TWI281267B - Photodetector and method for manufacturing the same - Google Patents

Photodetector and method for manufacturing the same Download PDF

Info

Publication number
TWI281267B
TWI281267B TW94111075A TW94111075A TWI281267B TW I281267 B TWI281267 B TW I281267B TW 94111075 A TW94111075 A TW 94111075A TW 94111075 A TW94111075 A TW 94111075A TW I281267 B TWI281267 B TW I281267B
Authority
TW
Taiwan
Prior art keywords
photodetector
electrode
active layer
layer
zinc
Prior art date
Application number
TW94111075A
Other languages
Chinese (zh)
Other versions
TW200637021A (en
Inventor
Yan-Kuin Su
Shooe-Jinn Chang
Yu-Zung Chiou
Chun-Kai Wang
Tien-Kun Lin
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94111075A priority Critical patent/TWI281267B/en
Publication of TW200637021A publication Critical patent/TW200637021A/en
Application granted granted Critical
Publication of TWI281267B publication Critical patent/TWI281267B/en

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

A photodetector and a method for manufacturing the same are disclosed. The photodetector comprises a SeZn substrate, a SeZn active layer located on the SeZn substrate, a first electrode located on a first portion of the SeZn active layer, and a second electrode located on a second portion of the SeZn active layer, in which the first electrode is separated from the second electrode.

Description

1281267 九、發明說明 【發明所屬之技術領域】 本發明是有關於 、 、 ;~種光檢測器(Photodetector)及其製 造方法,且特5?,丨I女 有關於一種成長同質磊晶硒化鋅(ZnSe) 層在硒化鋅基板卜w^ 不反上乂製作光檢測器之方法。1281267 IX. INSTRUCTIONS OF THE INVENTION [Technical Field to Be Invented by the Invention] The present invention relates to a photodetector and a method of manufacturing the same, and a method for manufacturing a homogenous epitaxial selenization. A method in which a zinc (ZnSe) layer is used to form a photodetector on a zinc selenide substrate.

【先前技術】 在光檢測元件中’|於藍光至紫外光檢測器可廣泛應用 在各式各樣商業上與軍事上,例如太空通訊、臭氧層監控以 及火光檢測等,因此短波段之藍光與紫外光檢測器是很重要 的光檢測元件。 目别,藍光至紫外光檢測元件仍然係由使用矽材料之光 -極體所構成。然@ ’受限於石夕之能隙在室溫下僅僅只有 L2eV,矽光一極體之最靈敏波長並非落在藍光至紫外光區 域,因此石夕光二極體在藍光至紫外光區域的響應較低。隨著 以寬直接能隙材料來製作來光電元件之技術的發展,將可針 對藍光至紫外光區域製作出高效能固態光檢測器陣列。舉例 而言,目前已製作出可商業應用之氮化鎵(GaN)系列光檢測 器,而硒化鋅(ZnSe)則是另外一種應用在藍光至紫外光檢測 器之製作的寬直接能隙材料。 雖然由各式各樣ZnSe系列所製作之藍光至紫外光檢測 器已經過驗證,但是這些ZnSe系列光檢測元件均成長在接 近的晶格匹配之砷化鎵(GaAs)基板的表面。然而,在此技術 領域中具有通常知識者已知輕微的晶袼失配(在室溫下約 1281267 〇·27%),在ZnSe與GaAs基板之間仍然會產生大量的缺陷。 如此一來,當在GaAs基板的表面上成長非常厚之蟲 晶層時,ZnSe/GaAs介面所產生之大量缺陷將會明顯降低 ZnSe系列光檢測器之效率。 為解決ZnSe/GaAs介面產生之缺陷問題,可在GaAs 基板之表面上成長晶格匹配< ZnSe系列三元或四元化合 物。然而,在這樣的製程中,對於如何精準控制每一個元素 之組成以獲得完美的晶格匹配是相當困難的事。 【發明内容】 有鑑於砸化鋅薄膜之蟲晶大多成長於晶格不匹配的基 *例如珅化鎵、n,由於晶格上的不匹配使得砸化 辞薄膜產生大量的缺陷並使得差排密度A幅提高,以至於降 低了砸化鋅薄膜之光電特性。因此,本發明之目的就是在提 供-種光檢測器’具有同質磊晶之硒化辞主動層,因此主動 層可與基板晶格匹配’如此一來,可避免缺陷形成於主動層 與基板之介面,並可大大地提升主動層之品質,進而可顯著 地增進光檢測器之光電性能。 、本么明之另一目的是在提供一種光檢測器之製造方 A 一係於石西化鋅基板上同質蠢晶成長砸化鋅主動層,因此相 當輕易即可使基板與主動層之間具有極佳t晶格匹配特 f生而可有效提升產品良率。此外,藉由改善基板與主動層 ,間的晶格匹配,可明顯改善主動層之光電性能,於是不僅 可有效改善光檢測器之響應度,低雜訊等效功率,更可大 1281267 幅提高光檢測器之檢測率。 根據本發明之上述目的,提出一種光檢測器,至少包括 硒化鋅基板、硒化鋅主動層位於前述之硒化鋅基板上、第一 電極位於上述之硒化鋅主動層之第一部分上、以及第二電極 位於上述之硒化鋅主動層之第二部分上,其中第一電極與第 一電極分開。 依照本發明一較佳實施例,上述之硒化鋅主動層為n 型摻雜之磊晶層,且硒化鋅主動層之厚度介於約1 V瓜至約 2/ m之間。此外,第一電極為第一指狀結構,第二電極為 第二指狀結構,其中第一指狀結構與第二指狀結構呈指叉狀 排列。 根據本發明之目的,提出一種光檢測器之製造方法,至 少包括··提供硒化辞基板;同質磊晶成長硒化鋅主動層於上 述之硒化鋅基板上;以及形成第一電極與第二電極分別位於 石西化鋅主動層之第一部分與第二部分上,其中第一電極與第 二電極分開。 依照本發明一較佳實施例,上述同質磊晶成長硒化鋅主 動層之步驟至少包括利用電子束磊晶製程,且此電子束磊晶 製程至少包括使用溫度控制在約1〇〇〇C2 n型摻雜源,而電 子束磊晶製程之反應溫度控制在約3〇〇它。此外,第一電極 與弟二電極呈指叉狀排列。 利用同質磊晶方式成長硒化鋅主動層於硒化辞基板 上,可使主動層與基板達到極為優良之晶格匹配特性,因此 可大幅提升主動層之品質,不僅可改善光檢測器之響應度, 1281267 降低雜訊等效功率,更可強化光檢測器之光電性能,達到增 進光檢測器之檢測率的目的。 【實施方式】 、 本發明揭露一種光檢測器及其製造方法,係在硒化鋅基 " 板上同質磊晶硒化鋅主動層,因此主動層相當輕易就可與基 板達到晶格匹配,而可有效提升主動層之品質,進而達到增 _ 進光檢測器之光電性能的目的。為了使本發明之敘述更加詳 盡與完備,可參照下列描述並配合第丨圖至第8圖之圖示。 請參照第1圖,其繪示依照本發明一較佳實施例的一種 光k測益之立體示意圖。在本發明之一實施例中,光檢測器 〇〇可例如為藍光或紫外光檢測元件,且此光檢測器工⑽至 、匕括西化鋅基板1 02、石西化鋅主動層J 〇4、以及兩個具不 同電性之電極106與電極1〇8,其巾石西化辞主動層1〇4蠢晶 成長於西化鋅基板1〇2上,且電極1〇6與電極^⑽分別位於 • ®化鋅主動| ! 04之不同部分上且彼此相隔一段距離。 印再次參照第i圖,製作此光檢測器丨〇〇時,先提供硒 化鋅基板102,接著利用例如電子束磊晶製程、有機金屬化 學氣相沉積(M0CVD)製程或脈衝雷射沉積[Prior Art] In the light detecting element, the blue light to ultraviolet light detector can be widely used in various commercial and military applications, such as space communication, ozone layer monitoring, and flare detection, so the short-band blue light and ultraviolet light A photodetector is an important light detecting element. For the purpose, the blue-to-ultraviolet light detecting element is still composed of a light-polar body using a germanium material. However, @ 'constrained by the energy gap of Shi Xi, only L2eV at room temperature, the most sensitive wavelength of the Twilight is not in the blue to ultraviolet region, so the response of the Shi Xiguang diode in the blue to ultraviolet region Lower. With the development of techniques for fabricating optoelectronic components with wide direct gap materials, high performance solid state photodetector arrays can be fabricated for the blue to ultraviolet regions. For example, commercially available gallium nitride (GaN) photodetectors have been produced, and zinc selenide (ZnSe) is another wide direct gap material for blue to ultraviolet detectors. . Although blue-to-ultraviolet detectors made from a wide variety of ZnSe series have been validated, these ZnSe series photodetectors have grown on the surface of a nearly lattice-matched gallium arsenide (GaAs) substrate. However, it is known to those skilled in the art that a slight wafer mismatch (about 1281267 〇 27% at room temperature) still produces a large number of defects between the ZnSe and the GaAs substrate. As a result, when a very thick worm layer is grown on the surface of the GaAs substrate, a large number of defects generated by the ZnSe/GaAs interface will significantly reduce the efficiency of the ZnSe series photodetector. In order to solve the defect problem of the ZnSe/GaAs interface, a lattice matching < ZnSe series ternary or quaternary compound can be grown on the surface of the GaAs substrate. However, in such a process, it is quite difficult to accurately control the composition of each element to obtain a perfect lattice match. SUMMARY OF THE INVENTION In view of the fact that the crystals of zinc telluride thin films mostly grow in lattice mismatched groups* such as gallium antimonide, n, due to lattice mismatch, the ruthenium ruthenium film produces a large number of defects and makes the difference The density A is increased to reduce the photoelectric properties of the zinc telluride film. Therefore, the object of the present invention is to provide a photodetector having a selenium-producing active layer of homogenous epitaxy, so that the active layer can be lattice-matched with the substrate. Thus, defects can be prevented from being formed on the active layer and the substrate. The interface can greatly improve the quality of the active layer, which can significantly improve the photoelectric performance of the photodetector. Another purpose of the present invention is to provide a photodetector manufacturer A, which is a homogenous studded zinc-zinc active layer on a quartz-zinc-zinc substrate, so that it is quite easy to make a pole between the substrate and the active layer. The good t crystal lattice matches the special f and can effectively improve the product yield. In addition, by improving the lattice matching between the substrate and the active layer, the photoelectric performance of the active layer can be significantly improved, thereby not only effectively improving the responsiveness of the photodetector, but also reducing the equivalent power of the noise, and increasing the size by 1281267. The detection rate of the photodetector. According to the above object of the present invention, a photodetector is provided, comprising at least a zinc selenide substrate, a zinc selenide active layer on the zinc selenide substrate, and a first electrode on the first portion of the zinc selenide active layer; And the second electrode is located on the second portion of the zinc selenide active layer, wherein the first electrode is separated from the first electrode. According to a preferred embodiment of the present invention, the zinc selenide active layer is an n-type doped epitaxial layer, and the zinc selenide active layer has a thickness of between about 1 V and about 2/m. In addition, the first electrode is a first finger structure, and the second electrode is a second finger structure, wherein the first finger structure and the second finger structure are arranged in an interdigitated shape. According to an object of the present invention, a method for fabricating a photodetector includes at least providing a selenium substrate; a homogenous epitaxially grown zinc selenide active layer on the zinc selenide substrate; and forming a first electrode and a The two electrodes are respectively located on the first portion and the second portion of the actinic zinc active layer, wherein the first electrode is separated from the second electrode. According to a preferred embodiment of the present invention, the step of the epitaxial epitaxially grown zinc selenide active layer includes at least an electron beam epitaxy process, and the electron beam epitaxy process includes at least a use temperature control of about 1 〇〇〇 C 2 n The type of doping source, and the reaction temperature of the electron beam epitaxial process is controlled at about 3 〇〇. Further, the first electrode and the second electrode are arranged in a fork shape. The growth of the active layer of zinc selenide on the selenization substrate by homomorphic epitaxy can achieve excellent lattice matching characteristics of the active layer and the substrate, thereby greatly improving the quality of the active layer and improving the response of the photodetector. Degree, 1281267 Reduces the equivalent power of noise, and strengthens the photoelectric performance of the photodetector to improve the detection rate of the photodetector. [Embodiment] The present invention discloses a photodetector and a method for fabricating the same, which are based on a zinc selenide-based plate with a homogenous epitaxial zinc selenide active layer, so that the active layer can be lattice-matched with the substrate quite easily. The quality of the active layer can be effectively improved, thereby achieving the purpose of increasing the photoelectric performance of the photodetector. In order to make the description of the present invention more detailed and complete, reference is made to the following description and in conjunction with the drawings of Figures 8 through 8. Please refer to FIG. 1 , which is a perspective view of a light k-benefit in accordance with a preferred embodiment of the present invention. In an embodiment of the present invention, the photodetector can be, for example, a blue or ultraviolet light detecting element, and the photodetector (10) to, including the zinc zinc oxide substrate 102, the active zinc nitride layer J 〇4, And two electrodes 106 and electrodes 1 〇 8 having different electrical properties, and the active layer of the 巾 化 辞 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 成长 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极 电极®Zinc Active|! The different parts of 04 are separated by a distance. Referring again to Fig. i, when the photodetector is fabricated, the zinc selenide substrate 102 is first provided, followed by, for example, electron beam epitaxy, organic metallurgical vapor deposition (M0CVD) process or pulsed laser deposition.

DeP〇Sltl〇n ; PLD)製程,以同質蠢晶方式成長石西化鋅主動層 口、於硒化鋅基板丨〇2上。在本發明中,硒化辞主動層1 σ 里払雜或未摻雜之磊晶層,較佳係為II型摻雜之磊晶 層。,化鋅主動層104係由η型摻雜之蟲晶層所組成時, 用之η型摻質可例如為氯⑹)、填⑴或銦(⑷等。石西化 1281267 辞主=1G4之厚度較佳係、介於約1心至約2_之間。 =明之一較佳實施例中,係利用電子束蟲晶製程同 質猫明成長魏鋅主動層1G4。在此電子束μ製程中 用^鋅與蚊來源材料,並使“型摻雜源以及用以載送 η型摻質之载氣,其中u摻雜源較佳可例如為氯化鋅 …叫、含蛾材料或含銦材料等,而載氣較佳可例如包括 風乳。然後將砸化鋅基板1()2置人反應腔體中,進行電子束 蠢晶成長f程,而在反應溫度控制在例如約3⑽。c且氯化辞 等所組成之n型#雜源的溫度控制在約1〇代下,於砸化辞 基板102上形成約厚之硒化鋅主動層1〇4。在硒化 鋅主動層104之成長期間,可進一步利用高能量電子反射 儀’來監控蟲晶層之品質’藉以最佳化蟲晶層之成長條件。 在本發明之-實施財j可在同質纟晶成長石西化辞主 動層、1〇4之步驟與後續電極製作之步驟間,先對硒化鋅基板 j〇2連同其上之硒化鋅主動層1〇4之堆疊結構進行清潔處 理。其中,此清潔處理至少包括先將硒化鋅基板1〇2連同其 之硒化辞主動層l04浸入鹽酸(HQ)稀釋液(例如 HChH2〇=1:1)中約持續1分鐘,再將硒化鋅基板102與其上 之硒化鋅主動層104浸入氧化緩衝蝕刻液(Buffered Oxide EtChlng’ B〇E)持續約1分鐘,以去除附著在硒化鋅基板102 ”西化鋅主動層104之表面上的原生氧。接著,分別且依序 利用例如丙_、甲醇以及水對硒化鋅基板102與其上之硒化 鋅主動層1 04各清洗約5分鐘。 明同時參照第i圖與第2圖,完成硒化鋅基板1 〇2與其 1281267 上之硒化鋅主動層104之清潔處理後,利用例如光微影與掀 除(Lift-off)技術定義出光檢測器1〇〇之主動區域ιι〇,並同 時形成電極106與電極1 〇8。在本發明之一實施例中,定義 出主動區域110以及形成電極1〇6與電極1〇8時,係先塗覆 光阻層(未繪示)於硒化鋅主動層1〇4上。再利用光微影技術 、 圖案化此光阻層,使此光阻層具有電極圖案結構,其中此電 極圖案結構暴露出部分之硒化辞主動層1〇4,且電極圖案結 • 構較佳可呈指叉狀。接下來,利用例如磁控濺鍍沉積技術形 成電極材料層(未繪示)於光阻層以及砸化鋅主動層1〇4之暴 露部分上,其中電極材料層之材質較佳係選用透明導電材 料,例如氧化銦錫(IT0)、氧化銦鋅(IZ〇)、摻雜鋁之氧化鋅 , (Zn0:A1,AZ0)或鈦鎢合金(TiW)等,且電極材料層之厚度較 、 佳可例如介於約8〇nm與約120nm之間。在電極材料層2成 長期間,所使用之濺鍍來源氣體至少包括氬氣,且此濺鍍來 源氣體之流率較佳是控制在等於約1〇sccm,而較佳是將反 φ 應I體壓力控制在介於約5mTorr至約lOmTorr之間,並將 、 反應功率控制在介於約40W至約i〇〇w之間。在本發明之 • 一較佳實施例中,電極材料層之材質係採用氧化錮錫,且利 ★ 帛磁控錢鍍製程來製備電極材料層日夺更至少、包括使用氧化 銦錫靶材,其中此氧化銦錫靶材之成分可例如為包括約9〇 %之氧化銦(IhO3)與約1〇%之氧化錫(Sn〇2)。然後,利用 掀除方式移除光阻層以及位於光阻層上之電極材料層,並留 下位於硒化鋅主動層104之暴露部分上之電極材料層,如此 便在石西化辞主動層1G4上形成指叉狀排列之電極1G6與電極 10 1281267 108 ’而形成具透明導電電極/ZnSe <金屬-半導體-金屬 (刪)的之光檢測器結構。電極ι〇6與電極刚較佳係呈於 狀結構,其中電極106主要係由接合部112與一端連接心 α邛112之數個指部114所構成,且電極刚則主要係由接 σ邛116與一端連接至接合部U6之數個指部⑴所構成。 在此實施例中’電極i 〇6之指部】丄4與電極⑽之指部 118所在之區域界定出主動區域UG,且主動區域ιι〇之面 • 積可例如為200x200 "m2,而指部114之寬度120、指部118 之寬度122、以及相鄰之指部114與指部118之間的指距124 均可例如為約1 〇 # m。 完成MSM之光檢測n結構後,更進—步㈣例如光微 • 影技㈣別在電極⑽之接合部112與„⑽之接合部 • U6上定義出打線區域,再利用例如掀除技術分別於電極 106與電極1〇8上形成銲接接觸墊(未繪示),其中這些銲接 接觸墊之厚度約為l#m ’且銲接接觸塾之材質較佳可例如 φ 《金膜。接著,Μ用例如打線機,將所完成之光檢測器結構 、 以!呂線固疋於金屬封褒殼(T〇_CAN)上,其中光檢測器⑽ • 可透過鋁線而與金屬封裝殼電性連接,以利進行光檢測器 • 100之電壓-電流 '光響應及雜訊等特性的量測。 利用高解析度χ_光繞射儀(High Res〇luti〇n x_ray Diffraction; HURD)、光激螢光技術㈣仙―⑽ce; PL)及霍爾(Hall)量測技術等來對所成長之同質蟲晶的砸化 鋅主動層104之光電特性進行量測分析。請參照第3圖,其 係繪不依照本發明一較佳實施例的一種光檢測器中之同質 1281267 磊晶硒化鋅主動層之HRXRD分析圖。從第3圖中顯示同質 磊晶之硒化鋅主動層之DCXRD曲線,可發現僅只有極強之 石西化辞(004)峰值呈現21.5 arc sec之半高寬度(FWHM),這 極小之FWHM指出硒化鋅磊晶層之結晶品質可藉由使用硒 化鋅基板而進一步獲得明顯地改善。 請參照第4圖,其係繪示依照本發明一較佳實施例的一 種光檢測器中之同質磊晶硒化鋅主動層之PL光譜圖。從第 4圖所顯示之硒化鋅同質磊晶層的室溫pL光譜圖中,可發 現很強的PL峰值落在2.725 eV (455 nm)呈現71 meV之半 高寬度(FWHM),而且很寬的鍵結能與氯受體相關之深能階 在2·0 eV ’此外可注意到從同質石西化鋅蠢晶層中,既沒有接 近能帶放射(NBE)也沒有淺受體_施體對(DAp)相關的峰值 被發現,換句話說,激發能帶的強度遠比DAp放射還要來 的強多了’此現象再一次指出同質硒化鋅磊晶層優良的結晶 品質。The process of DeP〇Sltl〇n; PLD) is to grow the active layer of zirconia zinc on the zinc selenide substrate 丨〇2 in the same way. In the present invention, the doped or undoped epitaxial layer in the selenium-active layer 1 σ is preferably a type II doped epitaxial layer. When the zinc active layer 104 is composed of an n-type doped crystal layer, the n-type dopant may be, for example, chlorine (6)), filled (1) or indium ((4), etc.. The thickness of the stone is 1281267. Preferably, it is between about 1 center and about 2 _. In a preferred embodiment, the electron beam worm process is used to grow the same type of cat-developed Wei zinc active layer 1G4. In this electron beam μ process, ^Zinc and mosquito-derived materials, and "type doping source and carrier gas for carrying n-type dopants, wherein the u-doping source is preferably, for example, zinc chloride... called moth-containing material or indium-containing material And the carrier gas preferably includes, for example, a wind milk. Then, the zinc telluride substrate 1 () 2 is placed in a reaction chamber to carry out electron beam growth, and the reaction temperature is controlled, for example, at about 3 (10). And the temperature of the n-type #heterogeneous source composed of chlorination and the like is controlled to be about 1 〇, and an approximately thick zinc selenide active layer 1〇4 is formed on the bismuth substrate 102. The zinc selenide active layer 104 is formed. During the growth period, the high-energy electron reflectometer can be further utilized to monitor the quality of the crystal layer to optimize the growth conditions of the insect layer. The implementation of the financial j can be in the homogenous crystal growth of the Shixi Huazheng active layer, the step of 1〇4 and the subsequent electrode fabrication steps, the zinc selenide substrate j〇2 together with the zinc selenide active layer 1〇 The stacking structure of 4 is cleaned, wherein the cleaning process comprises at least immersing the zinc selenide substrate 1〇2 together with the selenization layer active layer 104 in a hydrochloric acid (HQ) diluent (for example, HChH2〇=1:1). After about 1 minute, the zinc selenide substrate 102 and the zinc selenide active layer 104 thereon are immersed in an oxidative buffer etchant (Buffered Oxide EtChlng' B〇E) for about 1 minute to remove the adhesion to the zinc selenide substrate 102 ” The native oxygen on the surface of the zinc active layer 104. Next, the zinc selenide substrate 102 and the zinc selenide active layer 104 on the zinc selenide substrate 102 are separately and sequentially washed with, for example, C-, methanol, and water for about 5 minutes. Referring to FIG. 1 and FIG. 2, after the zinc selenide substrate 1 〇 2 and the zinc selenide active layer 104 on the 1281267 are cleaned, the photodetector is defined by, for example, photolithography and lift-off techniques. 1〇〇 active area ιι〇, and simultaneously form electrode 106 And an electrode 1 〇 8. In an embodiment of the invention, when the active region 110 is defined and the electrode 1〇6 and the electrode 1〇8 are formed, a photoresist layer (not shown) is first applied to the zinc selenide active. The layer 1〇4 is further patterned by photolithography, and the photoresist layer is patterned to have an electrode pattern structure, wherein the electrode pattern structure exposes a portion of the selenium-reactive layer 1〇4, and the electrode The pattern structure may preferably be in the shape of a fork. Next, an electrode material layer (not shown) is formed on the exposed portion of the photoresist layer and the zinc antimonide active layer 1〇4 by, for example, a magnetron sputtering deposition technique. The material of the electrode material layer is preferably a transparent conductive material, such as indium tin oxide (IT0), indium zinc oxide (IZ〇), aluminum-doped zinc oxide, (Zn0: A1, AZ0) or titanium tungsten alloy (TiW). And the like, and the thickness of the electrode material layer is preferably, for example, between about 8 〇 nm and about 120 nm. During the growth of the electrode material layer 2, the sputtering source gas used includes at least argon gas, and the flow rate of the sputtering source gas is preferably controlled to be equal to about 1 〇 sccm, and preferably the anti-φ should be I The pressure is controlled between about 5 mTorr and about 10 Torr, and the reaction power is controlled between about 40 W and about i 〇〇 w. In a preferred embodiment of the present invention, the material of the electrode material layer is made of lanthanum tin oxide, and the electrode material layer is prepared by using a magnetron plating process to at least more, including using an indium tin oxide target. The composition of the indium tin oxide target may be, for example, about 9% by mass of indium oxide (IhO 3 ) and about 1% by weight of tin oxide (Sn〇 2 ). Then, the photoresist layer and the electrode material layer on the photoresist layer are removed by the removing method, and the electrode material layer on the exposed portion of the zinc selenide active layer 104 is left, so that the active layer 1G4 in the Shixihuazheng layer is A photodetector structure having a transparent conductive electrode/ZnSe <metal-semiconductor-metal (deletion) is formed on the electrode 1G6 and the electrode 10 1281267 108'. The electrode 〇6 and the electrode are preferably in a structure, wherein the electrode 106 is mainly composed of a plurality of fingers 114 connected to the core α邛112 at one end, and the electrode is mainly connected by σ邛. 116 is constituted by a plurality of fingers (1) connected to one end of the joint U6. In this embodiment, the area of the 'electrode i 〇 6 ' 丄 4 and the finger 118 of the electrode ( 10 ) defines the active area UG, and the surface area of the active area ιι can be, for example, 200x200 "m2, and The width 120 of the finger 114, the width 122 of the finger 118, and the finger distance 124 between the adjacent finger 114 and the finger 118 can each be, for example, about 1 〇 #m. After completing the light detection n structure of the MSM, further advance (step 4), for example, light micro-shadowing (4), define the wire bonding area on the joint portion 112 of the electrode (10) and the joint portion of the (10) U6, and then use, for example, a subtraction technique. A solder contact pad (not shown) is formed on the electrode 106 and the electrode 1〇8, wherein the solder contact pads have a thickness of about l#m′ and the material of the solder contact pad is preferably φ “gold film. Then, Μ The structure of the completed photodetector is fixed on the metal sealing shell (T〇_CAN) by, for example, a wire bonding machine, wherein the photodetector (10) can be electrically connected to the metal encapsulating shell through the aluminum wire. Connect to facilitate the measurement of the photodetector • 100 voltage-current 'light response and noise. Use high resolution χ _ light diffractometer (High Res〇luti〇n x_ray Diffraction; HURD), light The fluorescent light technology (4) Xian-(10)ce; PL) and Hall measurement techniques are used to measure the photoelectric characteristics of the grown zinc oxide active layer 104. See Figure 3, It is the same as a photodetector that is not in accordance with a preferred embodiment of the present invention. 1281267 HRXRD analysis of the epitaxial zinc selenide active layer. From the 3rd figure, the DCXRD curve of the active epitaxial zinc selenide active layer is shown, only the extremely strong stone westernization (004) peak is 21.5 arc sec. The half-height width (FWHM), which is extremely small, indicates that the crystal quality of the zinc selenide epitaxial layer can be further improved significantly by using a zinc selenide substrate. Referring to Figure 4, it is shown in accordance with the present invention. A PL spectrum of a homogeneous epitaxial zinc selenide active layer in a photodetector according to a preferred embodiment. From the room temperature pL spectrum of the zinc selenide homogenous epitaxial layer shown in Fig. 4, The strong PL peak falls at 2.725 eV (455 nm) and exhibits a half-height width (FWHM) of 71 meV, and a wide bond can be associated with a chlorine-receptor with a deep energy level of 2·0 eV 'in addition In the homogenous stone-zinc-zinc stupid layer, neither the near-band radiation (NBE) nor the shallow receptor-DA pair-related peaks were found. In other words, the intensity of the excitation band is far greater than that of DAp radiation. It’s going to be much stronger. 'This phenomenon once again points out that the homogeneous zinc selenide epitaxial layer is excellent. Crystal quality.

請參照第5圖,其係繪示依照本發明一較佳實施例的一 種光檢測器中之同質蟲晶石西化辞主動層之Hall量測圖。從 A圖斤丁之石西化鋅同質蠢晶層與溫度相關的霍爾量測結 果’可看到電子濃度隨著溫度增加而在低溫區域,約在 時達到最大值,而且隨著、、四 半祕士 „ , 最初的遷移率增加在'°此外’ 階雜質的電荷載子散射負中 遷移率的減少可能是由,成的。另一方面’在高溫區域之 室溫之下所量測到Μ I 7 双耵所造成的,在 片栽子濃度、電子遷移率與電阻率分別為 12 1281267 Ω _cm ’高的室溫電子遷 良的結晶品質。 4xl016 cm 2、 250 cm2/V-s 與 0.6 移率再次指出同質硒化鋅磊晶層優 請參照帛6圖,其係繪示依照本發明一較佳實施例的一 種光檢測器之電壓·電流圖。從第6圖所示之同質磊晶硒化 鋅金半金(MSM)光檢測器之電流_電壓特性量測在黑暗與光 照射情形下,計算出ITO沉積在同質硒化辞磊晶層上之蕭 雖然透明接觸電極 基能障高度大約為〇.78eV,換句話說 可以提供光檢測器較大的光子吸收且較大的光電流,但是較 低的蕭基能障咼度也將產生較大的暗電流,因此,僅只有獲 得光電流對暗電流比值約為兩個階次的大小。 請參照第7圖,其係繪示依照本發明一較佳實施例的一 種光檢測器之光響應圖。從第7圖所示之檢測器之響應在藍 光至紫外光區域幾乎呈現定值,在45 0 nm之入射光波長 下’可發現在IV之偏壓下,最大的響應約為〇13 A/w,且 對應之^:子效率為3 5 %。再者,可發現檢測器響應在越過 截止區域時’約下降超過兩階次的大小,此現象再次指出同 質砸化辞磊晶層優良的結晶品質,這些值也指出同質磊晶硒 化鋅MSM光檢測器在藍光至紫外光區域的使用上是相當有 潛力的。 請參照第8圖,其係繪示依照本發明一較佳實施例的一 種光檢測器之低頻雜訊圖。從第8圖所示之檢測器之雜訊功 率密度,發現光譜可利用1 /fr (r= 1)定律而獲得相當合理的 模擬’此一純Ι/f雜訊指出陷捕狀態能量分佈均勻,對於所 給定的100 Hz頻寬,對應之雜訊等效功率(NEP)與正規化檢 13 I28l267 測率經計算得知分別為814 χ i〇-13 w與μ x ι〇ιι cmHz W ’這樣的結果―部分可歸功於加天生的透明度 因而產生較大的響應’而—部分則可歸功於ιτ〇肖z心之 間較佳的介面特性因而產生較小的雜訊。 利用同負磊晶成長硒化鋅主動層於硒化鋅基板上,因主 動層與基板之間具有較佳之晶格匹配而使得缺陷大大地減 J,因此可大幅提高硒化辞主動層之品質,而增強硒化辞主 動a之光電特性’進而可有效改善光檢測器之響應度,並可 降低雜訊f效功率,而獲得較高之檢測率。在本發明之一較 佳實施例中’光檢測器之檢測率可由Μ的異㈣晶砸化辞 光檢測器4 2X1W ,改善至本發明以硒化鋅基 板來替代之 8 7xl〇u cmHzG 5W-1。 —雖然本發明已以一較佳實施例揭露如上,然其並非用以 ,限疋本發明’任何熟f此技藝者,在殘離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1 ®係繪示依照本發明一較佳實施例的一種光檢測 器之立體示意圖。 第2圖係繪示第1圖之光檢測器的上視圖。 〇第3圖係繪示依照本發明一較佳實施例的一種光檢測 器中之同質磊晶硒化鋅主動層之HRXRD分析圖。 第4圖係繪示依照本發明一較佳實施例的—種光檢測 14 1281267 器中之同質蠢晶硒化鋅主動芦 初續之PL光譜圖。 第5圖係繪示依照太蘇日日 … 毛月一車父佳實施例的一種光檢測 器中之同質磊晶硒化鋅主動層之Haii量測圖。 第6圖係繪示依照本發明一較佳實施例的—種光檢測 器之電壓-電流圖。 第7圖係繪示依照本發明一較佳實施例的一種光檢測 器之光響應圖。 第8圖係、緣示|照本發明一較佳實施例的—種光檢測 器之低頻雜訊圖。 【主要元件符號說明】 100 : 光檢測器 102 : 石西化鋅基板 104 : 石西化鋅主動層 106 : 電極 108 : 電極 110 : 主動區域 112 : 接合部 114 : 指部 116 : 接合部 118 : 指部 120 : 寬度 122 : 寬度 124 : 指距 15Referring to FIG. 5, there is shown a Hall measurement diagram of a homogeneous layer of the same crystallized magnetization in a photodetector according to a preferred embodiment of the present invention. From the temperature-dependent Hall measurement results of the austenitic zinc-like zinc-like layer of the A-character, it can be seen that the electron concentration increases in the low temperature region with increasing temperature, and reaches a maximum at about the time, and The priest „ , the initial mobility increase in the '° addition' order of the impurity charge scattering in the negative negative mobility may be caused by, on the other hand 'measured at room temperature in the high temperature region Μ I 7 double enthalpy, the crystal quality of the room temperature electron mobility of the wafer concentration, electron mobility and electrical resistivity are 12 1281267 Ω _cm '. 4xl016 cm 2, 250 cm2/Vs and 0.6 shift The rate again points out that the homogeneous zinc selenide epitaxial layer is better. Referring to Figure 6, a voltage and current diagram of a photodetector according to a preferred embodiment of the present invention is shown. The current of the zinc selenide gold semi-gold (MSM) photodetector _ voltage characteristic measurement in the dark and light irradiation, calculate the ITO deposition on the homogenous selenization layer, although the transparent contact electrode base barrier height About 〇.78eV, in other words, can provide The photodetector has larger photons and a larger photocurrent, but the lower Schindler barrier will also generate a larger dark current. Therefore, only the photocurrent to dark current ratio is about two orders. Referring to Figure 7, there is shown a light response diagram of a photodetector in accordance with a preferred embodiment of the present invention. The response from the detector shown in Figure 7 is in the blue to ultraviolet region. A fixed value is obtained, and at a wavelength of incident light of 45 0 nm, it can be found that under the bias of IV, the maximum response is about A13 A/w, and the corresponding ^:sub-efficiency is 35 %. It was found that the detector response 'approxed more than two orders of magnitude across the cut-off region. This phenomenon again indicates the excellent crystalline quality of the homogenous deuterated epitaxial layer. These values also indicate that the homogenous epitaxial zinc selenide MSM photodetector is The use of the blue to ultraviolet region is quite potential. Please refer to FIG. 8 , which illustrates a low frequency noise diagram of a photodetector according to a preferred embodiment of the present invention. Detector's noise power density, found that the spectrum can be utilized 1 / Fr (r = 1) law to obtain a fairly reasonable simulation 'This pure Ι / f noise indicates that the trapping state energy distribution is uniform, for the given 100 Hz bandwidth, the corresponding noise equivalent power (NEP) And the results of the normalized inspection 13 I28l267 are calculated to be 814 χ i〇-13 w and μ x ι〇ιι cmHz W ', which can be attributed in part to the inherent transparency and thus a greater response' - Part of it can be attributed to the better interface characteristics between the z 〇 z z heart and thus generate less noise. Use the same negative epitaxial growth zinc selenide active layer on the zinc selenide substrate, due to the active layer and the substrate The better lattice matching between the two causes the defect to be greatly reduced by J, so that the quality of the active layer of the selenium can be greatly improved, and the photoelectric characteristics of the selenium-producing active a can be enhanced to further improve the responsiveness of the photodetector, and It can reduce the noise power of the noise and obtain a higher detection rate. In a preferred embodiment of the present invention, the detection rate of the photodetector can be improved by the heterogeneous (tetra) crystallized photodetector 4 2X1W of the crucible, and the invention is replaced by a zinc selenide substrate to replace the 7 7xl〇u cmHzG 5W. -1. The present invention has been described above in terms of a preferred embodiment, and it is not intended to be limited to the scope of the present invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS A first schematic diagram is a perspective view of a photodetector in accordance with a preferred embodiment of the present invention. Figure 2 is a top view of the photodetector of Figure 1. Figure 3 is a HRXRD analysis diagram of a homogeneous epitaxial zinc selenide active layer in a photodetector in accordance with a preferred embodiment of the present invention. Figure 4 is a diagram showing the PL spectrum of the homogeneous amorphous zinc selenide active reed in the light detection 14 1281267 according to a preferred embodiment of the present invention. Fig. 5 is a diagram showing the Haii measurement of the active epitaxial zinc selenide active layer in a photodetector according to the embodiment of Taisu Day. Figure 6 is a diagram showing a voltage-current diagram of a photodetector in accordance with a preferred embodiment of the present invention. Figure 7 is a diagram showing the photoresponse of a photodetector in accordance with a preferred embodiment of the present invention. Figure 8 is a low frequency noise diagram of a photodetector in accordance with a preferred embodiment of the present invention. [Description of main component symbols] 100 : Photodetector 102 : Zinc SiC substrate 104 : Zinc SiC active layer 106 : Electrode 108 : Electrode 110 : Active region 112 : Joint portion 114 : Finger 116 : Joint portion 118 : Finger 120 : Width 122 : Width 124 : Finger distance 15

Claims (1)

1281267 Θ年弓月y日修读:)正本 十、申請專利範圍 1 · 一種光檢測器,至少包括: 一石西化鋅(SeZn)基板; 硒化辞主動層位於該砸化鋅基板上,其中該硒化鋅 主動層係以同質蟲晶方式成長於該硒化辞基板上; 第一電極位於該硒化鋅主動層之一第一部分上;以 及 第一電極位於該硒化辞主動層之一第二部分上,其 中該第一電極與該第二電極分開。 2_如申請專利範圍第1項所述之光檢測器,其中該 硒化辞主動層為一 η型摻雜之磊晶層。 3 ·如申睛專利範圍第2項所述之光檢測器,其中該 硒化鋅主動層具有一 η型摻質,且該η型摻質係選自於由 虱(ci)、碘(I)以及銦(Ιη)所組成之一族群。 4.如申請專利範圍第1項所述之光檢測器,其中該 石西化辞主動層為一未摻雜之蠢晶層。 5·如申請專利範圍第1項所述之光檢測器,其中該 石西化辞主動層之厚度介於實質1 // m至實質2 // m之間。 16 1281267 6·如申請專利範圍第1項所述之光檢測器,其中該 第一電極與該第二電極之材質係一透明導電材料。 7·如申請專利範圍第6項所述之光檢測器,其中該 透明導電材料係選自於由氧化銦錫(ΙΤΟ)、氧化銦辞 (ΙΖΟ)、摻雜!S之氧化辞(Zn〇:Al,ΑΖΟ)以及鈦鎢合金(Tiw) 所組成之一族群。 8 ·如申睛專利範圍第1項所述之光檢測器,其中該 第一電極為一第一指狀結構,該第二電極為一第二指狀結 構,且該第一指狀結構具有一第一接合部以及複數個第一 指部’該第二指狀結構具有一第二接合部以及複數個第二 指部’而該些第一指部之一端連接至該第一接合部,該些 第二指部之一端連接至該第二接合部。 9·如申請專利範圍第8項所述之光檢測器,其中該 第一指狀結構與該第二指狀結構呈指叉狀排列,且該些第 才曰。卩與a亥些第二指部定義出一主動區域。 10·如申請專利範圍第9項所述之光檢測器,其中該 主動區域之面積實質等於200x200 # m2。 11 ·如申睛專利範圍第10項所述之光檢測器,其中 每一該些第一指部與每一該些第二指部的指寬實質等於 17 1281267 1 〇 # m 〇 1 2.如申請專利範圍第11項所述之光檢測器,其中 每一該些第一指部與相鄰之該呰第二指部之間的距離實 質等於10μ m。 1 3.如申請專利範圍第8項所述之光檢測器,更至少 包括二銲接接觸墊分別位於該第一接合部與該第二接合 部上,其中該些銲接接觸墊之材質為金膜。 14·如申請專利範圍第9項所述之光檢測器,其中該 些銲接接觸墊之厚度實質等於1//m〇 15·如申請專利範圍第1項所述之光檢測器,其中該 第一電極與該第二電極之厚度介於實質8〇nrn與實質 1 20nm之間。 1 6· —種光檢測器之製造方法,至少包括: 提供一硒化辞基板; 同質蠢晶成長一碼化鋅主動層於該硒化鋅基板上;以 及 形成一第一電極與一第二電極分別位於該硒化辞主 動層之-第-部分與一第二部分上,其中該第一電極與該 第二電極分開。 1281267 1 7.如申請專利範圍第1 $項所述之光檢測器之製造 方法’其中同質磊晶成長該硒化鋅主動層之步驟至少包括 利用一電子束磊晶製程。 1 8·如申請專利範圍第1 7項所述之光檢測器之製造 # ’务’其中該電子束磊晶製程至少包括使用複數個來源材 料’且該些來源材料至少包括辞以及硒。 1 9·如申請專利範圍第1 7項所述之光檢測器之製造 方去’其中該電子束磊晶製程至少包括使用一 η型摻雜源 以及一載氣’且該η型摻雜源係選自於氯化鋅(ZnCl2)、 各峨材料以及含銦材料所組成之一族群,而該載氣至少包 括氫氣。1281267 The following year's bow month y day:) original ten, patent application range 1 · A photodetector, including at least: a stone zinc dioxide (SeZn) substrate; selenium chemical active layer is located on the zinc telluride substrate, wherein the selenium The zinc active layer is grown on the selenization substrate by a homogenous insect crystal; the first electrode is located on a first portion of the active layer of the zinc selenide; and the first electrode is located at one of the active layers of the selenization layer In part, wherein the first electrode is separated from the second electrode. The photodetector of claim 1, wherein the selenium-active layer is an n-type doped epitaxial layer. 3. The photodetector of claim 2, wherein the zinc selenide active layer has an n-type dopant, and the n-type dopant is selected from the group consisting of bismuth (ci) and iodine (I). And a group of indium (Ιη). 4. The photodetector of claim 1, wherein the actinic active layer is an undoped stupid layer. 5. The photodetector of claim 1, wherein the thickness of the active layer of the stone is between 1 // m and 2 // m. The photodetector of claim 1, wherein the material of the first electrode and the second electrode is a transparent conductive material. 7. The photodetector of claim 6, wherein the transparent conductive material is selected from the group consisting of indium tin oxide (yttrium), indium oxide (ΙΖΟ), doping! A group consisting of the oxidation of S (Zn〇: Al, ΑΖΟ) and the titanium-tungsten alloy (Tiw). The photodetector of claim 1, wherein the first electrode is a first finger structure, the second electrode is a second finger structure, and the first finger structure has a first joint portion and a plurality of first finger portions' the second finger structure has a second joint portion and a plurality of second fingers portion, and one of the first finger portions is connected to the first joint portion, One of the second fingers is connected to the second joint. 9. The photodetector of claim 8, wherein the first finger structure and the second finger structure are arranged in an interdigitated shape, and the first plurality of electrodes are arranged.卩 and a Hai second finger define an active area. 10. The photodetector of claim 9, wherein the active area has an area substantially equal to 200 x 200 #m2. The photodetector of claim 10, wherein the finger width of each of the first fingers and each of the second fingers is substantially equal to 17 1281267 1 〇# m 〇1 2. The photodetector of claim 11, wherein a distance between each of the first fingers and the adjacent second finger is substantially equal to 10 μm. The photodetector of claim 8, further comprising at least two soldering contact pads on the first joint portion and the second joint portion, wherein the solder contact pads are made of a gold film . 14. The photodetector of claim 9, wherein the thickness of the solder contact pads is substantially equal to 1//m 〇 15. The photodetector of claim 1, wherein the The thickness of one electrode and the second electrode is between substantially 8 〇 nrn and substantially 1 20 nm. The invention relates to a method for manufacturing a photodetector, comprising: providing a selenium substrate; homogenously growing a zinc oxide active layer on the zinc selenide substrate; and forming a first electrode and a second The electrodes are respectively located on a - part and a second part of the selenization active layer, wherein the first electrode is separated from the second electrode. 1281267 1 7. The method of fabricating a photodetector as described in claim 1 wherein the step of homoepitaxially growing the zinc selenide active layer comprises at least an electron beam epitaxy process. 18. The manufacture of a photodetector as described in claim 17 wherein the electron beam epitaxy process comprises at least a plurality of source materials' and the source materials comprise at least a word and selenium. The manufacturing method of the photodetector described in claim 17 wherein the electron beam epitaxial process comprises at least using an n-type dopant source and a carrier gas and the n-type dopant source It is selected from the group consisting of zinc chloride (ZnCl2), each tantalum material, and an indium-containing material, and the carrier gas includes at least hydrogen. 2〇·如申晴專利範圍第1 9項所述之光檢測器之製造 方去,其中該電子束磊晶製程之一反應溫度實質上控制在 3〇0〇C 〇 、2丨·如申請專利範圍第2〇項所述之光檢測器之製造 方法’其中該η型摻雜源之一溫度實質上控制纟ι〇〇。。。 22·如申請專利範圍第16項所述之光檢測器之製造 方法,其中同質遙晶成長該石西化辞主動層之步驟至少包括 19 1281267 使用一有機金屬化學氣相沉積(MOCVD)製程或_脈衝雷 射沉積(PLD)製程。 23·如申請專利範圍第1 6項所述之光檢測器之製造 ' 方法,其中該硒化鋅主動層為一 η型摻雜之磊晶層。 24·如申請專利範圍第16項所述之光檢測器之製造 _ 方法,其中該硒化鋅主動層為一未摻雜之磊晶層。 25·如申請專利範圍第16項所述之光檢測器之製造 方法,其中該硒化鋅主動層之厚度介於實質1//m至實質 . 2 // m之間。 26·如申請專利範圍第16項所述之光檢測器之製造 方法,其中於同質磊晶成長該硒化辞主動層之步驟與形成 忒第一電極與該第二電極之步驟之間,更至少包括對該硒 ® 化鋅基板與戎硒化鋅主動層之結構進行一清潔處理,且該 清潔處理至少包括: 將該硒化辞基板與該硒化辞主動層之結構浸入一鹽 酸稀釋液中並持續一第一時間; 將該硒化鋅基板與該硒化辞主動層之結構浸入一氧 化緩衝蝕刻液(BOE)中並持續一第二時間; 利用丙酮進行一第一清洗步驟並持續一第三時間; 利用甲醇進行一第二清洗步驟並持續—第四時間;以 20 !281267 及 &用水進4亍帛二清洗步驟並持續一第五時間。 、27·如申請專利範圍帛%㈣述之光檢測器之製造 ^ ’、中亥第時間實質等於1分鐘,該第二時間實質 等於1分鐘,該第二日卑鬥容挤μ 卜 示—日守間貫質等於5分鐘,該第四時間實 質專於5分鐘,且士女结τ «亥第五吩間實質等於5分鐘。 、28·如申凊專利範圍第1 6項所述之光檢測器之製造 方法,其中該第一電極與該第二電極之材質係一透明導電 材料。 29·如申請專利範圍第16項所述之光檢測器之製造 方法’其中該第一電極與該第二電極之材質係係選自於由 氧化鋼錫、氧化銦鋅、摻雜鋁之氧化鋅以及鈦鎢合金所組 成之一族群。 3 0·如申請專利範圍第16項所述之光檢測器之製造 方法’其中形成該第一電極與該第二電極之步驟至少包 括: 形成一光阻層位於部分之該硒化鋅主動層上,其中該 光阻層具有一電極圖案結構而暴露出另一部分之該硒化 鋅主動層; 沉積一電極材料層位於該光阻層以及該硒化辞主動 21 1281267 層之該暴露部分上;以及 ^行-掀除步驟,^移除該緣層以及位於該光阻 該電極材料層,並留下位於該硒化鋅主動層 路。卩分上之該電極材料層。 /1·如申請專利範圍第3〇項所述之光檢測器之製造 。法,其中沉積該電極材料層之步驟係利用一磁控濺鍍 程。 . 、 32·如申請專利範圍第31項所述之光檢測器之製造 方法’其中該磁控濺鍍製程至少包括: —使用一濺鍍來源氣體,其中該濺鍍來源氣體至少包括 氬氣,且該濺鍍來源氣體之流率控制在實質等於l〇sccm ; 控制一反應壓力介於實質5mTorr至實質i〇mT〇rr之 間;以及 控制一反應功率介於實質40W至實質100W之間。 33·如申請專利範圍第31項所述之光檢測器之製造 方法’其中該第一電極與該第二電極之材質為氧化錮錫, 且該磁控濺鍍製程更至少包括使用一氧化銦錫靶材,而該 氧化銦錫靶材之成分為包括90%之氧化銦(11^〇3)與10〇/〇 之氣化錫(Sn02)。 34·如申請專利範圍第1 6項所述之光檢測器之製造 22 1281267 方法’其中該第一電極與該第二電極之厚度介於實質 SOnm與實質i2〇nm之間。 35·如申請專利範圍第16項所述之光檢測器之製造 方法,其中該第一電極為一第一指狀結構,該第二電極為 一第二指狀結構,且該第一指狀結構具有一第一接合部以 及複數個第一指部,該第二指狀結構具有一第二接合部以 及複數個第二指部,而該些第一指部之一端連接至該第一 接合部,該些第二指部之一端連接至該第二接合部。 3 6·如申請專利範圍第35項所述之光檢測器之製造 方法’其中該第一指狀結構與該第二指狀結構呈指叉狀排 列’該些第一指部與該些第二指部定義出一主動區域。 3 7·如申請專利範圍第36項所述之光檢測器之製造 方法’其中該主動區域之面積實質等於2〇〇x2〇〇 # m2。 38.如申請專利範圍第37項所述之光檢測器之製造 方法,其中每一該些第一指部與每一該些第二指部的指寬 實質等於1 0 // m。 39·如申請專利範圍第38項所述之光檢測器之製造 方法,其中每一該些第一指部與相鄰之該些第二指部之間 的距離實質等於l〇//m。 23 1281267 40·如申請專利範圍第35項所述之光檢測器之製造 方法’其中於形成該第一電極與該第二電極後,更至少包 化成一銲接接觸塾分別位於該第/接合部與該第二接 s。卩上’其中該些銲接接觸墊之材質為金膜。 41·如申請專利範圍第40項所述之光檢測器之製造 方去,其中該些銲接接觸墊之厚度實質等於丨^❿。 42.如巾凊專利錢第40項所述之光檢測器之製造 方法,其中每-該些録接接觸塾係、利n線與—金屬封 裝殼(ΤΟ-CAN)電性連接。 242〇· The manufacturer of the photodetector described in the ninth patent scope of Shen Qing, wherein the reaction temperature of one of the electron beam epitaxial processes is substantially controlled at 3〇0〇C 〇, 2丨·If applying The method of manufacturing a photodetector according to the second aspect of the invention, wherein the temperature of one of the n-type doping sources substantially controls 纟ι〇〇. . . The method of manufacturing a photodetector according to claim 16, wherein the step of growing the lithospheric active layer by homogenous crystal growth comprises at least 19 1281267 using an organometallic chemical vapor deposition (MOCVD) process or Pulsed laser deposition (PLD) process. 23. The method of fabricating a photodetector according to claim 16 wherein the zinc selenide active layer is an n-type doped epitaxial layer. The method of manufacturing a photodetector according to claim 16, wherein the zinc selenide active layer is an undoped epitaxial layer. The method of manufacturing a photodetector according to claim 16, wherein the thickness of the zinc selenide active layer is between 1//m and substantially 2 // m. The method of manufacturing a photodetector according to claim 16, wherein the step of growing the selenization active layer by homoepitaxial epitaxy and the step of forming the first electrode and the second electrode are further The method further includes at least cleaning the structure of the selenium zinc-zinc substrate and the zinc-selenide active layer, and the cleaning process comprises at least: immersing the structure of the selenium substrate and the selenium-promoting active layer into a hydrochloric acid diluent And continuing for a first time; immersing the structure of the zinc selenide substrate and the selenization active layer in an oxidizing buffer etchant (BOE) for a second time; performing a first cleaning step with acetone and continuing A third time; a second cleaning step with methanol is continued for a fourth time; a cleaning step of 20:281267 and & water is used for a fifth time. 27) If the scope of application for patents 帛% (4) the manufacture of the photodetector ^', the time of the middle of the sea is substantially equal to 1 minute, the second time is substantially equal to 1 minute, the second day of the barn is crowded μ - The day-to-day quality is equal to 5 minutes, the fourth time is actually devoted to 5 minutes, and the woman's knot τ «Hai fifth is essentially equal to 5 minutes. The method of manufacturing a photodetector according to claim 16, wherein the material of the first electrode and the second electrode is a transparent conductive material. The method for manufacturing a photodetector according to claim 16, wherein the material of the first electrode and the second electrode is selected from the group consisting of oxidized steel tin, indium zinc oxide, and aluminum doped oxidation. A group of zinc and titanium tungsten alloys. The method of manufacturing the photodetector according to claim 16 wherein the step of forming the first electrode and the second electrode comprises: forming a photoresist layer in a portion of the active layer of zinc selenide Wherein the photoresist layer has an electrode pattern structure to expose another portion of the zinc selenide active layer; depositing an electrode material layer on the photoresist layer and the exposed portion of the selenization layer active 21 1281267 layer; And removing the edge layer and the layer of the electrode material located in the photoresist, and leaving the active layer of the zinc selenide. The layer of electrode material is divided. /1· Manufacture of a photodetector as described in claim 3 of the patent application. The method wherein the step of depositing the layer of electrode material utilizes a magnetron sputtering process. The method of manufacturing a photodetector according to claim 31, wherein the magnetron sputtering process comprises at least: - using a sputtering source gas, wherein the sputtering source gas comprises at least argon gas, And the flow rate of the sputtering source gas is controlled to be substantially equal to l〇sccm; the control one reaction pressure is between substantially 5 mTorr and the substantial i〇mT〇rr; and the control one reaction power is between substantially 40 W and substantially 100 W. 33. The method of manufacturing a photodetector according to claim 31, wherein the first electrode and the second electrode are made of antimony tin oxide, and the magnetron sputtering process comprises at least using indium oxide. A tin target, and the indium tin oxide target is composed of 90% indium oxide (11^〇3) and 10〇/〇 of vaporized tin (Sn02). 34. The manufacture of a photodetector as described in claim 16 of the patent application 22 1281267 Method wherein the thickness of the first electrode and the second electrode is between substantially SOnm and substantially i2 〇 nm. The method of manufacturing the photodetector of claim 16, wherein the first electrode is a first finger structure, the second electrode is a second finger structure, and the first finger shape The structure has a first joint portion and a plurality of first finger portions, the second finger structure has a second joint portion and a plurality of second fingers, and one end of the first fingers is connected to the first joint One end of the second fingers is connected to the second joint. The method of manufacturing a photodetector according to claim 35, wherein the first finger structure and the second finger structure are arranged in an interdigitated shape, the first finger portions and the first The two fingers define an active area. 3 7. The method of manufacturing a photodetector as described in claim 36, wherein the area of the active region is substantially equal to 2 〇〇 x 2 〇〇 # m2. 38. A method of fabricating a photodetector according to claim 37, wherein the finger width of each of the first fingers and each of the second fingers is substantially equal to 10 // m. The method of manufacturing a photodetector according to claim 38, wherein a distance between each of the first fingers and the adjacent second fingers is substantially equal to l〇//m. The method for manufacturing a photodetector according to claim 35, wherein after forming the first electrode and the second electrode, at least a solder contact is formed at the first/joining portion. With the second connection s. The material of the solder contact pads is a gold film. 41. The manufacture of photodetectors as described in claim 40, wherein the thickness of the solder contact pads is substantially equal to 丨^❿. 42. A method of fabricating a photodetector according to claim 40, wherein each of the recording contact contacts, the n-line and the metal package (ΤΟ-CAN) are electrically connected. twenty four
TW94111075A 2005-04-07 2005-04-07 Photodetector and method for manufacturing the same TWI281267B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94111075A TWI281267B (en) 2005-04-07 2005-04-07 Photodetector and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94111075A TWI281267B (en) 2005-04-07 2005-04-07 Photodetector and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200637021A TW200637021A (en) 2006-10-16
TWI281267B true TWI281267B (en) 2007-05-11

Family

ID=38741679

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94111075A TWI281267B (en) 2005-04-07 2005-04-07 Photodetector and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI281267B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI392857B (en) * 2010-04-19 2013-04-11 Univ Kun Shan Transparent photodetector with multilayer structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009159A1 (en) 2009-07-20 2011-01-27 Bt Imaging Pty Ltd Separation of doping density and minority carrier lifetime in photoluminescence measurements on semiconductor materials
CN113735159B (en) * 2021-07-22 2023-10-13 中科院广州化学有限公司 Acetone selective response material with ZnO/ZnSe heterojunction structure, and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI392857B (en) * 2010-04-19 2013-04-11 Univ Kun Shan Transparent photodetector with multilayer structure

Also Published As

Publication number Publication date
TW200637021A (en) 2006-10-16

Similar Documents

Publication Publication Date Title
Zheng et al. High-Responsivity Solar-Blind Photodetector Based on $\hbox {Mg} _ {0.46}\hbox {Zn} _ {0.54}\hbox {O} $ Thin Film
TWI440220B (en) Semiconductor light emitting element and manufacturing method of semiconductor light emitting element
US8748903B2 (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting element
US9755089B2 (en) Solar cell and method for manufacturing the same
JP2011061197A (en) Solar cell, and method of manufacturing the same
JP2008235877A (en) Solar cell and manufacturing method therefor
TW201251079A (en) Photon recycling in an optoelectronic device
RU2547004C1 (en) FABRICATION OF GaAs-BASED PHOTO INVERTER
FR2546665A1 (en) III-V TERNARY MULTICHROMATIC SOLAR CELLS
US8507307B2 (en) Group IIB/VA semiconductors suitable for use in photovoltaic devices
TWI281267B (en) Photodetector and method for manufacturing the same
JPH10308534A (en) Light transmitting electrode for light emitting semiconductor element and its manufacture
KR20130030840A (en) Semi-conductor optoelectronic dcvice and method for manufacturing the same
JP5779005B2 (en) Ultraviolet light receiving element and manufacturing method thereof
Miyoshi et al. Improved epilayer qualities and electrical characteristics for GaInN multiple-quantum-well photovoltaic cells and their operation under artificial sunlight and monochromatic light illuminations
US8440476B2 (en) Method for producing zinc oxide-based semiconductor light-emitting device and zinc oxide-based semiconductor light-emitting device
TWI380474B (en)
JP5987127B1 (en) Photovoltaic power generation element and manufacturing method thereof
JPH1012903A (en) Photoelectric transducer
TW201719914A (en) Photovoltaic element and method for manufacturing same
JP2009130012A (en) Photodetector for ultraviolet and method for manufacturing the same
JP5131249B2 (en) Thin film solar cell
JP3657096B2 (en) GaAs solar cell
JP7002126B2 (en) Semiconductor devices, semiconductor device manufacturing methods, infrared photoelectric conversion elements, infrared detection elements, and infrared light emitting elements
JP2004311970A (en) Stacked photovoltaic element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees