TWI280713B - Multiple resonator and variable-wavelength light source using the same - Google Patents

Multiple resonator and variable-wavelength light source using the same Download PDF

Info

Publication number
TWI280713B
TWI280713B TW094146090A TW94146090A TWI280713B TW I280713 B TWI280713 B TW I280713B TW 094146090 A TW094146090 A TW 094146090A TW 94146090 A TW94146090 A TW 94146090A TW I280713 B TWI280713 B TW I280713B
Authority
TW
Taiwan
Prior art keywords
resonator
waveguide
wavelength
ring
variable
Prior art date
Application number
TW094146090A
Other languages
Chinese (zh)
Other versions
TW200631267A (en
Inventor
Kouichi Suzuki
Hiroyuki Yamazaki
Original Assignee
Nec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corp filed Critical Nec Corp
Publication of TW200631267A publication Critical patent/TW200631267A/en
Application granted granted Critical
Publication of TWI280713B publication Critical patent/TWI280713B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0637Integrated lateral waveguide, e.g. the active waveguide is integrated on a substrate made by Si on insulator technology (Si/SiO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An external resonator which includes a multiple resonator with parameters which allow stable wavelength control, and a variable-wavelength light source includes such an external resonator are provided. The external resonator is a multiple resonator which is made up of first to third ring-shaped resonators, each having different light path length, and connected in series via optical coupling means. The parameters of the multiple resonator are characterized in that all the following expressions (1), (2) and (3) hold: L1={M1/(M1-1L0 ... (1); L2={M2/(M2-1L0 ... (2); M2-1=(M1-1)<2> ... (3). Where L0 is the light path length of the first resonator, L1 is the light path length of the second resonator and L2 is the light path length of the third resonator, and M1 and M2 are integers of 3 or greater.

Description

w 1280713 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種用於光源多工傳輸系統如波長分 割多工轉換(Wavelength Division Multiplexing,WDM) 傳輸系統之多重諧振器及可變波長光源,特別是關於一種 藉由參數以穩定控制振盪波長之多重諧振器以及使用前述 多重諧振器之可變波長光源。 •【先前技術】 隨著寬頻通訊的增加,藉由波長分割多工轉換 (Wavelength Division Multiplexing,下文簡稱 WDM)傳 輸系統的引入,在單一系統中能使用多種波長通訊,這項 技術增加了光纖的使用效率,近年來,更廣為使用稠密波 長分割多工轉換(Dense Wavelength Division Multiplexing,下文簡稱DWDM)傳輸系統,該技術多工多 籲種光波長以達到快速傳輸。WDM傳輸系統中需要具有不同 波長並且數量不同之光源,這樣的需求大大的增加了多工 的層級,另外,可在任一節點隨意增加/刪減波長的可調式 光塞取多工器(Rec〇nfigurable 〇ptical Add/Dr〇pw 1280713 IX. Description of the Invention: [Technical Field] The present invention relates to a multiple resonator and variable wavelength for a light source multiplex transmission system such as a Wavelength Division Multiplexing (WDM) transmission system A light source, particularly a multi-resonator that uses parameters to stably control the oscillation wavelength and a variable wavelength source that uses the aforementioned multiple resonators. • [Prior Art] With the increase of broadband communication, the introduction of Wavelength Division Multiplexing (WDM) transmission system enables the use of multiple wavelength communication in a single system. This technology increases the fiber optic In terms of efficiency of use, in recent years, Dense Wavelength Division Multiplexing (DWDM) transmission system has been widely used, which multiplexes multiple optical wavelengths for fast transmission. In a WDM transmission system, a light source with different wavelengths and different numbers is required, and such a requirement greatly increases the multiplex level. In addition, an adjustable optical plug multiplexer can be added/deleted at any node at will (Rec〇 Nfigurable 〇ptical Add/Dr〇p

Multiplexers,下文簡稱R〇AM)在最近被引入都市之間的 通訊,R0ADM系統不只藉由多工擴充了傳輸的能力,更藉 由改變波長,允許在交換時改變光路徑,這增加了在光網 路中路由的自由度。 做為™1傳輸系統中的光源,執行縱向信號模式的分 7061-7653-PF;Ahddub 6 1280713 政式迴饋雷射二極體(Distributed Feedback User i ode下文間稱j)FB-LD)由於其易於使用以及高可靠度已 廣於應用,該DFB-LD包括衍射閘極,其在諧振器的整片區 域上形成約3〇nm的深度,用於獲得穩定之縱向信號模式振 盪,其具有和衍射閘極之週期及兩倍之等價衍射係數的乘 積對應的波長,但是,當超過振盪波長的範圍時,該d{?b 一 α 不能進行諧振,因此,在建構WDM傳輸系統時,需要使用 # DFB—LD產品,其振盪出和預設之頻率的每個ITU極板網柵 對應之波長,因此,包含備用以避免故障之不同型態的產 品需要另外儲存以提供系統的操作,這會增加搁板控制的 成本,另外,有了 DFB-LD,可變波長的範圍將大約限制在 3nm,其可受溫度變化可改變,因此,實際之r〇adm系統由 固定波長之光源以及波長控制裝置所建構,為了這個原 因,希望在R0ADM系統中導入可變波長光源,並且在波長 控制上能大大地增力口自由度。Multiplexers (hereinafter referred to as R〇AM) have recently been introduced into communication between cities. The R0ADM system not only expands the transmission capability by multiplexing, but also changes the wavelength, allowing the light path to be changed during switching, which increases in light. The freedom of routing in the network. As a light source in the TM1 transmission system, the vertical signal mode is divided into 7061-7653-PF; Ahddub 6 1280713 is a reactive feedback user (hereinafter referred to as j) FB-LD) due to its Easy to use and high reliability has been widely used, the DFB-LD includes a diffractive gate that forms a depth of about 3 〇 nm over the entire area of the resonator for obtaining stable longitudinal signal mode oscillation with The wavelength of the period of the diffraction gate and the product of twice the equivalent diffraction coefficient, but when the range of the oscillation wavelength is exceeded, the d{?b-α cannot resonate, and therefore, when constructing the WDM transmission system, it is required Using the # DFB-LD product, it oscillates the wavelength corresponding to each ITU plate grid at a preset frequency, so products that contain spares to avoid different types of faults need to be additionally stored to provide system operation, which will Increase the cost of shelf control. In addition, with DFB-LD, the variable wavelength range will be limited to approximately 3 nm, which can be changed by temperature changes. Therefore, the actual r〇adm system consists of a fixed-wavelength source. Wavelength control means constructed, for this reason, be desirable to introduce a variable wavelength light source R0ADM system, and can greatly increase the force opening degree of freedom in the wavelength control.

為了使DFB-LD克服上述問題,並且確保縱向信號模^ 在更寬的範圍之内振盪,具有可變波長光源之可變波長售 射持續被研究,這些技術可以參考非專利文件 Kobayashi,“積體光源裝置,,,第一版,第二刷,^〇以^ SHUPPAN CO. ’ LTD·,2000 年 12 月,p1〇2-122),下面網 討論習知之可變波長雷射。 ^ 可變波長雷射大約可分成兩種類型,其中-種可變波 長雷射機制在雷射元件中,另一種可變波長雷射機制在 射元件之外。 7061-7653-PF;Ahddub 7 1280713 在前者之中,習知之分散式布拉格反射鏡雷射二極體 (Distributed Bragg Reflector Laser Diode,下文簡稱 DBR-LD)包括用以產生增益的主動區域以及藉由衍射閘裝 置以產生反射的DBR區域,主動區域以及dbr區域形成在 同樣的雷射元件上,該DBR-LD的可變波長最大約為1〇nm。 另一種DBR-LD使用不一致衍射閘,包括用以產生增益的主 動區域以及DBR區域’該DBR區域的前部以及後部夾住主 _ 動區域,而主動區域以及DBR區域形成在同樣的雷射元件 上’在DBR區域的前部以及後部由於不一致衍射閑會產生 多個反射尖端,和前部以及後部之間,反射尖端之值會有 些微的差異,這種結構產生稱為,,游標效應,,,其提供了 較寬廣的可變波長範圍,使用不一致衍射閘之DBR—LD可確 保操作時的可變波長會超過100nm且有4〇nm的似連續可變 波長。 另一方面,在後者中,可變波長雷射用於轉動在雷射 •元件之外的衍射閘,並且發射特定波長之光源至雷射元件。 嶋很多結構用在習知之可變波長雷射巾,但依然 有缺點,例如,被稱做”模式跳出,,的安全穩定性問題, 當波長切換時將需求波長切換到不需要之波長,會複雜化 波長控制方法、衰弱振動阻抗或者由於增加元件引起的高 成本’因此,該情況不適宜出發在習知之可變波長雷射通 射中。 臟-LD射入媒介物到職區域之中以改變該區域中的 折射率並且確定可變波長操作,因此,當晶㈣測藉由電 8 7061-7653-PF;Ahddub 1280713 力口 gdb,, 一 、 、率會隨著電源改變而劇烈變動,因此,在 —長時間中’維持雷射在固定波長震i是困難的。另外, (· 英寸或者使用實際半導體的混合製程實現的,,升高 •一 P)疋不可忐的,因此,越複雜的使用大體積的雷 射元件將大大的增加成本。 另一方而 一 曲’在雷射元件之外提供可變波長機制的架 構由於變化模式跳出,,依舊會發生,因此,需要加入 _額外的防震機制,這將會增加模組的體積以及成本。 【發明内容】 有鑑於此,本發明的一目的在於提供一種高可靠度、 兩完成度且低成本的多重諧振器,其能解決習知可變波長 田射使用時的問題,以及使用前述多重諧振器之可變波長 光源。本發明提供一種外接諧振器,其具有三個諧振器結 構,包含用以穩定波長控制之參數;以及一可變波長光源, # 包含和外接諧振器連結之光源產生裝置,其在光回饋機構 中具有複數如析光(etalon)濾波器以及PLC型環型諧振器 之環型架構以及如半導體光放大器(s〇A)之光學放大器。 本發明之外接諧振器由具有不同之光路徑長度的第_ 到第二相振器由光搞接裝置以串聯方式組成,本發明的特 徵在於下列的數學式&lt;1&gt;、&lt;2&gt;以及&lt;3&gt; : L1={M1/(M1-1)}L0…&lt;1&gt; L2 = {M2/(M2-1)}L0··· &lt;2&gt; M2-1=(M1-I)2…&lt;3&gt; 7061—7653_PF;Ahddub 9 1280713 其中L0為第一諧振器的 时认,a 70格^工長度,L1為第二諧振 裔的光路徑長度,L2為第三諧择哭沾上A 、 一振态的先路徑長度,以及Ml 以及M2為大於3的整數。 此外,環譜振由且古π m , A 、白派盗由具有不同光路徑長度的環型導波管 組成’每個諧振器可為下列 / ~ r〜咱搌窃中的任一個如··析光 (etalon)滤波5§ 、府古—古 # yL '、仏干涉儀(Mach-Zehader interferometer)以及雙折射晶體。 可變波長光源藉由該多重譜振器組成的外接諧振器建 構成、’輸人/輸出側波導f及反射側波導管位在基座的一 端並且提供一光反射鏡在基座的反射側波導管的另一 端’藉由非反射薄膜,提供—光學輸人/輸出單元在輸入/ 輸出側波導管的另-端’另外’經由多重譜振器裝置,該 可變波長單元用以改變可波長光源的共振波長。 組成多重諧振器之每個諧振器由具有自由波長間距 (Free Spectral Range,FSR),即每個光路徑長度有些微 、不同因此,相當大量的光傳輸發生在光傳輸之週期變 化和對應之諧振器相匹配的波長(諧振器波長)。 本發明之多重諧振器由具有不同之光路徑長度的複數 譜振器串聯組成,並且有效地使用由此方式產生的游標效 應s可變光源由滿足上述之數學式〈1&gt;、〈2&gt;以及〈3&gt;之多 重諧振器組成,在振盪路徑以及可調路徑上的傳輸損失差 益(在下文簡稱為,,模式增益差值,,)會成為最大值,本發 明藉由上述方式減少模式增益差值,並藉此達到穩定可變 波長操作。 7〇61-7653-PF;Ahddub 10 1280713 ’本發明的其它目標、特 一到第三諧振器,每一個 ’並和連接到光學耦接裝 配合所附圖式以下文作說明 徵及優點將可見如下。 【實施方式】 本發明的多重諧振器包括第 谐振器都具有不同的光路徑長度 在下面的實施例中利用環型諧振器來做說明 置。另外In order for the DFB-LD to overcome the above problems and to ensure that the longitudinal signal mode oscillates over a wider range, variable wavelengths of sale with variable wavelength sources continue to be investigated. These techniques can be found in the non-patent document Kobayashi, "product. The body light source device,, first edition, second brush, ^〇 to ^ SHUPPAN CO. 'LTD·, December 2000, p1〇2-122), the following discussion of the conventional variable wavelength laser. ^ Variable-wavelength lasers can be divided into two types, of which a variable-wavelength laser mechanism is in the laser element and another variable-wavelength laser mechanism is outside the element. 7061-7653-PF; Ahddub 7 1280713 Among the former, the conventional distributed Bragg Reflector Laser Diode (hereinafter referred to as DBR-LD) includes an active region for generating a gain and a DBR region for generating reflection by a diffraction gate device. The active region and the dbr region are formed on the same laser element, and the variable wavelength of the DBR-LD is at most about 1 〇 nm. Another DBR-LD uses an inconsistent diffractive gate, including an active region for generating a gain, and The DBR area 'the front and the rear of the DBR area sandwich the main-action area, and the active area and the DBR area are formed on the same laser element. 'In the front and rear of the DBR area, multiple reflections occur due to inconsistent diffraction. The tip, and between the front and the back, the value of the reflective tip is slightly different. This structure produces a so-called, vernier effect, which provides a wide variable wavelength range, using DBR with inconsistent diffractive gates. - LD ensures that the variable wavelength during operation will exceed 100 nm and has a continuously variable wavelength of 4 〇 nm. On the other hand, in the latter, variable wavelength lasers are used to rotate diffraction outside the laser element Brake and emit a specific wavelength of light source to the laser element. Many structures are used in conventional variable wavelength laser towels, but still have disadvantages, for example, called "mode jumpout," safety stability issues, when wavelength Switching the required wavelength to an unwanted wavelength during switching can complicate the wavelength control method, debilitating vibration impedance, or high cost due to increased components. Therefore, this situation is uncomfortable. Starting in the conventional variable wavelength laser shot through. Dirty-LD is injected into the medium to the medium to change the refractive index in the area and determine the variable wavelength operation. Therefore, when the crystal (4) is measured by the electric 8 7061-7653-PF; Ahddub 1280713, the force gdb, First, the rate will change drastically with the change of power supply. Therefore, it is difficult to maintain the laser at a fixed wavelength for a long time. In addition, (· inches or a hybrid process using actual semiconductors, the rise • a P) is unavoidable, so the more complicated the use of large-volume laser components will greatly increase the cost. On the other hand, a frame that provides a variable wavelength mechanism outside the laser element will still occur due to the change mode. Therefore, an additional anti-shock mechanism needs to be added, which will increase the size and cost of the module. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a multi-resonator with high reliability, two degrees of completion, and low cost, which can solve the problems in the use of the conventional variable wavelength field, and the use of the aforementioned multiple A variable wavelength light source for a resonator. The present invention provides an external resonator having three resonator structures including parameters for stabilizing wavelength control, and a variable wavelength light source, #includes a light source generating device coupled to an external resonator, in the optical feedback mechanism A ring type structure having a plurality of etalon filters and a PLC type ring type resonator, and an optical amplifier such as a semiconductor optical amplifier (s〇A). The external resonator of the present invention is composed of the first to second phase resonators having different optical path lengths in series by the optical pickup device, and the present invention is characterized by the following mathematical expressions &lt;1&gt;, &lt;2&gt; And &lt;3&gt; : L1={M1/(M1-1)}L0...&lt;1&gt; L2 = {M2/(M2-1)}L0··· &lt;2&gt; M2-1=(M1-I 2...&lt;3&gt;7061-7653_PF; Ahddub 9 1280713 where L0 is the time of the first resonator, a 70 grid length, L1 is the length of the second resonance, and L2 is the third harmonic Dip A, the first path length of a vibrating state, and Ml and M2 are integers greater than 3. In addition, the ring spectrum is composed of and the ancient π m , A , and white pirates are composed of ring-shaped waveguides having different optical path lengths. 'Each resonator can be any of the following / ~ r ~ plagiarism such as · · etalon filter 5§, Fugu-Guo# yL ', Mach-Zehader interferometer and birefringent crystal. The variable wavelength light source is constructed by an external resonator composed of the multiple spectrum oscillator, and the 'input/output side waveguide f and the reflection side waveguide are located at one end of the base and provide a light mirror on the reflective side of the base The other end of the waveguide is provided by a non-reflective film-optical input/output unit at the other end of the input/output side waveguide 'in addition' via a multiple-spectrum device for changing The resonant wavelength of the wavelength source. Each of the resonators constituting the multiple resonators has a Free Spectral Range (FSR), that is, each optical path has a slightly different length. Therefore, a considerable amount of optical transmission occurs during the periodic variation of the optical transmission and the corresponding resonance. The matching wavelength (resonator wavelength). The multiple resonator of the present invention is composed of a plurality of spectral oscillators having different optical path lengths in series, and effectively uses the vernier effect s variable light source generated in this way by satisfying the above mathematical formulas <1>, <2> and <3> The multiple resonator composition, the transmission loss difference (hereinafter referred to as, mode gain difference, ???) on the oscillating path and the adjustable path becomes the maximum value, and the present invention reduces the mode gain difference by the above method Value, and thereby achieve stable variable wavelength operation. 7〇61-7653-PF; Ahddub 10 1280713 'The other objects of the present invention, the first to third resonators, each 'and the connection to the optical coupling assembly, the following description will illustrate the advantages and advantages Can be seen as follows. [Embodiment] The multiple resonators of the present invention including the first resonators each have a different optical path length. In the following embodiments, a ring type resonator is used for explanation. In addition

每個諧振器可為下列諧振器中的任—個如:析光(etai〇n) 滤波器、麻克-真德干涉儀(Mac卜Zehader interf冗隱㈣ 以及雙折射晶體。 第1圖係顯示本發明之可變波長光源第一實施例的平 面圖。本發明的詳細實施例將配合所附圖式以下文作說明。 本實施例中的可變波長光源10包括外接諧振器,其由 多重環型揩振器20、導波管24、25、輸入/輸出側波導管 11及反射側波導管12構成,多重環型諧振器2〇由三個環 # 型谐振态21到23組成,每一個諧振器都具有不同的光路 徑長度並藉由方向聯結器相連(圖中未顯示),輸入/輸出側 波導官11的一端藉由方向聯結器連接到環型諧振器2工, 反射側波導管12的一端藉由方向聯結器連接到環型諧振 器23,這些都形成在平面光波電路(pianar Ughtwave Circuit,下文簡稱PLC)基座13上,在PLC基座13上之 反射側波導管12的另一端上放置高反射薄膜14以及半導 體光放大器(Semiconductor 〇ptical· h 稱S0A)做為光輸入/輸出單元,藉由非反射薄膜(圖中未顯 7061-7653-PF;Ahddub 11 1280713 不)光輸入/輸出單元連接到pLC基座〗3上的其它輸入/輸 出側波導管11。除了 s〇A之外,光輸入/輸出單元可為光 學據波放大器或者光源如半導體雷射(雷射二極體),波導 官可為石英玻璃或者鋰鈮酸鹽。另外,多重環型諧振器2〇 也包括熱光效應(thermooptic effect,下文簡稱T0)相位 位移器16及1 7,其似薄膜加熱器做為可變波長單元,用 以改變諧振器波長;以及用以限制頻寬的非對稱麻克—真德 φ 干 /步儀(Mach-Zehader interferometer ,下文簡 稱Mz 1 ”)18,其插在反射側波導管丨2上。 下文將解釋上述之可變波長光源1 〇的操作原理。 從光輸入/輸出單元(30入15)發出的光經由下列路徑 傳輸後會再返回,光輸出入/輸出端—非反射薄膜(圖上未 顯不輸入/輸出側波導管u—多重諧振器2〇—反射側 波導管12—高及射薄膜14—反射侧波導管12—多重諧振 器20—輸入/輸出侧波導管u—非反射薄膜(圖上未顧示) 瞻—光輸出入/輸出端,返回的光具有多重諧振器2〇的諧振 波長,原因如下,組成多重諧振器20的環型諳振器21到 23具有不同的自由波長間距(Free Spectrai,FSR), 車乂夕的反射產生在光傳輸之週期變化和對應之環型諧振器 相匹配的波長(諧振器波長),另外,匹配週期之波長隨著 每個環型諧振器之周圍長度以及波導管折射係數的改變而 變化,因此,可獲得有效率的可變波長操作。該波導管折 射係數可隨著如熱光效應改變,熱先效應為一種藉由熱增 加物質之折射係數的現象,且所有的物質通常都有這種熱 12 7061-7653-PF;Ahddub 1280713 光效應,因此,藉由複數環型諧振器21到23的溫度特性, 將可改變多重諧振器之諧振波長。另外,除了熱光效應之 外,還可藉由反射係數控制方法或者控制周圍長度改變波 長。可變波長裝置可為如似薄膜加熱器之加熱環型諧振器 的裝置、冷卻環型諧振器的裝置、任何可改變光物質之折 射係數技巧或者其它可改變波長的裝置。 下文將解釋多重諧振器的操作。 多重環型諧振器20構成光波導型濾波器,由三個具不 同光路徑長度並排成環型導波管之光學耦接環型諧振器Η 到23組成,根據多重環型諧振器2〇,具有諧振波長之光 信號在當所有環型諸振器21 23同時譜振時多工或解多 工,藉由游標效應可獲得較多的自由波長間距(Free Spec什al Range,下下文簡稱FSR)’游標效應為一種社入 複數具有不同魏長度之譜振器以擴充可變波長範圍的: 巧,各自之諧振頻率在諧振頻率的最小分母重疊,— S::為母個¥型的最小共同分母,因此,控制寬頻率範 圍之特性比控制單一諧振器簡單。 但是,依靠環型諧振器21到23的光路和声 由於模式增益差異不大,當光學放 :之心’ 及譜振器的長度發生改變時,和需求的二;的:率特㈣ 失將達到最小並且在不想要的波長震盪即;生之拉式知 並使操作變的不穩定,因此,本發明的 震產跳頻, 必需要調整每個環型諧振器21到23之衣垔蟲振态2 〇 模式增益差異並且穩定震錢作。切㈣度、增加 7〇61-7653-pF;Ahddub 13 1280713 為此’當環型諧振器21的光路徑長度為l〇、環型譜 振器22的光路徑長度為L1且環型諧振器23的光路徑長度 為L2時’必需滿足下列的數學式&lt;ι&gt;、&lt;2&gt;以及&lt;3&gt;以成為 最佳情況: L1 = {M1/(MH)}L0··· &lt;1&gt; L2={M2 /(M2 - 1)}L0··· &lt;2&gt; M2-1 = (M1 -1)2··· &lt;3&gt; 當可變波長光源1〇中使用滿足上述數學式〇、〈^〉 以及〈3&gt;的多重環型諧振器2〇時,模式增益差異會變到最 大,因此,穩定可變波長操作將成為可能,在此,” mi ” 及” M2”為游標等級。 下文將更詳細描述。 在此範例中,當可變波長光源包含由兩個環型諧振营 之雙層環型諧振器組成的外接諧振器時,可保證在外接; 振器以及鄰近諧振器的振魏道之間傳輸損失的差異(相 式增益差異)大約為〇·’因此,可能發生模式跳出的鬚 形為此在長時間週期下,維持穩定之可變波長操 困難的。 本只轭例之可變波長光源丨0藉由組合型外接諧振 器構成,PLC型外接士比挺w A t x 卜接拍振益包括環型諧振器21到23以 具有S0A 15之非對猫从Μ” 、%性MZI 18,並且提供具有最大模 增益差異的理想設古十以心 取穴模式 到23勺a且右/ 長操作,環型諧振器21 有周長L0的基本環型譜振 50GHz,以及藉由游禪 八為 释知等級Ml”及” M2”求得長 7061-7653-PF;Ahddub 14 1280713 為Ll、L2的環型諧振器22、23,並提供τ〇相位位移器16 及17 〇 藉由游標等級 Ml及” M2”經由下列算式求得環型 畔振器22、23的周長L1、L2,周長等於前述的光路徑長 度· L1 = {M&quot;(MH)}L0…&lt;5&gt; 在此’舉例而語’當FSR為50GHz時,假設石英玻璃 φ 晶體的折射係數大約為1· 5,光的波長為1· 5//m,光的頻率 大約為200THz,那麼從下面的算式中L〇 = 4[mm],u及L2 將在下文描述。 L0 = (20 0 [THz]/50[GHz])x(l. 5[ // m]/l. 5) 使用熱光效應(TO)來控制環型諧振器22、23的相位, 可將想要波長的傳送損失減到最小。 非對稱ARZ 18用來限制震盪波長到c頻帶或者L頻帶 的任一個,在本實施例中,被設計成操作在L頻帶上,接 藝合至PLC基座13的S0A 15以及90%的高反射薄膜14放置 在PLC基座13的輸入/輸出側波導管丨丨上以及反射側波導 管12的一側,雷射諧振器放置在s〇A 15的發光表面以及 n反射薄膜14之間,在此請注意,輸入/輸出侧波導管工工 以及S0A 15也可利用透鏡耗接取代接合。 第2圖係顯示可變波長光源1〇中的半導體光放大器 15側的光譜率響應特性圖,基於第i圖及第2圖說明如下。 環型諧振器21到23對意的游標等級M1 =仏 M2 = 126,方向聯結器設為為」:i聯結器,由定義之 7061-7653-PF;Ahddub 15 1280713 波長通道為125,波長通道内部之 —薦夕、3、音丧,达 ,之間隔為50GHZ,由M1_j 疋義之“群,!為n’具最小插入損失之通道以二 小插入損失之通道的損失差異定義為模式增益差/,、值為 2.8dB,依此方法,模式增益差異 1Each resonator can be any one of the following resonators: an eductor (etai〇n) filter, a Mach-Zehnder interferometer (Macb Zehader interf), and a birefringent crystal. A plan view showing a first embodiment of a variable wavelength light source of the present invention. A detailed embodiment of the present invention will be described below in conjunction with the accompanying drawings. The variable wavelength light source 10 of the present embodiment includes an external resonator which is multiplexed. The ring type resonator 20, the waveguides 24, 25, the input/output side waveguide 11 and the reflection side waveguide 12 are constituted, and the multiple ring type resonator 2 is composed of three ring type resonance states 21 to 23, each A resonator has different optical path lengths and is connected by a directional coupler (not shown). One end of the input/output side waveguide official 11 is connected to the ring resonator by a directional coupler, and the reflected side wave is reflected. One end of the conduit 12 is connected to the ring resonator 23 by a directional coupler, which are formed on a pedestal 13 of a pianar Ughtwave Circuit (hereinafter referred to as PLC), and the reflective side waveguide 12 on the PLC pedestal 13 Place high reflection on the other end The film 14 and the semiconductor optical amplifier (Semiconductor 〇ptical·h is called S0A) are used as optical input/output units, and are connected by an optical input/output unit by a non-reflective film (not shown in the figure 7061-7653-PF; Ahddub 11 1280713). To the other input/output side waveguides 11 on the pLC pedestal 3. In addition to s 〇 A, the optical input/output unit can be an optical data amplifier or a light source such as a semiconductor laser (laser diode), waveguide The official can be quartz glass or lithium niobate. In addition, the multi-ring resonator 2〇 also includes a thermooptical effect (hereinafter referred to as T0) phase shifter 16 and 17 which is like a film heater as a variable a wavelength unit for changing the wavelength of the resonator; and an asymmetric Mach-Zehader interferometer (Mz 1 ) 18 for limiting the bandwidth, which is inserted in the reflection side waveguide丨2. The operation principle of the variable wavelength light source 1 上述 described above will be explained below. The light emitted from the optical input/output unit (30 into 15) will be returned after being transmitted via the following path, and the light output is in/out. reflection Membrane (no input/output side waveguide u-multiple resonator 2 〇 - reflection side waveguide 12 - high and radiation film 14 - reflection side waveguide 12 - multiple resonator 20 - input / output side waveguide U—non-reflective film (not shown) The light-receiving input/output terminal has a resonant wavelength of multiple resonators 2 ,, for the following reasons, the ring-type resonator 21 constituting the multiple resonator 20 is 23 has different free wavelengths (Free Spectrai, FSR), the reflection of the car 乂 产生 produces a wavelength change in the period of light transmission and the corresponding ring resonator matching wavelength (resonator wavelength), in addition, the wavelength of the matching period The length of the circumference of each of the ring resonators and the change in the refractive index of the waveguide are varied, and thus, efficient variable wavelength operation can be obtained. The waveguide refractive index can be changed as a function of thermo-optic effect, which is a phenomenon of increasing the refractive index of a substance by heat, and all materials usually have such heat 12 7061-7653-PF; Ahddub 1280713 light The effect, therefore, by the temperature characteristics of the complex ring resonators 21 to 23, the resonance wavelength of the multiple resonators can be changed. In addition, in addition to the thermo-optic effect, the wavelength can be changed by a reflection coefficient control method or by controlling the surrounding length. The variable wavelength device can be a device such as a heating ring resonator like a film heater, a device for cooling a ring resonator, any refractive index technique that can change the light species, or other means that can change the wavelength. The operation of the multiple resonator will be explained below. The multi-ring resonator 20 constitutes an optical waveguide type filter composed of three optically coupled ring resonators Η to 23 having different optical path lengths and arranged in a ring-shaped waveguide, according to the multi-ring resonator 2〇 The optical signal having the resonant wavelength is multiplexed or demultiplexed when all the ring-shaped vibrators 21 23 are simultaneously oscillated, and more free wavelength spacing can be obtained by the vernier effect (Free Spec) FSR) The vernier effect is a kind of spectral oscillator with different Wei lengths to expand the variable wavelength range: In fact, the minimum denominator of the resonant frequency at the resonant frequency overlaps, - S:: is the parent type The minimum common denominator, therefore, the ability to control a wide frequency range is simpler than controlling a single resonator. However, the optical path and sound depending on the ring resonators 21 to 23 are not much different due to the mode gain, when the optical discharge: the heart' and the length of the spectrum oscillator are changed, and the demand is two; the rate is special (four) Minimize and oscillate at unwanted wavelengths; the pull-type is known to make the operation unstable, therefore, the seismic frequency hopping of the present invention requires adjustment of the mites of each of the ring-shaped resonators 21 to 23 The vibration state 2 〇 mode gain difference and stable shock money. Cut (four) degrees, increase 7〇61-7653-pF; Ahddub 13 1280713 For this reason, when the optical path length of the ring type resonator 21 is l〇, the optical path length of the ring type spectrum oscillator 22 is L1 and the ring type resonator When the optical path length of 23 is L2, it is necessary to satisfy the following mathematical expressions &lt;ι&gt;, &lt;2&gt;, and &lt;3&gt; to be the best case: L1 = {M1/(MH)}L0··· &lt;1&gt; L2={M2 /(M2 - 1)}L0··· &lt;2&gt; M2-1 = (M1 -1)2··· &lt;3&gt; When the variable wavelength light source 1〇 is used to satisfy the above mathematics When the multi-ring resonator of the formula 〈, <^>, and <3> is 2〇, the mode gain difference becomes maximum, so stable variable wavelength operation will be possible, where “mi” and “M2” are Cursor level. This will be described in more detail below. In this example, when the variable wavelength source includes an external resonator composed of two ring-type resonators of two ring type resonance camps, transmission loss between the external oscillator and the vibrating channel of the adjacent resonator can be guaranteed. The difference (phase gain difference) is approximately 〇·' Therefore, it is possible that the mode jump out of the whisker is difficult to maintain a stable variable wavelength for a long period of time. The variable-wavelength light source 丨0 of the yoke example is constituted by a combined external resonator, and the PLC-type external connector has a w A tx and the ring-shaped resonator includes a ring-shaped resonator 21 to 23 to have a non-pair cat of S0A 15 From the Μ", %MZI 18, and providing the ideal set-up mode with the largest mode gain difference to 23 scoops a and right / long operation, the ring resonator 21 has a basic ring spectrum of the circumference L0 The vibration is 50 GHz, and the long-term 7061-7653-PF is obtained by the meditation of the M1" and "M2"; the Ahddub 14 1280713 is the ring-type resonators 22, 23 of L1, L2, and provides the τ 〇 phase shift The circumferences L1 and L2 of the ring-shaped vibrators 22, 23 are obtained by the following equations by the vernier classes M1 and "M2", and the circumference is equal to the aforementioned optical path length. L1 = {M&quot; (MH )}L0...&lt;5&gt; Here, as an example, when the FSR is 50 GHz, it is assumed that the refractive index of the quartz glass φ crystal is about 1.5, the wavelength of light is 1.5·m, and the frequency of light is about For 200 THz, then from the following formula L 〇 = 4 [mm], u and L2 will be described below. L0 = (20 0 [THz] / 50 [GHz]) x (l. 5 [ // m] / l. 5) Using the thermo-optic effect (TO) to control the phase of the ring resonators 22, 23, The transmission loss of the desired wavelength is minimized. The asymmetric ARZ 18 is used to limit the oscillation wavelength to any of the c-band or the L-band. In this embodiment, it is designed to operate on the L-band, and the S0A 15 and 90% of the PLC base 13 are connected. The reflective film 14 is placed on the input/output side waveguide 丨丨 of the PLC pedestal 13 and on the side of the reflection side waveguide 12, and the laser resonator is placed between the illuminating surface of the s〇A 15 and the n-reflecting film 14, Please note here that the input/output side waveguide workers and the SOA 15 can also be replaced by lens wear. Fig. 2 is a graph showing the spectral rate response characteristics of the side of the semiconductor optical amplifier 15 in the variable wavelength light source 1A, which will be described below based on Fig. 1 and Fig. 2 . The ring resonators 21 to 23 have the desired vernier level M1 = 仏M2 = 126, the directional coupler is set to ":i coupler, defined by 7061-7653-PF; Ahddub 15 1280713 wavelength channel is 125, wavelength channel The internal - eve, 3, sound mourning, up, the interval is 50GHZ, defined by the difference of the loss of the channel with the minimum insertion loss of M1_j “ 群 群 ! ! ! 具 具 最小 模式 模式 模式 模式 模式/, the value is 2.8dB, according to this method, the mode gain difference 1

艾I味型4振器的〇· 4dB 相比有大幅的改善,並且大幅地增 曰加了先源的波長穩定性。 在此,假設包含具最小插入損 、,, 相失之通道的群組被稱 為 中央群,且和’’中群,,n ^ 不Τ兴群相鄰的群組被稱為,,相鄰 群”,他們都符合數學式&lt;1:&gt;到&lt;3&gt;, 那麼下面的敘述將為 真。如第2圖之虛線,在”中央群’,中具第二小插入損失 之通道的插入損失和在”相鄰群,,中具最小插入損失之通 道的插入損失相同。 第3圖係顯示游標順序M1及们以及模式增益差異的 關係圖,基於第1圖及第3圖說明如下。 第3圖藉由將游標順序M1及Μ2分別定為垂直軸及水 平轴以顯示模式增益差異和游標順序Ml及M2的對應圖, 他們的關係式·· M2-1 = (M1-1 )2…&lt;3&gt; 以疊印方式繪圖在圖中,當滿足該關係式時可得到顯 示模式增益差異。 另外’當關係式增加30%或減少30%時,對應的Ml及 M2也標示在圖中,該關係式為: /(Μ2χ0· 7-1)/1· 3=M1 -1··· &lt;6&gt; /&quot;(Μ2χ1·3-1)/〇·7=Μ卜 1 …〈7&gt; 第6式表示下限,第7式表示上限,在這個例子中, 7061-7653-PF;Ahddub 16 1280713 增孤模式差異和最佳情況相比大約下降2dB。 第4圖係顯示可變波長光源丨〇的譜率特性圖,,基於 第1圖及第4圖說明如下。 第4圖顯示在最小損失模式、具有M2 = 126的環型諧振 器23所對應之輸入相位週期做為垂直軸以及具有们=12的 %型谐振器22所對應之輸入相位週期做為水平軸時,波長 的對應關係。在此,波長通道為121且波長被排成11χ11 •的矩陣,將可選取想要的波長及能量以輸入TO相位位移器 16及17。板據可變波長光源1〇,可確保㈣比可變波長操 作在L頻帶且輸出為6到7dBm。 如上述,根據可變波長光源1〇,藉由調整每個環型諧 振器21到23所對應之游標順序的組合可獲得最大模式增 盈差異’另外,本實施例會發揮下列效應。 由於環型諧振器21到23、輸入/輸出侧波導管u以 及反射侧波導管12在PLC基座13上形成一塊,將可達到 _ i i化及咼穩疋度,由於用以限制頻帶的非對稱性Μ/1 18 在PLC基座13上形成一塊,將更能達到小型化及高穩定操 作。 下文將具體描述非對稱性MZI 18的效應。 由於在由游標順序擴展的可變波長範圍之外,無法從 波長模式中將增益差異取出,當M2 = l〇l時,在位移波長大 約為40nm的地方開始震盪,假設設計非對稱性MZI,使其 具有如160GHz的FSR以抑制模式競爭,將可抑制具有最接 近欲取得波長的單通道之模式損失,使操作更穩定。 7061-7 653-PF;Ahddub 17 •1280713 第5圖係顯示本發明之可變波長光源第二實施例的平 面圖,參考下圖說明本實施例,在此,和第丨圖具有相同 功能的部份將使用相同的標號並且省略其說明。 本實施例之可變波長光源30包括由三個環型譜振器 21到23組成的多重環型諧振器30,每一個諧振器都具有 不同的光路徑長度並藉由方向聯結器相連,但不具有第i 圖之第一貫施例的導波管24、25,其它架構和第一實施例 鲁 相同,本實施例的運作效能和第一實施例相同,並且具有 和第一實施例不同之光傳送功能。 第6圖說明本發明第一以及第二實施例中每個環型諧 振器21到23所對應之光路徑波長l〇到L2的範例圖,此 範例將基於圖示說明如下。 假設Ml = ll,從第3式可得M2 = l〇l,在此時,假設 L0 = 4[mm],從第1式可得Ll = 4.4[mm]且從第第2式可得 L2=4.04[mm] ° • 上述之第一以及第二實施例中描述由三個諧振器組成 的多重環型諧振器,但是也可以使用由四個或更多諧振器 組成的多重環型諧振器。 本發明調整母個譜振器對應之游標順序的組合以獲得 最大模式增益差異’因此,大模式增益差異可防止切換震 盪波長到不想要的波長,並且確保操作穩定,藉此提供具 高可靠度、高完成度且低成本的多重諧振器的可變波長光 源。 前述之實施例將使的熟悉技藝者可以製造及使用本發 7061-7653-PF;Ahddub 18 1280713 明,相對地,任何熟習此項 神和範圍内,當可做些許的有者,在不脫離本發明之精 合上述之實施例描述與潤飾’因此’本發明配 的最大範圍將&quot;請專利 ^本發明的範圍,本發明 〇 .加 固从及其均等物定義。 另外,假设於申請中修改 然想要保留所有均等物。 5月專利乾圍時’本發明依 圖式簡單說明] 月之可變波長光源第一實施例的平 第1圖係顯示本發 面圖 的 第2圖係顯示本發明笫一 主道胁, 只施例之可變波長光源中 +V體光放大器侧的光譜率響應特性圖。 施例中游標順序以及模式 第3圖係顯示本發明第一實 增益差異的關係圖。 譜 苐4圖係顯示本發明第一者 + ¾月弟果靶例中可變波長光源的 率特性圖。 面圖 第5圖係顯示本發明之可變波長光源第 一實施例的平 第6圖係說明本發明第一 7} ^ ^ ^ ^ n^ 乂及第一實施例中每個環型 諧振器所對應之光路徑波長對的範例圖。 【主要元件符號說明】 10、30〜可變波長光源;π〜輸入/輪出側波導管 12〜反射側波導管; 13〜PLC基座; 7061-7653-PF;Ahddub 19 1280713 14〜高反射薄膜; 15' 16、17〜T0相位位移器; 18 20、31〜多重環型諧振器;21、 24、25〜導波管; L0、The I·4dB of the I-I type 4 vibrator has been greatly improved, and the wavelength stability of the source is greatly increased. Here, it is assumed that a group including a channel with a minimum insertion loss, and a phase loss is referred to as a central group, and a group adjacent to the ''middle group, n ^ no Τ group is called, Neighbor group, they all conform to the mathematical formula &lt;1:&gt; to &lt;3&gt;, then the following description will be true. As shown in the dotted line of Figure 2, in the "central group", there is a second small insertion loss. The insertion loss of the channel is the same as the insertion loss of the channel with the smallest insertion loss in the "adjacent group." Figure 3 shows the relationship between the cursor order M1 and the difference in mode gain, based on the first and third figures. The description is as follows: Fig. 3 shows the relationship between the mode gain difference and the cursor order M1 and M2 by setting the cursor order M1 and Μ2 as the vertical axis and the horizontal axis, respectively, and their relationship M2 = (M1- 1) 2...&lt;3&gt; is plotted in overprinting, and the display mode gain difference can be obtained when the relationship is satisfied. In addition, when the relationship is increased by 30% or reduced by 30%, the corresponding M1 and M2 are also marked. In the figure, the relationship is: /(Μ2χ0· 7-1)/1· 3=M1 -1··· &lt;6&gt;/&quot;(Μ2 Χ1·3-1)/〇·7=Μ卜1 ... <7> The sixth expression represents the lower limit, and the seventh expression represents the upper limit. In this example, 7061-7653-PF; Ahddub 16 1280713 The better case is about 2 dB lower. Fig. 4 is a graph showing the spectral characteristics of the variable wavelength source 丨〇, which is explained below based on Fig. 1 and Fig. 4. Fig. 4 shows the minimum loss mode with M2 = 126 The input phase period corresponding to the ring resonator 23 is the vertical axis and the corresponding phase of the input phase period corresponding to the %-type resonator 22 having the ratio of 12 is the horizontal axis. Here, the wavelength channel is 121 and the wavelengths are arranged in a matrix of 11 χ 11 •, the desired wavelength and energy can be selected for input to the TO phase shifters 16 and 17. The plate can be operated according to the variable wavelength source 1 〇 to ensure (4) operation in the L band than the variable wavelength. And the output is 6 to 7 dBm. As described above, according to the variable wavelength light source 1 〇, the maximum mode gain difference can be obtained by adjusting the combination of the cursor order corresponding to each of the ring type resonators 21 to 23, in addition, this embodiment will Play the following effects. Due to the ring resonator 21 to 23, lose /Output side waveguide u and reflective side waveguide 12 form a block on the PLC base 13, which will achieve _ 咼 咼 咼 , , , , , , , , , , , 1 1 1 1 1 1 在The formation of a block on 13 will enable miniaturization and high stability operation. The effect of the asymmetry MZI 18 will be specifically described below. Due to the variable wavelength range extended by the cursor sequence, the gain difference cannot be obtained from the wavelength mode. Take out, when M2 = l〇l, start to oscillate at a displacement wavelength of about 40nm. Suppose that the asymmetric MZI is designed to have a FSR like 160GHz to suppress the mode competition, which will suppress the wavelength closest to the desired wavelength. The single-channel mode loss makes the operation more stable. 7061-7 653-PF; Ahddub 17 • 1280713 Fig. 5 is a plan view showing a second embodiment of the variable wavelength light source of the present invention, and the present embodiment is explained with reference to the following figure, and the portion having the same function as the first drawing The same reference numerals will be used and the description thereof will be omitted. The variable wavelength light source 30 of the present embodiment includes a multiple ring type resonator 30 composed of three ring type spectral oscillators 21 to 23, each of which has a different optical path length and is connected by a directional coupler, but The waveguides 24, 25 of the first embodiment of the first embodiment are not identical to the first embodiment, and the operational efficiency of the embodiment is the same as that of the first embodiment, and has a different embodiment from the first embodiment. Light transmission function. Fig. 6 is a view showing an example of light path wavelengths l 〇 to L2 corresponding to each of the ring-shaped resonators 21 to 23 in the first and second embodiments of the present invention, which will be described below based on the drawings. Assuming Ml = ll, M2 = l〇l can be obtained from the third formula. At this time, assuming L0 = 4 [mm], L1 = 4.4 [mm] can be obtained from the first formula and L2 can be obtained from the second formula. =4.04 [mm] ° • The multiple ring resonator composed of three resonators is described in the first and second embodiments described above, but a multiple ring resonator composed of four or more resonators may also be used. . The present invention adjusts the combination of the vernier sequences corresponding to the parental spectral oscillators to obtain the maximum mode gain difference. Therefore, the large mode gain difference prevents switching of the oscillating wavelength to an undesired wavelength, and ensures stable operation, thereby providing high reliability. Variable wavelength source for multiple resonators with high completion and low cost. The foregoing embodiments will enable those skilled in the art to make and use the present invention 7061-7653-PF; Ahddub 18 1280713, in contrast, any familiarity within the scope of the gods and the scope, DETAILED DESCRIPTION OF THE INVENTION The above description of the embodiments of the present invention and the refinement 'and thus' the broadest scope of the present invention will be described in the scope of the invention, and the invention is defined by its equivalent. In addition, it is assumed that modifications are made in the application and it is desirable to retain all equals. In the case of the patent dry circumference in May, the present invention is described with reference to the drawings. The first embodiment of the variable wavelength light source of the month shows that the second figure of the present invention shows the main road of the present invention. Spectral rate response characteristic diagram of the +V bulk optical amplifier side of the variable wavelength light source of the embodiment. Cursor Sequence and Mode in the Example FIG. 3 is a diagram showing the relationship of the first real gain difference of the present invention. The spectrum 苐4 diagram shows the rate characteristic of the variable wavelength source in the first +3⁄4 month fruit target of the present invention. Figure 5 is a plan view showing a first embodiment of the variable wavelength light source of the present invention, illustrating a first embodiment of the present invention, and each of the ring resonators of the first embodiment. An example diagram of the corresponding pair of light path wavelengths. [Major component symbol description] 10, 30 ~ variable wavelength light source; π ~ input / wheel side side waveguide 12 ~ reflection side waveguide; 13 ~ PLC base; 7061-7653-PF; Ahddub 19 1280713 14 ~ high reflection Film; 15' 16, 17~T0 phase shifter; 18 20, 31~multi-ring resonator; 21, 24, 25~ waveguide; L0,

Ml、M2〜游標等級。 ^半導體光放大為, 〜非對稱MZI ; 22、23〜環型諧振器; L1、L2〜光路徑波長;Ml, M2 ~ cursor level. ^ Semiconductor optical amplification is, ~ asymmetric MZI; 22, 23 ~ ring resonator; L1, L2 ~ optical path wavelength;

7061-7653-PF;Ahddub 207061-7653-PF; Ahddub 20

Claims (1)

1280713 十、申請專利範圍: 1 · 一種多重諧振器,包括一第_ 二 =^ te 3» — $皆振器,每個 白微盗具有不同的光路徑長度,利用一 i rk , ^轉接裝置連接, 中維持下列數學式&lt;1 &gt;、&lt;2&gt;以及&lt;3&gt; : L1 = [M1/(MH)}L0··· &lt;1&gt; L2={M2/(M2 - 1)}L0.&quot;&lt;2&gt; M2-1 = (M1 -1)2··· &lt;3&gt; 其中,L0為該第一譜振器的光路徑長度 諧振器的光路徑長度,L2為該第=,’、、以 一 . U1 乐―。自振裔的光路徑長度, 从及Ml以及M2為大於3的整數。 2·如申請專利範圍第丨項所 刦键 1 κ夕重諧振器,其中下 夕J弟&lt;4&gt;式用於取代第&lt;3&gt;式·· ^(Μ2χ0.7-1)/1.3&lt;Μ1-1&lt;νΛ(Μ2χί,3_1)/〇 7^&lt;4&gt;〇 3.如申請專利_ 1項所述之多重諧振器,其中該 到弟二譜振器為一第一至丨J第=摄开,j &amp; $ - 』弟—裱型谐振器,該第一到 弟二環型譜振器組成一環型波導 你 且具不同的光路徑長 度。 4·如申請專利範圍第3項所述之多重諧振器,更包括: 第-波導管’其一端藉由一光耦接裝置連接該第一 到第三環型諧振器中的一個;以及 一第二波導管,苴一端蕤Α ^ ^ 八 由一光耦接裝置連接該第一 到第三環型諧振器中的其它一個。 5.如申請專利範圍r €項所述之多重獪 第到第二壞型諧振器的該環型波導管以及該第一波導管 21 7061-7653-PF;Ahddub 1280713 及該第二波導管在石英玻璃基座上形成一塊。 — 中專利|&amp;圍第4項所述之多重譜振器,更包括 -可變波長裝置’用以改變多重諧振器的諧振器波長。 ‘ 7.如申請專利範圍第6項所述之多重諸振器,其中該 可變波長裝置為一似薄膜加熱器。 參 8.如申請專利範圍第6項所述之多重譜振器,立中一 f對稱麻克—真料涉儀(HZehader interf er繼ter) 番入該第一波導管或該第二波導管。 9· 一種可變波長光源,包括: 夕重諧振态’包括一第_到第三環型諧振器,該第 -到第三環型諧振器組成一環型波導管且具不同.的光路徑 長度’並利用一光耦接裝置連接,、其中維持下列數學式 &lt;1&gt;、&lt;2&gt;以及 &lt;3&gt; : L1 = {M1/(M卜1)}L0…&lt;1&gt; L2:{M2/(M2-1)}L0.&quot;&lt;2&gt; ——V M2-1 = (M1'1 &gt;2…&lt;3〉 ,、中LG為該第-邊振器的光路徑長度,為該第二 譜振器的光路徑長度,L2 A, 反度LZ馮該第三諧振器的光路徑長度, 以及Ml以及M2為大於3的整數; 一基座,包括一輸入/輸出側波導管及一反射側波導 管,該輸入/輸出侧波導管的一端藉由,接裝置連接該 第-到第三環型諧振器中的_個’該反射側波導管的一端 藉由一光减裝置連接該第—到第轉型祕器中的另- 個; 7061-7 653-PF;Ahddub 22 1280713 光反射鏡,位在該基座的反射側波導管的另一端; 入/_屮光予輸入/輪出單元,藉由一非反射薄膜,該光學輸 别出早凡的—端連接至該基座的輸入/輸幻則波導管的 —可變波長單元,用以改變該多重諧振器的諧振波長, 1 〇.如申請專利範圍第9項所述之可變波長光源,其中 二學輸入/輸出單元為一半導體光放大器或者光學遽波1280713 X. Patent application scope: 1 · A multiple resonator, including a _ _ 2 = ^ te 3» - $ oscillating device, each white thief has a different optical path length, using an i rk , ^ transfer In the device connection, the following mathematical expressions &lt;1 &gt;, &lt;2&gt; and &lt;3&gt; are maintained: L1 = [M1/(MH)}L0··· &lt;1&gt; L2={M2/(M2 - 1) } L0.&quot;&lt;2&gt; M2-1 = (M1 -1)2··· &lt;3&gt; where L0 is the optical path length of the optical path length resonator of the first spectral oscillator, L2 is The first =, ',, to one. U1 music -. The length of the light path of the self-vibration, from M1 and M2 is an integer greater than 3. 2. If the patent application scope item 劫 键 1 1 1 1 , , , , , , , , , , , , , , , , , , , , , 4 4 4 4 4 4 4 4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 &lt; Μ 1-1 &lt; Λ Λ Μ χ χ 4 4 4 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重 多重J = = open, j & $ - 』 brother - 裱 type resonator, the first to the second ring type spectrum oscillator constitutes a ring-shaped waveguide and you have different optical path lengths. 4. The multiple resonator according to claim 3, further comprising: a first waveguide configured to connect one of the first to third ring resonators by an optical coupling device; and a The second waveguide is connected to the other one of the first to third ring resonators by an optical coupling device. 5. The ring type waveguide of the multiple 狯 to the second bad type resonator as described in the patent application scope, and the first waveguide 21 7061-7653-PF; Ahddub 1280713 and the second waveguide A piece is formed on the quartz glass base. — The multi-spectral apparatus described in the above-mentioned patents & 4, further includes a variable wavelength device for varying the resonator wavelength of the multiple resonators. 7. The multiple vibrator of claim 6, wherein the variable wavelength device is a film-like heater. VIII. The multi-spectral oscillator according to claim 6 of the patent application scope, the center-one f-symmetric numb-the real-time instrument (HZehader interf er following the ter) enters the first waveguide or the second waveguide . 9. A variable wavelength light source comprising: an epoch resonance state comprising a first to third ring type resonator, the first to third ring type resonators forming a ring type waveguide and having different optical path lengths 'And connected by an optical coupling device, wherein the following mathematical expressions &lt;1&gt;, &lt;2&gt;, and &lt;3&gt;: L1 = {M1/(MBu1)}L0...&lt;1&gt; L2: {M2/(M2-1)}L0.&quot;&lt;2&gt; ——V M2-1 = (M1'1 &gt;2...&lt;3> , , LG is the light path of the first-side vibrator The length is the optical path length of the second spectral oscillator, L2 A, the inverse LZ is the optical path length of the third resonator, and M1 and M2 are integers greater than 3; a pedestal including an input/output a side waveguide and a reflection side waveguide, one end of the input/output side waveguide is connected to one end of the reflection-side waveguide in the first to third ring type resonators by a connection device The light-reducing device is connected to the other one of the first to the first transforming device; 7061-7 653-PF; Ahddub 22 1280713 light mirror, located at the other end of the reflective side waveguide of the base; Light The input/rounding unit, by means of a non-reflective film, the optically transmissive variable-wavelength unit connected to the input/transformer waveguide of the susceptor for changing the multiple resonance Resonant wavelength of the device, the variable wavelength source of claim 9, wherein the second input/output unit is a semiconductor optical amplifier or optical chopping 之可變波長光源,其中 並放置於該基座上。 11 ·如申請專利範圍第9項所述 該可交波長單元為一似薄膜加熱器, 11項所述之可變波長光源,其 真 &amp; 干涉儀(Mach-Zehader A /輸出側波導管或者該反射側 12.如申請專利範圍第 中一非對稱麻克一 interferometer)插入該輸 波導管。A variable wavelength light source in which is placed on the base. 11 · The cross-wavelength unit is a film-like heater as described in item 9 of the patent application scope, 11 variable wavelength light sources, true &amp; interferometer (Mach-Zehader A / output side waveguide or The reflective side 12. is inserted into the waveguide as described in the patent application. 7061-7653-PF/Ahddub 237061-7653-PF/Ahddub 23
TW094146090A 2005-01-11 2005-12-23 Multiple resonator and variable-wavelength light source using the same TWI280713B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004560A JP4678191B2 (en) 2005-01-11 2005-01-11 Multiple resonator design method

Publications (2)

Publication Number Publication Date
TW200631267A TW200631267A (en) 2006-09-01
TWI280713B true TWI280713B (en) 2007-05-01

Family

ID=36283006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094146090A TWI280713B (en) 2005-01-11 2005-12-23 Multiple resonator and variable-wavelength light source using the same

Country Status (7)

Country Link
US (1) US7389028B2 (en)
EP (1) EP1679771B1 (en)
JP (1) JP4678191B2 (en)
CN (1) CN100407526C (en)
CA (1) CA2531727C (en)
HK (1) HK1094485A1 (en)
TW (1) TWI280713B (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774761B2 (en) * 2005-03-03 2011-09-14 日本電気株式会社 Wavelength tunable resonator, wavelength tunable laser, optical module, and control method thereof
JP4893026B2 (en) * 2005-03-03 2012-03-07 日本電気株式会社 Wavelength variable resonator, wavelength variable light source using the same, and wavelength variable method for multiple resonator
JP2006278770A (en) * 2005-03-29 2006-10-12 Nec Corp Variable wavelength laser
JP2008004633A (en) * 2006-06-20 2008-01-10 Nec Corp Optical module and packaging method
JP4779886B2 (en) * 2006-08-31 2011-09-28 日本電気株式会社 Tunable laser
JP4905854B2 (en) * 2007-03-09 2012-03-28 日本電気株式会社 Direct modulation tunable laser
JP2008270583A (en) 2007-04-23 2008-11-06 Nec Corp Wavelength variable light source and its control method, and program for control
JP4973399B2 (en) * 2007-09-05 2012-07-11 日本電気株式会社 Wavelength variable light source, control method and control program therefor, and optical module
JP5157347B2 (en) * 2007-09-28 2013-03-06 日本電気株式会社 Control device, laser device, wavelength switching method and program
US8643943B2 (en) * 2008-04-30 2014-02-04 Nec Corporation Tunable laser source using intracavity laser light outcoupling and module containing the same
JP2009278015A (en) 2008-05-16 2009-11-26 Nec Corp Planar lightwave circuit and wavelength tunable laser apparatus with the same
JP5304158B2 (en) 2008-10-07 2013-10-02 沖電気工業株式会社 Optical resonator and tunable laser
US8515227B2 (en) * 2009-03-13 2013-08-20 Ofs Fitel, Llc Microbubble optical resonator
JP5093527B2 (en) * 2010-02-10 2012-12-12 日本電気株式会社 Composite optical waveguide, wavelength tunable filter, wavelength tunable laser, and optical integrated circuit
JP5598066B2 (en) * 2010-04-16 2014-10-01 日本電気株式会社 Coherent optical receiver and receiving method
US20120189025A1 (en) * 2010-11-23 2012-07-26 Oracle International Corporation Monolithic laser source using ring-resonator reflectors
EP2597736A1 (en) * 2011-11-22 2013-05-29 Alcatel Lucent Hybrid Laser
JP5831206B2 (en) 2011-12-21 2015-12-09 富士通株式会社 Optical switch element, optical demodulator, and optical demodulation method
WO2013192381A1 (en) * 2012-06-20 2013-12-27 Cornell University High frequency resonator modulator apparatus, method and applications
CN105765798A (en) * 2013-10-15 2016-07-13 科锐安先进科技有限公司 Operation and stabilization of MOD-MUX WDM transmitters based on silicon microrings
EP3072188B1 (en) * 2013-11-20 2021-08-25 Nokia Solutions and Networks Oy Sagnac loop mirror based laser cavity on silicon photonics platform
US10243328B2 (en) 2013-11-20 2019-03-26 Elenion Technologies, Llc Semiconductor laser
US9450379B2 (en) 2013-11-20 2016-09-20 Coriant Advanced Technology, LLC Quantum dot SOA-silicon external cavity multi-wavelength laser
KR102424082B1 (en) * 2015-10-23 2022-07-21 라이오닉스 인터내셔널 비브이 Planar lightwave circuit (PLC) with controllable transmittance/reflectance
US11320587B2 (en) 2015-10-23 2022-05-03 Lionix International Bv Planar lightwave circuits (PLCs) exhibiting controllable transmissivity / reflectivity
US9891425B2 (en) * 2016-06-20 2018-02-13 Harris Corporation Communications system including an optical filter device and related methods
US10367333B2 (en) 2017-04-13 2019-07-30 Nokia Of America Corporation Increasing fabry-perot cavity free spectral range in hybrid lasers
US10644808B2 (en) 2017-08-23 2020-05-05 Seagate Technology Llc Silicon photonics based optical network
CA3089801A1 (en) * 2018-02-02 2019-08-08 Brolis Sensor Technology, Uab Wavelength determination for widely tunable lasers and laser systems thereof
JP7211017B2 (en) * 2018-11-02 2023-01-24 株式会社デンソー Optical filter, laser light source and optical transmitter/receiver using the same
CN109378707B (en) * 2018-12-03 2020-07-28 武汉邮电科学研究院有限公司 Silicon-based tunable laser
WO2024054626A1 (en) * 2022-09-09 2024-03-14 The Board Of Trustees Of The Leland Stanford Junior University Integrated laser stabilization with built-in isolation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3584091D1 (en) * 1984-10-01 1991-10-17 Polaroid Corp AMPLIFIER FOR OPTICAL WAVE GUIDE AND LASER.
JPH04106533A (en) * 1990-08-27 1992-04-08 Hikari Keisoku Gijutsu Kaihatsu Kk Optical resonator
JPH04165685A (en) * 1990-10-30 1992-06-11 Ando Electric Co Ltd Laser beam source of variable wavelength
JPH05291656A (en) * 1992-04-10 1993-11-05 Nippon Telegr & Teleph Corp <Ntt> Optical-waveguide type ring laser
US6091744A (en) * 1998-01-14 2000-07-18 Hewlett-Packard Company Wavelength selectable source for wavelength division multiplexed applications
JP3311722B2 (en) * 1999-02-09 2002-08-05 財団法人神奈川科学技術アカデミー Optical waveguide type wavelength filter with ring resonator and 1 × N optical waveguide type wavelength filter
WO2000050938A1 (en) * 1999-02-22 2000-08-31 Massachusetts Institute Of Technology Vertically coupled optical resonator devices over a cross-grid waveguide architecture
JP2000261086A (en) * 1999-03-10 2000-09-22 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable light source
AU1795201A (en) * 1999-11-23 2001-06-04 Nanovation Technologies, Inc. Localized thermal tuning of ring resonators
US6366592B1 (en) * 2000-10-25 2002-04-02 Axsun Technologies, Inc. Stepped etalon semiconductor laser wavelength locker
US6690687B2 (en) * 2001-01-02 2004-02-10 Spectrasensors, Inc. Tunable semiconductor laser having cavity with ring resonator mirror and mach-zehnder interferometer
US6891865B1 (en) * 2002-02-15 2005-05-10 Afonics Fibreoptics, Ltd. Wavelength tunable laser
US7245801B2 (en) * 2002-03-21 2007-07-17 University Of Rochester Apparatus with a series of resonator structures situated near an optical waveguide for manipulating optical pulses
US6940878B2 (en) * 2002-05-14 2005-09-06 Lambda Crossing Ltd. Tunable laser using microring resonator
CN1186897C (en) * 2002-06-18 2005-01-26 武汉光迅科技有限责任公司 Wide-range extenal cavity tunable laser device
US6891998B2 (en) * 2002-09-27 2005-05-10 Intel Corporation Methods and apparatus for passive depolarization
IL152195A0 (en) * 2002-10-09 2003-05-29 Lambda Crossing Ltd Tunable laser
US7065276B2 (en) * 2003-04-03 2006-06-20 Lambda Crossing Ltd. Integrated optical filters utilizing resonators
US7231113B2 (en) * 2005-08-19 2007-06-12 Infinera Corporation Coupled optical waveguide resonators with heaters for thermo-optic control of wavelength and compound filter shape

Also Published As

Publication number Publication date
JP2006196554A (en) 2006-07-27
EP1679771A3 (en) 2009-05-06
CN1819379A (en) 2006-08-16
US20060153267A1 (en) 2006-07-13
US7389028B2 (en) 2008-06-17
EP1679771B1 (en) 2012-02-08
CN100407526C (en) 2008-07-30
CA2531727C (en) 2011-09-06
EP1679771A2 (en) 2006-07-12
HK1094485A1 (en) 2007-03-30
CA2531727A1 (en) 2006-07-11
JP4678191B2 (en) 2011-04-27
TW200631267A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
TWI280713B (en) Multiple resonator and variable-wavelength light source using the same
TWI360272B (en) Tunable laser
JP5029364B2 (en) Tunable filter and tunable laser
EP1699120B1 (en) Wavelength tunable laser with multiple ring resonator
US7701983B2 (en) Tunable resonator, tunable light source using the same, and method for tuning wavelength of multiple resonator
JP5772989B2 (en) Laser element
KR100488354B1 (en) Frequency tunable optical oscillator with fiber grating mirrors
JPH1146046A (en) Single mode laser
CA2999682C (en) Semiconductor laser device
JP5157347B2 (en) Control device, laser device, wavelength switching method and program
JP4635050B2 (en) Adjustable delay or resonator waveguide device with Y-junction reflector
US6975796B2 (en) Modulation frequency tunable optical oscillator
KR100319760B1 (en) A high frequency modulated laser generator with coupled fiber cavity structure
JP3814495B2 (en) Tunable mode-locked laser
WO2022137330A1 (en) Wavelength-variable laser
TWI363508B (en) Widely tunable chirp managed laser
JP2002076507A (en) Frequency stabilized semiconductor laser device
JP2017037971A (en) Narrow line width wavelength variable semiconductor laser
KR20020022162A (en) A utra high frequency modulated laser generator with double ring type fiber cavity structure
CN114583541A (en) Hybrid integrated laser
CN115832869A (en) Integrated external cavity laser and use method
CN117311055A (en) On-chip multi-wavelength light source based on optical frequency comb
JP2008241953A (en) Wavelength selection reflective circuit and multi-wavelength light source
JP2005300923A (en) Producing apparatus of balanced multiple wavelength optical frequency comb

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees