TWI281275B - Light-emitting diode and method for manufacturing the same - Google Patents

Light-emitting diode and method for manufacturing the same Download PDF

Info

Publication number
TWI281275B
TWI281275B TW94135569A TW94135569A TWI281275B TW I281275 B TWI281275 B TW I281275B TW 94135569 A TW94135569 A TW 94135569A TW 94135569 A TW94135569 A TW 94135569A TW I281275 B TWI281275 B TW I281275B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
cracking
manufacturing
cutting
Prior art date
Application number
TW94135569A
Other languages
Chinese (zh)
Other versions
TW200715603A (en
Inventor
Chin-Ming Lin
Original Assignee
Chin-Ming Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chin-Ming Lin filed Critical Chin-Ming Lin
Priority to TW94135569A priority Critical patent/TWI281275B/en
Publication of TW200715603A publication Critical patent/TW200715603A/en
Application granted granted Critical
Publication of TWI281275B publication Critical patent/TWI281275B/en

Links

Landscapes

  • Led Devices (AREA)
  • Dicing (AREA)

Abstract

A light-emitting diode and a method for manufacturing the same are described. In the method for manufacturing the light-emitting diode, a light-emitting diode wafer is provided, wherein the light-emitting diode wafer comprises a substrate and an opto-electronic structure deposed on the substrate, and the light-emitting diode wafer includes a plurality of scribe streets set in the opto-electronic structure. A first cutting process is performed to form a plurality of first separation lanes respectively in the scribe streets. Next, a second cutting process is performed to form a plurality of second separation lanes in a surface of the substrate, wherein the second separation lanes respectively correspond to the first separation lanes, and each of the first separation lanes is separated from the corresponding second separation lane by a predetermined horizontal distance. Then, a break process is performed to apply a stress between the corresponding first separation lane and the second separation lane, so as to divide the light-emitting diode wafer into a plurality of light-emitting diode chips.

Description

1281275 i …—九、發明說明 . 【發明所屬之技術領域】 本發明是有關於一種發光二極體及其製造方法,且特別 是有關於一種具有弧狀側面結構之發光二極體及其製造方 法。 【先前技術】 一般而言,發光二極體元件之製作,大致上可區分為前 ^ 段磊晶製程、以及後段之研磨、切割、點測與分類製程。 請參照第1圖,其係繪示傳統發光二極體晶圓之部分剖 面圖。製作發光二極體晶圓100時,通常先提供基板102, 此基板102通常係由藍寶石所組成。接下來,利用磊晶成長 方式,於基板102上形成發光磊晶結構104,其中發光磊晶 結構104可運用光電效應而發出光。接著,可利用化學氣相 沉積方式,形成透明導電層106覆蓋在發光磊晶結構104 上,以增加電流傳導之均勻性。其中,發光磊晶結構1 04 • 與透明導電層106構成發光二極體元件之光電結構108。待 光電結構108形成後,利用微影蝕刻技術在光電結構108 中形成複數個縱橫交錯之切割道11 〇。其中,每相鄰之二縱 向的切割道110與相鄰之二橫向的切割道110共同定義出一 發光二極體晶粒112。 在發光二極體晶圓1 〇〇上設置切割道11 〇後,即可進行 後段之研磨與切割製程,而將發光二極體晶圓1 〇〇分割成許 多的發光二極體晶粒112。而這些發光二極體晶粒112再經 5 Ϊ2、81275 之點測、分類及封裝處理後’即可作為光源而供實際應 、 請參照第2圖’其係繪示傳統發光二極體晶圓經分判後 形成許多發光二極體晶粒的示意圖。一般而言,在進; 于發 一極體晶粒112之切割製程前,通常會先進行基板 ^研磨,來縮減基板Η)2之厚度,以利後續之崩^程的進 7。完成基S 1G2之厚度的縮減程序後,可直接進行切割製 鲁程。在傳統之切割製程中,一般係以一劈刀自每—切割道 U〇上,直接施加垂直應力,以崩裂發光二極體日日日圓n 而可分割出許多的發光二極體晶粒112。 然而’由於藍寶石所構成之基板1〇2與光電結構1〇8 之内應力分布具有明顯差異,因此這樣傳統之發光二極體 12刀割技術並無法完全確保每次之崩裂面均係自每一切 割道110垂直向下。此外’在這樣的分離方式中,分離界面 通常呈破碎不規則狀,因而造成切割成功率下降,而導致切 φ割良率降低,進而造成產量減少。此外,利用此一切割技術 所獲得之發光二極體晶粒112結構呈矩形體結構,其側壁為 =直狀,因此發光磊晶結構所發出之光從元件之側面出射 % L極有可能在元件側面處產生全反射,而影響元件之側面 的光取出率,進而降低發光二極體元件之發光亮度。 ,因此,極需一種提高發光二極體晶圓之切割成功率的技 術,來提向製程良率,而提高產能,並提升發光二極體元 之亮度。 6 I2S1275 【發明内容】BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a light-emitting diode and a method of fabricating the same, and more particularly to a light-emitting diode having an arc-shaped side structure and a manufacturing process thereof. method. [Prior Art] In general, the fabrication of a light-emitting diode element can be roughly divided into a front-end epitaxial process and a subsequent-stage grinding, cutting, spotting, and sorting process. Please refer to FIG. 1 , which is a partial cross-sectional view showing a conventional light-emitting diode wafer. When fabricating a light-emitting diode wafer 100, a substrate 102 is typically provided first, and the substrate 102 is typically comprised of sapphire. Next, a light-emitting epitaxial structure 104 is formed on the substrate 102 by means of epitaxial growth, wherein the light-emitting epitaxial structure 104 can emit light by using a photoelectric effect. Then, a transparent conductive layer 106 can be formed on the luminescent epitaxial structure 104 by chemical vapor deposition to increase the uniformity of current conduction. The light-emitting epitaxial structure 104 and the transparent conductive layer 106 constitute a photovoltaic structure 108 of the light-emitting diode element. After the formation of the photovoltaic structure 108, a plurality of criss-crossing dicing streets 11 are formed in the photovoltaic structure 108 by photolithographic etching techniques. Wherein, each adjacent two longitudinal scribe lines 110 and the adjacent two transverse dicing streets 110 define a light emitting diode die 112. After the dicing street 11 is disposed on the illuminating diode wafer 1 ,, the polishing and dicing process of the subsequent stage can be performed, and the illuminating diode wafer 1 〇〇 is divided into a plurality of illuminating diode dies 112. . After the LEDs 112 are further measured, classified, and packaged by 5 Ϊ 2, 81275, they can be used as a light source for practical purposes. Please refer to Figure 2, which shows the conventional light-emitting diode crystal. A schematic diagram of a plurality of light-emitting diode grains formed after the circle is divided. In general, before the cutting process of the polar body die 112, the substrate is usually ground to reduce the thickness of the substrate Η)2 to facilitate the subsequent collapse. After the reduction procedure of the thickness of the base S 1G2 is completed, the cutting process can be directly performed. In the conventional cutting process, a vertical stress is applied directly from each U-cutting channel to form a plurality of light-emitting diode grains 112 by cracking the day-to-day radius n of the light-emitting diode. However, since the stress distribution in the substrate 1〇2 and the photoelectric structure 1〇8 of sapphire is significantly different, the conventional light-emitting diode 12 cutting technology cannot completely ensure that each cracked surface is from each A cutting lane 110 is vertically downward. Further, in such a separation mode, the separation interface is usually broken and irregular, thereby causing a decrease in the cutting success rate, resulting in a decrease in the yield of the cut φ, which in turn causes a decrease in the yield. In addition, the structure of the light-emitting diode 112 obtained by the cutting technique has a rectangular structure, and the sidewall thereof is = straight, so that the light emitted by the light-emitting epitaxial structure is emitted from the side of the element. Total reflection occurs at the side of the element, which affects the light extraction rate of the side of the element, thereby reducing the luminance of the light-emitting diode element. Therefore, there is a great need for a technique for improving the cutting success rate of a light-emitting diode wafer to improve the process yield, increase the productivity, and increase the brightness of the light-emitting diode element. 6 I2S1275 [Summary content]

因此,本發明之目的就是在提供一種發光二極體之製造 方法,其係在完成發光二極體之結構後,分別在發光二極體 晶圓之正面切割冑中以A背面上形成相對應且上下錯開之 崩裂道。藉由在對應之二崩裂道之間施加應力,可獲得具有 弧狀側面結構之發光二極體晶粒,而可增加發光二極體晶粒 之側面結構的表面積,因弧狀側面使得晶粒内部減低全反射 臨界角之限制,進而提高發光二極體元件之光取出率。 本發明之另一目的是在提供—種發光二極體,具有弧狀 側面結構,而可增加發光二極體元件之侧φ的出&面積及出 光角度,因此可提高發光二極體元件之發光亮度。 根據本發明之上述目的,提出一種發光二極體之製造方 法至j包括下列步驟。首先,提供一發光二極體晶圓,1 中此發光二極體晶圓至少包括—基板以及—光電結構位ς 土板上且發光一極體晶圓具有複數個切割道設於該光電結 構中。進行[切割製程,㈣成複數㈣—崩裂道分別^ 在上述之切割道中。進行第二切割製程,以在基板之一表面 中形成複數個第二崩裂道分別對應於上述之第一崩裂道,盆 中每-個第一崩裂道與對應之第二崩裂道之間相隔一預設 X:距:接著’進行—崩裂製程’而施加一應力於相對應 之第-崩裂道與第二崩裂道之間’以將發光二極體晶圓 成複數個發光二極體晶粒。 依照本發明_ ^ — 鮫佳實施例,母一個切割道之寬度為約 j b 禾,且每* — /fm Mg 弟一崩裂道與對應之第二崩裂道之間之 1281275 預設水平距離為約3 〇微米。 - 根據本發明之目的,提出一種發光二極體,至少包括一 基板、以及一光電結構堆疊在此基板上。其中,發光二極體 之結構具有複數個狐狀側面。 依照本發明一較佳實施例,發光二極體之弧狀側面為凹 孤面’且發光二極體之結構呈凹面金字塔狀。依照本發明之 另一較佳實施例,發光二極體之弧狀側面為凸弧面,且發光 _ 二極體之結構呈碗狀。 藉由在發光二極體之正面與背面分別形成對應之二崩 裂道’並使此相對應之二崩裂道彼此相隔一段水平距離,再 於二相對應之崩裂道之間施加應力的方式,可輕易獲得具有 孤狀側面結構之發光二極體晶粒。如此一來,可大幅增加發 光二極體元件側面之出光面積及出光角度,而可提高光取出 率’進而達到提升發光二極體元件之亮度的目的。 【實施方式】 本發明揭露一種發光二極體及其製造方法,可增加發光 二極體之側面的出光面積及出光角度,而可大幅提升發光二 極體之側面的光取出率,進而達到提高發光二極體之發光亮 度的目的。為了使本發明之敘述更加詳盡與完備,可參照下 列描述並配合第3圖至第10圖之圖示。 請參照第3圖至第8圖,其係繪示依照本發明一較佳實 施例的一種發光二極體之製程剖面圖。製作本發明之發光二 極體晶圓200時’首先提供基板202,其中基板202之材質 1281275 可例如為藍寶石。再利用例如磊晶成長方式,於基板2〇2 上依序堆疊第一電性半導體層、主動層以及第二電性半導體 層,其中第一電性半導體層、主動層以及第二電性半導體層 組成發光磊晶結構204。發光磊晶結構2〇4可運用光電效應 而發出光。接下來,可利用例如化學氣相沉積方式,形成透 明導電層206覆蓋在發光磊晶結構2〇4上,以提升電流傳導 之均句性。其中’透明導電層2〇6之材質可例如為氧化銦錫 (ITO)或氧化鋅(Zn0)等。發光磊晶結構2〇4與透明導電層 206構成發光二極體晶圓2〇〇之光電結構2〇8。接下來,利 用例如微影與蚀刻技術在光電結構2〇8中形成複數個縱橫 交錯之切割道210,其中每相鄰之二縱向的切割道21〇盥相 鄰之二橫向的切割道210 #同定義出一發光二極體晶粒 2”16a: 216b或216c。接著,選擇性地,可利用例如塗佈或 沉積等方式,形成緩衝層212於光電結構2〇8之表面上,並 覆蓋在切割道21G i,如第3圖所示。其中,緩衝層212 ,之材質可例如為光阻、金屬、氧化物或上述材料之組合。緩 衝層幻2可在後續之切割製程中,提供光電結構2〇8與切割 器具之間的緩衝。 待緩衝層212形成後’利用例如雷射切割技術、鑽石刀 =割技術、砂輪切割技術或上述技術之組合,進行第一切割 以在發光二極體晶圓2〇〇之正面向下形成複數個崩裂 %刀別延伸在切割道21〇中。其中,這些崩裂道2" 寬度小於切割道2 1 0夕當痒,1、二 結構208之厚度,也 ^ Ά 214之深度小於光電 也就疋說,弟一切割製程並未將光電結構 1281275 施完全切開。完成第一切割製程 移除緩衝層212,而形成如第4圖所示之結構制除方式, 接者,請參照第5圖,可利用例如化 =移除發光二極體晶圓背面之基板2G2二^的方 縮減,板202之厚度,以利後續崩裂製程之進行。口刀以 割技:成2 2〇2之厚度的縮減程序後’可利用例如雷射切 二n 、刀切割技術、砂輪切割技術或上述技術έ =行第二切割製程’以在發光二極體晶圓二= 下形成複數個崩裂道218延伸在基板2〇2之—表面 二發Λ二二體晶圓2 °0背面之崩裂道218分別對應於:面 =裂道214,且每—崩裂道214與對應之崩裂道218之間 土目^預設水平距離22G,如第6圖所示。在本發明之一較 雇轭例中,切割道之寬度為約35微米時,崩裂道與 對應之崩裂道218之間的預設水平距離22〇可為約3〇微米。 應該注意的-點是,在本實施例中,雖然:先進行發光二 極體晶圓200之正面切割’再進行發光二極體晶圓2⑼之背 面切割’但是本發明亦可先進行發光二極體晶圓彻之背面 切割,再進行發光二極體晶圓200之正面切割。 完成崩裂道214與對應之崩裂道218的切割後,可選擇 性=在發光二極體晶圓200之背面的基板2〇2表面上貼覆轉 換膠膜222,以利後續崩裂製程之進行。隨後,即可進行發 光二極體晶圓200之崩裂製程。在此崩裂製程中,可例如提 供劈刀(未繪示)於切割道210上,並將劈刀置於崩裂道214 >、對應之崩裂道2 1 8之間,再利用此劈刀係自每一崩裂道 1281275 214垂直向下而往對應之崩裂道218施加應力224,如第7 圖所示。經過崩裂製程後,可將發光二極體晶圓2〇〇裂解成 許多的發光二極體晶粒2 1 6a、2 1 6b或2 1 6c,以供製作例如 照明或發光等應用元件。 由於,每一崩裂道214與對應之崩裂道218並非上下正 對,而是兩對應之崩裂道214與崩裂道218之間相隔有一段 預設水平距離220,再加上,進行崩裂製程時,應力224係 施加在兩對應之崩裂道214與崩裂道218之間。因此,發光 二極體晶圓200之裂解路徑226係從正面之崩裂道214以一 弧狀曲線延伸至對應之崩裂道218,如第8圖所示。如此一 來可使裂解出來之發光一極體晶粒2 1 6a之側面228呈弧 狀。其中,發光二極體晶粒216a之侧面228為凹弧面。待 崩裂製程完成後,即可將轉換膠膜222予已移除。 本發明之一特徵就是在於藉由在發光二極體晶圓之正 面與月面分別形成對應且彼此相隔一段水平距離的二崩裂 道,並於二相對應之崩裂道之間施加應力的方式,可獲得具 有狐狀側面結構之發光二極體晶粒。因此,相當輕易即可增 加發光二極體元件侧面之出光面積及出光角度,而可大幅^ 高發光二極體元件之側面的光取出率,進而可有效提升發光 二極體元件之亮度。 “請再次參照第8圖,與發光二極體晶粒21化相鄰之發 光一極體晶粒216b與216c,由於發光二極體晶粒216&之 側面228為凹弧面,因此發光二極體晶粒21讣及21^與發 光二極體晶粒216a相鄰之側面呈凸弧面。根據這樣的^ 1281275 « 1 象,本發明之發光二搞挪 一 一 體日日圓200經裂解後,可形成如發光 二極體晶粒2 1 6a船呈古m , 奴/、有四個凹弧側面的凹面金字塔狀結 構,如第9圖之電子顧媒拉,。 -貝被鏡(Scanning Electron Microscope ; SEM)照片所示。在發氺一 一極體晶粒2 1 6a兩旁之發光二極體 晶粒2 1 6b與2 1 6c則可為且女*必1 J马具有相對之二凹弧側面以及相對之 二凸弧側面的結構。另外,在發光二極體晶粒心對角之 發光二極體晶冑216d則可為具有四個凸弧侧面之碗狀結 構如第10圖之電子顯微鏡照片所示。運用本發明之方法 所形成之發光二極體晶粒,不論是發光二極體晶粒216a、 216b、216c < 2 126d,其側面均呈弧狀,因此這些發光二極 體晶粒216a、216b、2l6c以及21遍之側面出光面積及出 光角度均獲得大幅增加,而可進—步提高元件之光取出率。 由上述本發明較佳實施例可知,本發明之一優點就是因 為應用本發明之發光二極體之製造方法,可獲得具有弧狀侧 面結構之發光二極體晶粒’因此可增加發光二極體晶粒之側 面結構的表面積及出A角度,進而達到提高發光二極體元件 之光取出率的目的。 由上述本發明較佳實施例可知,本發明之另一優點就是 因為本發明之發光二極體具有弧狀側面結構,因此可有效增 加發光二極體元件之側面的出光面積及出光角度,進一步達 到提高發光二極體元件之發光亮度的效果。 雖然本發明已以一較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範圍 12 1281275 當視後附之巾請專利範圍所界定者為準。 【圖式簡單說明】 =1圖係繪不傳統發光二極體晶圓之部分剖面圖。 hh圖係、9示傳統發光二極體晶圓經分割後而形成許 多發光二極體晶粒的示意圖。 第3圖至第8圖係緣示依照本發明一較佳實施例的一種 發光二極體之製程剖面圖。 第9圖係依照本發明一較佳實施例的一種發光二極體 晶粒之電子顯微鏡照片。 第1 〇圖係依照本發明另一較佳實施例的一種發光二極 體晶粒之電子顯微鏡照片。 主要元件符號說明】 1〇〇 :發光二極體晶圓 1〇4 :發光磊晶結構 108 :光電結構 112 :發光二極體晶粒 2 0 2 .基板 206:透明導電層 21 0 :切割道 214 :崩裂道 216b :發光二極體晶粒 216d :發光二極體晶粒 102 :基板 106 :透明導電層 110 :切割道 200 :發光二極體晶圓 204 :發光磊晶結構 208 :光電結構 212 :緩衝層 2 16 a ·發光二極體晶粒 216c :發光二極體晶粒 2 1 8 :崩裂道 13 1281275 ' 220 :預設水平距離 222 :轉換膠膜 224 :應力 226 :裂解路徑 228 :側面Therefore, the object of the present invention is to provide a method for fabricating a light-emitting diode, which is formed in the front side of the light-emitting diode wafer and formed on the back surface of the A after completing the structure of the light-emitting diode. And the staggered road that is staggered up and down. By applying stress between the corresponding two cracking channels, the light-emitting diode crystal grains having the arc-shaped side structure can be obtained, and the surface area of the side structure of the light-emitting diode crystal grains can be increased, and the crystal grains are formed by the curved side surfaces. The internal limit of the total reflection critical angle is reduced, thereby increasing the light extraction rate of the light-emitting diode element. Another object of the present invention is to provide a light-emitting diode having an arc-shaped side structure, which can increase the output & area and light exit angle of the side φ of the light-emitting diode element, thereby improving the light-emitting diode element. The brightness of the light. In accordance with the above object of the present invention, a method of manufacturing a light-emitting diode to j includes the following steps. First, a light-emitting diode wafer is provided. The light-emitting diode wafer includes at least a substrate and a photoelectric structure on the earth plate, and the light-emitting one-pole wafer has a plurality of dicing streets disposed on the photoelectric structure. in. Carry out the [cutting process, (4) into a complex number (4) - the cracking path is respectively in the above-mentioned cutting track. Performing a second cutting process to form a plurality of second cracking lanes in one surface of the substrate respectively corresponding to the first cracking lanes, wherein each of the first cracking lanes in the basin is separated from the corresponding second cracking lane Preset X: Distance: Then 'practice-cracking process' and apply a stress between the corresponding first-cracking channel and the second chipping channel' to form the light-emitting diode wafer into a plurality of light-emitting diode grains. According to the preferred embodiment of the present invention, the width of one of the female scribe lines is about jb, and the predetermined horizontal distance between each of the *_fm Mg-disintegrating passages and the corresponding second collapsed passage is about 12,127. 3 〇 micron. - In accordance with the purpose of the present invention, a light emitting diode is provided comprising at least a substrate and a photovoltaic structure stacked on the substrate. Wherein, the structure of the light emitting diode has a plurality of fox-like sides. According to a preferred embodiment of the present invention, the arcuate side of the light emitting diode is a concave surface and the structure of the light emitting diode has a concave pyramid shape. According to another preferred embodiment of the present invention, the arc-shaped side surface of the light-emitting diode is a convex curved surface, and the structure of the light-emitting diode is in the shape of a bowl. By forming a corresponding two-cracking road on the front side and the back side of the light-emitting diode respectively and spacing the corresponding two-cracking roads apart from each other by a horizontal distance, and then applying a stress between the two corresponding cracking paths, Light-emitting diode crystal grains having a solitary side structure are easily obtained. In this way, the light-emitting area and the light-emitting angle of the side surface of the light-emitting diode element can be greatly increased, and the light extraction rate can be increased to further improve the brightness of the light-emitting diode element. [Embodiment] The present invention discloses a light-emitting diode and a manufacturing method thereof, which can increase the light-emitting area and the light-emitting angle of the side surface of the light-emitting diode, and can greatly improve the light extraction rate of the side surface of the light-emitting diode, thereby improving The purpose of the luminance of the light-emitting diode. In order to make the description of the present invention more detailed and complete, reference is made to the following description and in conjunction with the drawings of Figures 3 through 10. Referring to Figures 3 through 8, there is shown a process cross-sectional view of a light emitting diode in accordance with a preferred embodiment of the present invention. When the light-emitting diode wafer 200 of the present invention is fabricated, the substrate 202 is first provided, wherein the material 1281275 of the substrate 202 can be, for example, sapphire. The first electrical semiconductor layer, the active layer, and the second electrical semiconductor layer are sequentially stacked on the substrate 2〇2 by using, for example, an epitaxial growth method, wherein the first electrical semiconductor layer, the active layer, and the second electrical semiconductor The layers constitute a luminescent epitaxial structure 204. The luminescent epitaxial structure 2〇4 emits light using the photoelectric effect. Next, a transparent conductive layer 206 may be formed over the luminescent epitaxial structure 2 〇 4 by, for example, chemical vapor deposition to enhance the uniformity of current conduction. The material of the transparent conductive layer 2〇6 may be, for example, indium tin oxide (ITO) or zinc oxide (Zn0). The light-emitting epitaxial structure 2〇4 and the transparent conductive layer 206 constitute a photo-electric structure 2〇8 of the light-emitting diode wafer 2〇〇. Next, a plurality of crisscross dicing streets 210 are formed in the optoelectronic structure 2〇8 using, for example, lithography and etching techniques, wherein each adjacent two longitudinal dicing streets 21 〇盥 adjacent two lateral dicing streets 210 # A light-emitting diode die 2"16a: 216b or 216c is defined as follows. Then, a buffer layer 212 may be selectively formed on the surface of the photovoltaic structure 2A8 by, for example, coating or deposition, and covered. In the dicing street 21G i, as shown in Figure 3, wherein the buffer layer 212, the material of which may be, for example, a photoresist, a metal, an oxide or a combination of the above materials. The buffer layer can be provided in a subsequent cutting process. Buffering between the optoelectronic structure 2〇8 and the cutting instrument. After the buffer layer 212 is formed, the first cutting is performed in the second light by using, for example, a laser cutting technique, a diamond knife=cutting technique, a grinding wheel cutting technique or a combination of the above techniques. The front surface of the polar wafer 2 is formed with a plurality of cracks, and the plurality of cracks are extended in the scribe line 21 。. Among them, the rupture path 2 " width is smaller than the scribe line 2 1 0 itch, 1, 2 structure 208 Thickness, also ^ Ά 214 deep Less than photoelectric, it is said that the cutting process does not completely cut the photoelectric structure 1281275. The first cutting process is completed to remove the buffer layer 212, and the structure is removed as shown in Fig. 4, Referring to FIG. 5, for example, the thickness of the substrate 2G2 of the back surface of the light-emitting diode wafer can be removed, and the thickness of the plate 202 can be used to facilitate the subsequent cracking process. The knife is cut into 2 2 After the reduction procedure of the thickness of 〇2, 'for example, a laser cutting technique can be used, for example, a laser cutting technique, a grinding wheel cutting technique, or the above technique έ = a second cutting process is performed to form a plurality of light-emitting diode wafers. The cracking path 218 extends over the substrate 2〇2—the surface of the second hairpin wafer 2°0 on the back side of the cracking path 218 corresponds to: face=crack 214, and each of the collapse channel 214 and the corresponding cracking channel 218 Between the earth and the preset horizontal distance 22G, as shown in Fig. 6. In one of the yoke examples of the present invention, when the width of the scribe line is about 35 microns, between the crack path and the corresponding crack path 218 The preset horizontal distance 22〇 can be about 3〇 microns. It should be noted that the point is in this In the embodiment, the front side of the light-emitting diode wafer 200 is first cut and the back side of the light-emitting diode wafer 2 (9) is cut. However, the present invention can also perform the back-cutting of the light-emitting diode wafer. The front side of the light-emitting diode wafer 200 is further cut. After the cracking of the cracking path 214 and the corresponding cracking path 218 is completed, the surface of the substrate 2〇2 on the back surface of the light-emitting diode wafer 200 can be selectively applied. The film 222 is converted to facilitate the subsequent cracking process. Subsequently, the chipping process of the LED wafer 200 can be performed. In the cracking process, for example, a file (not shown) can be provided on the cutting path 210. And placing the file between the cracking channel 214 >, the corresponding cracking road 2 18, and then using the file system to apply the stress 224 vertically downward from each cracking channel 1281275 214 to the corresponding cracking road 218, As shown in Figure 7. After the cracking process, the LED wafer 2 can be cracked into a plurality of LED dipoles 2 1 6a, 2 1 6b or 2 1 6c for use in application components such as illumination or illumination. Since each of the cracking passages 214 and the corresponding cracking passages 218 are not vertically opposed, the two corresponding cracking passages 214 and the cracking passages 218 are separated by a predetermined horizontal distance 220, and, when the cracking process is performed, Stress 224 is applied between the two corresponding rupture channels 214 and rupture channels 218. Thus, the crack path 226 of the LED wafer 200 extends from the front crack path 214 in an arcuate curve to the corresponding crack path 218, as shown in FIG. In this way, the side 228 of the cracked light-emitting one-pole crystal 2 1 6a is curved. The side surface 228 of the light emitting diode die 216a is a concave curved surface. After the cracking process is completed, the conversion film 222 can be removed. One of the features of the present invention is that by forming a two-cracking path corresponding to a horizontal distance between the front surface of the light-emitting diode wafer and the moon surface, and applying stress between the corresponding cracking paths, A light-emitting diode crystal having a fox-like side structure can be obtained. Therefore, it is relatively easy to increase the light-emitting area and the light-emitting angle of the side surface of the light-emitting diode element, and the light extraction rate of the side surface of the light-emitting diode element can be greatly improved, thereby further improving the brightness of the light-emitting diode element. "Please refer to FIG. 8 again, the light-emitting diode crystal grains 216b and 216c adjacent to the light-emitting diode crystal grains 21, since the side surface 228 of the light-emitting diode crystal grains 216 & The side faces of the polar crystal grains 21讣 and 21^ adjacent to the light-emitting diode crystal grains 216a are convex curved surfaces. According to such a ^1281275 «1 image, the light-emitting two of the present invention is integrated into one integrated Japanese yen 200 by cracking After that, a concave pyramid-like structure such as a light-emitting diode grain 2 1 6a ship with an ancient m, a slave, and four concave arc sides can be formed, as shown in Fig. 9. The Scanning Electron Microscope; SEM) photo shows that the light-emitting diode crystals 2 1 6b and 2 1 6c on both sides of the hair body of the polar body 2 1 6a can be compared with the female *1 1 horse. The structure of the two concave arc side surface and the opposite two convex arc side surface. In addition, the light emitting diode crystal 216d at the opposite side of the light emitting diode grain center may be a bowl-like structure having four convex arc sides, such as the tenth The electron micrograph of the figure shows the light-emitting diode crystal formed by the method of the present invention, whether it is a light-emitting diode The dies 216a, 216b, 216c < 2 126d have arc-shaped sides, so that the light-emitting diode dies 216a, 216b, 2l6c, and 21 sides have a large increase in the light-emitting area and the light-emitting angle. Step-increasing the light extraction rate of the component. According to the preferred embodiment of the present invention described above, one of the advantages of the present invention is that a light-emitting diode having an arc-shaped side structure can be obtained by applying the method of manufacturing the light-emitting diode of the present invention. The crystal grains can thus increase the surface area of the side structure of the light-emitting diode crystal grains and the angle of A, thereby achieving the purpose of improving the light extraction rate of the light-emitting diode element. From the above preferred embodiments of the present invention, the present invention Another advantage is that since the light-emitting diode of the present invention has an arc-shaped side structure, the light-emitting area and the light-emitting angle of the side surface of the light-emitting diode element can be effectively increased, and the effect of improving the light-emitting brightness of the light-emitting diode element can be further achieved. Although the present invention has been disclosed in a preferred embodiment as above, it is not intended to limit the invention, and those skilled in the art, without departing from the invention. Within the spirit and scope, when various changes and retouchings can be made, the scope of protection of the present invention 12 1281275 is subject to the scope defined by the patent scope of the attached towel. [Simple description of the figure] =1 Figure is not traditional A partial cross-sectional view of a light-emitting diode wafer. The hh diagram, 9 shows a schematic diagram of a plurality of light-emitting diode chips formed by dividing a conventional light-emitting diode wafer. FIGS. 3 to 8 are shown in accordance with A process sectional view of a light-emitting diode according to a preferred embodiment of the present invention. FIG. 9 is an electron micrograph of a light-emitting diode die according to a preferred embodiment of the present invention. Fig. 1 is an electron micrograph of a light-emitting diode according to another preferred embodiment of the present invention. Main component symbol description] 1〇〇: Light-emitting diode wafer 1〇4: Light-emitting epitaxial structure 108: Photoelectric structure 112: Light-emitting diode die 2 0 2 . Substrate 206: Transparent conductive layer 21 0 : Cutting track 214: cracking path 216b: light emitting diode die 216d: light emitting diode die 102: substrate 106: transparent conductive layer 110: dicing street 200: light emitting diode wafer 204: light emitting epitaxial structure 208: photoelectric structure 212 : Buffer layer 2 16 a · Light-emitting diode die 216c : Light-emitting diode die 2 1 8 : Cracking track 13 1281275 ' 220 : Preset horizontal distance 222 : Conversion film 224 : Stress 226 : Cracking path 228 :side

1414

Claims (1)

1281275 /十、申請專利範圍 1. 一種發光二極體之製造方法,至少包括: 提供一發光二極體晶圓,其中該發光二極體晶圓至少包 括一基板以及一光電結構位於該基板上,且該發光二極體晶 圓具有複數個切割道設於該光電結構中; 進行一第一切割製程,以形成複數個第一崩裂道分別位 在該些切割道中; _ 進行一第二切割製程,以在該基板之一表面中形成複數 個第二崩裂道分別對應於該些第一崩裂道,其中每一該些第 一崩裂道與對應之該些第二崩裂道之間相隔一預設水平距 離;以及 進行一崩裂製程,而施加一應力於相對應之該些第一崩 裂道與該些第二崩裂道之間,以將該發光二極體晶圓分割成 複數個發光二極體晶粒。 > 2.如申請專利範圍第1項所述之發光二極體之製造方 法,進行該第一切割製程前,更至少包括形成一緩衝層位於 該光電結構以及該些切割道上。 3 ·如申請專利範圍第2項所述之發光二極體之製造方 法,於該第一切割製程與該第二切割製程之間,更至少包括 移除該緩衝層。 15 1281275 4·如申請專利範圍第3項所述之發光二極體之製造方 去,於移除該緩衝層之步驟與該第二切割製程之間,更至少 包括進行一研磨步驟,以縮減該基板之厚度。 5·如申請專利範圍第2項所述之發光二極體之製造方 法’其中該缓衝層之材質為光阻、金屬、氧化物或其組合。 6 ·如申請專利範圍第1項所述之發光二極體之製造方 法’其中每一該些第一崩裂道之深度小於該光電結構之厚度。 7.如申請專利範圍第1項所述之發光二極體之製造方 法’其中每一該些第一崩裂道之寬度小於每一該些切割道之 寬度。 8·如申請專利範圍第1項所述之發光二極體之製造方 法,其中每一該些切割道之一寬度為實質3 5微米。 9·如申請專利範圍第8項所述之發光二極體之製造方 法,其中每一該些第一崩裂道與對應之該些第二崩裂道之間 之該預設水平距離為實質30微米。 10·如申請專利範圍第1項所述之發光二極體之製造方 法,其中該第一切割製程與該第二切割製程包括利用一雷射 切割技術、鑽石刀切割技術、一砂輪切割技術或其組合。 16 1281275 11如申請專利範圍第1項所述之發光二極體之夢造方 法,於該第二切割製程與該崩裂製程之間,更至少包括貼覆 一轉換膠膜於該基板之該表面上。 12 ·如申凊專利範圍第丨項所述之發光二極體之製造方 法,於該崩裂製程中,更至少包括提供一劈刀於相對應之該 些第一崩裂道與該些第二崩裂道之間,以施加該應力/ 法, 第二 13 ·如申明專利範圍第丨2項所述之發光二極體之製造方 其中該劈刀係自每—兮4發 山列y 山 邊些弟一朋裂道垂直向對應之該些 朋裂道施加該應力D1281275 / 10, the patent application scope 1. A method for manufacturing a light emitting diode, comprising: providing a light emitting diode wafer, wherein the light emitting diode wafer comprises at least a substrate and a photoelectric structure is disposed on the substrate And the light emitting diode wafer has a plurality of cutting channels disposed in the photoelectric structure; performing a first cutting process to form a plurality of first cracking channels respectively located in the cutting channels; _ performing a second cutting The process of forming a plurality of second cracking lanes in one surface of the substrate respectively corresponding to the first cracking lanes, wherein each of the first cracking lanes is separated from the corresponding second cracking lanes Setting a horizontal distance; and performing a cracking process, applying a stress between the corresponding first cracking channels and the second cracking channels to divide the light emitting diode wafer into a plurality of light emitting diodes Body grain. 2. The method of manufacturing a light-emitting diode according to claim 1, wherein before the first cutting process, at least comprising forming a buffer layer on the photovoltaic structure and the scribe lines. The method of manufacturing the light-emitting diode according to claim 2, further comprising removing the buffer layer between the first cutting process and the second cutting process. 15 1281275 4. The manufacturing method of the light-emitting diode according to claim 3, wherein the step of removing the buffer layer and the second cutting process further comprises at least performing a grinding step to reduce The thickness of the substrate. 5. The method of manufacturing a light-emitting diode according to the second aspect of the invention, wherein the material of the buffer layer is a photoresist, a metal, an oxide or a combination thereof. 6. The method of manufacturing a light-emitting diode according to claim 1, wherein each of the first cracking channels has a depth smaller than a thickness of the photovoltaic structure. 7. The method of manufacturing a light-emitting diode according to claim 1, wherein each of the first cracking lanes has a width smaller than a width of each of the cutting lanes. 8. The method of fabricating a light-emitting diode according to claim 1, wherein one of the scribe lines has a width of substantially 35 micrometers. The method of manufacturing the light-emitting diode according to claim 8, wherein the predetermined horizontal distance between each of the first cracking lanes and the corresponding second cracking lanes is substantially 30 micrometers. . The method of manufacturing the light-emitting diode according to claim 1, wherein the first cutting process and the second cutting process comprise using a laser cutting technique, a diamond knife cutting technique, a grinding wheel cutting technique or Its combination. The method for fabricating a light-emitting diode according to claim 1, wherein the second cutting process and the cracking process further comprise at least a conversion film on the surface of the substrate. on. The method for manufacturing a light-emitting diode according to the above aspect of the invention, wherein the cracking process further comprises providing at least one file to the corresponding first cracking channel and the second cracking Between the roads, to apply the stress / method, the second 13 · The manufacturer of the light-emitting diode according to the scope of claim 2, wherein the file is from the 兮 4 A pen splitting path vertically applies the stress D to the corresponding splitting channels 1717
TW94135569A 2005-10-12 2005-10-12 Light-emitting diode and method for manufacturing the same TWI281275B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94135569A TWI281275B (en) 2005-10-12 2005-10-12 Light-emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94135569A TWI281275B (en) 2005-10-12 2005-10-12 Light-emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200715603A TW200715603A (en) 2007-04-16
TWI281275B true TWI281275B (en) 2007-05-11

Family

ID=38741684

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94135569A TWI281275B (en) 2005-10-12 2005-10-12 Light-emitting diode and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI281275B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623601A (en) * 2011-02-01 2012-08-01 隆达电子股份有限公司 Semiconductor device and method for cutting the same
TWI407587B (en) * 2009-01-21 2013-09-01 Lumitek Corp Method of grinding light emitting diode wafer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037278B (en) * 2014-06-27 2017-01-18 圆融光电科技有限公司 Method for manufacturing LED chip and LED chip
CN108461237A (en) * 2017-12-31 2018-08-28 广州奥松电子有限公司 The production method of absolute humidity sensor, thermistor and thermistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407587B (en) * 2009-01-21 2013-09-01 Lumitek Corp Method of grinding light emitting diode wafer
CN102623601A (en) * 2011-02-01 2012-08-01 隆达电子股份有限公司 Semiconductor device and method for cutting the same

Also Published As

Publication number Publication date
TW200715603A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
US9087971B2 (en) Light-emitting device having dielectric reflector and method of manufacturing the same
TWI502769B (en) Wafer-level light emitting diode structure, light emitting diode chip, and fabricating method thereof
TWI455345B (en) Light emitting diode having vertical topology and method of making the same
TWI427827B (en) Manufacturing method of semiconductor light emitting element
KR100649769B1 (en) Semiconductor light emitting diode and method for fabricating the same
US8847267B2 (en) Light emitting diode with metal piles and multi-passivation layers and its manufacturing method
US20070108459A1 (en) Methods of Manufacturing Light Emitting Devices
CN1957481A (en) Method for fabricating group iii nitride devices and devices fabricated using method
US20120319149A1 (en) Light-Emitting Device Structure and Method for Manufacturing the Same
JP2002368261A (en) Nitride compound semiconductor light-emitting device
JP2007019511A (en) Light emitting element and its manufacturing method
JP2007266571A (en) Led chip, its manufacturing method, and light emitting device
US9530930B2 (en) Method of fabricating semiconductor devices
TW201128803A (en) Devices on textured substrates and methods for fabricating semiconductive devices
CN103325907A (en) Light emitting diode (led) die having recessed electrode and light extraction structures and method of fabrication
TWI281275B (en) Light-emitting diode and method for manufacturing the same
GB2547123A (en) LED vertical chip structure with special coarsening morphology and preparation method therefor
TW201208134A (en) Light emitting device and semiconductor wafer
CN113299803A (en) Preparation method of Micro LED chip single device, display module and display device
TWI466327B (en) Method for fabricating wafer-level light emitting diode structure
US7915621B2 (en) Inverted LED structure with improved light extraction
JP2004228290A (en) Semiconductor light emitting element and its fabricating process
TW201306306A (en) Method for forming semiconductor light emitting devices
US8872202B2 (en) Light-emitting device capable of improving the light-emitting efficiency
US8426292B2 (en) Process for sapphire substrate separation by laser

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees