layer is removed, and only the strained semiconductor layer is left on the second substrate, the surface planarization is completed. The manufacturing method according to the third embodiment of the present invention may further include a step of forming a circuit element by using the strained semiconductor layer as an active layer. For a device having such a circuit element, a high-speed operation can be performed by the strained semiconductor layer. -12-200522161 (9) (Fourth embodiment) A layer containing germanium (Si1_XGex layer) is formed on the surface of a semiconductor substrate made of a second material. Next, a porous SiGe layer is formed as a separation layer by annealing. A layer (Si ^ Gex layer) containing germanium is formed again on the porous SiGe layer to serve as a strain sensing layer. This layer (preferably a single crystal silicon layer) is almost made of sand, and is formed on the Sll_xGex layer as a strained semiconductor layer made of a first material, thereby making a first A base. A second substrate made of the first material is bonded to the first substrate. The parts are separated at the separation layer. Then the 'the remaining separation layer and the SiGe layer are removed. Therefore, the strained semiconductor layer made of the first material can be formed on the second substrate made of the first material and contact the first * substrate. The first and second materials generally use silicon. In the Si] xGex layer as a strain sensing layer, χ preferably falls within a range of 0.1 to 0.5. More preferably, 'X is almost 0 on the surface of the semiconductor substrate and gradually changes. On the highest surface, X is preferably 0 ·: [to 0 · 5. Lattice relaxation occurs at least on the highest surface so that the strain there is minimal. When the separation layer is a porous layer, the separation step is performed by wedge insertion method, application of tension / shear force, liquid jet (water jet) injection method, air jet injection method, or ultrasonic application . The S i! _ X G e χ layer on the strained semiconductor layer is removed by a polishing method or a chemical etching method. -13- 200522161 (10) After the Si bxGex layer is removed, and only the strained semiconductor layer is left on the second substrate, the surface planarization is completed. The manufacturing method according to the fourth embodiment of the present invention may further include a step of forming a circuit element by using the strained semiconductor layer as an active layer. For a device having such a circuit element, a high-speed operation can be performed by the strained semiconductor layer. (Fifth embodiment) A layer (SiHGex layer) containing germanium is used as a strain sensing layer formed on the surface of a semiconductor substrate made of a second material. Next, a porous SiGe layer is formed as a separation layer by annealing. In the strain-sensitive Sh.xGex layer formed on the semiconductor substrate made of the second material, X preferably falls within a range from ο · to 〇5. More preferably, on the surface of the semiconductor substrate, χ is almost 0 and gradually changes. On the highest surface, X is preferably from 0.1 to 0.5. Lattice relaxation occurs at least on the highest surface so that the strain there is minimal. Therefore, the Si! -XGex layer functions almost like the same strain-sensitive layer, even after the porosity is formed. The layer (preferably a single crystal silicon layer) is almost made of sand, and is formed on the S i 1 · x G ex layer as a strained semiconductor layer made of a first material, This is used to make a first substrate. A second substrate made of the first material is bonded to the first substrate. The parts are separated at the separation layer. Then, the remaining separation layer and the Si ^ Gex layer are removed. Therefore, the -14-200522161 (11) strained semiconductor layer 'made of the first material may be formed on the second substrate made of the first material to be in contact with the second substrate. The first and second materials generally use silicon. When the separation layer is a porous layer, the separation step is performed by wedge insertion method, application of tension / shear force, liquid jet (water jet) injection method, air jet injection method, or ultrasonic application. The strain on the strained semiconductor layer is removed by a polishing method or a chemical etching method. After the Si ^ Gex layer is removed, and only the strained semiconductor layer is left on the second substrate, the surface planarization is completed. The manufacturing method according to the fifth embodiment of the present invention may further include a step ... forming a circuit element by using the strained semiconductor layer as an active layer. For a device having such a circuit element, a high-speed operation can be performed by the strained semiconductor layer. Some examples of the present invention will be described below with accompanying drawings. The following examples 1 to 5 correspond to the first to fifth embodiments described above, respectively. (Example 1) A method for manufacturing a semiconductor substrate (component) according to Example 1 of the present invention will be described below, and please refer to FIGS. 1A to 1C. In this step (thinning step) as shown in FIG. 1A, a first substrate (part) 10 having a layer (Si ^ Gex layer) 12 containing silicon and germanium (an additional material) is formed on a substrate. A silicon layer 13 is formed on the silicon substrate 11 and a Si layer is formed on the Si Ge layer. -15- 200522161 (12) (Crystalline film growth of the SiGe layer) First, the strain-inducing SinGex layer 12 (X is from 0.1 to 0.5, and χ = 0.3) is used as an example. It is heated by an irradiator to grow a 11 film on the silicon substrate. These preferred growth conditions are described below. It should be noted that pre-baking can be performed before growing. • The flow rate of the carrier gas (Η2) Η2 is preferably 25 to 45 liters / minute, and usually 30 liters / minute. • First source gas (SiH4)

SiH4的流率較佳地係爲50〜200立方公分/分鐘, 而通常是方公分/分鐘。 •第二來源氣體(2% GeH4 ) 2% GeH4的流率較佳地係爲20〜5 00立方公分/分 鐘,而通常是300立方公分/分鐘。 •腔體氣壓 該腔體氣壓較佳地係爲10〜1〇〇陶爾,而通常是 1 0 0陶爾。 •溫度(基底溫度) 該溫度較佳地係爲65 0〜680°C。 •生長速率 該生長速率較佳地係爲10〜50奈米/分鐘。 -16- 200522161 (13) 鍺的製成比例可以隨著該來源氣體的該混合比例而變 化。較佳地,在生長於該單晶矽基底上的初期階段,該鍺 濃度被設爲較低的,且隨著該晶膜生長的進行而增加。該 鍺的比例較佳地最終係爲將X設爲0 · 1至0.5。在該最高 的表面上的該應變可以被鬆弛,例如:導入的缺陷。 另外亦爲較佳地,係在該Si^Gex層12的生長之 前,將該矽基底11的該表面於一氫氣下退火(預先烘 乾)。在預先烘乾中,氫的流率較佳地係爲15〜45升/分 鐘,而通常是40升/分鐘。該溫度較佳地係爲700〜1000 °C,而通常是95 0 °C。該腔體氣壓較佳地係爲10〜760陶 爾,而通常是80陶爾。在初期階段,該單晶矽層較佳地 係於低生長速率下生長,通常爲50奈米/分鐘或者更 小。 當一樣品被裝載在該化學蒸氣沈積裝置中或是從該化 學蒸氣沈積裝置卸載時,形成於該表面上的一天然的氧化 物膜,可以藉由在裝載於該裝置之前的每一步驟中,將該 表面浸泡在一稀釋的氫氟酸溶液中來移除。 (應變矽層的形成) 接著,該單晶矽層1 3藉由化學蒸氣沈積法生長於該 Si】.xGex層12上。以此方式形成的該單晶矽層13的晶格 常數與位於其下的該Si! _xGex層12之晶格常數不同,因 此,其作用如同一應變矽層。根據此例,在該應變矽層 1 3以及該S;h.xGex層12之間,接近該介面的該Si】.xGex -17- 200522161 (14) 層1 2中的鍺之濃度可以被精確地加以控制。此外,在該 介面的濃度分佈可以是均勻的(平面的)分佈。因此,形 成於該S:h_xGex層12上的該應變矽層之該應變可以被輕 易地加以控制。基於此原因,可以獲得一高品質的應變矽 層1 3。作爲該應變矽層1 3的該單晶矽層之生長條件如下 述: •載送氣體(H2) 氫的流率較佳地係爲15〜45升/分鐘,而通常是 3 〇升/分鐘。 •來源氣體(SiH4 ) 該來源氣體的流率較佳地係爲50〜5 00立方公分/ 分鐘,而通常是100立方公分/分鐘。 •腔體氣壓 該腔體氣壓較佳地係爲10〜100 陶爾,而通常是 8 0陶爾。 •生長溫度(基底溫度) 該生長溫度較佳地係爲650〜1000 °C,而通常是900 °C。 •生長速率 該生長速率較佳地係爲10〜500奈米/分鐘。 (在第一基底側邊的完成) 經由上述的步驟,可以獲得如第1 A圖所示的該第一 -18- | 12 200522161 (15) 基底(部件)1 0 °錯由多個步驟來形成該s i i. x G e x f\ 以及該應變矽層1 3,已於上述說明,亦可由_單一 (例如:化學蒸氣沈積法)來形成該Si hGex層12 該應變矽層1 3,其係藉由逐漸地或逐步地改變鍺的 (或其他氣體的濃度)以及其他條件。 (接合) 在如第1 A圖所示的該步驟之後,接著在如第1 所不的該步驟(接合步驟)中,一第二基底彳部件 被接合至該第一基底(部件)1 0的該上表面側邊。 一基底(部件)10以及該第二基底(部件)3〇可以 地被接合。另外可以运擇的是’爲了要堅固地親合至 合的基底’可以執行電鍍或退火。該第二基底(部件 通常係爲一砂基底。待接合的該二基底的該接合表面 佳地需要經歷一疏水處理(也被應用至下述的例子中 這是因爲假如該接合表面係爲疏水性的,一砂氧化物 成於該接合介面中。 (基底的移除) 在如第1 B圖所示的該步驟之後,接著在如第i 所不的g亥步驟(移除步驟)中,藉由接合步驟所形成 基底(接合的基底堆疊)的該矽基底1】,被加以移 該移除步驟可以藉由一機械的移除方法,例如:硏磨 拋光法來完成,或是一化學的移除方法,例如:濕蝕 步驟 以及 濃度 B圖 )30 該第 簡單 該接 )30 ,較 )° 膜形 C圖 之該 除。 法、 刻或 -19- 200522161 (16)The flow rate of SiH4 is preferably 50 to 200 cm3 / min, and usually it is cm3 / min. • The second source gas (2% GeH4) The flow rate of 2% GeH4 is preferably 20 ~ 500 cm3 / min, and usually 300 cm3 / min. • Cavity air pressure The cavity air pressure is preferably 10 to 100 Tao, and usually 100 Tao. • Temperature (base temperature) The temperature is preferably 65 0 ~ 680 ° C. • Growth rate The growth rate is preferably 10 to 50 nm / minute. -16- 200522161 (13) The production ratio of germanium can be changed according to the mixing ratio of the source gas. Preferably, in the initial stage of growth on the single crystal silicon substrate, the germanium concentration is set to be low, and increases as the crystal film growth progresses. The proportion of germanium is preferably such that X is set to be from 0.1 to 0.5. The strain on the highest surface can be relaxed, for example: introduced defects. In addition, it is also preferable that the surface of the silicon substrate 11 is annealed (pre-dried) under a hydrogen gas before the Si ^ Gex layer 12 is grown. In the pre-drying, the flow rate of hydrogen is preferably 15 to 45 liters / minute, and usually 40 liters / minute. The temperature is preferably 700 to 1000 ° C, and usually 95 0 ° C. The cavity air pressure is preferably 10 to 760 Tao, and usually 80 Tao. In the initial stage, the single crystal silicon layer is preferably grown at a low growth rate, usually 50 nm / min or less. When a sample is loaded into or unloaded from the chemical vapor deposition device, a natural oxide film formed on the surface can be used in each step before loading in the device. The surface was immersed in a dilute hydrofluoric acid solution to remove it. (Formation of Strained Silicon Layer) Next, the single crystal silicon layer 13 is grown on the Si] .xGex layer 12 by a chemical vapor deposition method. The lattice constant of the single crystal silicon layer 13 formed in this way is different from the lattice constant of the Si! _XGex layer 12 underneath, and therefore, it acts as the same strained silicon layer. According to this example, between the strained silicon layer 13 and the S; h.xGex layer 12, the Si close to the interface] .xGex -17- 200522161 (14) the concentration of germanium in layer 12 can be accurately To control. In addition, the concentration distribution at this interface may be a uniform (planar) distribution. Therefore, the strain of the strained silicon layer formed on the S: h_xGex layer 12 can be easily controlled. For this reason, a high-quality strained silicon layer 13 can be obtained. The growth conditions of the single crystal silicon layer as the strained silicon layer 13 are as follows: The flow rate of the carrier gas (H2) hydrogen is preferably 15 to 45 liters / minute, and usually 30 liters / minute. . • Source gas (SiH4) The flow rate of the source gas is preferably 50-50 cm3 / min, and usually 100 cm3 / min. • Cavity air pressure The cavity air pressure is preferably 10 to 100 Taor, and usually 80 Tao. • Growth temperature (substrate temperature) The growth temperature is preferably 650 ~ 1000 ° C, and usually 900 ° C. • Growth rate The growth rate is preferably 10 to 500 nm / min. (Completion on the side of the first substrate) Through the above steps, the first -18- | 12 200522161 shown in Figure 1A can be obtained (15) The substrate (part) 1 0 ° is caused by multiple steps The si i. X G exf \ and the strained silicon layer 1 3 have been described above, and the Si hGex layer 12 can also be formed by a single (eg, chemical vapor deposition method) 12 the strained silicon layer 1 3, which is By gradually or gradually changing the concentration of germanium (or other gases) and other conditions. (Joining) After this step as shown in FIG. 1A and then in this step (joining step) as shown in FIG. 1, a second base member is bonded to the first base (part) 1 0 Of the upper surface side. A substrate (component) 10 and the second substrate (component) 30 may be bonded. Alternatively, plating or annealing may be performed 'for a substrate to be firmly attached to the substrate'. The second substrate (the component is usually a sand substrate. The joining surfaces of the two substrates to be joined preferably need to undergo a hydrophobic treatment (also applied to the following examples because this joining surface is hydrophobic By nature, a sand oxide is formed in the bonding interface. (Removal of the substrate) After this step as shown in Fig. 1B, it is followed by the ghai step (removal step) as shown in Fig. I. The silicon substrate 1], which is a substrate (bonded substrate stack) formed by the bonding step, is removed. The removal step can be performed by a mechanical removal method, such as honing and polishing, or a Chemical removal methods, such as: wet etching step and concentration B) 30 should be simpler than 30), and) ° should be divided by the C shape of the film. French, Engraved or -19- 200522161 (16)

乾蝕刻來完成。假如該基底係藉由化學軸刻法來移除’則 一種含有氫氧化鉀、重鉻酸鉀、丙醇以及水的混合溶液將 被使用。矽可以藉由與Si〇.7Ge().3有關的選擇性大約20次 而被移除(詳細請參見,D· J· Godbey,et· a1·,app1· Phys Lett., vol. 56? no. 4? pp. 3 73 -3 79, 1 990 )。另外可以選擇 的是,當 EDP 倉虫亥!j 液(Ethylene Diamine Pyrochatechol ) 被使用,砂可以在溫度爲82°C下藉由與Sio.72Geo.28有關 的選擇性大約390次而被移除(詳細請參見,D. Feijoo, et. al” J. Electro. Mat., vol. 23, no. 6, pp. 493 -496, 1 994 ) 〇 另外,該SinGex層12被移除。該SihXGex層12可 以藉由,例如:拋光法或化學蝕刻法來移除。假設該 Si nGex層12藉由化學蝕刻法來移除,一種含有氫氟酸 (0.5%)、硝酸以及水(以5 : 4 0 : 2 0的比例)的混合溶 液被使用。SiG.7Ge().3可以藉由與矽有關的選擇性大約13 次而被移除(詳細請參見,A. H. Krist, et. al·,Appl. Phys· Lett. ? vol. 5 8 ? no. 17, pp. 1 8 99- 1 90 1,1991) o 也就是說,一轉換步驟藉由如第1 B圖所示的接合步 驟以及如第1 C圖所示的移除步驟來執行。第1 C圖係爲 一斷面圖用以說明根據本發明例子1所製造的該半導體基 底。 (應變砂以及氫退火所得的電路) 當一電路元件藉由該應變矽層1 3而形成時,可以獲 -20- 200522161 (17) 得一局速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話,該表 面可以藉由拋光法或氫退火來平面化。 (例子2 ) 根據本發明例子2 —半導體基底(部件)的製造方法 將於下述說明,並請參照第2A〜2D圖。在例子1的該 Sh-xGex層形成之前,一多孔層形成於接近一砂基底 u 的該表面以作爲一分離層。 (電鍍) 首先,一多孔矽層1 4係藉由電鍍形成於該單晶矽基 底11上。通常電鍍係以下述方式完成,亦即將一含有氫 氟酸的溶液塡滿具有一白金電極對的一電鍍儲槽、在兩電 極間放置該矽基底1 1,並且在兩電極間提供一電流。 藉由此步驟所形成的該多孔矽層1 4具有一易碎的結 構,並被作爲稍後的分離步驟中的一分離層。對於電鍍而 言,在日本專利申請案號7-3 02 8 8 9所揭露的技術可以作 爲其電鍍條件。 一保護膜,例如:一氧化物膜,可以形成於該多孔矽 層1 4內部氣孔的該些表面上。另外可以選擇的是,具有 不同的多孔性的複數層可以藉由控制該電鍍溶液或電流而 形成。舉例來說,一第一多孔層可以形成於該表面側邊 上,而具有一較高多孔性的一第二多孔層可以形成於該第 -21 - 200522161 (18) 一多孔層的下面。 (SiGe/5夕嘉晶接合) 在該多孔矽層14上形成一含有矽、鍺(附 料)的應變感應12以及一應變砂層13 將該第一基底接合至該第二基底等步驟係與例子1 一第一基底(部件)10'具有一如第2A圖所示的結 2 B圖所示的結構係由該接合步驟獲得。 另外亦爲較佳地,係在該Si 層12形成 孔矽層14之前,將該多孔矽層14的該表面於一氫 火(預先烘乾)。在預先烘乾中,氫的流率較佳 15〜45升/分鐘,而通常是40升/分鐘。該溫度 係爲7 00〜100CTC,而通常是95 0°C。該腔體氣壓較 爲10〜760陶爾,而通常是80陶爾。在初期階段 晶矽層較佳地係於低生長速率下生長,通常爲5 0 分鐘或者更小。 當一樣品被裝載在該化學蒸氣沈積裝置中或是 學蒸氣沈積裝置卸載時,形成於該表面上的一天然 物膜,可以藉由在裝載於該裝置之前的每一步驟中 表面浸泡在一稀釋的氫氟酸溶液中來移除。 (基底的移除) 在如第2B圖所示的該步驟之後,接著在如第 所示的該步驟(分離步驟)中,藉由接合步驟所形 加的材 ,以及 相同。 構。第 於該多 氣下退 地係爲 較佳地 佳地係 ,該單 奈米/ 從該化 的氧化 ,將該 2C圖 成之該 -22- 200522161 (19) 基底(接合的基底堆疊),在部分該分離層 14處被分離爲兩個基底。也就是說,一轉 第2B圖所示的接合步驟以及如第2C圖所 來執行。該分離步驟可以藉由下述來執行, 其軸線旋轉該接合的基底堆疊時,注入一流 14。參考數字14'以及14''係用以指明在分 基底上所留下的多孔層。 使用張應力、壓縮或剪應力的分離方法 使用一流體,例如:液體或氣體的上述分離 以選擇的是,這些方法也可以合倂使用。 在分離後仍留在該第二基底30的該多 蝕刻法、拋光法、硏磨法或是在一含有氫的 火,來將之移除。爲了藉由蝕刻法來移除該 孔層14"可以藉由使用一含有氫氟酸、雙氧 合溶液並以大約爲1 : 1 〇5的一選擇性來選擇 當該多孔層的許多表面面積已被使用, 他的矽蝕刻劑來選擇性地移除。 另外,該Sh_x Gex層12被移除。該Si 以藉由,例如:拋光法或化學蝕刻法來移除 Sii-xGex Μ 藉由化學蝕刻法來移除,一 (0.5%)、硝酸以及水(以5 : 40 : 20的比 液被使用。Si〇.7Ge().3可以藉由與有關矽的$ 次而被移除(詳細請參見,A. H. Krist, Phys. Lett” vol. 58,no· 17,ρρ. 1 8 9 9- 1 90 1, (多孔矽層) 換步驟藉由如 示的分離步驟 例如:當繞著 體至該分離層 離後,在該些 可以用來代替 方法。另外可 孔層1 4 "藉由 還原空氣下退 多孔層,該多 水以及水的混 〖性地移除。 則亦可藉由其 hGex層12可 。假設該 種含有氫氟酸 例)的混合溶 證擇性大約1 3 e t. a 1. ? A p p 1. 1991)。 -23- 200522161 (20) 第2 D圖係爲一斷面圖用以說明根據本發明例子2所 製造的該半導體基底。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層1 3而形成時,可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話’該表 面可以藉由拋光法或氫退火來平面化。 (例子3 ) 根據本發明例子3 —半導體基底(部件)的製造方法 將於下述說明,並請參照第3A〜3D圖。例子2的該 Si HGex層之形成步驟,可以藉由鍺來密封該多孔層的該 些氣孔。 (電鍍) 首先,一多孔矽層1 4係藉由電鍍形成於該單晶矽基 底1 1上,如第3 A圖所示。通常電鍍係以下述方式完 成,亦即將一含有氫氟酸的溶液塡滿具有一白金電極對的 一電鍍儲槽、在兩電極間放置該矽基底11,並且在兩電 極間提供一電流。藉由此步驟所形成的該多孔矽層1 4具 有一易碎的結構,並被作爲稍後的分離步驟中的一分離 層。對於電鍍而言,在日本專利申請案號7-3 02 8 8 9所揭 露的技術可以作爲其電鍍條件。 -24- 200522161 (21) 一保護膜,例如:一氧化物膜,可以形成於該多孔矽 層14內部氣孔的該些表面上。另外可以選擇的是,具有 不同的多孔性的複數層可以藉由控制該電鍍溶液或電流而 形成。舉例來說,一第一多孔層可以形成於該表面側邊 上,而具有一較高多孔性的一第二多孔層可以形成於該第 一多孔層的下面。 (藉由SiGe來密封氣孔) 該多孔矽層14的該些表面孔可以被 Sii_xGex所密 封。該些較佳的生長條件係如下所述。需要注意的是,預 先烘乾(將於下述說明)可以在生長之前執行。 •載送氣體(H2) H2的流率較佳地係爲25〜45升/分鐘,而通常是 3 0升/分鐘。 •第一來源氣體(SiH4 )Dry etching is done. If the substrate is removed by chemical axe method, a mixed solution containing potassium hydroxide, potassium dichromate, propanol, and water will be used. Silicon can be removed with selectivity related to Si0.7Ge (). 3 about 20 times (for details, see D.J. Godbey, et. A1., App1. Phys Lett., Vol. 56? no. 4? pp. 3 73 -3 79, 1 990). Another option is that when EDP Ethylene Diamine Pyrochatechol is used, the sand can be removed at a temperature of 82 ° C with a selectivity related to Sio.72Geo.28 about 390 times. (Please refer to D. Feijoo, et. Al ”J. Electro. Mat., Vol. 23, no. 6, pp. 493 -496, 1 994 for details.) In addition, the SinGex layer 12 is removed. The SihXGex The layer 12 can be removed by, for example, a polishing method or a chemical etching method. It is assumed that the Si nGex layer 12 is removed by a chemical etching method, which contains hydrofluoric acid (0.5%), nitric acid, and water (in 5: A ratio of 40:20) was used. SiG.7Ge (). 3 can be removed by silicon-related selectivity about 13 times (for details, see AH Krist, et. Al., Appl. Phys · Let.? Vol. 5 8? No. 17, pp. 1 8 99- 1 90 1, 1991) o That is, a conversion step is performed by the joining step as shown in FIG. The removal step shown in Figure 1C is performed. Figure 1C is a cross-sectional view illustrating the semiconductor substrate manufactured according to Example 1 of the present invention. (Strain sand and hydrogen annealing) Circuit) When a circuit element is formed by the strained silicon layer 13, -20-200522161 (17) can be obtained as a device with a fast speed and low energy consumption. The formation of the circuit element (a semiconductor device) (Manufacturing) will be described below. If necessary, the surface can be planarized by polishing or hydrogen annealing. (Example 2) According to Example 2 of the present invention-a method for manufacturing a semiconductor substrate (component) will be described below. Please refer to FIGS. 2A to 2D. Before the formation of the Sh-xGex layer in Example 1, a porous layer was formed on the surface close to a sand substrate u as a separation layer. (Plating) First, a porous silicon Layers 14 and 4 are formed on the single-crystal silicon substrate 11 by electroplating. Generally, electroplating is completed in the following manner, that is, a solution containing hydrofluoric acid is filled with a plating tank having a platinum electrode pair, and two electrodes The silicon substrate 11 is placed in between, and a current is provided between the two electrodes. The porous silicon layer 14 formed by this step has a fragile structure and is used as a separation layer in a later separation step. For electroplating, The technique disclosed in Japanese Patent Application No. 7-3 02 8 8 9 can be used as its plating conditions. A protective film, such as an oxide film, can be formed on the surfaces of the pores inside the porous silicon layer 14. Alternatively, a plurality of layers having different porosities can be formed by controlling the plating solution or current. For example, a first porous layer may be formed on the side of the surface, and a second porous layer having a higher porosity may be formed on the -21-200522161 (18) of a porous layer below. (SiGe / 5 Xijiajing bonding) Forming a strain induction 12 containing silicon and germanium (attachment) and a strained sand layer 13 on the porous silicon layer 14 The steps of bonding the first substrate to the second substrate are Example 1 A first substrate (part) 10 'has a structure as shown in Fig. 2A, and a structure shown in Fig. 2B is obtained by this joining step. It is also preferable that the surface of the porous silicon layer 14 is subjected to a hydrogen fire (pre-baking) before the porous silicon layer 14 is formed in the Si layer 12. In the pre-drying, the flow rate of hydrogen is preferably 15 to 45 liters / minute, and usually 40 liters / minute. The temperature ranges from 700 to 100CTC, and is usually 95 ° C. The cavity pressure is 10 to 760 Tau, and usually 80 Tau. In the initial stage, the crystalline silicon layer is preferably grown at a low growth rate, usually 50 minutes or less. When a sample is loaded in the chemical vapor deposition device or unloaded from the chemical vapor deposition device, a natural film formed on the surface can be immersed in the surface in each step before loading the device. Remove in diluted hydrofluoric acid solution. (Removal of the substrate) After this step as shown in FIG. 2B, and then in this step (separation step) as shown in FIG. 2, the material added by the joining step is the same.结构。 Structure. Secondly, the multi-gas receding ground system is a better ground system, the single nanometer / oxidation from the chemical, and the 2C map into the -22- 200522161 (19) substrate (bonded substrate stack), The separation layer 14 is separated into two substrates in part. That is, one turn of the joining step shown in Fig. 2B and performed as shown in Fig. 2C. This separation step can be performed by injecting the first substrate 14 with its axis rotating the bonded substrate stack. The reference numerals 14 'and 14' 'are used to indicate the porous layer left on the substrate. Separation methods using tensile, compressive, or shear stress Using a fluid, such as the above separation of liquids or gases. Alternatively, these methods can be used in combination. The multi-etching method, polishing method, honing method, or a flame containing hydrogen is used to remove the second substrate 30 after separation. In order to remove the pore layer 14 by etching, "the surface area of the porous layer can be selected by using a solution containing hydrofluoric acid, a hydrogen peroxide solution and a selectivity of about 1: 1.05. Has been used, his silicon etchant to selectively remove. In addition, the Sh_x Gex layer 12 is removed. The Si is removed by, for example, polishing or chemical etching. Sii-xGex Μ is removed by chemical etching. One (0.5%), nitric acid, and water (in a ratio of 5:40:20 are removed). Use. Si〇.7Ge (). 3 can be removed by $ times related to silicon (for details, see AH Krist, Phys. Lett "vol. 58, no. 17, ρρ. 1 8 9 9- 1 90 1, (porous silicon layer) The change step is shown by the separation step shown in the example. For example, when it is separated from the body to the separation layer, these can be used instead. The pore layer 1 4 " The reducing air descends the porous layer, and the water and the water mixture are removed sexually. The hGex layer 12 can also be used. Assuming that the type containing hydrofluoric acid is mixed, the selectivity is about 1 3 e t. a 1.? A pp 1. 1991). -23- 200522161 (20) Figure 2D is a cross-sectional view illustrating the semiconductor substrate manufactured according to Example 2 of the present invention. (Strained silicon and hydrogen The circuit obtained by annealing) When a circuit element is formed by the strained silicon layer 13, a device with high speed and low energy consumption can be obtained. The shape of the circuit element The fabrication (manufacturing of a semiconductor device) will be described below. If necessary, the surface can be planarized by polishing or hydrogen annealing. (Example 3) Example 3 according to the present invention-Method for manufacturing a semiconductor substrate (component) It will be described below, and please refer to FIGS. 3A to 3D. In the step of forming the Si HGex layer of Example 2, the pores of the porous layer can be sealed by germanium. (Plating) First, a porous silicon layer 14 is formed on the single crystal silicon substrate 11 by electroplating, as shown in FIG. 3A. Usually, the electroplating is completed in the following manner, that is, a solution containing hydrofluoric acid is filled with a platinum electrode pair. A plating tank, the silicon substrate 11 is placed between the two electrodes, and a current is provided between the two electrodes. The porous silicon layer 14 formed by this step has a fragile structure and is used as a later A separation layer in the separation step. For electroplating, the technique disclosed in Japanese Patent Application No. 7-3 02 8 8 9 can be used as its plating conditions. -24- 200522161 (21) A protective film, such as: An oxide film can be formed on the On the surfaces of the pores inside the porous silicon layer 14. Alternatively, a plurality of layers having different porosities can be formed by controlling the plating solution or current. For example, a first porous layer can be formed On the side of the surface, a second porous layer having a higher porosity may be formed under the first porous layer. (The pores are sealed by SiGe) The surfaces of the porous silicon layer 14 Faces can be sealed by Sii_xGex. These preferred growth conditions are described below. Note that pre-baking (described below) can be performed before growing. • The flow rate of the carrier gas (H2) H2 is preferably 25 to 45 liters / minute, and usually 30 liters / minute. • First source gas (SiH4)

SiH4的流率較佳地係爲50〜2 00立方公分/分鐘, 而通常是1〇〇立方公分/分鐘。 •第二來源氣體(2% GeH4 ) 2% GeH4的流率較佳地係爲20〜5 00立方公分/分 鐘,而通常是300立方公分/分鐘。 •腔體氣壓 該腔體氣壓較佳地係爲10〜1〇〇陶爾,而通常是 1 0 0陶爾。 -25- 200522161 (22) •溫度 該溫度較佳地係爲6 5 0〜6 8 0 °C。 •生長速率 該生長速率較佳地係爲5〜20奈米/分鐘。 該密封SinGex層之鍺的製成比例可以隨著該來源氣 體的該混合比例而變化。較佳地,X係爲〇 · 1至〇 · 5。由 於表面孔的存在,在該密封層上的該應變可以被鬆驰。藉 由此步驟,係形成該應變感應Si ^Gex層。 另外亦爲較佳地,係在氣孔密封之前,將該砍基底 11的該表面於一氫氣下退火(預先烘乾)。在預先烘乾 中,氫的流率較佳地係爲15〜45升/分鐘,而通常是40 升/分鐘。該溫度較佳地係爲700〜1 000 °C,而通常是950 °C。該腔體氣壓較佳地係爲10〜760陶爾,而通常是80 陶爾。 當一樣品被裝載在該化學蒸氣沈積裝置中或是從該化 學蒸氣沈積裝置卸載時,形成於該表面上的一天然的氧化 物膜,可以藉由在裝載於該裝置之前的每一步驟中,將該 表面浸泡在一稀釋的氫氟酸溶液中來移除。 (矽磊晶接合至完成) 形成一矽層13於該SiGe密封層上,以及截至完成前 的步驟皆與例子2的步驟相同。一第一基底(部件)1 〇'' 具有一如第3A圖所示的結橇。第3B圖所示的結構係由 該接合步驟獲得。在分離後,該基底被分爲兩個部分,如 -26- 200522161 (23) 第3 C圖所示,且一轉換步驟被執行。 第3 D圖係爲一斷面圖用以說明根據本發明例子3所 製造的該半導體基底。 (應變砂以及氫退火所得的電路) 當一電路元件藉由該應變矽層1 3而形成時,可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話,該表 面可以藉由拋光法或氫退火來平面化。 (例子4 ) 根據本發明例子4 一半導體基底(部件)的製造方法 將於下述說明,並請參照第4A〜4D圖。形成於〜# 、v S底 1 1上的一 S i G e層被多孔化,以此來替代例子2的該 底的多孔性。The flow rate of SiH4 is preferably 50 to 200 cm 3 / min, and usually 100 cm 3 / min. • The second source gas (2% GeH4) The flow rate of 2% GeH4 is preferably 20 ~ 500 cm3 / min, and usually 300 cm3 / min. • Cavity air pressure The cavity air pressure is preferably 10 to 100 Tao, and usually 100 Tao. -25- 200522161 (22) • Temperature This temperature is preferably from 6 50 to 68 ° C. • Growth rate The growth rate is preferably 5 to 20 nm / minute. The manufacturing ratio of the germanium of the sealed SinGex layer can be changed according to the mixing ratio of the source gas. Preferably, the X system is from 0.1 to 0.5. Due to the presence of surface holes, the strain on the sealing layer can be relaxed. By this step, the strain-inducing Si ^ Gex layer is formed. In addition, it is also preferable that the surface of the chopped substrate 11 is annealed (pre-dried) under a hydrogen gas before the pores are sealed. In the pre-drying, the flow rate of hydrogen is preferably 15 to 45 liters / minute, and usually 40 liters / minute. The temperature is preferably 700 to 1 000 ° C, and usually 950 ° C. The cavity air pressure is preferably 10 to 760 Taur, and usually 80 Taur. When a sample is loaded into or unloaded from the chemical vapor deposition device, a natural oxide film formed on the surface can be used in each step before loading in the device. The surface was immersed in a dilute hydrofluoric acid solution to remove it. (Si epitaxial bonding to completion) A silicon layer 13 is formed on the SiGe sealing layer, and the steps up to completion are the same as those in Example 2. A first substrate (part) 10 ″ has a knot as shown in FIG. 3A. The structure shown in Fig. 3B is obtained by this joining step. After separation, the substrate is divided into two parts, as shown in Figure 3C of -26- 200522161 (23), and a conversion step is performed. Figure 3D is a sectional view illustrating the semiconductor substrate manufactured according to Example 3 of the present invention. (Strain sand and circuit obtained by hydrogen annealing) When a circuit element is formed by the strained silicon layer 13, a device with high speed and low energy consumption can be obtained. The formation of this circuit element (a manufacturing of a semiconductor device) will be described below. If necessary, the surface can be planarized by polishing or hydrogen annealing. (Example 4) A method for manufacturing a semiconductor substrate (component) according to Example 4 of the present invention will be described below, and please refer to FIGS. 4A to 4D. A SiGe layer formed on ~ #, vS substrate 1 1 is made porous, thereby replacing the porosity of the substrate of Example 2.

(SiGe層的晶膜生長)(Crystalline film growth of SiGe layer)

如第4 A圖所示,含有矽、鍺(附加的材料 籍 15 ( Si^yGey層,y係爲〇」至〇.5,並以y = 〇 3爲例) 由化學蒸氣沈積法’並經由照射器加熱用以在該單晶石夕 需要 底1 1晶膜生長。該些較佳的生長條件係如下所述 注意的是’預先烘乾可以在生長之前執行。 載送氣體(H2 ) -27- 200522161 (24) H2的流率較佳地係爲25〜45升/分鐘,而通常是 3 〇升/分鐘。 •第一來源氣體(SiH4)As shown in Fig. 4A, containing silicon and germanium (with additional material 15 (Si ^ yGey layer, y system is 0 "to 0.5, and y = 〇3 as an example) by chemical vapor deposition method 'and Heating via an irradiator is required for the growth of the 1 1 crystal film on the single crystal eve. The preferred growth conditions are as follows. Note that 'pre-drying can be performed before growth. Carrier gas (H2) -27- 200522161 (24) The flow rate of H2 is preferably 25 ~ 45 liters / minute, and usually 30 liters / minute. • First source gas (SiH4)

Si Η*的流率較佳地係爲5〇〜2 〇〇立方公分/分鐘, 而通常是100立方公分/分鐘。 •第二來源氣體(2%GeH4) 2% GeH4的流率較佳地係爲2〇〜5 00立方公分/分 鐘’而通常是300立方公分/分鐘。 •腔體氣壓 該腔體氣壓較佳地係爲10〜100陶爾,而通常是 1 0 0陶爾。 •溫度(基底溫度) 該溫度較佳地係爲6 5 0〜6 8 0 °C。 •生長速率 該生長速率較佳地係爲1 0〜50奈米/分鐘。 鍺的製成比例可以隨著該來源氣體的該混合比例而變 化。較佳地,在生長於該單晶矽基底上的初期階段,該鍺 濃度被設爲較低的,且隨著該晶膜生長的進行而增加。該 鍺的比例較佳地最終係爲將y設爲0.1至0.5。在該最高 的表面上的該應變可以被鬆弛,例如:導入的缺陷。 (SiGe電鍍) 在如第4A圖所示的該步驟之後,接著在如第4B圖 所示的該步驟(電鍍步驟)中,一多孔矽層1 6係藉由電 -28- 200522161 (25) 鍍形成於該Si^Gey層15上。通常電鍍係以下述方式完 成,亦即將一含有氫氟酸的溶液塡滿具有一白金電極對的 一電鍍儲槽、在兩電極間放置具有該sil_yGey層15的該 矽基底1 1,並且在兩電極間提供一電流。藉由此步驟所 形成的該多孔矽層1 6具有一易碎的結構,並被作爲稍後 的分離步驟中的一分離層。 一保護膜,例如:一氧化物膜,可以形成於該多孔矽 層16內部氣孔的該些表面上。當Si Ge被氧化,二氧化矽 形成於該表面上,且鍺被往內地推進。一氧化物膜被形成 於該內部氣孔的該些表面上。另外可以選擇的是,具有不 同的多孔性的複數層可以藉由控制該電鍍溶液或電流而形 成。舉例來說,一第一多孔層可以形成於該Si^Gey層 15的該表面側邊上,而具有一較高多孔性的一第二多孔 層可以形成於該第一多孔層的下面。比之該Si 層 1 5,該多孔層1 6可以較深,且達到該矽基底1 1 (而第4 B 圖中的該多孔層1 6並未達到該矽基底丨丨)。 由於藉由電鍍來形成多孔層是一種電解蝕刻法,其可 以輕易且選擇性地蝕刻該些缺陷。因此,在多孔層形成之 後’形成該S i! _ y G e y層1 5過程中所導入的該些缺陷幾乎 不留在該單晶砂層剩餘的部分。結果導致該結晶度得以恢 復。 (SiGe/矽磊晶至完成) 形成一含有矽、鍺(附加的材料)的應變感應 -29 - 200522161 (26)The flow rate of Si Η * is preferably 50 to 2000 cm 3 / min, and usually 100 cm 3 / min. • The second source gas (2% GeH4) The flow rate of 2% GeH4 is preferably 20-50 cm3 / min 'and usually 300 cm3 / min. • Cavity air pressure The cavity air pressure is preferably 10 to 100 Tao, and usually 100 Tao. • Temperature (base temperature) The temperature is preferably from 6 50 to 68 ° C. • Growth rate The growth rate is preferably 10 to 50 nanometers / minute. The production ratio of germanium can be changed according to the mixing ratio of the source gas. Preferably, in the initial stage of growth on the single crystal silicon substrate, the germanium concentration is set to be low, and increases as the crystal film growth progresses. The germanium ratio is preferably finally set to y to be 0.1 to 0.5. The strain on the highest surface can be relaxed, for example: introduced defects. (SiGe plating) After this step as shown in FIG. 4A and then in this step (plating step) as shown in FIG. 4B, a porous silicon layer 16 is electrically charged by -28- 200522161 (25 ) Is formed on the Si ^ Gey layer 15. Generally, the electroplating is completed in the following manner, that is, a solution containing hydrofluoric acid is filled in a plating storage tank having a platinum electrode pair, the silicon substrate 11 having the sil_yGey layer 15 is placed between the two electrodes, and A current is provided between the electrodes. The porous silicon layer 16 formed by this step has a fragile structure and is used as a separation layer in a later separation step. A protective film, such as an oxide film, may be formed on the surfaces of the pores inside the porous silicon layer 16. When Si Ge is oxidized, silicon dioxide is formed on the surface, and germanium is pushed inward. An oxide film is formed on the surfaces of the internal pores. Alternatively, a plurality of layers having different porosities can be formed by controlling the plating solution or current. For example, a first porous layer may be formed on the surface side of the Si ^ Gey layer 15, and a second porous layer having a higher porosity may be formed on the first porous layer. below. Compared to the Si layer 15, the porous layer 16 can be deeper and reach the silicon substrate 1 1 (while the porous layer 16 in FIG. 4B does not reach the silicon substrate 丨 丨). Since forming the porous layer by electroplating is an electrolytic etching method, it can easily and selectively etch these defects. Therefore, after the formation of the porous layer, the defects introduced during the formation of the Si! _YGey layer 15 hardly remain in the remaining portion of the single crystal sand layer. As a result, the crystallinity is restored. (SiGe / silicon epitaxy to completion) Formation of a strain sensor containing silicon and germanium (additional material) -29-200522161 (26)

Si〗_xGex層12於該多孔層16上,以及截至完成前的步驟 皆與例子2的步驟相同。—第一基底(部件)1〇…具有〜 如第4C圖所示的結構。第4〇圖所示的結構係由該接合 步驟獲得。在分離後,該基底被分爲兩個部分,如第 圖所示,且一轉換步驟被執行。第4F圖係爲一斷面圖用 以說明根據本發明例子4所製造的該半導體基底。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層1 3而形成時,可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(^ 半導體裝置的製造)將於下述說明。假如需要的話,該表 面可以藉由拋光法或氫退火來平面化。 (例子5 ) 根據本發明例子5 —半導體基底(部件)的製造方法 將於下述說明,並請參照第5A〜5F圖。假如晶格鬆弛已 經發生於例子4該多孔SiGe層的該表面上,一應變矽層 13可以形成在其上而不需要形成另一 SiGe層。 其餘的步驟與例子4相同。第5A圖係爲一斷面圖用 以說明該SiGe層的磊晶步驟。第5B圖係爲一斷面圖用以 說明該接合步驟。 一第一基底(部件)1 0…’具有一如第5 C圖所示的結 構。第5 D圖所示的結構係由該接合步驟獲得。在分離 後,該基底被分爲兩個部分,如第5 E圖所示,且一轉換 -30- (27) 200522161 步驟被執行。第5F圖係爲一斷面圖用以說明根據本發明 例子5所製造的該半導體基底。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層1 3而形成時’可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話,該表 面可以藉由拋光法或氫退火來平面化。 (例子6 ) 根據本發明例子6 —半導體基底(部件)的製造方法 Μ於下述I兌明,並請參照第6 A〜6 E圖。 (半導體基底) 如例子4、5中所述之由該第二材料所製成的一半導 體基底’以及由-材肖(例如:_,其晶格常數大於矽的 晶格常數)所製成的基底,被用來替代一矽基底。除了鍺The Si_xGex layer 12 on the porous layer 16 and the steps up to completion are the same as those in Example 2. —The first substrate (part) 10... Has a structure as shown in FIG. 4C. The structure shown in Fig. 40 is obtained by this joining step. After separation, the substrate is divided into two parts, as shown in the figure, and a conversion step is performed. Figure 4F is a sectional view for explaining the semiconductor substrate manufactured according to Example 4 of the present invention. (Strained silicon and circuit obtained by hydrogen annealing) When a circuit element is formed by the strained silicon layer 13, a device with high speed and low energy consumption can be obtained. The formation of the circuit element (the manufacture of a semiconductor device) will be described below. If necessary, the surface can be planarized by polishing or hydrogen annealing. (Example 5) Example 5-Method for Manufacturing Semiconductor Substrate (Part) According to the Invention The following will be described, and please refer to FIGS. 5A to 5F. If lattice relaxation has occurred on the surface of the porous SiGe layer of Example 4, a strained silicon layer 13 can be formed thereon without forming another SiGe layer. The remaining steps are the same as in Example 4. Fig. 5A is a sectional view for explaining the epitaxial step of the SiGe layer. Fig. 5B is a sectional view illustrating the joining step. A first substrate (part) 10 ... 'has a structure as shown in Fig. 5C. The structure shown in Fig. 5D is obtained by this joining step. After separation, the substrate is divided into two parts, as shown in Figure 5E, and a conversion step -30- (27) 200522161 is performed. Fig. 5F is a sectional view illustrating the semiconductor substrate manufactured according to Example 5 of the present invention. (Strained silicon and circuit obtained by hydrogen annealing) When a circuit element is formed by the strained silicon layer 13 ', a device with high speed and low energy consumption can be obtained. The formation of this circuit element (a manufacturing of a semiconductor device) will be described below. If necessary, the surface can be planarized by polishing or hydrogen annealing. (Example 6) According to Example 6 of the present invention-a method for manufacturing a semiconductor substrate (component), which will be described in the following I, and please refer to FIGS. 6A to 6E. (Semiconductor substrate) A semiconductor substrate made of the second material as described in Examples 4 and 5 and made of a material (eg, _, whose lattice constant is greater than the lattice constant of silicon) The substrate is used to replace a silicon substrate. Except germanium

十"、以亡人巧欠Ί4/偕 1 j 26上 爲〜塊結晶,該晶格被對 生長於該多孔層2 6上(如第 ~ 31 - 200522161 (28) 6 B圖所示)。該結構被接合至一第二基底(部件)3 0, 如第6C圖所示。接著,該些部分在該多孔層26上被分離 (如第6D圖所示)。如同上述多個例子一樣,該分離層 被移除以使得具有該應變矽層1 3在該第二基底(部件) 30上的一應變半導體基底可以被製造(如第6E圖所 示)。 在該多孔層26形成之前,一 Si^Gex層可以形成以 減少與矽的晶格常數之差異。 (應變矽以及氫退火所得的電路) 當一電路元件藉由該應變矽層1 3而形成時,可以獲 得一高速且低能源消耗的一裝置。該電路元件的形成(一 半導體裝置的製造)將於下述說明。假如需要的話,該表 面可以藉由拋光法或氫退火來平面化。 在上述多個例子中,一應變半導體層係藉由一具有晶 格常數大於一單晶半導體之晶格常數的材料所製成,並用 以形成一應變感應層。本發明也可以被應用至另一例子, 亦即一應變半導體層係藉由一具有晶格常數小於一單晶半 導體之晶格常數的材料所製成,並用以形成一應變感應 層。舉例來說,爲了形成一矽應變半導體層,且其晶格常 數小於一單晶矽的晶格常數,碳化矽或鑽石可以被使用以 形成該應變感應層。 在上述多個例子中,該矽應變半導體層係直接地形成 於該矽基底上,用以作爲該第二基底。然而,非結晶層, -32- 200522161 (29) 例如:一複晶矽(包含微晶矽)或非結晶矽可以被用來形 成於該應變半導體層上或第二基底上,以及被接合使得該 應變半導體層可以形成於該複晶矽層或該非結晶矽層(係 形成於該矽基底上,當退火被執行用以堅固地耦合該接合 的基底時,該非結晶矽層被轉換爲一複晶)上。本發明之 該半導體基底的製造方法,也包含此種形式。具有一複晶 層或其他形成於該矽基底上的該結構,也包含於本發明的 該半導體基底。該半導體基底並非一定需要是一單晶基 底。一複晶基底也可以被使用。 作爲該第二基底的該半導體基底,可以具有一濃密地 摻雜的雜質層形成於該表面上。另外可以選擇的是,該基 底本身可以包含一高濃度的雜質。舉例來說,當一 P +基 底或具有一 P +層的基底被用以當作該第二基底的該半導 體基底,且一應變半導體層如同一 P—層被接合至該基 底,因此一 P — /P +基底可以被製造。 (半導體裝置的例子) 一半導體裝置,其使用如上述多個例子中的該半導體 基底製造方法所製造的一半導體基底,以及該半導體裝置 的製造方法將於下述說明’並請參照第7A〜7D圖所示。 首先,一半導體基底藉由使用如上述例子1〜5中的該 半導體基底(部件)製造方法所製造。此半導體基底具有 一應變矽層位於一矽基底上,如上所述。於下述說明中’ 該半導體基底將被作爲一應變矽基底。相較於一正常的矽 -33- 200522161 (30) 基底,藉由此一應變矽基底可以獲得具有一較高速度的裝 置。這是因爲該應變矽層優於沒有應變的一矽層。Ten ", 亡 4 / 偕 1 j 26 is a lumpy crystal, and the crystal lattice is grown on the porous layer 26 (as shown in Fig. 31-200522161 (28) 6 B) . The structure is bonded to a second substrate (part) 30, as shown in FIG. 6C. Then, the portions are separated on the porous layer 26 (as shown in FIG. 6D). As in the above examples, the separation layer is removed so that a strained semiconductor substrate having the strained silicon layer 13 on the second substrate (component) 30 can be manufactured (as shown in FIG. 6E). Before the porous layer 26 is formed, a Si ^ Gex layer may be formed to reduce the difference in lattice constant from silicon. (Strained silicon and circuit obtained by hydrogen annealing) When a circuit element is formed by the strained silicon layer 13, a device with high speed and low energy consumption can be obtained. The formation of this circuit element (a manufacturing of a semiconductor device) will be described below. If necessary, the surface can be planarized by polishing or hydrogen annealing. In the above examples, a strained semiconductor layer is made of a material having a lattice constant greater than that of a single crystal semiconductor, and is used to form a strain sensing layer. The present invention can also be applied to another example, that is, a strained semiconductor layer is made of a material having a lattice constant smaller than that of a single crystal semiconductor, and is used to form a strain sensing layer. For example, in order to form a silicon strained semiconductor layer and its lattice constant is smaller than that of a single crystal silicon, silicon carbide or diamond can be used to form the strain sensing layer. In the above examples, the silicon strained semiconductor layer is directly formed on the silicon substrate and serves as the second substrate. However, the amorphous layer, -32- 200522161 (29) For example: a polycrystalline silicon (including microcrystalline silicon) or amorphous silicon can be used to form the strained semiconductor layer or the second substrate, and be bonded so that The strained semiconductor layer may be formed on the polycrystalline silicon layer or the amorphous silicon layer (formed on the silicon substrate. When annealing is performed to firmly couple the bonded substrate, the amorphous silicon layer is converted into a complex Crystal) on. The method for manufacturing a semiconductor substrate of the present invention also includes this form. The structure having a polycrystalline layer or other formed on the silicon substrate is also included in the semiconductor substrate of the present invention. The semiconductor substrate does not necessarily need to be a single crystal substrate. A polycrystalline substrate can also be used. The semiconductor substrate as the second substrate may have a densely doped impurity layer formed on the surface. Alternatively, the substrate itself may contain a high concentration of impurities. For example, when a P + substrate or a substrate with a P + layer is used as the semiconductor substrate of the second substrate, and a strained semiconductor layer is bonded to the substrate as the same P-layer, therefore a P + — / P + substrate can be manufactured. (Example of a semiconductor device) A semiconductor device using a semiconductor substrate manufactured by the method for manufacturing a semiconductor substrate as in the above-mentioned examples, and a method of manufacturing the semiconductor device will be described below 'and please refer to Section 7A ~ Figure 7D. First, a semiconductor substrate is manufactured by using the semiconductor substrate (component) manufacturing method as in Examples 1 to 5 described above. The semiconductor substrate has a strained silicon layer on a silicon substrate, as described above. In the following description, the semiconductor substrate will be used as a strained silicon substrate. Compared with a normal silicon-33-200522161 (30) substrate, a strained silicon substrate can be used to obtain a device with a higher speed. This is because the strained silicon layer is better than a silicon layer without strain.

在如第7 A圖所示的步驟中,一活性區1 1 〇 3 ^,其係 一電晶體(例如:場效電晶體,金氧半電晶體或一雙極電 晶體)待形成之處,以及一元件絕緣區1 0 5 4被形成於一 預先準備的應變砂基底1 0 0 2上。特別地,該活性區丨丨〇 3, 以及該元件絕緣區1 0 5 4可以藉由下述的方式形成,例 如:將一應變矽層1 1 0 5圖案化爲一島形的方法、區域氧 化隔絕層(LOCOS )氧化法、或一溝渠(trench)法。 一閘極絕緣膜1 〇 5 6係形成於該應變砂層1 1 〇 5的該表 面上。至於該閘極絕緣膜1 05 6的材料可以使用下述,例 如·氧化砂、氮化砂、氧氮化砂、氧化錦、氧化鉬、氧化 給、氧化鈦、氧化銃、氧化釔、氧化釓、氧化鑭、氧化锆 或上述的玻璃混合物。該閘極絕緣膜1 〇 5 6可以藉由下述 方式來形成’例如:氧化該應變矽層1 1 〇5的該表面,藉In the step shown in FIG. 7A, an active region 1 1 0 3 ^ is a transistor (for example, a field effect transistor, a metal-oxide semiconductor transistor, or a bipolar transistor) to be formed. , And a component insulating region 10 5 4 is formed on a pre-prepared strained sand substrate 10 2. In particular, the active region 丨 〇 03 and the element insulation region 10 5 4 can be formed by the following methods, for example: a method and region of patterning a strained silicon layer 1 105 into an island shape Oxidation barrier (LOCOS) oxidation method, or a trench method. A gate insulating film 105 is formed on the surface of the strained sand layer 105. As for the material of the gate insulating film 1 05 6, the following can be used, for example: oxide sand, nitride sand, oxynitride sand, oxide bromide, molybdenum oxide, oxide, titanium oxide, hafnium oxide, yttrium oxide, hafnium oxide , Lanthanum oxide, zirconia, or the above glass mixture. The gate insulating film 1 05 can be formed by, for example, the following method. For example, the surface of the strained silicon layer 1 1 05 is oxidized.

由化學蒸氣沈積法或是物理蒸氣沈積法來沈積一絕緣物質 於該應變矽層1105上。 —閘極電極1 05 5係形成於該閘極絕緣膜1〇56上。 閘極電極1 05 5可以由以下的材料製成,例如:摻雜一 或η型雜質的㈣;—金屬’例如:鎢、鉬、鈦、钽、 或銅’或者是至少包含上述金屬之—的合金;—金屬衫 物,例如:石夕化鉬、砂化鎢或砂化姑;或者是—金屬氮 物例如·氮化駄、氮化鶴或氮化飽。胃_ ^ ]〇56可以藉由形成由不同材料所製成複數層而形成, -34- 200522161 (31) 同一複晶金屬砂化物(polycide)閘極。該聞極電極 1055 可以由以下的方式形成,例如··自行對準矽化物(self-asigned silicide ; salicide )的方法、鑲嵌式 (damascene )閘極製程的方法,或其他任何方法。藉由 上述的步驟,可以獲得如第7A圖所示的結構。 在如第7B圖所示的步驟中,一 η型雜質,例如: 磷、砷、銻,或者是一 ρ型雜質,例如硼,係被該活性區 1 1 03 '所採用’以形成相對而言非常輕量的摻雜源極與汲 極區1 05 8。該雜質可以被離子佈植法以及退火所採用。 一絕緣膜被形成以覆蓋該閘極電極1 0 5 5,且被背蝕 刻用以形成在該閘極電極1 0 5 5側邊上的一邊牆1 0 5 9。 與上述雜質的導電率相同的一雜質被該活性區1 1 〇 3 ' 所採用,以形成相對而言濃密的摻雜源極與汲極區 1 0 5 7。藉由上述的步驟,可以獲得如第7Β圖所示的結 構。 在如第7C圖所示的步驟中,一金屬矽化物層1 060形 成於該閘極電極]05 5的該上表面上、該源極與汲極區 1 0 5 7的該上表面上。至於該金屬矽化物層1 〇 6 0的材料, 可以使用下述材料,例如:矽化鎳、矽化鈦、矽化鈷、砂 化鉬或矽化鎢。這些矽化物可以藉由下述方式來形成,其 係沈積一金屬來覆蓋該閘極電極1 0 5 5的該上表面、該源 極與汲極區1057的該上表面,且執行退火處理來導致金 屬與其下面的矽彼此互相作用,以及藉由一蝕刻劑(例 如:硫酸),來移除該金屬一未反應的部分。如果需要的 -35- 200522161 (32) 話,該矽化物層的該表面可以是氮化物的。藉由上述的步 驟,可以獲得如第7C圖所示的結構。 在如第7 D圖所示的步驟中,一絕緣膜1 0 6 1被形成 以覆蓋轉換爲一矽化物的該閘極電極1 0 5 5的該上表面’ 以及該源極與汲極區1 〇 5 7的該上表面。至於該絕緣膜 1061的材料,可以使用下述材料,例如··含有鱗及 (或)硼的氧化矽。如果需要的話,接觸洞藉由化學機械 硏磨法被形成於該絕緣膜1 〇 6 1中。當一黃光製程被使用 時,其係使用氟化氪準分子雷射、氟化氬準分子雷射、氟 準分子雷射、電子光束或X光,則可以形成具有一邊短 於0.2 5 μηι的一矩形接觸洞、或者是具有一直徑小於0.25 μηι的一圓形接觸洞。 該些接觸洞以一導體塡滿。至於一適用的導體塡充法 係爲,在一耐火金屬或其氮化物的一薄膜形成於該接觸洞 的該內部表面上,以作爲一阻障金屬1 062 (如果需要的 話),而一導體]063,例如:一鎢合金、鋁、鋁合金、 銅或銅合金藉由化學蒸氣沈積法、物理蒸氣沈積法或電鍍 法來沈積。被沈積高於該絕緣膜1 06 1的該上表面之導 體,藉由背蝕刻或化學機械硏磨法來移除。在該些接觸洞 被以該導體塡滿之前,暴露至該些接觸洞之該些底部的該 源極與汲極區上的該砂化物之該表面可以是氮化物的。藉 由上述的步驟,一電晶體(例如:場效電晶體),可以被 形成於該應變矽層上,以使之可以獲得具有一電晶體的一 半導體裝置,且該電晶體具有如第7 D圖所示結構。 -36 - 200522161 (33) 爲了要形成一^互補式金氧半電晶體(CMOS) ,一 p 型基底被用來作爲該應變矽基底,以及形成一 η井在該P 通道金氧半導體(PMOS)區域的該基底上。 第7 Α〜7D圖僅說明一電晶體區域。爲了獲得一半導 體裝置其可以達到所需的功能,大量的電晶體或其他電路 元件可以形成於該應變矽基底上,並且其間的互相連接可 以形成。 本發明被使用於一半導體基底用以形成一電路元件, 例如:在一應變半導體層上的一電晶體,該半導體基底的 一製造方法,以及形成該電路兀件的一半導體裝置。 本發明可以提供一新的技術,例如:形成具有一應變 矽層的一矽晶圓。藉由本發明的該半導體基底,該通道遷 移率可以藉由該應變而增加,而不需要改變由習知的矽-大型積體電路技術所發展的該製程。 雖然本發明已以若干較佳實施例揭露如上’然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明之 精神和範圍內,當可作些許之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者爲準。 【圖式簡單說明】 本發明的許多觀點可以參考以下的圖式而更加淸楚的 了解。相關圖式並未依比例繪製,其作用僅在淸楚表現本 發明有關定理。此外,使用數字來表不圖式中相對應的部 分。 -37- 200522161 (34) 第1 A圖係說明根據本發明例子i的一第一基底之分 層式結構; 第1 B圖係說明根據本發明例子丨的一接合步驟;以 及 第1 C圖係說明根據本發明例子1的一移除步驟; 第2 A圖係說明根據本發明例子2的一第一基底之分 層式結構; 第2 B圖係說明根據本發明例子2的一接合步驟; 第2 C圖係說明根據本發明例子2的一分離步驟;以 及 第2 D圖係說明根據本發明例子2的一移除步驟; 弟3 A圖係說明根據本發明例子3的一第一*基底之分 層式結構; 第3 B圖係說明根據本發明例子3的一接合步驟; 第3 C圖係說明根據本發明例子3的一分離步驟;以 及 第3 D圖係說明根據本發明例子3的一移除步驟; 第4 A圖係說明根據本發明例子4的一生長步驟; 第4B圖係說明根據本發明例子4的一電鍍步驟; 第4C圖係說明根據本發明例子4的一第一基底之分 層式結構; 第4 D圖係說明根據本發明例子4的一接合步驟; 第4E圖係說明根據本發明例子4的一分離步驟;以 -38 - 200522161 (35) 第4 F圖係說明根據本發明例子4的一移除步驟; 第5 A圖係說明根據本發明例子5的一生長步驟; 第5 B圖係說明根據本發明例子5的一電鍍步驟; 第5 C圖係說明根據本發明例子5的一第一基底之分 層式結構; 第5 D圖係說明根據本發明例子5的一接合步驟; 第5 E圖係說明根據本發明例子5的一分離步驟;以 及 第5 F圖係說明根據本發明例子5的一移除步驟; 第6 A圖係說明根據本發明例子6的一電鍍步驟; 第6B圖係說明根據本發明例子6的一第一基底之分 層式結構; 第6 C圖係說明根據本發明例子6的一接合步驟; 第6D圖係說明根據本發明例子6的一分離步驟;以 及 第6E圖係說明根據本發明例子6的一移除步驟; 第7A〜7D圖係說明一半導體基底以及其製造方法· 以及 第8圖係爲一斷面圖用以說明含有鍺的一層 (S i 1 · X G e x層)被形成以作爲一多孔表面層的該氣孔密封 部分之狀態。 【主要元件符號說明】 10 第一基底 39- 200522161 (36) 10’ 第一基底 10,, 第一基底 10," 第~~'基底 10,,,, 第一基底 11 矽基底 12 Si卜xGex層 13 應變矽層 14 多孔矽層 141 其餘部分的多孔矽層 14,’ 其餘部分的多孔矽層 15 S i 1 - y G C y 16 多孔矽層 16’ 其餘部分的多孔矽層 16,, 其餘部分的多孔矽層 2 1 SiGe或鍺基底 26 多孔層 26! 其餘部分的多孔層 26,, 其餘部分的多孔層 30 第二基底 40 多孔層 4 1 S i ] - x G e x 層 1002 應變矽基底 1054 元件絕緣區 1055 閘極電極 -40- 200522161An insulating substance is deposited on the strained silicon layer 1105 by a chemical vapor deposition method or a physical vapor deposition method. The gate electrode 105 is formed on the gate insulating film 105. The gate electrode 1 05 5 may be made of the following materials, for example: rhenium doped with one or n-type impurities;-a metal 'for example: tungsten, molybdenum, titanium, tantalum, or copper' or at least one of the above-mentioned metals- -Metal shirts, such as: Molybdenum Shixihua, Tungsten Sand or Titanium; or-metal nitrogens such as hafnium nitride, crane nitride or nitrogen nitride. Stomach _ ^] 〇56 can be formed by forming a plurality of layers made of different materials, -34- 200522161 (31) the same polycide gate. The smell electrode 1055 can be formed by, for example, a method of self-asigned silicide (salicide), a method of damascene gate process, or any other method. By the above steps, a structure as shown in Fig. 7A can be obtained. In the step shown in FIG. 7B, an n-type impurity, such as: phosphorus, arsenic, antimony, or a p-type impurity, such as boron, is used by the active region 1 1 03 'to form a relative and This is a very lightweight doped source and drain region. This impurity can be used by ion implantation and annealing. An insulating film is formed to cover the gate electrode 105, and is etched back to form a side wall 1059 on the side of the gate electrode 105. An impurity having the same conductivity as the above-mentioned impurity is used by the active region 1 10 3 ′ to form a relatively densely doped source and drain region 1 0 5 7. By the above steps, the structure shown in Fig. 7B can be obtained. In the step shown in FIG. 7C, a metal silicide layer 1 060 is formed on the upper surface of the gate electrode] 05 5 and on the upper surface of the source and drain regions 10 5 7. As for the material of the metal silicide layer 1060, the following materials can be used, for example: nickel silicide, titanium silicide, cobalt silicide, molybdenum sand, or tungsten silicide. These silicides can be formed by depositing a metal to cover the upper surface of the gate electrode 105, the upper surface of the source and drain regions 1057, and performing an annealing process. This causes the metal to interact with the underlying silicon, and removes an unreacted portion of the metal with an etchant (eg, sulfuric acid). If required -35- 200522161 (32), the surface of the silicide layer may be nitride. By the above steps, the structure shown in Fig. 7C can be obtained. In the step shown in FIG. 7D, an insulating film 1 0 6 1 is formed to cover the upper surface of the gate electrode 1 0 5 5 converted into a silicide and the source and drain regions. 1057 of this upper surface. As for the material of the insulating film 1061, the following materials can be used, for example: silicon oxide containing scale and / or boron. If necessary, a contact hole is formed in the insulating film 1061 by a chemical mechanical honing method. When a yellow light process is used, it uses thorium fluoride excimer laser, argon fluoride excimer laser, fluorine excimer laser, electron beam or X-ray, and can be formed with one side shorter than 0.2 5 μηι A rectangular contact hole, or a circular contact hole with a diameter less than 0.25 μηι. The contact holes are filled with a conductor. As for a suitable conductor filling method, a thin film of a refractory metal or its nitride is formed on the inner surface of the contact hole as a barrier metal 1 062 (if necessary), and a conductor ] 063, for example: a tungsten alloy, aluminum, aluminum alloy, copper or copper alloy is deposited by chemical vapor deposition, physical vapor deposition or electroplating. The conductors deposited on the upper surface of the insulating film 1 06 1 are removed by back etching or chemical mechanical honing. Before the contact holes are filled with the conductor, the surface of the sand and the sand on the source and drain regions exposed to the bottom of the contact holes may be nitrided. Through the above steps, a transistor (for example, a field effect transistor) can be formed on the strained silicon layer, so that a semiconductor device having a transistor can be obtained, and the transistor has Figure D shows the structure. -36-200522161 (33) In order to form a complementary metal-oxide-semiconductor (CMOS), a p-type substrate is used as the strained silicon substrate, and an n-well is formed in the P-channel metal-oxide semiconductor (PMOS). ) Area on the substrate. 7A to 7D illustrate only a transistor region. In order to obtain a half-conductor device which can achieve the required function, a large number of transistors or other circuit elements can be formed on the strained silicon substrate, and interconnections therebetween can be formed. The present invention is used in a semiconductor substrate to form a circuit element, for example, a transistor on a strained semiconductor layer, a method for manufacturing the semiconductor substrate, and a semiconductor device for forming the circuit element. The present invention can provide a new technology, such as: forming a silicon wafer with a strained silicon layer. With the semiconductor substrate of the present invention, the channel migration rate can be increased by the strain without changing the process developed by the conventional silicon-mass integrated circuit technology. Although the present invention has been disclosed above in several preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some modifications and retouching without departing from the spirit and scope of the present invention. The scope of protection of the invention shall be determined by the scope of the attached patent application. [Schematic description] Many aspects of the present invention can be more clearly understood with reference to the following drawings. The related drawings are not drawn to scale, and their role is only to express the relevant theorem of the present invention in a lucid way. In addition, use numbers to indicate the corresponding parts of the drawings. -37- 200522161 (34) Figure 1A illustrates a layered structure of a first substrate according to Example i of the present invention; Figure 1B illustrates a bonding step according to Example 丨 of the present invention; and Figure 1C FIG. 2 illustrates a removal step according to Example 1 of the present invention; FIG. 2A illustrates a layered structure of a first substrate according to Example 2 of the present invention; FIG. 2B illustrates a bonding step according to Example 2 of the present invention Figure 2C illustrates a separation step according to Example 2 of the present invention; and Figure 2D illustrates a removal step according to Example 2 of the present invention; Figure 3A illustrates a first step according to Example 3 of the present invention * The layered structure of the substrate; FIG. 3B illustrates a joining step according to Example 3 of the present invention; FIG. 3C illustrates a separation step according to Example 3 of the present invention; and FIG. A removal step of Example 3; FIG. 4A illustrates a growth step according to Example 4 of the present invention; FIG. 4B illustrates a plating step according to Example 4 of the present invention; and FIG. 4C illustrates a step according to Example 4 of the present invention. A layered structure of a first substrate; Figure 4D Fig. 4E illustrates a joining step according to Example 4 of the present invention; Fig. 4E illustrates a separation step according to Example 4 of the present invention; -38-200522161 (35) Fig. 4 F illustrates a removal step according to Example 4 of the present invention. Figure 5A illustrates a growth step according to Example 5 of the present invention; Figure 5B illustrates a plating step according to Example 5 of the present invention; Figure 5C illustrates a first substrate according to Example 5 of the present invention Hierarchical structure; FIG. 5D illustrates a joining step according to Example 5 of the present invention; FIG. 5E illustrates a separation step according to Example 5 of the present invention; and FIG. 5F illustrates a step according to Example 5 of the present invention. A removing step; FIG. 6A illustrates a plating step according to Example 6 of the present invention; FIG. 6B illustrates a layered structure of a first substrate according to Example 6 of the present invention; FIG. 6C illustrates according to the present invention; FIG. 6D illustrates a separation step according to Example 6 of the present invention; and FIG. 6E illustrates a removal step according to Example 6 of the present invention; FIGS. 7A to 7D illustrate a semiconductor substrate. And its manufacturing method FIG. 8 is a cross-sectional view illustrating a state in which a layer containing germanium (S i 1 · X G e x layer) is formed as the pore sealing portion of a porous surface layer. [Description of main component symbols] 10 First substrate 39- 200522161 (36) 10 'First substrate 10 ,, First substrate 10, " First ~~' substrate 10 ,,,, First substrate 11 Silicon substrate 12 Si xGex layer 13 strained silicon layer 14 porous silicon layer 141 porous silicon layer 14 of the rest, 'porous silicon layer 15 S i 1-y GC y 16 porous silicon layer 16' porous silicon layer 16 of the remaining, Part of the porous silicon layer 2 1 SiGe or germanium substrate 26 Porous layer 26! The rest of the porous layer 26, the rest of the porous layer 30 The second substrate 40 The porous layer 4 1 S i]-x G ex layer 1002 Strained silicon substrate 1054 Element insulation area 1055 Gate electrode -40- 200522161

(37) 1056 閘 極 絕 緣 膜 105 7 源 極 與 汲 極 區 105 8 源 極 與 汲 極 1059 邊 牆 1060 金 屬 矽 化 物 層 106 1 絕 緣 膜 1062 阻 障 金 屬 1063 導 體 1 1 03f 活 性 1105 應 變 矽 層(37) 1056 Gate insulating film 105 7 Source and drain regions 105 8 Source and drain 1059 Side wall 1060 Metal silicide layer 106 1 Insulating film 1062 Barrier metal 1063 Conductor 1 1 03f Active 1105 strain-varying silicon layer

-41 --41-

Claims (1)

200522161 (1) 十、申請專利範圍 1.一種半導體基底,包含: 一L虔半導體層在該半導體基底上,其中該 體層係由與該半導體基底相同的材料製成。 其中該 2 ·如申請專利範隱| 个」単G圍弟1項所述之半導體基底 半導體基底以及該應變半導體層的材料爲矽。 3·一種半導體基底的製造方法,包含:200522161 (1) X. Patent application scope 1. A semiconductor substrate comprising: an L semiconductor layer on the semiconductor substrate, wherein the bulk layer is made of the same material as the semiconductor substrate. Wherein, the semiconductor substrate described in item 1 of the application for patent | 围 G Sect. 1 The material of the semiconductor substrate and the strained semiconductor layer is silicon. 3. A method for manufacturing a semiconductor substrate, comprising: 弟步驟:形成由一第一材料所製成的一應變半導 體層於由一第一 Μ 4、丨生ff 4… 弟一材料所製成的一半導體基底上,用以製作 第基底,且至少於其表面上可作爲一應變感應材料之 用; 弟〜步驟:將該第一基底的該應變半導體層接合至 由該第一材料所製成的一第二基底;以及 步驟:移除在該第一基底除了該應變半導體層 4 -側_h的一構件,且留下該應變半導體層在該第二基底Step: forming a strained semiconductor layer made of a first material on a semiconductor substrate made of a first M 4, ff 4 ... ... to make a first substrate, and at least It can be used as a strain-sensitive material on the surface; step ~ step: bonding the strain semiconductor layer of the first substrate to a second substrate made of the first material; and step: removing the The first substrate except for a component of the strained semiconductor layer 4-side_h, and the strained semiconductor layer is left on the second substrate 上。 4 $胃胃利範圍第3項所述之半導體基底的製造方 法,其中該第〜材料爲矽。 5 $胃胃利範圍第3項所述之半導體基底的製造方 法’其中該第一材料爲矽,且該第二材料爲Sil_xGex,其 中X的範圍爲〇<χ<==1。 6·%申請專利範圍第3項所述之半導體基底的製造方 法’其中g亥半導體基底係爲具有一應變感應層形成於一表 面上的一基底。 -42- 200522161 (2) 7.如申請專利範圍第6項所述之半導體基底的製造方 法,其中該半導體基底係爲由形成該應變感應層於一矽基 底上而獲得的一基底。 8 .如申請專利範圍第6項所述之半導體基底的製造方 法,其中一分離層形成於該應變感應層的下方。 9.如申請專利範圍第6項所述之半導體基底的製造方 法,其中該應變感應層也作爲一分離層。 1 0 ·如申請專利範圍第8項所述之半導體基底的製造 方法,其中在該第三步驟中移除該第一基底之該側上的該 構件包含一步驟:在該分離層上分離該第一基底的該側上 的部分構件。 1 1 ·如申請專利範圍第6項所述之半導體基底的製造 方法,其中該應變感應層本質上係由矽以及一附加的材料 所製成。 1 2 ·如申請專利範圍第1 1項所述之半導體基底的製造 方法,其中該應變感應層本質上係由SiGe所製成。 1 3 ·如申請專利範圍第8項所述之半導體基底的製造 方法,其中該分離層本質上係由一多孔材料所製成。 1 4 ·如申請專利範圍第1 3項所述之半導體基底的製造 方法,其中該多孔材料係爲多孔矽或多孔S i G e之一。 1 5 ·如申請專利範圍第9項所述之半導體基底的製造 方法,其中亦可作爲該分離層的該應變感應層本質上係由 多孔矽所製成。 1 6 ·如申請專利範圍第〗〇項所述之半導體基底的製造 200522161 (3) 方法,其中在該第三步驟中,在該第一基底除了該應變感 應層外該側上的該構件,其留在該第二基底的一側上,而 在該分離層上的該分離步驟後被移除。 1 7 .如申請專利範圍第3項所述之半導體基底的製造 方法,其中該第三步驟包含一步驟:僅該應變感應層被留 在該第二基底上之後,平面化該應變感應層的一表面。 1 8 ·如申請專利範圍第9項所述之半導體基底的製造 方法,其中亦可作爲該分離層的該應變感應層係爲一多孔 層,其導入用以至少密封表面孔的該應變感應材料。 1 9 . 一種半導體基底,係由如申請專利範圍第3項所 述之半導體基底的製造方法而製造。 20.—種具有一電晶體的半導體裝置,其中該電晶體 形成於如申請專利範圍第1項所述之半導體基底的一應變 感應層上。on. 4 The method for manufacturing a semiconductor substrate according to item 3 in the Weiweili range, wherein the ~~ material is silicon. 5 $ The method for manufacturing a semiconductor substrate as described in item 3 of the stomach and stomach benefit range ', wherein the first material is silicon and the second material is Sil_xGex, and the range of X is 0 < χ < == 1. The method for manufacturing a semiconductor substrate described in item 3 of the 6.% scope of the patent application ', wherein the semiconductor substrate is a substrate having a strain-sensitive layer formed on a surface. -42- 200522161 (2) 7. The method for manufacturing a semiconductor substrate as described in item 6 of the scope of patent application, wherein the semiconductor substrate is a substrate obtained by forming the strain sensing layer on a silicon substrate. 8. The method for manufacturing a semiconductor substrate according to item 6 of the patent application, wherein a separation layer is formed under the strain sensing layer. 9. The method for manufacturing a semiconductor substrate according to item 6 of the scope of patent application, wherein the strain sensing layer also serves as a separation layer. 1 0 · The method for manufacturing a semiconductor substrate as described in item 8 of the scope of patent application, wherein removing the component on the side of the first substrate in the third step includes a step of separating the component on the separation layer A part of the member on the side of the first substrate. 1 1 · The method for manufacturing a semiconductor substrate according to item 6 of the patent application, wherein the strain sensing layer is essentially made of silicon and an additional material. 1 2 · The method for manufacturing a semiconductor substrate according to item 11 of the scope of patent application, wherein the strain sensing layer is essentially made of SiGe. 1 3. The method for manufacturing a semiconductor substrate according to item 8 of the scope of patent application, wherein the separation layer is essentially made of a porous material. 1 4. The method for manufacturing a semiconductor substrate according to item 13 of the scope of patent application, wherein the porous material is one of porous silicon or porous SiGe. 15 · The method for manufacturing a semiconductor substrate according to item 9 of the scope of patent application, wherein the strain sensing layer, which can also be used as the separation layer, is essentially made of porous silicon. 16 · The method of manufacturing a semiconductor substrate 200522161 (3) as described in item 0 of the patent application scope, wherein in the third step, the member on the side of the first substrate except the strain sensing layer, It remains on one side of the second substrate and is removed after the separation step on the separation layer. 17. The method for manufacturing a semiconductor substrate according to item 3 of the scope of the patent application, wherein the third step includes a step of planarizing the strain-sensing layer only after the strain-sensing layer is left on the second substrate. A surface. 18 · The method for manufacturing a semiconductor substrate according to item 9 of the scope of the patent application, wherein the strain sensing layer, which can also be used as the separation layer, is a porous layer, and the strain sensing is introduced to seal at least the surface holes material. 19. A semiconductor substrate manufactured by the method for manufacturing a semiconductor substrate as described in item 3 of the scope of patent application. 20. A semiconductor device having a transistor, wherein the transistor is formed on a strain-sensing layer of a semiconductor substrate as described in item 1 of the scope of patent application. -44--44-
TW93140622A 2003-12-26 2004-12-24 Semiconductor substrate, manufacturing method thereof, and semiconductor device TWI284360B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003434019A JP2005191457A (en) 2003-12-26 2003-12-26 Semiconductor substrate, manufacturing method therefor, and semiconductor device

Publications (2)

Publication Number Publication Date
TW200522161A true TW200522161A (en) 2005-07-01
TWI284360B TWI284360B (en) 2007-07-21

Family

ID=34736545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93140622A TWI284360B (en) 2003-12-26 2004-12-24 Semiconductor substrate, manufacturing method thereof, and semiconductor device

Country Status (3)

Country Link
JP (1) JP2005191457A (en)
TW (1) TWI284360B (en)
WO (1) WO2005064654A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012914A (en) 2004-06-22 2006-01-12 Canon Inc Method of manufacturing integrated circuit chip, and semiconductor device
JP5810718B2 (en) 2011-03-18 2015-11-11 富士ゼロックス株式会社 Silicon layer transfer substrate and semiconductor substrate manufacturing method
FR2977074A1 (en) * 2011-06-23 2012-12-28 Soitec Silicon On Insulator PROCESS FOR PRODUCING A SEMICONDUCTOR SUBSTRATE COMPRISING POROUS SILICON

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325134B2 (en) * 2001-08-31 2009-09-02 株式会社Sumco Manufacturing method of semiconductor substrate and manufacturing method of field effect transistor
JP2003078118A (en) * 2001-08-31 2003-03-14 Canon Inc Method of manufacturing semiconductor member and semiconductor device

Also Published As

Publication number Publication date
TWI284360B (en) 2007-07-21
WO2005064654A1 (en) 2005-07-14
JP2005191457A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US7928436B2 (en) Methods for forming germanium-on-insulator semiconductor structures using a porous layer and semiconductor structures formed by these methods
EP1856731B1 (en) Integrated circuit and method for its manufacture
TWI416632B (en) Methods for fabricating a stressed mos device
TWI275137B (en) Semiconductor device fabrication method
US8026534B2 (en) III-V semiconductor device structures
TWI269441B (en) Multiple gate MOSFET structure with strained Si Fin body
US7750367B2 (en) Semiconductor member, manufacturing method thereof, and semiconductor device
JP2002305293A (en) Method of manufacturing semiconductor member, and method of manufacturing semiconductor device
TW201115734A (en) Nanowire mesh FET with multiple threshold voltages
TWI270146B (en) Semiconductor-on-insulator (SOI) strained active areas
JP2020202391A (en) Method for manufacturing semiconductor structure including fin structure having different strain state and relevant semiconductor structure
TWI297192B (en)
CN110352484A (en) High resistivity silicon on insulated substrate and its manufacturing method
WO2005078786A1 (en) Method of forming thin sgoi wafers with high relaxation and low stacking fault defect density
JP2009503907A (en) Strained silicon on insulator (SSOI) structure with strained silicon layer with improved crystallinity
TW200832564A (en) Method of manufacturing semiconductor device, and semiconductor device
US20060124961A1 (en) Semiconductor substrate, manufacturing method thereof, and semiconductor device
JP2003078116A (en) Method of manufacturing semiconductor member and semiconductor device
TW200522161A (en) Semiconductor substrate, manufacturing method thereof, and semiconductor device
TW201128714A (en) Methods for fabricating MOS devices having epitaxially grown stress-inducing source and drain regions
JP4371710B2 (en) Semiconductor substrate, semiconductor device and manufacturing method thereof
JP2003078118A (en) Method of manufacturing semiconductor member and semiconductor device
TW200305222A (en) Method and device to form high quality oxide layers of different thickness in one processing step
JP2005251939A (en) Semiconductor device, manufacturing method thereof and transistor
TWI279906B (en) SOI device and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees