TWI282372B - Corrosion resistance excellent steel for ship - Google Patents
Corrosion resistance excellent steel for ship Download PDFInfo
- Publication number
- TWI282372B TWI282372B TW094120995A TW94120995A TWI282372B TW I282372 B TWI282372 B TW I282372B TW 094120995 A TW094120995 A TW 094120995A TW 94120995 A TW94120995 A TW 94120995A TW I282372 B TWI282372 B TW I282372B
- Authority
- TW
- Taiwan
- Prior art keywords
- corrosion
- steel
- content
- corrosion resistance
- test piece
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
(1) 1282372 _ 九、發明說明 ^ 【發明所屬之技術領域】 本發明關於在油船、貨船、客船、軍艦等船舶中用作 主要結構材料的船舶用耐蝕性鋼,特別是關於在曝露於海 水形成的鹽分和恆溫多濕的環境下的耐鈾性優異的船舶用 鋼材。 ^ 【先前技術】 在上述各船舶中,用作主要結構材(例如,外板、壓 載箱、油罐等)的鋼材,由於曝露於海水形成的鹽分和恆 溫多濕的環境下,因此經常遭受腐鈾損傷。如此的腐飩, 可能會導致浸水或沈沒等海難事故,因此必須對鋼材實施 一定的防腐蝕手段。作爲至今進行的防腐鈾手段,以往熟 知的方法有,(a )塗漆處理或(b )電性防蝕處理等。 其中,在以多次塗漆爲代表的塗漆處理中,由於存在 • 塗膜缺陷的可能性高,也有時因製造程序中的衝撞而損傷 塗膜,所以經常露出基體鋼材。在如此的鋼材露出部,局 部地或集中地腐蝕鋼材,導致所儲存的石油類液體燃料的 ' 提早洩漏情形。 、另外,在電性防蝕處理中,對於完全浸漬在海水中的 部位,非常有效,但在大氣中受到海水飛濺的部位等,有 時不能形成防蝕所需的電路,不能充分發揮防蝕效果。此 外,在防蝕用的流電陽極異常消耗或脫落,在消失的情況 下,有時立即開始加速腐蝕。 (2) 1282372 ^ 除上述技術外,作爲提高鋼材本身的耐飩性的技術, 、 還提出了例如專利文獻1的技術。在該技術中,公開了藉 由適當調整鋼材的化學成分’提高耐蝕性,即使無塗漆處 理也能夠使用的造船用耐触鋼。此外’在專利文獻2中, 藉由適當設計鋼材的化學成分組成,公開了提高塗膜壽命 的船舶用鋼材。在上述技術中’與以往相比,可以說能夠 確保某種程度的耐蝕性。 φ 但是,對於在更嚴酷的腐蝕環境下的耐蝕性,仍然還 不能說十分好,要求更加提高耐蝕性。特別是,在異物與 鋼材的接觸部分、在因結構上的原因或防蝕塗膜的損傷部 分等處形成的“裂隙”部分上的腐蝕(也就是裂隙腐蝕) 顯著,有時降低壽命,但是在以前提出的技術中,就這~ 部分上的耐鈾性不足。 〔專利文獻1〕日本特開200 1 - 1 73 8 1號公報申請專 利範圍等 # 〔專利文獻2〕日本特開2〇〇2_266〇5號公報申請專 利範圍等 ^ 【發明內容】 ~ 〔發明欲解決的課題〕 本發明是鑒於以上的情形而提出的,其目的在於,提 供一種即使不必實施塗漆或電性防鈾處理,也能夠實用化 的耐蝕性優異的造船用鋼,特別提供一種造船用鋼材,能 夠謀求提高對裂隙腐蝕的耐久性,同時即使對於海水導致 -6- (3) 1282372 的鹽分附著和濕潤環境造成的腐蝕,也發揮優異的耐久性 〔用來解決課題的手段〕 能夠達到上述目的的本發明的造船用鋼材,除了分別 含有C : 0.0 1〜0.3 0% (表示質量%,以下相同)、Si : 〇·〇1 〜1.5 0%、Μη ·· 0.0 1 〜2.0%、A1 : 0.0 05 〜0.10% 之外 ,還含有 Co: 0.01 〜5.00 % 及 Mg: 0.0005 〜0.020%,其餘 由Fe及不可避免的雜質構成。在該造船用鋼材中,較佳 的是將Co的含量〔Co〕與Mg的含量〔Mg〕的比値(〔 Co〕/〔Mg〕)調整在2〜350的範圍內。 此外,在本發明的船舶用鋼材中,根據需要,含有( 1)從由 Cu: 0.01 〜5.0 %、Cr: 0.01 〜5. 0%、Ni: 0.01 〜 5.0%及Ti: 0.005〜0.20%構成的群組中選擇的一種以上, (2) Ca: 0.0005 〜0.020 %,(3) Mo: 0.01 〜5.0% 及 / 或 W: 〇·〇1 〜2.0 %, (4)從由 B: 0.0001 〜0.010 %、V: 0.01〜0.50%及 Nb: 0.003〜0.5 0%構成的群組中選擇的一 種以上,(5 ) Zn : 0.001〜0.10%,也是有效的,根據所 含成分的種類,能夠進一步改進造船用鋼材的特性。 〔發明效果〕 在本發明的造船用鋼材中,藉由含有規定量的Co和 Mg,並且適當調整化學成分組成,即使不實施塗漆或電性 防蝕處理,也能夠實現可實用化的耐蝕性優異的造船用鋼 -7- (4) 1282372 ,特別能夠實現一種造船用鋼材,能夠提高對裂隙 耐久性,並且即使對於海水導致的鹽分附著和濕潤 成的腐蝕,也發揮優異的耐久性。如此的船舶用鋼 僅用作油船、貨船、客船、軍艦等船舶中的外板, 可用作壓載箱、油罐等的基材。 【實施方式】 φ 本發明者們,爲解決所述問題,進行了深入硏 果發現,只要藉由含有規定量的Co和Mg,同時適 化學成分組成,就能夠實現可解決上述問題的造船 ,從而完成本發明。 在本發明的鋼材中,重要的是倂用地含有Co矛 缺少上述成分中的任何一種,也不能達到本發明的 這些成分中的各種作用效果後述,但藉由倂用它們 耐蝕性的理由可認爲如下。 • Mg,是具有抑制腐蝕部分上的PH降低,抑制 應,提高耐蝕性的作用的元素。如此的作用,在通 材(例如,Si-Μη鋼材)的成分類中,由於生成的 ' 孔的,所以溶解的Mg不停留在鋼板表面附近,立 、 部(例如,在海水中)擴散。因此,如果單獨含有 耐蝕性的提高效果較小。但是,藉由與Mg —同含= 能夠形成微細的表面鏽膜,能夠抑制Mg向外部的 此外,認爲,藉由與溶解的Co的水解平衡反應的 果,能夠大幅度提高耐蝕性。 腐蝕的 環境造 材,不 而且還 究。結 當調整 用鋼材 ]Mg, 目的。 ,提高 腐蝕反 常的鋼 鏽是多 即向外 Mg, ξ Co 9 擴散。 協同效 -8- (5) 1282372 ^ 如此的效果,藉由控制爲後述的適當量可得到發揮, ' 但較佳的是適當控制它們的含量的比値(〔Co〕/〔 Mg 〕:質量比)。即,如果該値(〔Co〕/〔 Mg〕)小於2 ,局部腐蝕的抑制容易不充分,如果超過3 5 0,全面腐蝕 的抑制就會不足。該〔Co〕/〔 Mg〕的値,較佳的是規 定在10〜3 5 0的範圍,更佳的是規定在20〜60的範圍。 在本發明的鋼材中,爲了符合作爲該鋼材的基本特性 φ ,還需要適當調整c、Si、Μη、A1等基本成分。關於這些 成分的範圍限定理由,下面,與上述Co、Mg各元素的作 用效果一同說明。 C : 0 · 0 1 〜0 · 3 0 % C,是確保材料強度所需的元素。要得到作爲船舶的 結構件的最低強度,一般爲400MPa左右(但也根據使用 的鋼材的厚度而定),需要含有0.0 1 %以上。但是,如果 # 超過0.30%地過剩含有,韌性會惡化。因此,C含量的範 圍規定在0·01〜0.30%。另外,C含量的較佳的下限爲 0.02%,更佳的是規定在〇.〇4 %以上。此外,C含量的較佳 、 的上限爲0.28%,更佳的是規定在0.26%以下。 S i : 0.0 1 〜1. 5 0 % S i,是去氧和確保強度所需的元素,如果低於0.01% ,不能確保作爲結構件的最低強度。但是,如果超過 1.50%地過剩含有,焊接性惡化。另外,Si含量的較佳的 (6) 1282372 下限爲0.02%,更佳的是規定在0.1 5%以上。此外,Si含 量的較佳的上限爲1.25%,更佳的是規定在1.0 0 %以下。 Μη ·· 0·0 1 〜2.0% Μη,也與Si同樣,是去氧和確保強度所需的元素, 如果低於0.01%,不能確保作爲結構件的最低強度。但是 ,如果超過2.0%地過剩含有,韌性惡化。另外,Μη含量 φ 的較佳的下限爲〇 · 〇 5 %,更佳的是規定在〇 . 1 〇 %以上。此 外,Μη含量的較佳的上限爲1 .8 0 %,更佳的是規定在 1 · 6 0 %以下。 Α1 : 0.005 〜0· 1 0% Α1,也與Si、Μη —樣,是去氧和確保強度所需的元 素,如果低於0.005%,去氧無效果。但是,如果超過 0.10%地添加,由於損害焊接性,所以Α1添加量的範圍規 # 定在〇·〇〇5〜0.10%。另外,Α1含量的較佳的下限爲 0 · 0 1 0 %,更佳的是規定在0 · 0 1 5 %以上。此外,Α1含量的 較佳的上限爲0.040%,更佳的是規定在〇.〇 50%以下。 C 0 : 0 · 〇 1 〜5 · 0 %(1) 1282372 _ IX. OBJECTS OF THE INVENTION ^ Technical Field of the Invention The present invention relates to corrosion-resistant steel for ships used as main structural materials in ships such as oil tankers, cargo ships, passenger ships, warships, and the like, particularly regarding exposure to seawater. A ship steel material excellent in salt resistance and uranium resistance in a constant temperature and humidity environment. ^ [Prior Art] In each of the above ships, steel materials used as main structural materials (for example, outer plates, ballast tanks, oil tanks, etc.) are often exposed to salt formed in seawater and in a constant temperature and humidity environment. Suffering from uranium damage. Such corrosion can lead to shipwrecks such as flooding or sinking, so it is necessary to implement certain anti-corrosion measures for steel. As a method of preserving uranium which has been carried out to date, conventionally known methods include (a) painting treatment or (b) electrical corrosion treatment. Among them, in the painting treatment typified by multiple paintings, there is a high possibility that the coating film is defective, and the coating film may be damaged by the collision in the manufacturing process, so that the base steel material is often exposed. In such a steel exposed portion, the steel is locally or concentratedly corroded, resulting in an early leakage of the stored petroleum liquid fuel. In addition, in the electric corrosion-preventing treatment, it is very effective for a part that is completely immersed in seawater. However, in a place where the seawater is splashed in the atmosphere, sometimes a circuit required for corrosion prevention cannot be formed, and an anti-corrosion effect cannot be sufficiently exhibited. In addition, the galvanic anode for corrosion prevention is abnormally consumed or dropped, and when it disappears, the accelerated corrosion may start immediately. (2) 1282372 ^ In addition to the above-described technique, as a technique for improving the tamper resistance of the steel material itself, for example, the technique of Patent Document 1 has been proposed. In this technique, a ship-resistant steel for shipbuilding which can be used by appropriately adjusting the chemical composition of the steel material to improve corrosion resistance and can be used without painting treatment is disclosed. Further, in Patent Document 2, a ship steel material for improving the life of a coating film is disclosed by appropriately designing a chemical composition of a steel material. In the above technique, it can be said that it is possible to ensure a certain degree of corrosion resistance as compared with the prior art. Φ However, for corrosion resistance in a more severe corrosive environment, it is still not very good, and it is required to improve corrosion resistance. In particular, corrosion (that is, crevice corrosion) at the "fracture" portion formed at the contact portion of the foreign matter with the steel material, at the structural part or the damaged portion of the anti-corrosion coating film, is remarkable, sometimes lowering the life, but in In the previously proposed technology, the uranium resistance is insufficient in this part. [Patent Document 1] Japanese Patent Laid-Open Publication No. JP-A No. JP-A No. JP-A No. JP-A No. JP-A No. JP-A No. JP-A No. JP-A No. JP-A No. JP-A No. JP-A----- [Problem to be Solved] The present invention has been made in view of the above circumstances, and an object of the invention is to provide a shipbuilding steel which is excellent in corrosion resistance and can be put into practical use even if it is not necessary to carry out painting or electrical uranium treatment. Steel for shipbuilding can improve the durability against crevice corrosion, and at the same time, it exhibits excellent durability (the means to solve the problem) even if the seawater causes the salt adhesion of -6-(3) 1282372 and the corrosion caused by the wet environment. The shipbuilding steel material of the present invention which can achieve the above object contains C: 0.0 1 to 0.3 0% (indicating mass %, the same below), Si: 〇·〇1 to 1.5 0%, Μη ··0.0 1 to 2.0, respectively. %, A1 : 0.0 05 to 0.10%, in addition, Co: 0.01 to 5.00 % and Mg: 0.0005 to 0.020%, and the balance is composed of Fe and unavoidable impurities. In the steel material for shipbuilding, it is preferred to adjust the ratio 〔 ([ Co ] / [Mg]) of the content of Co [Co] to the content of Mg [Mg] in the range of 2 to 350. Further, in the steel material for ship of the present invention, (1) is composed of Cu: 0.01 to 5.0%, Cr: 0.01 to 5.0%, Ni: 0.01 to 5.0%, and Ti: 0.005 to 0.20%, if necessary. Select one or more of the groups, (2) Ca: 0.0005 to 0.020%, (3) Mo: 0.01 to 5.0% and / or W: 〇·〇1 to 2.0%, (4) from B: 0.0001 ~ 0.010%, V: 0.01 to 0.50%, and Nb: 0.003 to 0.5% of 0% of the selected groups, and (5) Zn: 0.001 to 0.10%, which is also effective, and can be further depending on the type of the components contained. Improve the characteristics of steel for shipbuilding. [Effect of the Invention] In the steel material for shipbuilding of the present invention, by containing a predetermined amount of Co and Mg and appropriately adjusting the chemical composition, it is possible to realize practical corrosion resistance even without performing painting or electrical corrosion treatment. In particular, it is possible to achieve a steel material for shipbuilding, which can improve the durability against cracks, and exhibit excellent durability even in the case of salt adhesion and wet corrosion caused by seawater. Such ship steel is only used as an outer plate in ships such as oil tankers, cargo ships, passenger ships, warships, etc., and can be used as a base material for ballast tanks, oil tanks, and the like. [Embodiment] φ In order to solve the above problems, the inventors of the present invention have found that it is possible to realize shipbuilding that can solve the above problems by including a predetermined amount of Co and Mg and a suitable chemical composition. Thus, the present invention has been completed. In the steel material of the present invention, it is important that the Co spear does not contain any of the above-mentioned components, and various effects of the components of the present invention are not described later, but it is recognized by the reason why the corrosion resistance is used. As follows. • Mg is an element that suppresses the decrease in pH on the corrosion portion, suppresses it, and improves the corrosion resistance. Such a function, in the classification of the material (e.g., Si-Μη steel), due to the generated 'hole', the dissolved Mg does not stay near the surface of the steel sheet, and the vertical portion (for example, in seawater) diffuses. Therefore, if the corrosion resistance alone is contained, the effect of improvement is small. However, it is possible to suppress the formation of Mg to the outside by forming a fine surface rust film with the same content of Mg, and it is considered that the corrosion resistance can be greatly improved by the reaction with the hydrolysis of dissolved Co. Corrosive environmental materials are not, and they are not. When the adjustment is made with steel]Mg, purpose. To increase the corrosion of the steel rust is much more outward, Mg, ξ Co 9 diffusion. Synergistic effect-8-(5) 1282372 ^ Such an effect can be achieved by controlling the appropriate amount to be described later, 'but it is preferable to appropriately control the ratio of their contents ([Co]/[Mg]: mass ratio). That is, if the 値([Co]/[Mg]) is less than 2, the suppression of local corrosion is likely to be insufficient, and if it exceeds 305, the suppression of general corrosion is insufficient. The oxime of [Co]/[Mg] is preferably in the range of 10 to 3 50, more preferably in the range of 20 to 60. In the steel material of the present invention, in order to conform to the basic characteristics φ of the steel material, it is necessary to appropriately adjust basic components such as c, Si, Μη, and A1. The reason for limiting the range of these components will be described below together with the effects of the above-mentioned elements of Co and Mg. C : 0 · 0 1 ~ 0 · 3 0 % C, which is the element required to ensure the strength of the material. To obtain the minimum strength of the structural member of the ship, it is generally about 400 MPa (but also depending on the thickness of the steel used), and it needs to contain 0.01% or more. However, if # exceeds 0.30%, the toughness will deteriorate. Therefore, the range of the C content is specified to be from 0.01 to 0.30%. Further, a preferred lower limit of the C content is 0.02%, and more preferably 〇.〇4% or more. Further, the upper limit of the C content is preferably 0.28%, and more preferably 0.26% or less. S i : 0.0 1 〜1. 5 0 % S i is an element required for deoxidation and strength, and if it is less than 0.01%, the lowest strength as a structural member cannot be ensured. However, if it exceeds 1.50%, the weldability deteriorates. Further, the preferred (6) 1282372 lower limit of the Si content is 0.02%, and more preferably 0.15% or more. Further, a preferred upper limit of the Si content is 1.25%, and more preferably 1.00% or less. Μη ·· 0·0 1 ~2.0% Μη, also like Si, is an element required for deoxidation and strength, and if it is less than 0.01%, the lowest strength as a structural member cannot be ensured. However, if it exceeds 2.0%, the toughness deteriorates. Further, a preferred lower limit of the Μη content φ is 〇 · 〇 5 %, and more preferably 〇 1 〇 % or more. Further, a preferred upper limit of the Μη content is 1.80%, and more preferably 1.75% or less. Α1 : 0.005 ~0· 1 0% Α1, also like Si and Μη, is the element required for deoxidation and ensuring strength. If it is less than 0.005%, deoxidation has no effect. However, if it is added in excess of 0.10%, the range of the amount of Α1 added is set to 〇·〇〇5 to 0.10% due to impaired weldability. Further, a preferred lower limit of the content of cerium 1 is 0 · 0 1 0 %, and more preferably 0. 0 1 5 % or more. Further, a preferred upper limit of the Α1 content is 0.040%, and more preferably 〇.〇 50% or less. C 0 : 0 · 〇 1 〜5 · 0 %
Co,是在高鹽分環境下,形成很有助於鋼材耐蝕性提 高的緻密的表面鏽膜所需的不可缺的元素。爲發揮如此的 效果,Co含量需要規定在0.01%以上。但是,如果超過 5.0%地過剩含有,焊接性惡化。因此,Co含量規定在 -10- 1282372 (7) 0.01〜5.0%。另外,Co含量的較佳的下限爲〇·015%,更 ' 佳的是規定在0 · 0 2 0 %以上。此外,C 〇含量的較佳的上限 、爲4 · 5 %,更佳的是規定在4.0 %以下。Co is an indispensable element for forming a dense surface rust film which is highly conducive to the corrosion resistance of steel in a high-salt environment. In order to exert such an effect, the Co content needs to be specified to be 0.01% or more. However, if it exceeds 5.0%, the weldability deteriorates. Therefore, the Co content is specified in -10- 1282372 (7) 0.01 to 5.0%. Further, a preferred lower limit of the Co content is 〇·015%, and more preferably, it is specified at 0·0 2 0% or more. Further, a preferred upper limit of the C 〇 content is 4 · 5 %, and more preferably 4.0 % or less.
Mg: 0.0005 〜0.020%Mg: 0.0005 to 0.020%
Mg,由於顯示藉由溶解提高PH的作用,因此具有抑 制鐵溶解引起的局部陽極上的水解反應造成的pH降低’ # 抑制腐蝕反應,提高耐蝕性的作用。爲發揮如此的效果’ Mg需要含有0.0005%以上,但是,如果超過0.020%地過 剩含有,加工性和焊接性惡化。因此,Mg含量在0.0005 〜0.020%的範圍是適當的。Mg含量的較佳的下限爲 0.0 0 07%,更佳的是含有〇.〇〇 1〇%以上。此外,Mg含量的 較佳的上限爲0.018%,更佳的是規定在0.0 15%以下。 本發明的船舶用鋼材中的基本成分如上述,其餘由鐵 和不可避免的雜質(例如,P、S、Ο等)構成,但除這些 • 以外,也容許不阻礙鋼材特性程度的成分(例如,Zr、N 等)。但是,這些容許成分,如果其含量過多,由於韌性 惡化,所以程度應控制在0.1 %以下。 ^ 此外,在本發明的船舶用鋼材中,除上述成分外,根 ' 據需要’含有(1)從由Cu、Ni、Ti及Cr構成的群組中 選擇的一種以上,(2) Ca,(3) Mo及/或W, (4)從 由B、V及Nb構成的群組中選擇的一種以上,(5 ) Zn等 ,也是有效的,根據所含成分的種類,能夠進一步改進造 船用鋼材的特性。 -11 - (8) 1282372 ' 從由 Cu: 0.01 〜5.0%、Cr: 0.01 〜5· 0%、Ni: 0· 5.0%及Ti : 〇·〇〇5〜0.20%構成的群組中選擇的一種以 C u、C r、N i及τ i,都是提高耐鈾性的有效元素 ^ 中,Cu及Cr ,與Co相同,對於形成很有助於耐鈾 高的緻密的表面鏽膜,是有效的元素。爲發揮如此的 ,所有都較佳含有〇 · 〇 1 %以上’但由於如果過剩含有 φ 接性或熱加工性惡化,所以較佳的是規定在5 · 00%以 含有Cu及Cr時的更佳的下限爲0.05%,更佳的上 4.50%。Since Mg exhibits an action of increasing the pH by dissolution, it has a function of suppressing the pH lowering caused by the hydrolysis reaction on the local anode due to the dissolution of iron, and suppressing the corrosion reaction and improving the corrosion resistance. In order to exhibit such an effect, the Mg needs to be contained in an amount of 0.0005% or more. However, if it is excessively contained in excess of 0.020%, workability and weldability are deteriorated. Therefore, a Mg content of from 0.0005 to 0.020% is suitable. A preferred lower limit of the Mg content is 0.007%, and more preferably 〇.〇〇1% or more. Further, a preferred upper limit of the Mg content is 0.018%, and more preferably 0.015% or less. The basic components in the steel material for ship of the present invention are as described above, and the rest are composed of iron and unavoidable impurities (for example, P, S, bismuth, etc.), but in addition to these, components which do not hinder the degree of steel properties are also allowed (for example, , Zr, N, etc.). However, if the content of these allowable components is too large, the toughness is deteriorated, so the degree should be controlled to 0.1% or less. Further, in the steel material for ship of the present invention, in addition to the above components, the root 'as needed' contains (1) one or more selected from the group consisting of Cu, Ni, Ti, and Cr, and (2) Ca, (3) Mo and/or W, (4) One or more selected from the group consisting of B, V, and Nb, (5) Zn, etc. are also effective, and shipbuilding can be further improved depending on the type of the contained component. Use the characteristics of steel. -11 - (8) 1282372 'Selected from the group consisting of Cu: 0.01 to 5.0%, Cr: 0.01 to 5·0%, Ni: 0·5.0%, and Ti: 〇·〇〇5 to 0.20% One of C u, C r, N i and τ i is an effective element for improving uranium resistance. Cu and Cr, like Co, form a dense surface rust film which is highly resistant to uranium. Is a valid element. In order to achieve this, it is preferable to contain 〇·〇1% or more. However, since φ bondability or hot workability is deteriorated in excess, it is preferable to set it at 5 00% to contain Cu and Cr. A preferred lower limit is 0.05%, more preferably 4.50%.
Ni,對於使很有助於耐鈾性提高的緻密的表面鏽 定化,是有效的元素。爲發揮如此的效果’較佳的是 0.0 1°/。以上。但是,如果Ni含量過剩,由於焊接性或 工性惡化,所以較佳的是規定在5.0%。含有Ni時的 的下限爲0.05%,更佳的上限爲4.50%。 Φ Ti,是使很有助於耐鈾性提高的表面鏽膜緻密化 高其環境遮斷性,同時抑制裂隙內部的腐蝕’也提高 隙腐蝕性的元素。爲確保在如此環境下所要求的耐蝕 、 較佳的是含有0.005 %以上,但如果超過0.20%地含有 ' 加工性和焊接性惡化。所以含有Ti時的更佳的下 0.008%,更佳的上限爲0.15%。Ni is an effective element for rusting a dense surface that contributes to the improvement of uranium resistance. To achieve such an effect, it is preferably 0.0 1 ° /. the above. However, if the Ni content is excessive, the weldability or workability is deteriorated, so it is preferably set at 5.0%. The lower limit when Ni is contained is 0.05%, and the upper limit is more preferably 4.50%. Φ Ti is an element which densifies the surface rust film which contributes to the improvement of uranium resistance, high environmental resistance, and suppresses corrosion inside the crack, and also improves the crevice corrosion. In order to ensure the corrosion resistance required in such an environment, it is preferable to contain 0.005% or more, but if it exceeds 0.20%, it contains 'processability and weldability deterioration. Therefore, it is better to have a lower price of 0.008%, and a higher upper limit is 0.15%.
Ca: 0.0005 〜0.020%Ca: 0.0005 to 0.020%
Ca,與Mg同樣,是顯示藉由溶解提高PH的作 01〜 上 。其 性提 效果 ,焊 下。 限爲 膜穩 含有 熱加 更佳 ,提 耐裂 性, ,熱 限爲 -12- 1282372 (9) 抑制鐵溶解引起的局部陽極上的水解反應造成的ρ Η ,抑制腐蝕反應,提高耐蝕性的有效元素。藉由 0.0005。/。以上的Ca,可有效發揮Ca形成的如此效果 如果超過0.020%地過剩含有,加工性和焊接性惡化 有C a時的更佳的下限爲〇 · 〇 〇 1 〇 %,更佳的上限爲〇 . φ Mo : 0.01 〜5.0%及 / 或 W : 0.01 〜2.0%Ca, like Mg, shows that the pH is increased by dissolution to 01~. Its effect is improved, under welding. It is limited to the film containing heat and better, and it is resistant to cracking. The heat limit is -12-1282372. (9) It is effective to suppress the ρ 造成 caused by the hydrolysis reaction on the local anode caused by iron dissolution, inhibit the corrosion reaction, and improve the corrosion resistance. element. With 0.0005. /. The above-mentioned Ca can effectively exhibit the effect of Ca formation, and if it exceeds 0.020%, it is excessively contained, and the workability and weldability are deteriorated. A lower limit of C a is preferably 〇·〇〇1 〇%, and a more preferable upper limit is 〇. φ Mo : 0.01 to 5.0% and / or W : 0.01 to 2.0%
Mo及W,具有提高腐蝕的均勻性,抑制局部腐 成的穿孔的作用。特別是藉由與Co同時含有,能發 著提高均勻腐飩性的作用。爲發揮如此的效果,都較 有0 · 0 1 %以上,但如果過剩含有,由於焊接性惡化, Mo較佳規定在5.0%以下,W較佳規定在2.0%以下。 Mo時的更佳的下限爲0.02%,更佳的上限是4.50%。 ,含有W時的更佳的下限爲〇 . 〇 2 %,更佳的上限是 從由 B: 0.0001 〜0·010%、V: 0.01 〜0.50 % 及 Nb:( 〜0.5 0%構成的群組中選擇的一種以上 在船舶用鋼材中,根據應用的部位,有時更要求 度化,而這些元素是提高強度所必需的元素。其中B 由含有0.000 1 %以上,提高淬火性,對提高強度是有 ,但如果超過0 · 0 1 0 %地過剩含有,由於母材的韌性 ,所以較不佳。V,藉由含有0.01 %以上,對提高強 降低 含有 ,但 。含 15% 蝕形 揮顯 佳含 所以 含有 此外 1.8% 1.003 高強 ,藉 效的 惡化 度是 -13- (10) 1282372 有效的,但如果超過〇 · 5 0 %地過剩含有,由於導致鋼材的 韌性惡化,所以較不佳。N b,藉由含有〇 · 〇 0 3 °/。以上,對 提高強度是有效的,但如果超過0.50%地過剩含有,導致 鋼材的韌性惡化。另外,這些元素的更佳的下限,B爲 0.000 3 °/。、V 爲 0.02%、Nb 爲 0.00 5 °/。。此外,更佳的上限 ,B 爲 0.0090%、V 爲 0.45%、Nb 爲 0.45%。 • Zn : 0.001- 0.10%Mo and W have the effect of improving the uniformity of corrosion and suppressing the perforation of local corrosion. In particular, by being contained together with Co, it is possible to enhance the effect of uniform rot. In order to exhibit such an effect, it is more than 0. 01% or more. However, if it is excessively contained, Mo is preferably made 5.0% or less, and W is preferably 2.0% or less. A more preferred lower limit for Mo is 0.02%, and a more preferred upper limit is 4.50%. The lower limit of the case where W is contained is 〇. 〇 2 %, and the upper limit is preferably from the group consisting of B: 0.0001 to 0·010%, V: 0.01 to 0.50%, and Nb: (~0.5 0%) One or more of the steel materials selected for ships are sometimes required to be used depending on the site to be applied, and these elements are essential elements for improving strength. Among them, B contains 0.000 1% or more, improves hardenability, and improves strength. Yes, if it is more than 0 · 0 1 0%, it is not preferable because of the toughness of the base material. V, by containing 0.01% or more, increases the strength and reduces the content, but contains 15% of the etched wave. Excellent inclusions contain 1.8% 1.003 high strength, and the deterioration of the effect is -13- (10) 1282372. However, if it exceeds 〇·50% excess, it will be worse due to the deterioration of steel toughness. N b is effective for improving strength by containing 〇· 〇0 3 °/ or more, but if it is excessively contained in excess of 0.50%, the toughness of the steel is deteriorated. Further, a lower limit of these elements, B 0.000 3 ° /, V is 0.02%, Nb is 0.00 5 / .. Further, the upper limit more preferably, B is 0.0090%, V of 0.45%, Nb of 0.45% • Zn:. 0.001- 0.10%
Zn,具有與鹽分或硫反應,在鋼材表面形成氯化鋅或 硫化鋅的沈澱覆膜,將鋼基體與環境的水分隔斷,抑制腐 蝕的效果。在限制物質移動的塗膜內或裂隙部分,由於氯 化鋅或硫化鋅在海上容易不飛濺地沈積在鋼材表面,所以 尤其對塗膜下或裂隙部的腐蝕抑制效果好。 爲起到如此的效果,確保所要求的耐蝕性,Zn含量 需要規定在0.001%以上。但是,如果超過0.10%地過剩含 • 有,加工性和焊接性會惡化。因此,Zn含量規定在0.001 〜0 · 1 0 %。另外,Zn含量的更佳的下限爲0.0 0 3 %,更佳的 是規定在0.005%以上。此外,Zn含量的較佳的上限爲 0.09%,更佳的是規定在〇.〇 8 %以下。 ^ 在藉由焊接本發明的鋼材形成焊接結構物的情況下, 如果實施採用通常的焊接條件或焊接材料,由於上述有效 元素的濃度在焊接接頭處變化,所以有時在焊接部未發現 耐蝕性。尤其是,在Mg及Co含量與熔敷金屬和母材的 比(熔敷金屬的含量/母材的含量)小於0.3的情況下, -14- (11) 1282372 • 未發現添加這些元素的形成的耐蝕性提高的協同效果’熔 ' 敷金屬部分的耐蝕性不足。此外’如果該比大於3 ·0’由 於引起焊接部的韌性惡化,所以從機械強度方面考慮不太 好。因此,推薦在〇. 3〜3 · 0的範圍內調整該比値,最好在 0.5〜2.0的範圍內調整。 此外,關於Mg、Co以外的提高耐蝕性的有效元素, 也就是 Cu、Cr、Ni、Ti、Ca、Mo、W、Zn’在也添加這 φ 些元素的情況下,推薦在0.3〜3.0的範圍內調整熔敷金屬 和母材的含量比(熔敷金屬的含量/母材的含量),更佳 的是在0.5〜2.0的範圍內調整。 本發明的造船用鋼材,基本上即使不實施塗漆處理, 也能發揮鋼材本體的優異的耐蝕性,但是也可以根據需要 ,與後述實施例所示的焦油環氧樹脂塗料、或其以外的有 代表性的多重防蝕塗漆、富鋅塗料、工廠基底塗料(shop prime )、電性防蝕等其他防蝕方法倂用。在實施如此的 • 防蝕塗漆的情況下,如後述的實施例所示,塗漆膜本身的 耐蝕性(塗漆耐蝕性)也良好。 以下,舉例實施例,更具體地說明本發明,但本發明 ' 並不受以下的實施例的限制,當然可以在符合前後的主旨 • 的範圍內,增加變更地實施,這些都包含在本發明的技術 範圍內。 〔實施例〕 實施例1 -15- (12) 1282372 用轉爐熔煉下表1〜3所示的化學成分組成的鋼材, 藉由連續鑄造及熱軋製作各種鋼板。切斷得到的鋼板,進 行表面硏磨,最終製成1 00x 1 00x25 ( mm)的尺寸的試驗 片(試驗片A)。第1圖示出試驗片A的外觀形狀。Zn has a precipitation film which reacts with salt or sulfur to form zinc chloride or zinc sulfide on the surface of the steel material, and separates the steel substrate from the water of the environment to suppress the effect of corrosion. In the coating film or the crack portion where the substance is restricted from moving, since zinc chloride or zinc sulfide is easily deposited on the surface of the steel material without splashing at sea, the corrosion inhibiting effect under the coating film or the crack portion is particularly good. In order to achieve such an effect, the required corrosion resistance is ensured, and the Zn content needs to be 0.001% or more. However, if it exceeds 0.10%, the workability and weldability deteriorate. Therefore, the Zn content is specified to be 0.001 to 0.10%. Further, a more preferable lower limit of the Zn content is 0.03%, more preferably 0.005% or more. Further, a preferred upper limit of the Zn content is 0.09%, and more preferably 〇.〇 8 % or less. ^ In the case of forming a welded structure by welding the steel material of the present invention, if normal welding conditions or welding materials are used, since the concentration of the above-mentioned effective element varies at the welded joint, corrosion resistance is sometimes not found in the welded portion. . In particular, in the case where the ratio of Mg and Co to the deposited metal and the base material (the content of the deposited metal/the content of the base material) is less than 0.3, -14-(11) 1282372 • No formation of these elements is added. The synergistic effect of the improved corrosion resistance 'melting' of the metallized portion is insufficient. Further, if the ratio is more than 3 · 0 ' because the toughness of the welded portion is deteriorated, it is not preferable from the viewpoint of mechanical strength. Therefore, it is recommended to adjust the ratio within the range of 〜. 3 to 3 · 0, preferably within the range of 0.5 to 2.0. In addition, in the case of an effective element for improving corrosion resistance other than Mg or Co, that is, Cu, Cr, Ni, Ti, Ca, Mo, W, and Zn' are also added to these elements of φ, it is recommended to be 0.3 to 3.0. The content ratio of the deposited metal to the base material (the content of the deposited metal / the content of the base material) is adjusted within the range, and it is more preferably adjusted within the range of 0.5 to 2.0. In the steel material for shipbuilding of the present invention, the corrosion resistance of the steel material body can be exhibited substantially without performing the painting treatment. However, the tar epoxy resin paint shown in the examples below may be used as needed or other than Representative multiple anti-corrosion paints, zinc-rich paints, shop prime coatings, electrical corrosion protection and other anti-corrosion methods. In the case of performing such an anti-corrosion paint, the corrosion resistance (painting corrosion resistance) of the paint film itself is also good as shown in the examples described later. Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples, and of course, it may be implemented in a modified manner within the scope of the present invention, and these are included in the present invention. Within the technical scope. [Examples] Example 1 -15- (12) 1282372 A steel material having a chemical composition shown in the following Tables 1 to 3 was melted in a converter, and various steel sheets were produced by continuous casting and hot rolling. The obtained steel sheet was cut and subjected to surface honing to finally obtain a test piece (test piece A) having a size of 1 00 x 1 00 x 25 (mm). Fig. 1 shows the appearance of the test piece A.
-16- 1282372-16- 1282372
ί [Co]/[Mg] 0.71 733.3 卜 CD 337.5 CD 218.3 164.1 186.4 334.2 175.6 166.7 16.7 14.7 69.3 92.1 75.9 10.0 試樣的化學成分組成(品質%) 其他 1 I I I I I I B:0.0008 Nb:0.015 I B:0.0002, Nb:0.498 I I I V:0.14 I I B:0.0010,V:0.012 I I 5 1 I I I I I I I I I I I I I I I I I I I 〇 1 I I I ! I I I I I I I I I I I I I I I (5 1 I I I I I I I I I I I I I i 0.009 4 I I I 0.004 9 ! I I I I I I I I I I I I I 0.026 I I I 0.006 I 〇 1 I I I I I I I I I I I I I I I I I I I 乏 1 I I I I I I I I I I I I 0.28 I I 0.34 0.18 I I 3 〇 1 I I I I I I I I I I I 0.35 I I I 0.29 0.39 1.36 0.78 Ο) 1 0.0068 I 0.0112 0.0003 0.0015 0.0032 0.0198 0.0115 0.0064 0.0125 0.0149 0.0041 0.0039 0.0048 0.0102 0.0075 § o d 0.0029 0.0050 〇 Ο 1 I 0.11 0.008 ί 0.22 0.01 1.08 0.15 2.51 1.05 2.33 4.98 0.72 0.65 0.08 0.15 0.52 0.82 0.22 0.05 < 0.016 0.014 0.015 0.015 0.009 0.017 0.016 0.012 0.025 0.014 0.015 0.005 0.016 0.014 0.011 0.012 0.011 0.010 0.012 0.011 C 0.98 0.98 q T— 0.95 1.20 1.59 1.32 0.94 0.96 0.97 0.95 0.90 0.95 0.92 1.49 1.55 0.92 0.93 0.92 1.35 ω 0.20 0.21 0.20 0.25 0.21 0.24 0.20 0.22 0.99 0.21 0.50 0.10 0.19 0.12 0.31 1.32 0.21 0.18 0.20 0.48 〇 0.18 0.18 0.18 0.17 0.18 0.18 0.16 0.23 0.18 0.17 0.18 0.18 0.18 0.20 0.19 0.19 0.09 0.16 0.12 0.18 1 τ— CM CO 寸 l〇 CD 卜 00 O) 〇 τ- τ— τ— CM CO 寸 r— i〇 τ— 卜 τ— 00 O) -17- 1282372ί [Co]/[Mg] 0.71 733.3 CD 337.5 CD 218.3 164.1 186.4 334.2 175.6 166.7 16.7 14.7 69.3 92.1 75.9 10.0 Chemical composition of the sample (% by mass) Others 1 IIIIIIB: 0.0008 Nb: 0.015 IB: 0.0002, Nb: 0.498 IIIV: 0.14 IIB: 0.0010, V: 0.012 II 5 1 IIIIIIIIIIIIIIIIIII 〇 1 III ! IIIIIIIIIIIIIII (5 1 IIIIIIIIIIIII i 0.009 4 III 0.004 9 ! IIIIIIIIIIIII 0.026 III 0.006 I 〇1 IIIIIIIIIIIIIIIIIII 少1 IIIIIIIIIIII 0.28 II 0.34 0.18 II 3 〇1 IIIIIIIIIII 0.35 III 0.29 0.39 1.36 0.78 Ο) 1 0.0068 I 0.0112 0.0003 0.0015 0.0032 0.0198 0.0115 0.0064 0.0125 0.0149 0.0041 0.0039 0.0048 0.0102 0.0075 § od 0.0029 0.0050 〇Ο 1 I 0.11 0.008 ί 0.22 0.01 1.08 0.15 2.51 1.05 2.33 4.98 0.72 0.65 0.08 0.15 0.52 0.82 0.22 0.05 < 0.016 0.014 0.015 0.015 0.009 0.017 0.016 0.012 0.025 0.014 0.015 0.005 0.016 0.014 0.011 0.012 0.011 0.010 0.012 0.011 C 0.98 0.98 q T— 0.95 1.20 1.59 1.32 0.94 0.96 0.97 0.95 0.90 0.95 0.92 1.49 1.55 0.92 0.93 0.92 1.35 ω 0.20 0.21 0.20 0.25 0.21 0.24 0.20 0.22 0.99 0.21 0.50 0.10 0.19 0.12 0.31 1.32 0.21 0.18 0.20 0.48 〇0.18 0.18 0.18 0.17 0.18 0.18 0.16 0.23 0.18 0.17 0.18 0.18 0.18 0.20 0.19 0.19 0.09 0.16 0.12 0.18 1 τ— CM CO Inch l〇CD 00 O) 〇τ- τ— τ— CM CO 寸 r—i〇τ— 卜τ— 00 O) -17- 1282372
CNI«CNI«
i [Co]/[Mg] 81.8 79.2 150.0 144.4 63.6 65.9 81.5 41.9 49.2 46.4 38.2 59.6 42.0 46.9 57.1 20.8 35.7 36.4 43,2 試樣的化學成分組成(品質%) 其他 I I I I I I I I I I I I I I i I I B:0.0011, Nb:0.010,V:0.011 V:0.497 5 I I I I I I I I I I I 0.99 I 0.02 0.11 1.97 0.35 I 0.55 〇 I I I I I I I I I 1.02 ! 0.08 0.29 0.01 5.00 I 3.23 CO I 0.0196 0.0028 I 0.0006 0.0027 0.0020 0.0012 I 0.0035 I I 0.0016 0.0006 0.0015 0.0016 I 0.0015 0.0047 - 0.019 I 0.012 0.015 I 0.196 0.018 0.052 I 0.012 0.005 I I I 0.009 I 0.012 0.014 I Ο I I I I I I I I 1.12 0.15 I I 4.95 I 0.03 0.35 0.81 0.09 0.92 乏 4.98 2.06 I 0.38 0.34 0.98 0.32 0.38 I 0.33 I 1.02 0.30 0.49 0.01 0.12 0.89 0.31 1.29 (3 I I I 0.35 0.02 I 0.30 0.36 4.97 0.28 I 0.02 0.23 I I 0.19 0.09 0.24 1.25 0.0011 0.0024 0.0032 0.0009 0.0033 0.0044 0.0054 0.0129 0.0063 0.0028 0.0055 0.0099 0.0188 0.0049 0.0021 0.0048 0.0028 0.0022 0.0088 〇 〇 0.09 0.19 0.48 0.13 0.21 0.29 0.44 0.54 0.31 0.13 0.21 0.59 0.79 0.23 0.12 0.10 0.10 0.08 0.38 < 0.011 0.012 0.036 0.020 I_________ -____ 0.009 0.012 0.013 0.018 0.029 0.024 0.011 0.010 0.015 0.016 0.014 0.016 0.015 0.009 0.014 C 0.95 0.90 0.95 0.90 0.92 0.95 0.98 1.42 0.90 0.92 1.55 1.28 1.01 0.91 0.90 0.91 0.90 1.24 σ> T— 〇5 0.29 0.11 0.09 0.20 0.48 0.18 0.33 0.20 0.21 0.34 0.20 0.19 0.45 0.21 0.20 0.22 0.25 0.19 0.20 〇 0.09 0.05 0.08 0.08 0.18 0.18 0.18 0.17 0.15 0.15 0.11 0.13 0.09 0.15 0.18 0.15 0.14 ! 0.10 0.12 1 c5 csi η CO -18- 1282372i [Co]/[Mg] 81.8 79.2 150.0 144.4 63.6 65.9 81.5 41.9 49.2 46.4 38.2 59.6 42.0 46.9 57.1 20.8 35.7 36.4 43,2 Chemical composition of the sample (% by mass) Other IIIIIIIIIIIIII i IIB: 0.0011, Nb: 0.010, V: 0.011 V: 0.497 5 IIIIIIIIIII 0.99 I 0.02 0.11 1.97 0.35 I 0.55 〇IIIIIIIII 1.02 ! 0.08 0.29 0.01 5.00 I 3.23 CO I 0.0196 0.0028 I 0.0006 0.0027 0.0020 0.0012 I 0.0035 II 0.0016 0.0006 0.0015 0.0016 I 0.0015 0.0047 - 0.019 I 0.012 0.015 I 0.196 0.018 0.052 I 0.012 0.005 III 0.009 I 0.012 0.014 I Ο IIIIIIII 1.12 0.15 II 4.95 I 0.03 0.35 0.81 0.09 0.92 Depleted 4.98 2.06 I 0.38 0.34 0.98 0.32 0.38 I 0.33 I 1.02 0.30 0.49 0.01 0.12 0.89 0.31 1.29 (3 III 0.35 0.02 I 0.30 0.36 4.97 0.28 I 0.02 0.23 II 0.19 0.09 0.24 1.25 0.0011 0.0024 0.0032 0.0009 0.0033 0.0044 0.0054 0.0129 0.0063 0.0028 0.0055 0.0099 0.0188 0.0049 0.0021 0.0048 0.0028 0.0022 0.0088 〇〇0.09 0.19 0.48 0.13 0.21 0.29 0.44 0.54 0.31 0.13 0.21 0.59 0.79 0.23 0.12 0.10 0. 10 0.08 0.38 < 0.011 0.012 0.036 0.020 I_________ -____ 0.009 0.012 0.013 0.018 0.029 0.024 0.011 0.010 0.015 0.016 0.014 0.016 0.015 0.009 0.014 C 0.95 0.90 0.95 0.90 0.92 0.95 0.98 1.42 0.90 0.92 1.55 1.28 1.01 0.91 0.90 0.91 0.90 1.24 σ> T- 〇5 0.29 0.11 0.09 0.20 0.48 0.18 0.33 0.20 0.21 0.34 0.20 0.19 0.45 0.21 0.20 0.22 0.25 0.19 0.20 〇0.09 0.05 0.08 0.08 0.18 0.18 0.18 0.17 0.15 0.15 0.11 0.13 0.09 0.15 0.18 0.15 0.14 ! 0.10 0.12 1 c5 csi η CO -18- 1282372
(%sseE )φ^^Λ3>δ_Με*(%sseE )φ^^Λ3>δ_Με*
Co/Mg 360.0 166.7 45.5 28.6 97.7 76.3 80.5 159.4 104.5 295.1 221.6 其他 Ζη:0.015 Ζη:0.099 Ζη:0.005 Ζη:0.001 Ζη:0.056 Ζη:0.020 Ζη:0.032 CM δ Ο Ο ώ cvf ο ο β Ζη:0.018 Ζη:0·028 ο δ ο J6 ζ in' τ- Ο ο r5 σ) 0.0005 0.0012 I 0.0011 0.0049 0.0043 0.0038 0.0041 0.0032 0.0022 0.0041 0.0037 ca Ο I I I I 0.0031 0.0012 I I 0.0022 0.0021 0.0007 - I I I 0.020 0.011 0.009 I I 0.015 I 0.089 ο Ο 0.18 0.20 0.05 0.14 0.42 0.29 0.33 0.51 0.23 τ— Csl τ— 0.82 5 I I I I I I I 1.05 I 0.09 -1 0.12 ο I I I I I I 0.05 0.03 0.11 I I Ο I I I I I I I 0.49 I 0.18 1.08 乏 I I 0.29 0.33 0.22 ο τ— I 0.54 0.30 I 1.05 3 I ! 0.25 0.30 0.19 I I I 0.32 I 1.26 < 0.011 0.015 0.013 0.015 0.021 0.006 0.016 0.013 0.015 0.016 0.010 C Έ 1.21 1.02 0.99 0.95 1.09 1.11 -1 1.20 i 0.99 1.03 1.02 1.05 U) 0.19 0.21 0.18 0.25 0.20 0.26 0.24 0.23 0.25 0.19 0.18 Ο 0.15 0.14 0.20 0.19 0.15 0.16 0.20 0.11 0.21 0.20 0.11 6 2 ο 5 5 JO (Ό S -19- (16) 1282372 此外,如第2圖所示,使4個20x20x5 (mm)的小試 驗片,與1 00x 1 00x2 5 ( mm )的大試驗片(與上述試驗片 A相同)接觸’製作形成裂隙部的試驗片B。裂隙形成用 的小試驗片和大試驗片爲相同化學成分組成的鋼材,表面 精加工也與上述試驗片A相同,規定爲表面硏磨。並且, 在小試驗片的中心開φ 5 mm的孔’在基材側(大試驗片側 )開螺孔,用M4塑膠製螺栓固定。 p 另外,也採用全面實施平均厚度25 // m的焦油環氧樹 脂塗料(基底塗料:富鋅塗料)的試驗片c (第3圖)° 並且,爲了硏究因損壞防蝕塗膜露出基體鋼材時的腐蝕進 展程度,在試驗片C的單面,用切割刀片形成到達基體的 切傷部(長度:100mm、寬:大約〇.5mm )。 對所述表1〜3所示的各化學成分組成的試樣’分別 採用各5個試驗片A、試驗片B及試驗片C,供於腐蝕試 驗。此時的腐蝕試驗方法如下。 〔腐鈾試驗方法〕 首先,模擬海洋環境,進行海水噴霧試驗和重複恆溫 恆濕形成的複合循環腐蝕試驗。在海水噴霧試驗中’從水 平起60。傾斜地在試驗槽內設置試樣(各試驗片A〜C ) ’ 霧狀噴霧3 5 X:的人工海水(鹽水)。鹽水的噴霧平時連續 進行。此時在試驗槽內,在水平設置的面積80cm2的圓形 皿中,每1小時在任意的位置採取1 ·5±〇·3πιί的人工海水 ,如此預先調整噴霧量。恆溫恆濕試驗,在調整到溫度60 -20- (17) 1282372 ' °C、濕度95%的試驗槽內,從水平起60°傾斜設置試樣地 * 進行。海水噴霧試驗以4小時作爲1個循環,恆溫恆濕試 驗以4小時作爲1個循環,交替進行上述試驗,促使試樣 腐蝕。總的試驗時間定爲6個月。 (1 )關於試驗片A,將試驗前後的重量變化換算成 平均板厚減少量D-ave ( mm),算出5個試驗片的平均値 ,評價各試樣的全面腐蝕性。此外,採用觸針式3維形狀 φ 測定裝置,求出試驗片A的最大侵鈾深度D-max ( mm) ,按平均板厚減少量〔D-ave ( mm)〕標準化(即算出!)-max/ D-ave),評價腐蝕均勻性。另外,試驗後的重量測 定及板厚測定,在利用檸檬酸氫二銨水溶液中的陰極電解 法〔JIS K8 2 84〕除去鐵鏽等腐触生成物後進行。 (2 )關於試驗片B,進行裂隙部(接觸面)的目視 觀察,調查有無裂隙腐蝕發生,在發現裂隙腐鈾的情況下 ,利用上述陰極電解法,除去腐蝕生成物,採用觸針式3 * 維形狀測定裝置,測定最大裂隙腐蝕深度D-crev ( mm ) ο (3 )關於實施塗漆處理的試驗片C (具有切傷部) ' ,測定在試驗後形成切傷的面上的塗膜鼓出面積的比率( * 鼓出面積率)。用格子點法(格子間隔1 mm )求出鼓出面 積率。即,將用總格子點數除以確認鼓出的格子點的數得 出的値,定義爲鼓出面積率,求出5個試驗片的平均値, 此外,用卡尺測定與切傷部垂直方向的塗膜鼓出寬度,將 5個試驗片的最大値定義爲最大鼓出幅度。 -21 - (18) 1282372 在所述耐全面腐飩性(D-ave )、腐蝕均勻性(D-max / D-ave )、耐裂隙腐蝕性(D-crev )、塗漆耐蝕性(鼓 出面積及最大鼓出幅度)的評價基準如下表4所示。下表 5〜7示出腐鈾試驗結果。Co/Mg 360.0 166.7 45.5 28.6 97.7 76.3 80.5 159.4 104.5 295.1 221.6 Other Ζη:0.015 Ζη:0.099 Ζη:0.005 Ζη:0.001 Ζη:0.056 Ζη:0.020 Ζη:0.032 CM δ Ο Ο ώ cvf ο ο β Ζη:0.018 Ζη: 0·028 ο δ ο J6 ζ in' τ- Ο ο r5 σ) 0.0005 0.0012 I 0.0011 0.0049 0.0043 0.0038 0.0041 0.0032 0.0022 0.0041 0.0037 ca Ο IIII 0.0031 0.0012 II 0.0022 0.0021 0.0007 - III 0.020 0.011 0.009 II 0.015 I 0.089 ο Ο 0.18 0.20 0.05 0.14 0.42 0.29 0.33 0.51 0.23 τ—Csl τ—0.82 5 IIIIIII 1.05 I 0.09 -1 0.12 ο IIIIII 0.05 0.03 0.11 II Ο IIIIIII 0.49 I 0.18 1.08 Lack II 0.29 0.33 0.22 ο τ — I 0.54 0.30 I 1.05 3 I ! 0.25 0.30 0.19 III 0.32 I 1.26 < 0.011 0.015 0.013 0.015 0.021 0.006 0.016 0.013 0.015 0.016 0.010 C Έ 1.21 1.02 0.99 0.95 1.09 1.11 -1 1.20 i 0.99 1.03 1.02 1.05 U) 0.19 0.21 0.18 0.25 0.20 0.26 0.24 0.23 0.25 0.19 0.18 Ο 0.15 0.14 0.20 0.19 0.15 0.16 0.20 0.11 0.21 0.20 0.11 6 2 ο 5 5 JO (Ό S -19- (16) 1282372 In addition, As shown in FIG. 2, so that four 20x20x5 (mm) of the small test piece with 1 00x 1 00x2 5 (mm) of a large test piece (the same as the test piece A) contacting 'prepared test piece was fractured portion B. The small test piece for forming the crack and the large test piece are steel materials having the same chemical composition, and the surface finish is also the same as the above test piece A, and is defined as surface honing. Further, a hole of φ 5 mm was opened at the center of the small test piece, and a screw hole was opened on the substrate side (large test piece side), and bolted with M4 plastic. p In addition, a test piece c of tar epoxy resin coating (base coating: zinc-rich coating) with an average thickness of 25 // m is also used (Fig. 3). Also, in order to investigate the exposed base steel due to damage to the corrosion-resistant coating film At the time of the progress of the corrosion, on the one side of the test piece C, the cut portion reaching the base body (length: 100 mm, width: about 〇. 5 mm) was formed with a dicing blade. For each sample ' of each chemical composition shown in Tables 1 to 3, five test pieces A, one test piece B, and test piece C were used for the corrosion test. The corrosion test method at this time is as follows. [Test method for uranium uranium] First, simulate the marine environment, conduct a seawater spray test and repeat the combined cycle corrosion test of constant temperature and humidity formation. In the seawater spray test, '60 from the level. The sample (each test piece A to C) was sprayed obliquely in the test tank. The artificial seawater (saline) of the mist spray 3 5 X:. The spray of brine is usually carried out continuously. At this time, in the test tank, artificial seawater of 1 · 5 ± 〇 · 3 πιί was taken at an arbitrary position in a horizontally-arranged container of 80 cm 2 in an horizontal position, so that the amount of spray was adjusted in advance. The constant temperature and humidity test was carried out by setting the sample ground * at a temperature of 60 -20 - (17) 1282372 ' ° C and a humidity of 95% from the horizontal. The seawater spray test was carried out for 4 hours as one cycle, and the constant temperature and humidity test was carried out for 4 hours as one cycle, and the above test was alternately performed to promote corrosion of the sample. The total test time was set at 6 months. (1) With respect to the test piece A, the weight change before and after the test was converted into an average thickness reduction amount D-ave (mm), and the average enthalpy of the five test pieces was calculated, and the overall corrosion property of each sample was evaluated. In addition, the maximum uranium depth D-max (mm) of the test piece A is obtained by a stylus type three-dimensional shape φ measuring device, and normalized by the average thickness reduction amount [D-ave (mm)] (that is, calculated!) -max/D-ave), evaluation of corrosion uniformity. In addition, the weight measurement and the thickness measurement after the test were carried out by removing the rust-resistant product such as rust by a cathodic electrolysis method [JIS K8 2 84] in an aqueous solution of diammonium hydrogen citrate. (2) For the test piece B, visual observation of the cracked portion (contact surface) was carried out to investigate the occurrence of crevice corrosion. When the uranium was found to be cracked, the cathodic electrolysis method was used to remove the corrosion product, and the stylus type was used. * Dimensional shape measuring device, measuring the maximum crevice corrosion depth D-crev (mm) ο (3) About the test piece C (with cut portion) for performing the painting treatment, and measuring the coating drum on the face formed after the test. Ratio of area (* bulging area ratio). The bulging area ratio was obtained by the lattice point method (grid spacing 1 mm). In other words, the enthalpy obtained by dividing the total number of grid points by the number of plaques to be confirmed is defined as the blasting area ratio, and the average enthalpy of the five test pieces is obtained. Further, the caliper is used to measure the vertical direction of the cut portion. The film bulging width defines the maximum enthalpy of the five test pieces as the maximum bulging amplitude. -21 - (18) 1282372 The comprehensive corrosion resistance (D-ave), corrosion uniformity (D-max / D-ave), crevice corrosion resistance (D-crev), paint corrosion resistance (drum The evaluation criteria for the area and the maximum bulging amplitude are shown in Table 4 below. Tables 5 to 7 below show the results of the uranium test.
-22- 1282372 • · 寸撇 判定 ◎ 低於〇. 〇5mm t 低於1·5 低於〇.〇5mm 低於〇·1% 低於1 mm 〇 0.05mm以上 丨低於CUOmm 1.5以上 低於2.0 0. 05mm以上 低於〇.1〇_ 0.1 %以上 低於0-5% 1mm以上 低於2mm <1 0.10mm以上 低於0,50mm 2.0以上 低於2.5 0.10mm以上 低於〇.50mm 0.5%以上 | 低於5% 2mm以上 低於5mm X 0.50mm以上 2.5以上 0:50mm以上 5%以上 5mm以上 測定項目 D-ave (mm) D-max/D-ave -1 D-crev (mm) 鼓出面積率(%) 最大鼓出幅度 (mm) 評價特性 耐全面腐蝕性 腐蝕均勻性 耐裂隙腐蝕性 塗漆耐蝕性 試驗片 < ω 〇 -23 1282372-22- 1282372 • · Inch 撇 judgment ◎ Below 〇. 〇5mm t Below 1·5 Below 〇.〇5mm Below 〇·1% Below 1 mm 〇0.05mm or more 丨Lower than CUOmm 1.5 or less 2.0 0. 05mm or more is less than 〇.1〇_ 0.1% or less is less than 0-5% 1mm or more is less than 2mm <1 0.10mm or more is less than 0, 50mm 2.0 or more is less than 2.5 0.10mm or more is less than 〇.50mm 0.5% or more | Less than 5% 2mm or more and less than 5mm X 0.50mm or more and 2.5 or more 0: 50mm or more and 5% or more and 5mm or more Measurement items D-ave (mm) D-max/D-ave -1 D-crev (mm ) Area ratio of bulging (%) Maximum bulging amplitude (mm) Evaluation characteristics Resistance to general corrosion Corrosion uniformity Resistance to crack corrosion Corrosion resistance test piece < ω 〇-23 1282372
S漱 ife! i: X X X X X 〇 〇 〇 〇 〇 〇 〇 ◎ \ 〇 ◎ \ 〇 ◎ \ 〇 ◎ \ 〇 ◎ \ 〇 ◎ \ 〇 ◎ 1 〇 ◎ 1 〇 〇 侧 馨 *33 K X X X X X 〇 〇 〇 〇 〇 〇 〇 ◎ ◎ ◎ 〇 ◎ ◎ ◎ ◎ 讲 回 33 X X X X X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 CG 繼 ㈣ m 雜 S X X X X X 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 ◎ 〇 〇 〇 ◎ < 文 m u 龌 X X < X < 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 #i 胆 * X < X < X 〇 〇 〇 〇 〇 〇 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ( \ T— CNJ C0 LO CD 卜 00 Ο) 〇 T— T— CNI T— 00 T— 寸 CD 卜 00 Τ— 〇> -24- 1282372S漱ife! i: XXXXX 〇〇〇〇〇〇〇 ◎ \ 〇 ◎ \ 〇 ◎ \ 〇 ◎ \ 〇 ◎ \ 〇 ◎ \ 〇 ◎ 1 〇 ◎ 1 〇〇 馨 * * 33 KXXXXX 〇〇〇〇〇〇 〇 ◎ ◎ ◎ 〇 ◎ ◎ ◎ ◎ Back to 33 XXXXX 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇 CG Following (4) m Miscellaneous SXXXXX 〇〇〇〇〇〇〇〇〇〇 ◎ 〇〇〇 ◎ ; text mu 龌 XX < X <〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇#i 胆* X < X < X 〇〇〇〇〇〇〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ( \ T— CNJ C0 LO CD 00 Ο 〇 T— T— CNI T— 00 T—inch CD 00 Τ — 〇 gt; -24- 1282372
9嗽9嗽
{Η ♦ ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ l 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ο 繼 Μ _ 33 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 條 晅 33 〇 〇 〇 〇 〇 〇 〇 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ GQ 纒 #1 m 渔 JS 〇 ◎ ◎ 〇 ◎ ◎ ◎ ◎ 〇 ◎ 〇 〇 ◎ ◎ ◎ ◎ 〇 ◎ ◎ < 北 Μ 誠 a ㈣ 〇 〇 〇 〇 〇 〇 〇 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ a 胆 ϊδ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ JC c\i 00 CM σ> CM τ— 00 CO CO ΙΟ CO CO -25- 1282372{Η ♦ ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ 1 〇 ◎ l 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ο 继 Μ _ 33 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ GQ 纒 #1 m Fishing JS 〇 ◎ ◎ 〇 ◎ ◎ ◎ ◎ 〇 〇〇 〇〇 ◎ ◎ ◎ ◎ 〇 ◎ ◎ Μ Μ 诚 a ( ( ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ a ϊ ϊ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ JC c\i 00 CM σ> CM τ— 00 CO CO ΙΟ CO CO -25- 1282372
IPS z 撇IPS z 撇
備註 i 本發明 綜合判定 〇 〇〜◎ 〇〜◎ 〇〜◎ 〇〜◎ 〇◎ ◎ ◎ ◎ ◎ ◎ 試驗片C 最大鼓出幅度 〇 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 鼓出面積率 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 試驗片B 耐裂隙腐蝕性 〇 〇 〇 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ 試驗片A 腐蝕均勻性 〇 〇 〇 〇 〇 〇 ◎ ◎ ◎ ◎ ◎ 耐全面腐蝕性 〇 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 1 〇 T— 寸 ΙΛ (D CO -26- (23) 1282372 ^ 能夠根據上述結果,考察如下。不含Co或Mg中任 • 何一種的No.2、3的試樣,Co或Mg的含量小於本發明規 定的下限値的No.4、5試樣,藉由Co或Mg的添加效果 ,與以往鋼(No. 1 )相比,耐全面腐蝕性稍有提高,但是 ,在不含Co的No.2試樣及Co量不足的No.4試樣中,在 腐蝕均勻性和鼓出面積率方面未發現改進效果。此外,在 不含Mg的No.3試樣及Mg量不足的No.5試樣中,在耐 φ 裂隙腐鈾性和最大鼓出幅度方面未發現改進效果。作爲船 舶用鋼材的耐蝕性不足。 對此,得知,在倂用地適量含有Co及Mg的試樣( No. 6〜50 )中,藉由利用添加Co及Mg的協同效果,所 有的耐蝕性都優於傳統鋼(No. 1 ),較佳用作造船用耐飩 鋼。尤其,除倂用Co及Mg外,藉由另外再含有Cu、Cr 、Ni、Ti、Ca、Mo、W及Zn等的耐鈾性提高元素,進一 步提高鋼材的耐蝕性。 # 其中,在添加Cu、Cr、Ni或Ti的試樣中,發現尤其 降低塗漆試樣的最大鼓出幅度的效果(Νο·13〜15等), 判斷是這些元素的鏽緻密化作被用於切部的鏽穩定化,抑 " 制腐蝕進展的結果‘。另外,確認Ca提高裂隙腐蝕性的效 - 果(Νο·16、20、22等),認爲Ca更加強化裂隙內的pH 的降低抑制效果,降低腐蝕。另外,得知,添加Mo或W ,對提高腐蝕均勻性或塗漆鼓出性非常有效果(No. 3 1〜 33等)。此外,No.30、33、34、35等的結果表明,藉由 適當調整(〔C 〇〕/〔 M g〕)的値,具有各種耐蝕性大 -27- (24) 1282372 幅度提高的效果。此外,在添加Zn的試樣(Ν ο. 4 Ο、4 1、 ’ 42等)中,還具有提高塗漆耐蝕性或耐裂隙腐蝕性的效果 。例如,除Mg及Co的倂用外,適量添加Zn的試樣 No.41,與只倂用Mg及Co的No.6相比,結果降低試驗 片C的鼓出面積率。以上藉由添加Zn形成的耐蝕性提高 ,推斷是藉由在鋼材表面上形成氯化鋅或硫化鋅的沈積覆 膜,發揮使鋼基體與環境中的水分隔斷’抑制腐蝕的效果 φ 的結果。 實施例2 用轉爐熔煉下表8所示的化學成分組成的鋼材’藉由 連續鑄造及熱軋製作各種鋼板。切斷得到的鋼板’進行表 面硏磨,最終製成300x150x25 (mm)的尺寸的試驗片D’ 。採用表9所示的化學成分的焊接材料’進行隱弧焊,利 用2個D ’製作圖示的接頭試驗片D (第4圖)。另外,所 Φ 有焊接材料的絲徑爲4 · 8 mm、坡口形狀爲V型。入熱量在 1〜10kJ / mm的範圍內適宜調整。 此外,使2個6 0 X 6 0 X 5 ( m m )的小試驗片’與試驗片 ' D的焊接部接觸,製作形成裂隙部的試驗片E (第5圖) • 。裂隙形成用的小試驗片的化學成分組成與試驗片D的母 材相同,表面精加工也與上述試驗片D相同’規定爲表面 硏磨。並且,在小試驗片的中心開Φ 1 0mm的孔,在基材 側(大試驗片側)開螺孔,用M 8塑膠製螺栓固定。 另外,也採用全面實施平均厚度25〇/Zm的焦油環氧 -28- (25) 1282372 * 樹脂塗料(基底塗料:富鋅塗料)的試驗片F (第6圖) •。並且,爲了瞭解因防蝕塗膜損傷而露出基體鋼材時的腐 蝕進展程度,在試驗片F的單面,用切割刀片,在與焊接 線的垂直及水平方向,形成到達基體的切傷部(長度: 200mm、寬··大約 0.5mm)。 對採用所述表8、9所示的母材及焊接材料製作的接 頭試驗片,分別採用各5個試驗片D、試驗片e及試驗片 φ F,進行腐鈾試驗。此時的腐蝕試驗方法(實船曝露試驗 )如下。 〔腐蝕試驗方法〕 在VLCC原油罐的內面的罐體內面的底板上,安裝製 作的試樣、各試驗片D〜F各5個,在5年間的通常航運 後,調查各試樣的腐蝕狀況。在5年間的曝露後,對試驗 片D,利用檸檬酸氫二銨水溶液中的陰極電解法〔jis • K82 84〕,除去鐵鏽等腐蝕生成物。此外,對試驗片E, 取下裂隙形成用的小試驗片,用相同的方法除去腐蝕生成 物。 " (1 )關於試驗片D,將試驗前後的重量變化換算成 • 平均板厚減少量D-ave (mm),算出5個試驗片的平均値 ,評價各試樣的全面腐飩性。此外,採用觸針式3維形狀 測定裝置,求出試驗片D的最大侵蝕深度D-max ( mm) ,按平均板厚減少量〔D_ave ( mm)〕標準化(即算出D-max/D-ave),評價腐蝕均勻性。 -29- (26) 1282372 ^ ( 2 )關於試驗片E,採用觸針式3維形狀測定裝置 * ,測定大試驗片側的最大裂隙腐蝕深度D-crev ( mm)。 (3 )關於實施塗漆處理的試驗片F (具有切傷部) ,用卡尺測定與切傷部垂直方向的塗膜鼓出幅度(mm ) ,將5個試驗片的最大値定義爲最大鼓出幅度。 在所述耐全面腐蝕性(平均板減少量:D-ave )、腐 鈾均勻性(D-max/ D-ave )、耐裂隙腐蝕性(D - c r e v )、 φ 塗漆耐蝕性(最大鼓出幅度)的評價基準,如下表10所 示。下表1 1示出腐蝕試驗結果。但是,在表1 1中,I ( Co)表示熔敷金屬的Co含量/母材的Co含量,I(Mg) 表示熔敷金屬的Mg含量/母材的Mg含量。 焊接部上的Mg及Co含量未符合關係式(1 )或(2 )的Νο·51及52,雖然耐全面腐蝕性優異,但在耐裂隙腐 蝕性等其他方面,不能符合。這是腐蝕在焊接金屬的部分 上擴展的結果。對此,在該比符合關係式(1 )及(2 )的 ® Νο·53〜58的耐蝕鋼(Νο·2〜4)中,在所有腐蝕特性方面 ’發現都提高耐蝕性,結果’顯示出較佳作爲焊接結構體 的耐蝕性。 另外,在本實施例中,將利用隱弧焊接法的焊接部作 - 爲評價對象,但用塗藥電焊法或電渣焊接法等其他焊接方 法’也能得到相同的效果。此外,所用的焊接材料也不侷 限於表9。 -30- 1282372Remarks i The present invention comprehensively judges ◎~◎ 〇~◎ 〇~◎ 〇~◎ 〇◎ ◎ ◎ ◎ ◎ ◎ Test piece C Maximum bulging range 〇〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 鼓 面积 area ratio 〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ Test piece B Corrosion resistance 〇〇〇〇 ◎ ◎ ◎ ◎ ◎ ◎ Test piece A Corrosion uniformity 〇〇〇〇〇〇 ◎ ◎ ◎ ◎ ◎ General corrosion resistance 〇〇 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 1 〇T-inch ΙΛ (D CO -26- (23) 1282372 ^ According to the above results, the following is considered. No Co or Mg is included. No. 2, 3 The samples of No. 4 and 5 in which the content of Co or Mg is less than the lower limit specified in the present invention, the effect of addition of Co or Mg is slightly more resistant to general corrosion than the conventional steel (No. 1). There was an improvement. However, in the sample No. 2 containing no Co and the No. 4 sample having insufficient Co amount, no improvement effect was observed in terms of corrosion uniformity and bulging area ratio. .3 sample and the amount of Mg in the No. 5 sample, in the resistance to φ cracked uranium The improvement effect was not found in the maximum bulging range. The corrosion resistance of the steel material for ships was insufficient. In this case, it was found that the sample (No. 6 to 50) containing Co and Mg in an appropriate amount was added by use. The synergistic effect of Co and Mg, all the corrosion resistance is superior to that of traditional steel (No. 1), and it is preferably used as a steel for shipbuilding. In particular, in addition to Co and Mg, it additionally contains Cu and Cr. , Ni, Ti, Ca, Mo, W, Zn and other uranium-improving elements, further improve the corrosion resistance of steel. # Among them, in the addition of Cu, Cr, Ni or Ti samples, found that especially the paint test The effect of the maximum bulging amplitude (Νο·13~15, etc.), it is judged that the rust densification of these elements is used for the rust stabilization of the cut portion, and the result of the corrosion progress is made. In addition, the Ca is confirmed. Improve the effect of crevice corrosion (Νο·16, 20, 22, etc.), and consider that Ca enhances the effect of reducing the pH in the crack and reduces corrosion. In addition, it is known that adding Mo or W improves the corrosion uniformity. Sexual or paint bulging is very effective (No. 3 1 to 33, etc.). In addition, No. 30, The results of 33, 34, 35, etc. show that by appropriately adjusting the ([C 〇] / [M g]) enthalpy, it has various effects of increasing the corrosion resistance of -27-(24) 1282372. In addition, Zn is added. The samples (Ν ο. 4 Ο, 4 1 , '42, etc.) also have the effect of improving paint corrosion resistance or crevice corrosion resistance. For example, in addition to the use of Mg and Co, a sample No. 41 in which an appropriate amount of Zn was added was used, and the blasting area ratio of the test piece C was lowered as compared with No. 6 in which only Mg and Co were used. As a result of the improvement of the corrosion resistance by the addition of Zn, it is estimated that a deposition film of zinc chloride or zinc sulfide is formed on the surface of the steel material to exhibit the effect of suppressing corrosion by separating the steel substrate from the water in the environment. Example 2 A steel material having a chemical composition shown in the following Table 8 was melted in a converter. Various steel sheets were produced by continuous casting and hot rolling. The obtained steel sheet was subjected to surface honing to finally obtain a test piece D' having a size of 300 x 150 x 25 (mm). The solder joint material of the chemical composition shown in Table 9 was used for the recessed arc welding, and the joint test piece D (Fig. 4) shown in the figure was produced using two D'. In addition, the Φ has a wire diameter of 4 · 8 mm and the groove shape is V-shaped. The heat input is suitably adjusted within the range of 1 to 10 kJ / mm. Further, two small test pieces '6 0 X 6 0 X 5 (m m ) were brought into contact with the welded portion of the test piece 'D to prepare a test piece E (Fig. 5) which forms a slit portion. The chemical composition of the small test piece for forming the crack was the same as that of the test piece D, and the surface finishing was also the same as that of the test piece D described above as the surface honing. Further, a hole of Φ 10 mm was opened in the center of the small test piece, and a screw hole was opened on the substrate side (large test piece side), and was fixed with a M 8 plastic bolt. In addition, a test piece F (Fig. 6) of tar epoxy -28-(25) 1282372* resin coating (base coating: zinc-rich coating) with an average thickness of 25 Å/Zm was also used. Further, in order to understand the degree of corrosion progress when the base steel material is exposed by the damage of the anti-corrosion coating film, a cut portion that reaches the substrate is formed on the single surface of the test piece F by a dicing blade in the vertical and horizontal directions with the weld line (length: 200mm, width · about 0.5mm). For the joint test piece prepared using the base material and the welding material shown in Tables 8 and 9, the test piece eu, the test piece e and the test piece φ F were respectively used for the uranium test. The corrosion test method (solid ship exposure test) at this time is as follows. [Corrosion test method] Five samples of each of the test specimens and each of the test pieces D to F were placed on the bottom plate of the inner surface of the inner surface of the VLCC crude oil tank, and each sample was investigated after normal shipping for five years. Corrosion conditions. After the exposure for 5 years, the test piece D was subjected to cathodic electrolysis (jis • K82 84) in an aqueous solution of diammonium hydrogen citrate to remove a corrosion product such as rust. Further, on the test piece E, a small test piece for forming a crack was taken, and the corrosion product was removed in the same manner. " (1) For the test piece D, the weight change before and after the test was converted into the average plate thickness reduction D-ave (mm), and the average enthalpy of the five test pieces was calculated, and the overall rot properties of each sample were evaluated. In addition, the maximum erosion depth D-max (mm) of the test piece D is obtained by using a stylus type three-dimensional shape measuring device, and normalized by the average thickness reduction amount [D_ave (mm)] (that is, D-max/D- is calculated). Ave), evaluation of corrosion uniformity. -29- (26) 1282372 ^ (2) For the test piece E, the maximum crack corrosion depth D-crev (mm) on the side of the large test piece was measured using a stylus type three-dimensional shape measuring device*. (3) For the test piece F (having a cut portion) for performing the painting treatment, the bulging amplitude (mm) of the coating film in the direction perpendicular to the cut portion was measured with a caliper, and the maximum 値 of the five test pieces was defined as the maximum bulging amplitude. . The general corrosion resistance (average plate reduction: D-ave), uranium uniformity (D-max/D-ave), crevice corrosion resistance (D-crev), φ paint corrosion resistance (maximum drum The evaluation criteria of the amplitude range are shown in Table 10 below. Table 1 1 below shows the results of the corrosion test. However, in Table 11, I (Co) represents the Co content of the deposited metal / Co content of the base material, and I (Mg) represents the Mg content of the deposited metal / the Mg content of the base material. The Mg and Co contents on the welded portion do not conform to the relationship (1) or (2), and are excellent in general corrosion resistance, but they are not compatible with other aspects such as crack resistance. This is the result of corrosion spreading over the portion of the weld metal. In this case, in the corrosion resistant steel (Νο·2~4) of the ratio ®ο·53~58 which is in accordance with the relationship (1) and (2), corrosion resistance is improved in all corrosion characteristics, and the result is 'displayed'. Preferred as the corrosion resistance of the welded structure. Further, in the present embodiment, the welded portion using the hidden arc welding method is used for evaluation, but the same effect can be obtained by other welding methods such as the coating electric welding method or the electroslag welding method. In addition, the welding materials used are not limited to Table 9. -30- 1282372
-0^owSE - « * Co/Mg 55.6 I_ 75.0 80.0 30.8 186.7 107.6 其他 I I B:0.0013 I Ζη:0·022 Zn:0.051 Ο) 0.0009 0.0012 0.0020 0.0026 LO δ Ο d 0.0092 <3 I I 0.0050 -1 0.0029 I I I 0.020 I 0.009 I I 〇 〇 0.05 I 0.09 0.16 0.08 0.28 0.99 I I I I 1.05 I 〇 I I I 0.12 0.03 0.54 〇 I I I I 0.49 丨 I 乏 I 0.51 0.38 0.22 0.54 I D 〇 I I 0.33 0.19 0.39 I < 0.014 0.013 0.012 0.018 0.014 I 0.014 C 0.99 〇 T— 0.98 1.19 0.99 1.05 j 〇5 0.25 0.18 0.28 0.21 0.18 0.20 〇 0.11 0.12 0.18 0.15 0.18 0.12 6 Z τ— CM CO 寸 in CD CO E Φ 跡 ω I其餘| I其餘| 其餘 其餘 I其餘I I其餘| 1其餘| 其餘 | 0.0033 I 0.0005 | 0.0011 | 0.0082 0.0081 0.0056 | 0.0039 1 | 0.052 I 〇 Ο 1 I 0.08 | I 0.05 I 0.06 I 0.49 I | 0.05 I 1 0.19 I | 2.08 I 瑯 敗 昍 之 11 匚 1 1.56 I I 139 I 1.58 1.44 1.33 1.37 1.72 1.08 I 酲 瑯 〇> 嗽 C0 0.20 I 0.18 I 0.22 I I 0.20 I | 0.21 I I 0.22 I 0.23 I 0.22 I 〇 0.15 0.14 | 0.12 I 0.11 I 0.12 0,12 012 0.11 ό Ζ I W2 C0 W4 W5 1 00 -31 - 1282372-0^owSE - « * Co/Mg 55.6 I_ 75.0 80.0 30.8 186.7 107.6 Other IIB: 0.0013 I Ζη:0·022 Zn:0.051 Ο) 0.0009 0.0012 0.0020 0.0026 LO δ Ο d 0.0092 <3 II 0.0050 -1 0.0029 III 0.020 I 0.009 II 〇〇0.05 I 0.09 0.16 0.08 0.28 0.99 IIII 1.05 I 〇III 0.12 0.03 0.54 〇IIII 0.49 丨I Lack I 0.51 0.38 0.22 0.54 ID 〇II 0.33 0.19 0.39 I < 0.014 0.013 0.012 0.018 0.014 I 0.014 C 0.99 〇T—0.98 1.19 0.99 1.05 j 〇5 0.25 0.18 0.28 0.21 0.18 0.20 〇0.11 0.12 0.18 0.15 0.18 0.12 6 Z τ— CM CO inch in CD CO E Φ Trace ω I rest | I rest | remaining rest I rest II rest | 1 remaining | rest | 0.0033 I 0.0005 | 0.0011 | 0.0082 0.0081 0.0056 | 0.0039 1 | 0.052 I 〇Ο 1 I 0.08 | I 0.05 I 0.06 I 0.49 I | 0.05 I 1 0.19 I | 2.08 I 琅 昍 11 11 匚 1 1.56 II 139 I 1.58 1.44 1.33 1.37 1.72 1.08 I 酲琅〇> 嗽C0 0.20 I 0.18 I 0.22 II 0.20 I | 0.21 II 0.22 I 0.23 I 0.22 I 〇0.15 0.14 | 0.12 I 0.11 I 0.12 0,12 012 0.11 ό Ζ I W2 C0 W4 W5 1 00 -31 - 1282372
判定 ◎ 低於〇·ι〇 I 低於1·5 低於0.10 低於1 〇 o.m以上 低於〇·50 1.5以上 低於2_0 0. 10以上 低於0.50 1以上 低於2 <] 0.50以上 低於3_00 2.0以上 im 5.0 0.50以上 低於3_00 2以上 低於10 X j- 3.00以上 5.0以上 3.00以上 10以上 測定項目 D-ave (mm) D-max/D-ave D-crev (mm) 最大鼓出幅度 (mm) 評價特性 耐全面腐蝕性 i_ 腐蝕均勻性 耐裂隙腐蝕性 塗漆耐蝕性 試驗片 Q LU LL ^11 -¾ 比較例 - 本發明 綜合 判定 〇 X〜〇 〇 〇〜◎ 〇〜◎ ◎ ◎ 〇〜◎ 塗漆 耐蝕性 1 X < 〇 〇 〇 ◎ ◎ ◎ 耐裂隙 腐蝕性 X X 〇 ◎ ◎ ◎ ◎ ◎ 腐蝕 均勻性 < < 〇 〇 〇 ◎ ◎ 〇 耐全面 i腐蝕性 〇 〇 〇 ◎ ◎ ◎ ◎ ◎ 1 (Mg) 0.88 0.29 0.30 0.82 I 0·79 I 1.28 0.54 2.89 1 (C〇) 0.28 1.09 0.69 1 °-51 I 2.99 0.82 | 0.77 I 1.92 焊接材料 W2 00 W4 W5 1 00 母材 τ- CNI CN C0 00 寸 ΙΟ ζ〇 1 CM ID CO 1〇 LO ΙΩ ί8 LO 00 in -32- (29) 1282372 【圖式簡單說明】 第1圖是表示耐蝕性試驗所用試驗片A的外觀形狀的 說明圖。 第2圖是表示耐蝕性試驗所用試驗片B的外觀形狀的 說明圖。 第3圖是表示耐蝕性試驗所用試驗片C的外觀形狀的 說明圖。 第4圖是表示耐蝕性試驗所用試驗片D的外觀形狀的 說明圖。 第5圖是表示耐蝕性試驗所用試驗片E的外觀形狀的 說明圖。 第6圖是表示耐蝕性試驗所用試驗片F的外觀形狀的 說明圖。Judgment ◎ lower than 〇·ι〇I lower than 1. 5 lower than 0.10 lower than 1 〇 om or more lower than 〇 · 50 1.5 or more lower than 2_0 0. 10 or more lower than 0.50 1 or more lower than 2 < Less than 3_00 2.0 or more im 5.0 0.50 or more is less than 3_00 2 or more is less than 10 X j- 3.00 or more 5.0 or more 3.00 or more 10 or more Measurement items D-ave (mm) D-max/D-ave D-crev (mm) Maximum Blowing amplitude (mm) Evaluation characteristics General corrosion resistance i_ Corrosion uniformity Rift resistance Corrosion resistance Paint resistance test piece Q LU LL ^11 -3⁄4 Comparative example - Comprehensive judgment of the present invention 〇X~〇〇〇~◎ 〇~ ◎ ◎ ◎ 〇 ~ ◎ Paint corrosion resistance 1 X < 〇〇〇 ◎ ◎ ◎ Rust resistance XX 〇 ◎ ◎ ◎ ◎ ◎ Corrosion uniformity << 〇〇〇 ◎ ◎ 〇 Resistant to comprehensive i corrosive 〇 ◎ ◎ ◎ ◎ ◎ 1 (Mg) 0.88 0.29 0.30 0.82 I 0·79 I 1.28 0.54 2.89 1 (C〇) 0.28 1.09 0.69 1 °-51 I 2.99 0.82 | 0.77 I 1.92 Welding material W2 00 W4 W5 1 00 Base material τ- CNI CN C0 00 inch ΙΟ 1 CM ID CO 1〇LO ΙΩ ί8 LO 00 in -32 - (29) 1282372 [Simplified description of the drawings] Fig. 1 is an explanatory view showing the appearance of the test piece A used in the corrosion resistance test. Fig. 2 is an explanatory view showing the appearance of the test piece B used for the corrosion resistance test. Fig. 3 is an explanatory view showing the appearance of the test piece C used for the corrosion resistance test. Fig. 4 is an explanatory view showing the appearance of the test piece D used in the corrosion resistance test. Fig. 5 is an explanatory view showing the appearance of the test piece E used for the corrosion resistance test. Fig. 6 is an explanatory view showing the appearance of the test piece F used for the corrosion resistance test.
-33--33-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004191758A JP3923962B2 (en) | 2004-06-29 | 2004-06-29 | Marine steel with excellent corrosion resistance |
JP2004307130A JP2006118002A (en) | 2004-10-21 | 2004-10-21 | Steel material for oil tank |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200613570A TW200613570A (en) | 2006-05-01 |
TWI282372B true TWI282372B (en) | 2007-06-11 |
Family
ID=37149866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094120995A TWI282372B (en) | 2004-06-29 | 2005-06-23 | Corrosion resistance excellent steel for ship |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20060048364A (en) |
TW (1) | TWI282372B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100775342B1 (en) * | 2006-12-27 | 2007-11-08 | 주식회사 포스코 | High corrosion resistant inorganic paint having excellent corrosion resistance and weldability |
JP4502075B1 (en) * | 2008-12-24 | 2010-07-14 | Jfeスチール株式会社 | Corrosion resistant steel for crude oil tankers |
-
2005
- 2005-06-15 KR KR1020050051239A patent/KR20060048364A/en active Search and Examination
- 2005-06-23 TW TW094120995A patent/TWI282372B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20060048364A (en) | 2006-05-18 |
TW200613570A (en) | 2006-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4868916B2 (en) | Marine steel with excellent corrosion resistance | |
JP4393291B2 (en) | Marine steel with excellent corrosion resistance | |
CN100424213C (en) | Marine steel material superior in corrosion resistance | |
JP2008274379A (en) | Steel sheet having excellent pit resistance, and method for producing the same | |
TW201035333A (en) | Corrosion resistant steel product for crude oil tanker | |
KR101715581B1 (en) | Steel material, ship ballast tank and hold formed using said steel material, and ship equipped with said ballast tank or hold | |
KR100992289B1 (en) | Steel for ship having excellent corrosion resistance | |
JP4445444B2 (en) | Marine steel and welded structures with excellent combined corrosion resistance | |
CN104846280A (en) | Coating steel excellent in corrosion resistance | |
JP2007197759A (en) | Steel material superior in haz toughness in high-heat-input welding and corrosion resistance for ship | |
TWI282372B (en) | Corrosion resistance excellent steel for ship | |
JP2009209412A (en) | Steel for ship having excellent corrosion resistance | |
JP3923962B2 (en) | Marine steel with excellent corrosion resistance | |
JP4659626B2 (en) | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness | |
JP4119941B2 (en) | Marine steel with excellent crevice corrosion resistance in humid air | |
JP4444924B2 (en) | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness | |
JP2008133536A (en) | Steel having excellent corrosion resistance for ship use | |
JP4476928B2 (en) | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness | |
JP2006118002A (en) | Steel material for oil tank | |
TWI276694B (en) | Marine steel material superior in corrosion resistance | |
JP4476926B2 (en) | Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding | |
JP4476927B2 (en) | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness | |
JP4786995B2 (en) | Marine steel with excellent weldability and corrosion resistance | |
JP2008075100A (en) | Steel material for concrete structure | |
TWI281505B (en) | Excellent corrosion resistance steel for ship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |